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The class of Petrov type I curvature tensors is further divided into those for which

the span of the set of distinct principal null directions has dimension four (maximally
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are provided for both vacuum and nonvacuum spacetimes.
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1. Introduction

The Petrov classification of a spacetime Weyl curvature tensor is a local alge-

braic characterization based on the number of its distinct principal null directions

(PNDs), represented by a set of at most four distinct null vectors modulo irrelevant

rescaling factors. The corresponding sets of distinct principal null vectors are au-

tomatically linearly independent for all types except the Petrov type I case of four

distinct such vectors where their span may have either dimension 3 or 4 leading to

a division of such cases into maximally spanning (dimension 4) or non-maximally

spanning (dimension 3) type I cases. The present refinement of the Petrov type I

case based on the dimensionality of the span of a set of distinct principal null direc-

tions relies on a few basic properties of null vectors in a 4-dimensional Lorentzian

spacetime. We use the word “distinct” to describe a set of (nonzero) vectors such

that no two of the vectors are proportional. Since the principal null directions deter-

mine bivector eigentensors of the curvature tensor, their overall scale is unimportant
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as with ordinary eigenvectors.

Since a 2-dimensional subspace contains at most 2 distinct null vectors, a third

null vector which is not proportional to either one (and hence distinct) must be

linearly independent so that the 3 vectors together determine a 3-dimensional

Lorentzian subspace whose normal vector must be spacelike, i.e., a timelike sub-

space. These 3 null vectors then belong to the 2-dimensional light cone in that

timelike subspace. A fourth distinct null vector either belongs to that lower di-

mensional light cone, or is linearly independent of the first 3 vectors, leading to a

4-dimensional span of the entire set.

Since the known exact solutions of Einstein’s equations are very special with

high symmetry, the Petrov type of their Weyl curvature tensor does not depend on

position so the spacetime itself is said to be of that Petrov type. For a Petrov type

I spacetime with a minimally spanning set of principal null vector fields, a unique

spacelike unit vector field (modulo sign) exists which determines the orientation of

their 3-dimensional spanning subspace within each tangent space.

The Petrov classification [1] categorizes Weyl curvature tensors by the generic

number of distinct PNDs, which in turn translates into possible multiplicities of

the roots of an eigenvalue problem involving bivectors which can have either simple

(unrepeated) eigenvalues or repeated eigenvalues. The multiplicity types for the

number of PNDs are

Type I: four simple (four distinct),

Type II: one double and two simple (three distinct),

Type D: two double (two distinct),

Type III: one triple and one simple (two distinct),

Type N: one quadruple (one distinct),

Type O: none (vanishing Weyl tensor).

Type I is the algebraically general case, while the remaining types are referred to

as algebraically special.

When studying the properties of a given spacetime, useful geometrical and phys-

ical information is associated with the principal null directions of its Weyl tensor.

Why do the PNDs play such an important role? A “rough” argument is the fol-

lowing. The PNDs locate on the light cone at each spacetime point the pillars on

which the spacetime itself can stand alone as a solution of the vacuum Einstein

equations. If the spacetime then hosts other fields (either test fields or by general-

ization through perturbation fields which modify the background geometry through

back-reaction), it is expected that the characteristic directions of these new fields

will coincide, at least in a first approximation, with those of the background. This

is true for the Petrov type D Kerr-Newman rotating and charged black hole space-

time, sourced by the electromagnetic field generated by a single massive electric

charge. This spacetime generalizes the electrically neutral rotating Kerr black hole:

the eigenvectors of the electromagnetic field 2-form are aligned with those of the

spacetime curvature. This agreement is captured by the vanishing of the generalized
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Simon tensor [2].

Trümper was the first to note the two possible spanning dimensions of a set

of PNDs for a Petrov type I Weyl tensor [7] later mentioned in a general spinor

discussion pioneered by Rindler and Penrose [8] and later studied by McIntosh et

al [9], who used invariants of the curvature tensor to give a condition for when this

spanning dimension is not maximal, and in particular that if the Weyl tensor is

either purely electric or purely magnetic (and therefore of type I), the span of the

PNDs is only 3-dimensional. However, these conditions are not directly related to

this dimensionality. Here we evaluate the wedge product of the 4 distinct PNDs to

establish a direct connection between the PNDs and this dimensionality.

Analytically computing the PNDs of a given spacetime is always possible in

principle, but the actual computation can be quite difficult since it involves the

roots of a fourth degree polynomial and their use in the subsequent bivector ma-

nipulations. The usual approach starts with a null frame which is then conveniently

“rotated” (Lorentz transformed) until one of the frame vectors becomes a PND. In

this case, spacetime symmetries may help, in the sense that a null vector k± is pro-

portional to the sum or difference of a unit timelike vector u and a unit spacelike

one ν̂ orthogonal to u, k± ∝ u ± ν̂ , where either of these might be suggested by

some Killing symmetries of the spacetime which might exist.

If one is interested only in characterizing the Petrov type of a given space-

time, it is enough to study the multiplicity of the PNDs without explicitly de-

termining them. However, 1) a dynamical spacetime (including perturbed black

hole spacetimes and numerically generated spacetimes), during its evolution, may

pass through different Petrov types, and it is interesting to study the motivations

for this transition; 2) a general family of spacetimes, with a metric depending on

several parameters, can also be of different Petrov types corresponding to various

regions of the parameter space. Since different Petrov types are associated with dis-

tinct physical properties, it is interesting to study situations in which such changes

happen.

In particular distinguishing algebraically special spacetimes from the general

type I case can be done by evaluating the “speciality index” S [3,4], a particular

combination of the Weyl curvature scalars. It has the value S = 1 only for alge-

braically special spacetimes, while S 6= 1 characterizes the general type I case, thus

identifying the algebraically special cases among a family of spacetimes which is

generically of type I. This it true of the 1-parameter family of Kasner spacetimes

which although generically of Petrov type I, allows isolated Petrov type D or O

cases where additional local rotational symmetry occurs; however, all type I Kas-

ner spacetimes are found to be nonmaximally spanning. The Petrov exact sloution

spacetime provides another explicit example of a Petrov type I spacetime, but which

is maximally spanning.

Consider a Petrov type I spacetime for which the 4 distinct PNDs are represented

by the null vectors ki, i = 1, . . .4. These may span the entire tangent space or a 3-
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dimensional subspace, in which case their wedge product Ω1234 = k1∧k2∧k3∧k4 is

either nonzero (maximally spanning) or zero (nonmaximally spanning). The actual

value when nonzero has no intrinsic meaning since the null vectors can be arbitrarily

rescaled and only their equivalence classes under rescaling matter (algebraically).

In contrast for the case of the Petrov type II spacetimes, where there exist only

three distinct PNDs ki, i = 1, . . .3, their wedge product k1∧k2∧k3 is automatically

nonzero as discussed above (and its dual defines a spacelike normal to their span),

so this dimensional distinction is no longer relevant for it or the remaining Petrov

types in the hierarchy.

Apart from the clear geometrical meaning of this division of Petrov type I cases

in terms of the spanning set dimension, its physical meaning is not yet apparent

and will require further investigation. For example, what role does the spacelike

normal to the spanning set play in the nonmaximal type 1 case? In the Kasner case

it turns out to be associated spatial direction with the single negative Kasner index

leading to contraction in the forward time direction.

Our conventions and notation will follow the standard ones for the Newman-

Penrose (NP) formalism [5,6] (see also Ref. [1]). Furthermore, units are chosen such

that c = 1 = G and the metric signature is + − −− as usually chosen when using

the NP formalism.

2. Petrov classification and scalar invariants: a short review

Consider the Weyl tensor Cαβγδ of a given spacetime with metric g and its dual
∗Cαβγδ. Define the complex tensor C̃αβγδ = Cαβγδ− i∗Cαβγδ and introduce in both

tensor and Newman-Penrose (NP) notation the two complex curvature invariants

[1]

I =
1

32
C̃αβγδC̃

αβγδ = ψ0ψ4 − 4ψ1ψ3 + 3ψ2
2 , (1)

and

J =
1

384
C̃αβγδC̃

γδ
µνC̃

µναβ = ψ0ψ2ψ4 − ψ2
1ψ4 − ψ0ψ

2
3 + 2ψ1ψ2ψ3 − ψ3

2 , (2)

where the Weyl scalars refer to a choice of NP frame {l, n,m, m̄} related to an

associated orthonormal frame {eα} = {e0, ea} by the standard relations

l =
1√
2
(e0 + e1) , n =

1√
2
(e0 − e1) , m =

1√
2
(e2 + ie3) . (3)

An observer with 4-velocity U measures the following electric and magnetic

parts of the Weyl tensor

E(U)αβ = CαµβνU
µUν, H(U)αβ = −∗CαµβνU

µUν , (4)

respectively, which can be combined into the symmetric tracefree complex tensor

Q(U)αβ = C̃αµβνU
µUν = E(U)αβ + iH(U)αβ , (5)
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in terms of which the scalars I and J take the form

I =
1

32
Q(U)αβQ(U)βα , J =

1

384
Q(U)αβQ(U)βδQ(U)δα . (6)

Let e0 = U , so that the orthonormal frame {eα} is adapted to the observer U . The

nonzero components of the tensor Q with respect to it can be represented by the

following 3 × 3 complex matrix

(Qab) =





ψ2 − 1
2 (ψ0 + ψ4)

i
2 (ψ4 − ψ0) ψ1 − ψ3

i
2 (ψ4 − ψ0) ψ2 + 1

2 (ψ0 + ψ4) i(ψ1 + ψ3)

ψ1 − ψ3 i(ψ1 + ψ3) −2ψ2



 , (7)

where a, b = 1, 2, 3.

The scalars I and J are used to define the speciality index S [3,4] of the space-

time when I 6= 0

S =
27J2

I3
, (8)

characterizing the transition from general Petrov type I (S 6= 1) to algebraically

special behavior (S = 1) [1]. Because of their tensor expressions as scalars, it is

clear that both I and J (and hence S) are frame-invariant objects, i.e., they do not

change under any allowed transformation of the chosen orthonormal or null frame.

The standard algorithm used to determine the Petrov type of a given spacetime

involves the evaluation of other scalar objects. One first evaluates the scalars I and

J and the difference I3 − 27J2. If the latter quantity is nonzero then the spacetime

is of type I. If instead I3 − 27J2 = 0 one should distinguish the case of I and J

both nonvanishing or not, and construct three new scalars [1],

K = ψ1ψ
2
4 − 3ψ4ψ3ψ2 + 2ψ3

3 ,

L = ψ2ψ4 − ψ2
3 ,

N = 12L2 − ψ2
4I , (9)

which are related to the discriminants of the quartic equation (13) defining the

PNDs, and are not frame-invariant (see Appendix A). The algebraically special

types correspond to the following conditions:

Type II: I 6= 0 , J 6= 0 , K 6= 0 or/and N 6= 0 ,

Type D: I 6= 0 , J 6= 0 , K = 0 , N = 0 ,

Type III: I = 0 , J = 0 , L 6= 0 or/and K 6= 0 ,

Type N: I = 0 , J = 0 , L = 0 , K = 0 . (10)

Details of this algorithm as well as its representation as a flow chart can be found

in Fig. 9.1 of Ref. [1], recalling the underlying assumption ψ4 6= 0 (or ψ0 6= 0).

An equivalent approach to classifying the Weyl tensor instead solves the eigen-

value problem associated with the matrix Qab. The matrix criteria for the various

Petrov types and the normal forms of the matrix Qab in each case (with corre-

sponding eigenvalues and eigenvectors) are listed in Tables 4.1 and 4.2 of Ref. [1],
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respectively. The orthonormal frame {eα} with respect to which the matrix Qab
has a normal form is uniquely determined (modulo the choice of numbering of the

three spatial vectors {ea}) for the non-degenerate Petrov types I, II and III, and is

called a Weyl principal (or canonical) tetrad. The eigenvalues satisfy the equation

σ3 − Iσ − 2J = 0 , (11)

so that

I =
1

2
(σ2

1 + σ2
2 + σ2

3) , J =
1

6
(σ3

1 + σ3
2 + σ3

3) =
1

2
σ1σ2σ3 . (12)

For Petrov type I spacetimes the Weyl scalars with respect to the principal tetrad

are given by ψ0 = ψ4 = (σ2 − σ1)/2, ψ1 = ψ3 = 0, and ψ2 = −σ3/2, with

σ3 = −σ1 − σ2. For type D we have in addition ψ0 = 0 = ψ4 as σ1 = σ2. For type

II we have ψ0 = ψ1 = ψ3 = 0, ψ4 = −2, and ψ2 = −σ3/2.

2.1. PNDs for Petrov types I and II spacetimes

Next we review the explicit determination of the PNDs. Following the notation of

Ref. [1], if ψ4 6= 0 for the Petrov type of a given spacetime we have to find the roots

λ (with the corresponding multiplicity) of the following algebraic equation

λ4ψ4 − 4λ3ψ3 + 6λ2ψ2 − 4λψ1 + ψ0 = 0 , (13)

whose solutions define the explicit expressions for the four PNDs

ki = l+ λ∗im+ λim̄+ |λi|2n , i = 1 . . .4 . (14)

These roots are computed as follows. First divide Eq. (13) through by its leading

coefficient

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 , (15)

defining the new coefficients

a1 = −4ψ3

ψ4
, a2 =

6ψ2

ψ4
, a3 = −4ψ1

ψ4
, a4 =

ψ0

ψ4
. (16)

This equation can be directly solved by using the standard, rather involved, formulas

available in the literature, leading to the four roots λi (i = 1, . . .4). However, one

can conveniently rotate the NP frame to put it into its transverse form, i.e., with

ψ1 = 0 = ψ3, so that Eq. (15) reduces to a bi-quadratic equation

λ4 + a2λ
2 + a4 = 0 , (17)

with solutions

λ1,2 = Λ± , λ3,4 = −Λ± , (18)

where

Λ± =

√

−a2 ±
√

a2
2 − 4a4

2
. (19)
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If the transverse frame is also canonical (ψ0 = ψ4, a4 = 1), additional simplifications

in the solutions (18) occur, namely

Λ± =
1

2

[√
−a2 + 2 ±

√
−a2 − 2

]

. (20)

For example, for Petrov type I, inserting the value of a2 = 6ψ2/ψ0 leads to the

following (explicit) solutions [9]

λ1 , λ2 = −λ1 , λ3 =
1

λ1
, λ4 = − 1

λ1
, (21)

where

λ1 =



−3
ψ2

ψ0
−

√

9

(

ψ2

ψ0

)2

− 1





1/2

. (22)

The latter can be also written as

λ1 =

√
σ2 + 2σ1 +

√
σ1 + 2σ2√

σ1 − σ2
, (23)

in terms of the eigenvalues σi of the matrix Qab (see Table 4.3 of Ref. [1]).

On the one hand, directly solving the fourth-degree algebraic equation (13) is

in general a difficult task (because of the large expressions involved), but which

is facilitated if one uses a principal NP frame. In fact, in that case this equation

becomes bi-quadratic with obvious advantages in writing its solutions.

On the other hand, transforming a general NP frame into a principal one is not

an easy task, since one generally must use type I, II and III null tetrad rotations

in succession to accomplish this, a fact which in most cases works against the

advantage of solving a simpler equation at the end.

In the case of Petrov type II spacetimes the canonical tetrad corresponds to

ψ0 = 0 = ψ1 = ψ3 and ψ4 = −2 [1], so that Eq. (13) becomes

−2λ2(λ2 − 3ψ2) = 0 , (24)

with solutions

λ1 = 0 = λ2 , λ3 =
√

3ψ2 , λ4 = −λ3 (ψ2 6= 0) . (25)

Therefore, k1 = l = k2 is a repeated PND with multiplicity 2, while k3, k4 are

given by Eq. (14). On the other hand the complex matrix Qab has eigenvalues

σ1 = σ2 = −σ/2 and σ3 = σ = −2ψ2, so that λ3 =
√

−3
2σ.

2.2. PND degeneracy

The four PNDs (14) may be either linearly independent or not. In the former case

they span a 4-dimensional vector space at each spacetime point, otherwise only a

3-dimensional subspace.
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Arianrhod, McIntosh and coworkers [9,10,11] classified the PND degeneracies

depending on the nature and value of the scalar invariant

M̃ =
I3

J2
− 27 =

27

S (1 − S) , (26)

with M̃ generally complex and possibly infinite.a They proved the following theorem

[10]: “The four distinct PNDs associated with a metric whose Weyl tensor is of

Petrov type I span, at each point, either a 3-dimensional vector space, in which

case M̃ is real and either positive or infinite, or a 4-dimensional vector space for

other M̃ .” Furthermore, they showed that if there exists an observer with 4-velocity

U who sees the Weyl tensor as purely electric or purely magnetic, then the PNDs

are linearly dependent, and span the 3-dimensional vector space orthogonal to the

eigenvector of Qab corresponding to the eigenvalue of smallest absolute value [9].

Here we will adopt a different criterion (leading, however, to equivalent conclu-

sions) to distinguish between the two cases. Let

Ω1234 = k1 ∧ k2 ∧ k3 ∧ k4 (27)

be the 4-dimensional volume associated with the ki. When Ω1234 6= 0 the four PNDs

are linearly independent, our maximally spanning type I case. The nonmaximally

spanning type I case instead corresponds to Ω1234 = 0, implying that the PNDs are

linearly dependent.

In general, the volume 4-form has the expression

Ω1234 = V l ∧ n ∧m ∧ m̄ , (28)

with

V = (λ32 + λ24 − λ34)|λ1|2 + (λ13 + λ34 − λ14)|λ2|2

+ (λ14 + λ21 − λ24)|λ3|2 + (λ12 + λ23 − λ13)|λ4|2 , (29)

where we have used the notation

λnm = λ̄nλm − λnλ̄m = λ̄mn . (30)

The quantity V vanishes identically when all the λi are either real or purely imag-

inary, which leads to λmn = 0 for all m, n, or when all the λi are unit complex

numbers |λi| = 1, when the expression reduces to

V = (λ12 + λ21) + (λ23 + λ32) (31)

which vanishes since in this case λnm = −λmn. V may be different from zero only if

the (distinct) λi are non-unit complex numbers, which is a necessary and sufficient

condition for linear independence.

aWe denote here such an invariant by M̃ instead of M = I3/(J2 − 6) since we are using the

definitions of Ref. [1] for I and J, which slightly differ from those of Penrose and Rindler [8].
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For Petrov type I spacetimes, substituting into Eq. (29) the solutions (21) cor-

responding to a canonical tetrad leads to the expression

V = − 16

|λ1|4
Re(λ1)Im(λ1)(|λ1|2 + 1)(|λ1|2 − 1) , (32)

implying that the PNDs are linearly dependent only if one of the following condi-

tions holds: Re(λ1) = 0, Im(λ1) = 0, or |λ1|2 = 1. These are the same conditions

on all the eigenvalues which holds in general, but for the type I case the interre-

lationships of these eigenvalues makes it sufficient to hold only for one of them to

hold for all of them.

For Petrov type II spacetimes, the 3-dimensional volume associated with the

canonical tetrad reads

Ω123 = k1 ∧ k2 ∧ k3

= −2|λ3|2 l ∧ n ∧
(

λ̄3m+ λ3m̄
)

= 2
√

2|λ3|2
[

Re(λ3)ω
012 + Im(λ3)ω

013
]

, (33)

with ω012 = ω0 ∧ω1 ∧ω2 and ω013 = ω0 ∧ω1 ∧ω3, where {ωα} is the dual frame of

{eα}, related to the NP frame in the usual way by Eq. (3), while λ3 =
√

3ψ2 6= 0

cannot vanish and remain of type II. Therefore, it is always nonzero, implying that

as expected, there cannot exist spacetimes of nonmaximally spanning type II. The

nonexistence of type II spacetimes with linearly dependent PNDs has not been

pointed out before, and is a novel and unexpected result of the present analysis.

In Section 4 we will consider explicit examples which prove helpful by illustrating

the previous discussion concretely.

3. Relation with the algebraic approach of Arianrhod and

McIntosh

We now show for Petrov type I the equivalence between our geometrical approach

(based on the vanishing of the 4-dimensional volume element (28) associated with

the PNDs, or the scalar quantity V, Eq. (32)) and the algebraic criterion of Arian-

rhod and McIntosh [10,11] referred to in the previous section (based on the value

of the scalar invariant M̃ , Eq. (26)). The latter can be expressed in terms of the

canonical tetrad as follows

M̃ =
2916(λ4

1 − 1)4λ4
1

(1 + λ4
1)

2(λ4
1 + 6λ2

1 + 1)2[(λ2
1 − 1)2 − 4λ2

1]
2
, (1)

with λ1 6= 0 given by Eq. (21). Unfortunately this brute force proof requires a

computer algebra system to accomplish because of the complicated relationship

between M̃ and λ1.

Linear dependence of the PNDs requires that the imaginary part of M̃ vanish,

while the real part must be positive or infinite, so it must be shown that this is

equivalent to the vanishing of V. Introduce the real and imaginary parts of λ1 =
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a+ ib, in terms of which V is the explicitly real expression for type I spacetimes

V =
16ab [1− (a2 + b2)2]

(a2 + b2)2
. (2)

Unfortunately the following brute force proof requires a computer algebra sys-

tem to accomplish because of the complicated relationship between M̃ and λ1.

Introducing some auxiliary complex quantities x+ iy, z+ iw defined below leads to

the following expression for M̃

M̃ =
2916 (x+ iy)4

(z + iw)2
, (3)

and hence

Re(M̃) = − 2916

(z2 + w2)2
[(x2 − y2)(w + z) + 2xy(w − z)]

×[(x2 − y2)(w − z) − 2xy(w + z)] ,

Im(M̃) = − 5832

(z2 + w2)2
[(x2 − y2)w − 2xyz][(x2 − y2)z + 2xyw] . (4)

The quantities x, y, z, w are defined by ugly expressions

x = a (a4 − 10a2b2 + 5b4 − 1) ,

y = b (b4 − 10a2b2 + 5a4 − 1) ,

z = 1 + 198a2b2 − 33b4 − 33a4 + 924a6b2 − 2310a4b4 + 924a2b6 − 66a10b2

+495a8b4 − 924a6b6 + 495a4b8 − 66a2b10 − 33a8 − 33b8 + a12 + b12 ,

w = 4ab (a2 − b2)(3a8 − 52a6b2 − 66a4 + 146a4b4 − 52a2b6 + 396a2b2

−33 + 3b8 − 66b4) . (5)

The imaginary part of M̃ vanishes if either 1) (x2 − y2)w − 2xyz = 0, implying

Re(M̃) = 11664x2y2/w2 ≥ 0, or if 2) (x2 − y2)z + 2xyw = 0, implying Re(M̃) =

−2916(x2 − y2)2/w2 ≤ 0. The second case does not lead to linear dependence. The

first case instead leads to

0 = 2ab [(a2 + b2)2 − 1]P (a, b) , (6)

where P (a, b) = P (b, a) ≥ 1 is a symmetric real positive polynomial function which

never vanishes. Therefore, both conditions Im(M̃) = 0 and Re(M̃) ≥ 0 are satisfied

if and only either a = 0 or b = 0 or a2 + b2 = 1, implying that V = 0 as well. For

completeness we note that

P (a, b) = Q(a, b)Q(−a, b)Q(a,−b)Q(−a,−b) , (7)

where

Q(a, b) = (a2 + b2 + 1)2 + 2(a+ b− 1)(a2 + b2 + a + b) . (8)

Consider the converse situation where V vanishes. This occurs in the three cases

a = 0 or b = 0 or a 6= 0 6= b, a2 + b2 = 1. We have already shown that in every such
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case the imaginary part of M̃ is identically vanishing. Concerning the real part, if

a = 0 it reduces to

Re(M̃) =
2916(b4 − 1)4b4

(1 + b4)2(b4 + 6b2 + 1)2[(b2 − 1)2 − 4b2]2
, (9)

while the case b = 0 is equivalent to this exchanging a and b, while if a2 + b2 = 1,

we can use a2 = 1 − b2 to re-express this quantity as

Re(M̃) =
729(b2 − 1)2b4

(b2 − 2)2(2b2 − 1)2(1 + b2)2
. (10)

In all three cases either M̃ ≥ 0 or M̃ is infinite. Therefore, V = 0 implies Im(M̃) = 0

and Re(M̃) ≥ 0.

However, the quantity M̃ is an unmotivated combination of the two complex

curvature scalars associated with the algebraic classification of the curvature tensor

and the properties of this quantity which lead to linear dependence of the PNDs are

awkward and without direct interpretation. In contrast the quantity V is directly

associated with the volume form determined by the PNDs, with an immediate

interpretation of its vanishing or nonvanishing in terms of the linear independence

of the PNDs.

4. Type I spacetimes: examples

4.1. Kasner spacetime

The simplest Petrov type I spacetime allowing for analytical computations is the

vacuum Kasner [12] metric

ds2 = dt2 − t2p1dx2 − t2p2dy2 − t2p3dz2 , (1)

where the so-called Kasner indices pi satisfy

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 , (2)

and assume values in the closed interval [−1
3 , 1]. The spatial Cartesian coordinates

and these indices are adapted to the eigenvectors of the extrinsic curvature of the

intrinsically flat time slices, but the algebraic properties of the spacetime curvature

tensor are quite different.

Introduce the following NP frame adapted to the first spatial coordinate

l =
1√
2
[∂t + t−p1∂x],

n =
1√
2
[∂t − t−p1∂x] ,

m =
1√
2
[t−p2∂y + it−p3∂z] , (3)

which has the following nonzero Weyl scalars

ψ0 = ψ4 =
p1(p2 − p3)

2t2
, ψ2 = −p2p3

2t2
, (4)
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so that the frame is a canonical one (clearly true starting from the other two

coordinate directions as well). The associated orthonormal frame

e0 = ∂t , e1 = t−p1∂x , e2 = t−p2∂y , e3 = t−p3∂z , (5)

is adapted to the static observers with 4-velocity U = e0 whose spatial axes are

aligned with the Killing vectors ∂x, ∂y, ∂z, and therefore directly observe the homo-

geneity of the spacetime. They also see a purely electric Weyl tensor whose electric

part is

E(U) =
1

t2
[p1p3 e1 ⊗ e1 + p1p2 e2 ⊗ e2 + p2p3 e3 ⊗ e3] , (6)

while its magnetic part H(U) vanishes identically.

The 1-parameter family of spacetimes (1) is efficiently parametrized by express-

ing the Kasner indices in terms of the Lifshitz-Khalatnikov (LK) parameter

p1 = − u

(1 + u+ u2)
, p2 =

(1 + u)

(1 + u+ u2)
, p3 =

u(1 + u)

(1 + u+ u2)
, (7)

with limiting cases u → ±∞ capturing the remaining triplet (0, 0, 1), while u =

0 ↔ (0, 1, 0) and u = −1 ↔ (1, 0, 0), all of which correspond to a flat spacetime. On

the other hand the three cases u = −2,−1
2
, 1 correspond to the three triplets which

are permutations of (−1
3 ,

2
3 ,

2
3 ) for which the spacetime is a locally rotationally

symmetric type D spacetime, with a spindle-like cosmological singularity [1,13],

expanding in one direction while collapsing in the two orthogonal directions.

The parameter space of these Kasner spacetimes is best understood as a circle

with three equal divisions separated by the three flat spacetime values, and with the

locally rotationally symmetric cases at the center of each such interval. See Fig. 2 of

[15]. These three intervals are those for which one Kasner index is negative and the

other two positive, corresponding to contraction in that direction as the spacetime

evolves: p1 < 0 : −1 < u−1 < 1, p2 < 0 : −∞ < u < −1, p3 < 0 : −1 < u < 0.

Using the LK parametrization, the various scalars turn out to be

I =
u2(1 + u)2

(1 + u+ u2)3
1

t4
, J =

1

2

u4(1 + u)4

(1 + u+ u2)6
1

t6
,

K = 0 , L = −1

4

u2(u − 1)(1 + u)3

(1 + u+ u2)4
1

t4
,

N =
u4(u+ 2)(2u+ 1)(u− 1)2(1 + u)4

4(1 + u+ u2)8
1

t8
. (8)

Note that both I and J vanish for the flat cases u = 0,−1,±∞ but the speciality

index is nevertheless always defined and has the constant value

S = −27

4
p1p2p3 =

27

4

u2(1 + u)2

(1 + u+ u2)3
, (9)

where these expressions here (and their permutations) are equivalent due to (2).

Apart from K which vanishes identically, other zero values of the remaining NP
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scalars do occur. All of these scalars vanish for the trivial flat spacetime case for

which u = 0,−1,±∞, while for the three type D cases where u = −2,−1
2
, 1 one has

I = 4
27
t−4, J = 8

729
t−6 and u = 1: L = N = 0, u = −2,−1

2
: N = 0. Thus within

the Kasner family transitions of Petrov type only occur among types I, D, and O

at these particular parameter values.

Consider now the PNDs in the type I case. The Arianrhod-McIntosh invariant

(26) reads

M̃ =
(u + 2)2(2u+ 1)2(u− 1)2

u2(1 + u)2
, (10)

and it is always positive for every value of u 6= 1 and therefore real, implying that

the four PNDs must be linearly dependent for all finite values of u except the trivial

case u = 1 of flat spacetime.

On the other hand we can derive this result directly. The frame (5) is a canonical

frame, so that the PNDs are given by Eq. (14) with λi specified by Eq. (21). The

eigenvalues of the matrix Qab are

σ1 = u σ2 = − u2(1 + u)

(1 + u+ u2)2
1

t2
, (11)

so that by Eq. (23)

λ1 =

√

u+ 2

u− 1
+

√

2u+ 1

u− 1
, (12)

which is real for u > 1 and u < −2, purely imaginary for −1
2 < u < 1, and complex

for −2 < u < −1
2 with |λ1|2 = 1, all conditions for which by Eq. (32) lead to V = 0

implying linear dependence of the PNDs for all values of u 6= 1.

Finally we can evaluate the three 3-vectors obtained by wedging together each

triplet combination of the PND’s, namely

k234 , k134 , k124 , k123 , (13)

with kabc = ka ∧ kb ∧ kc. If pa < 0, we find that each of the kabc in Eq. (13)

is proportional to ω0 ∧ ωb ∧ ωc, where (a, b, c) is a cyclic permutation of (1,2,3).

In other words, the span of the 4 PND’s is the subspace orthogonal to the single

collapsing spatial direction ea.

Apparently, the algebraic Petrov-type properties of the spacetime curvature

reflect the distinction between collapsing and expanding spatial directions in its

global light cone structure through the Einstein equations. This is a new observation

that has escaped the notice of previous investigations and sheds some light on

physical consequences of the Petrov classification.

4.2. Petrov spacetime

The Petrov spacetime [14] is a homogeneous vacuum solution with line element

given by

k2ds2 = ex[cos(
√

3x)(dt2 − dz2) + 2 sin(
√

3x)dtdz]− dx2 − e−2xdy2 , (14)
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where k > 0 is a constant parameter and 0 <
√

3x < π/2. The orthonormal frame

associated with the principal NP frame is given by

e0 = ke−x/2

[

cos

(√
3x

2

)

∂t + sin

(√
3x

2

)

∂z

]

,

e1 =
k√
2
(∂x − ex∂y) ,

e2 =
k√
2
(∂x + ex∂y) ,

e3 = ke−x/2

[

− sin

(√
3x

2

)

∂t + cos

(√
3x

2

)

∂z

]

, (15)

leading to the following nonvanishing Weyl scalars

ψ0 = ψ4 = −k
2
√

3

2
eiπ/6 ,

ψ2 = −k
2

2
e−iπ/3 = −k2 − ψ4 . (16)

The various NP scalars are explicitly

I = 0 , J = −k
6

2
, K = 0 , L =

√
3 k4

4
e−iπ/6 , N =

9k8

4
e−iπ/3 , (17)

so that the Arianrhod-McIntosh invariant (26) is negative (M̃ = −27). Both the

electric and magnetic parts of the Weyl tensor measured by U = e0 are nonzero

E(U) =
k2

2
(e1 ⊗ e1 + e2 ⊗ e2 − 2 e3 ⊗ e3) ,

H(U) =

√
3k2

2
(e1 ⊗ e1 − e2 ⊗ e2) . (18)

The complex matrix Qab has eigenvalues

σ1 = −k2eiπ/3 , σ2 = −k2 = eiπ , σ3 = k2e−iπ/3 , (19)

so that from Eq. (23)

λ1 = e−iπ/3 + e−iπ/6 =
1

2
(1 − i)(1 +

√
3) , (20)

and V = 16
√

3, implying linear independence of the PNDs.

4.3. Static spacetimes of the Weyl class

Static axisymmetric vacuum solutions of the Einstein field equations can be de-

scribed using Weyl’s approach [16]. The line element in cylindrical coordinates

(t, ρ, z, φ) has the form

ds2 = e2ψdt2 − e2(γ−ψ)(dρ2 + dz2) − ρ2e−2ψdφ2 , (21)
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where the functions ψ and γ only depend on the coordinates ρ and z. The vacuum

Einstein field equations reduce to a decoupled second order equation (the axisym-

metric Laplace equation in flat space) and two first order equations

0 = ψ,ρρ +
1

ρ
ψ,ρ + ψ,zz ,

0 = γ,ρ − ρ(ψ2
,ρ − ψ2

,z) ,

0 = γ,z − 2ρψ,ρψ,z . (22)

The linearity of the first equation allows explicit spacetime solutions representing

superpositions of two or more axially symmetric bodies, which turn out to be Petrov

type I. Other solutions for single axially symmetric bodies, however, exist and are

in general of Petrov type D. We will limit our considerations here to the general

case of the metric (21) of Petrov type I without further specification to particular

examples.

The orthonormal frame adapted to the static observers with 4-velocity U = e0
is given by

e0 = e−ψ∂t , e1 = eψ−γ∂ρ , e2 = eψ−γ∂z , e3 =
eψ

ρ
∂φ . (23)

The associated NP frame (3) is a transverse frame with

e2(γ−ψ)

2
(ψ0 − ψ4) = i

[

ψ,ρz + ρψ,z(ψ
2
,z − 3ψ2

,ρ) + 3ψ,zψ,ρ
]

,

e2(γ−ψ)

2
(ψ0 + ψ4) = ψ,ρρ +

1

2ρ
ψ,ρ +

3

2
(ψ2
,ρ − ψ2

,z) − ρψ,ρ(ψ
2
,ρ − 3ψ2

,z) ,

−e
2(γ−ψ)

2
ψ2 = ψ2

,ρ −
1

ρ
ψ,ρ + ψ2

,z . (24)

The corresponding expression (26) for the Arianrhod-McIntosh invariant is rather

involved, so we avoid showing it. The Riemann tensor is purely electric and given

by

E(U) =

[

−1

2
(ψ0 + ψ4) + ψ2

]

e1 ⊗ e1 +

[

1

2
(ψ0 + ψ4) + ψ2

]

e2 ⊗ e2

−2ψ2 e3 ⊗ e3 +
i

2
(ψ0 − ψ4)(e1 ⊗ e2 + e2 ⊗ e1) . (25)

A canonical frame is obtained by performing a rotation of class III, which leaves

ψ2 unchanged (ψ′
2 = ψ2), whereas ψ0 → ψ′

0 = A−2ψ0 and ψ4 → ψ′
4 = A2ψ4, with

A2 =
√

ψ0/ψ4. In fact, in the new canonical frame ψ′
0 = ψ′

4, that is A−2ψ0 = A2ψ4,

which implies

√

ψ0

ψ4
= A2 , (26)
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as well as

ω ≡ ψ′
2

ψ′
0

=
ψ2√
ψ4ψ0

, (27)

with ω real, since both ψ2 and ψ0ψ4 are real quantities. The root (22) then has the

value

λ1 =
[

−3ω −
√

9ω2 − 1
]1/2

=

√

1 − 3ω

2
− i

√

1 + 3ω

2
. (28)

Only the following distinct cases are possible:

(1) ω ≥ 1
3
, with λ1 purely imaginary;

(2) ω ≤ −1
3
, with λ1 real;

(3) −1
3
< ω < 1

3
, with λ1 complex, and |λ1|2 = 1.

Each of these conditions make V = 0, implying the linear dependence of the PNDs.

This completes the proof that any type I static axisymmetric vacuum spacetime is

necessarily nonmaximally spanning. In this case one can evaluate the vector

Ω∗

123 = [k1 ∧ k2 ∧ k3]
∗ = −24

√

1 − 9ω2 e1 , (29)

that is, the normal direction to the 3-plane containing the three independent PNDs

k1, k2, k3 is spacelike and aligned with the radial direction along ρ, unless ω 6= ±1/3

corresponding to λ1 = −i (when ω = 1
3 ) or λ1 = 1 (when ω = −1

3 ). In both these

cases Ω∗
123 = 0, i.e., also Ω123 degenerates: Ω123 = 0, and the dimension of the

span of the three PNDs k1, k2, k3 reduces to 2 and the spacetime itself reduces to

the Petrov type D. In the non-degenerate cases, however, Eq. (29) gives a special

geometrical meaning to the radial direction (unnoticed before) as being directly

related to the null cone structure of the spacetime (21).

4.4. Dunn and Tupper spacetime

Consider the Dunn and Tupper Bianchi type VI spatially homogeneous spacetime

(see Ref. [17] and Chapter 12 of Ref. [1] as well as Ref. [18] for a recent review)

ds2 = dt2 − t2

(m− n)2
dx2 − t−2(m+n)(e−2xdy2 + e2xdz2) , (30)

where m 6= n are two constant parameters. It is an exact solution of the Einstein

equations sourced by a perfect fluid with 4-velocity U = ∂t (i.e., at rest with respect

to the space coordinates), and energy density and pressure given by

ρ =
m2 +mn + n2

t2
, p = −4mn

t2
, (31)

respectively, provided that m and n satisfy the additional constraint

m(2m+ 1) + n(2n+ 1) = 0. (32)

Note that the conditions ρ > 0 and p ≥ 0 require mn ≤ 0. The strong energy

conditions ρ+ p ≥ 0 and ρ+ 3p ≥ 0 are always satisfied for this family. The special
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case of a dust fluid (i.e., with p = 0) corresponds to either m = 0 or n = 0, but not

both simultaneously zero since the resulting vacuum spacetime is flat.

The timelike unit vector U = ∂t ≡ e0 is completed to an adapted orthonormal

frame by normalizing the spatial coordinate frame

e1 =
(m− n)

t
∂x , e2 = extm+n∂y , e3 = e−xtm+n∂z. (33)

The electric and magnetic parts of the Weyl tensor expressed in this frame are given

respectively by

E(U) =
(m− n)2

3t2
[2e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3] ,

H(U) =
(m− n)(m+ n+ 1)

t2
[e3 ⊗ e2 + e2 ⊗ e3] , (34)

The associated NP frame (3) is a transverse frame with nonvanishing Weyl

scalars

ψ0 = −ψ4 = −(m+ n + 1)(m− n)

t2
,

ψ2 = −(m − n)2

t2
. (35)

Therefore, the metric (30) is of Petrov type I except for the special case m = −n−1

when it is instead of Petrov type D. The Arianrhod-McIntosh invariant (26) turns

out to be

M̃ = − 729(m+ n + 1)4

(m− n)2(13m+ 13n+ 16mn+ 9)2
, (36)

which is a real negative (possibly infinite) number for every allowed pairs (m, n).

Passing to a canonical frame then gives the same expression for λ1 as in Eq. (28),

but with the purely imaginary quantity

ω = i
|m− n|

3|m+ n+ 1| ≡ i ξ 6= 0 , (37)

(nonvanishing since m 6= n), leading to the expression

λ1 = e−iπ/4
√

3ξ +
√

9ξ2 + 1 , (38)

which has both real and imaginary parts nonvanishing and cannot be a unit complex

number since ξ > 0. In fact its absolute value is always greater than one, so that

the general Dunn and Tupper solution is another example of a maximally spanning

type I spacetime.

5. Real null frames along a given null world line

There are obvious advantages (formal and computational) to approach any physi-

cal problem in a given spacetime geometry by exploiting the associated spacetime

symmetries. For example, this is the case of the well-known Killing symmetries.
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However, in a Petrov type I spacetime the four distinct PNDs, namely the pil-

lars holding up the whole spacetime, can be used to form a real null frame, {kα}
with α = 1, 2, 3, 4. Similarly, in a Petrov type II spacetime one can form a frame

with the three distinct PNDs plus another null vector not related to the spacetime

symmetries, while in a type D spacetime one can form a frame with the only two

distinct PNDs plus a pair of null vectors which are not PNDs. Finally, in a type N

spacetime only a PND is available and one needs three more not PNDs null vectors.

Since most of the considerations which will be developed below concern the tangent

space of the spacetime manifold we will refer to the Minkowski spacetime (signature

− + ++) directly, for simplicity. The following considerations prove to be useful.

5.1. The null frame analogous to the frame of an accelerated

observer

The proper reference frame of an accelerated observer is built following the stan-

dard construction described in Sec. 13.6 of [19]. Summarizing, at each point along

the timelike world line of the observer with four-velocity u, one identifies three

orthogonal spatial directions eĵ , and then three spatial geodesics world lines ema-

nating from the point chosen along the observer world line and having these vectors

as initial (unit) tangent vectors. The observer’s proper time τ , together with the

spatial distance (measured along the spatial geodesics), snĵ with n = nĵeĵ being a

unit spatial vector are the corresponding coordinates.

In the present case, we have a null world line (not necessarily geodesic), say k1,

and at each point along it we can define the (future) light cone and select three other

null directions k2, k3, k4 on this cone. If these directions are linear independent we

are exactly in the same situation as for the proper reference frame of an accelerated

observer. The fact is that the linear independence of four null vectors is not as

immediate as that of three spatial vectors and requires a careful discussion (see

next subsection).

Imagine now that k1 coincide with a PND of the spacetime. Only in a Petrov

type I one can complete k1 with three other null directions ki (i = 2, 3, 4) which

are also PNDs. In all other Petrov type spacetimes the number of null vectors to

be used which are also PNDs of the spacetime is necessarily lesser. This seems

curious enough (and worth of further investigation), in the sense that in the rather

involved type I spacetimes one can use a very special real null frame of PNDs (all

null vectors of the frame are also PNDs), whereas, in the less involved algebraically

special spacetimes, the real null frame is never such a special one, and additional

null directions, which are not PNDs, are needed to complete it.

5.2. Linear independence of four null vectors

Let us consider three linearly independent future pointing null vectors in Minkowski

spacetime and examine the condition that a fourth future pointing null vector lies

in their span. What spatial direction must this null vector have, compared to the
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Fig. 1. The proper reference frame of an accelerated observer and its null analogue.

directions of the three null vectors in a given local rest space? This is an interesting

problem in Lorentzian geometry relevant to the discussion of the principal null

directions in a Petrov type I curvature tensor. This type of curvature tensor has

four distinct principal null directions, but their span may have dimension 3 or 4.

When the four null vectors are not linearly independent, the situation arises which

seems worthwhile to investigate, given our limited intuition about the geometry of

null vectors in a Lorentzian spacetime.

For us to visualize their geometry, the 3-plus-1 space plus time point of view

is very helpful. Specifying the null vectors by their unit vector direction in a local

rest space orthogonal to some future-pointing timelike vector, we can study how

the spatial direction of a fourth null vector which is linearly dependent on the first

three relates to the spatial directions of those three in order to see what geometry

is involved in their arrangement. To consider the span of a set of null vectors, it

is no loss of generality to assume that they are all future-pointing, since the signs

of the coefficients of a linear combination of these null vectors are arbitrary. This

allows their interpretation as the 4-velocities of photons at a point of spacetime.

Let {k1, k2, k3} be 3 such future-pointing linearly independent null vectors at

the origin of Minkowski spacetime thought of as a vector space. Since either the

sum or difference of any two null vectors is either timelike or spacelike as a short

calculation shows, the first two of these determine a 2-plane spanned by a timelike

and spacelike pair of vectors, containing only two independent null directions, so

the third vector cannot lie in their plane if is is not proportional to one of them.
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Thus the span of three null vectors, no two of which are proportional, must be a

timelike hyperplane, whose normal is therefore spacelike. This timelike hyperplane

intersects the spacetime null cone in a 2-dimensional null cone. In an orthonormal

frame adapted to the spacelike normal, this is just an ordinary null cone in a 3-

dimensional Lorentzian subspace.

By introducing a unit future-pointing timelike unit vector u representing an

observer 4-velocity, each null vector has a unit relative velocity in the local rest

space of this observer

ki = (−ki · u)(u+ ni) , (1)

where −ki · u > 0 for future-pointing null vectors. If we introduce a generic fourth

such null vector k4 = (−ki ·u)(u+n4) belonging to their span, we can study how its

unit relative velocity n4 depends on those of the remaining three relative velocities.

The result is straightforward. The unit vectors {n1, n2, n3} are the position

vectors of three distinct points on the unit 2-sphere which determine a unique plane

containing them which intersects the sphere in a circle which in turn represents a

2-cone of unit vectors whose opening angle is easily calculated from the normal to

this plane, which gives the direction of the axis of symmetry of the cone. The latter

angle determines the spacelike normal to the timelike hyperplane spanned by the

original three null vectors, while any other null vector in their span must have its

unit velocity belong to this cone.

5.2.1. Adapted frame

To first get a sense of the geometry, we can adapt an orthonormal frame to the

timelike hyperplane containing the three linearly independent future pointing null

vectors to see the situation a bit more clearly. Assuming k1 · k2 < 0 which must be

true for any two future pointing null vectors, define

u =
(k1 + k2)

−2k1 · k2
, v =

(k1 − k2)

−2k1 · k2
, (2)

so that

u · u = −1 , u · v = 0 , v · v = 1 , (3)

and

k1 = (−k1 · k2)(u+ v) , k2 = (−k1 · k2)(u − v) , (4)

so

n1 = v , n2 = −v . (5)

Let k3 = (−k3 ·u)(u+n3) be the third linearly independent future pointing null

vector. Then {n1, n2, n3} span a 2-plane in the local rest space of u whose tips lie

on a circle. Let n5 = v × n3 be a normal to this 2-plane in this local rest space.

This is also a normal to the timelike hyperplane of the first three null vectors. Any
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other null vector k4 in this hyperplane satisfies k4 · n5 = 0. This just picks out

a 2-dimensional null cone within the hyperplane whose intersection with the local

rest space of u is the above circle containing the three unit vectors along the first

three null vectors. {u, v, n5} are easily completed to an orthonormal frame adapted

to this hyperplane by adding the spacelike unit vector n5 × v.

5.2.2. Constructing the hyperplane normal in the general case

The three unit vectors {n1, n2, n3} are distinct points on the unit sphere. Any such

three points determine unique plane and a circle in that plane on the unit sphere

passing through them all. It is easily constructed. Let m be a unit normal to the

plane they determine

m =
(n2 − n1) × (n3 − n1)

|(n2 − n1) × (n3 − n1)|
(6)

where

(n2 − n1) × (n3 − n1) = n2 × n3 + n3 × n1 + n1 × n2 , (7)

and hence determines the axis of the cone whose intersection with the unit sphere

is the given circle. Calculate the common cosine of the opening angle of the cone

containing the three unit vectors

ni ·m =
n1 · (n2 × n3)

|(n2 − n1) × (n3 − n1)|
≡ cos φ , (8)

and define the unit spacelike vector

N =
cos φu+m

sinφ
. (9)

Next evaluate

N · (u+ ni) =
(− cos φ+m · ni)

sinφ
= 0 , (10)

which is therefore orthogonal to the original three null vectors and therefore is a

normal to the timelike hyperplane they determine. All null vectors belonging to

this hyperplane are then determined by the simple linear condition

N · k4 = 0 . (11)

In the case cos φ = 0, this normal belongs to the original local rest space,

corresponding to the three unit vectors belonging to a great circle on the unit sphere

of radius 1, as in the previous section. Given any timelike observer 4-velocity u lying

in the hyperplane of the three null vectors, there is a unique boost in the plane of u

and N bringing N into the local rest space of that observer where the null vectors

lie on the unit circle associated with the 2-dimensional null cone in that hyperplane.

The hyperbolic angle of the boost satisfies tanhβ = cosφ.
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6. Concluding remarks

We have further characterized Petrov type I spacetimes as maximally or nonmaxi-

mally spanning type I according to the geometrical criterion of the nonvanishing or

vanishing of the wedge product of their four distinct PNDs, corresponding to span-

ning a 4 or 3-dimensional subspace of the tangent space at each spacetime point.

This completes the Arianrhod-McIntosh classification of PND degeneracies based

on the value of the scalar curvature invariant M̃ , whose definition has no obvi-

ous relationship to this question. These ideas have been illustrated concretely with

simple examples of type I spacetimes which are maximally spanning (Petrov and

Dunn-Tupper spacetimes) and some which are nonmaximally spanning (Kasner and

Weyl class static cylindrical spacetimes), all of which allow a relatively straightfor-

ward computation of the distinct PNDs and their associated wedge products. The

nonmaximally spanning Kasner case reveals an interesting correlation between the

single collapsing spatial direction moving forwards in time and the orientation of the

3-subspace spanned by the PNDs, while the Weyl spacetimes associate the normal

to this 3-subspace with the cylindrical radial direction. Other physical implications

of this geometrical characterization of Petrov type I spacetimes will be examined

in future work.
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Appendix A. Transformation properties of the NP curvature

scalars

A Lorentz transformation of the orthonormal frame associated with a null tetrad

transforms that null frame by a so called “null rotation”, which in turn transforms

all of the various NP quantities. The curvature scalars I and J are invariants under

all the null rotations but the scalars K, N and L are only invariant under null

rotations of class II. To understand their transformation under null rotations, we

review how null rotations affect the NP curvature quantities.

Any null rotation of the basis vectors l, n,m can be achieved by a succession of

null rotations of the following types:

(1) null rotations of class I, leaving l unchanged;
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(2) null rotations of class II, leaving n unchanged;

(3) null rotations of class III, leaving the directions of l and n unchanged and

rotating m by an angle θ in the m− m̄ plane.

The explicit transformations (see Eq. 53 of Ref. [6]) depend on the following six

real parameters: a (complex), b (complex) and θ (real) and A (real), such that

(1) class I:

l → l , m→ m+ al , m̄→ m̄+ āl ,

n → n+ ām+ am̄+ aāl . (A.1)

(2) class II:

n→ n , m→ m+ bn , m̄→ m̄+ b̄l ,

l→ l + b̄m+ bm̄+ bb̄n . (A.2)

(3) class III:

l → A−1l , n→ An , m→ eiθm,

m̄→ e−iθm̄ . (A.3)

The resulting transformation laws for the Weyl scalars are listed in many textbooks,

for example [6] . They are

(1) class I:

ψ0 → ψ0 , ψ1 → ψ1 + āψ0 ,

ψ2 → ψ2 + 2āψ1 + ā2ψ0 ,

ψ3 → ψ3 + 3āψ2 + 3ā2ψ1 + ā3ψ0 ,

ψ4 → ψ4 + 4āψ3 + 6ā2ψ2 + 4ā3ψ1 + ā4ψ0 . (A.4)

(2) class II:

Same as the previous case with the exchange of ` and n, with a→ b and

ψ0 ↔ ψ̄4 , ψ1 ↔ ψ̄3 , ψ2 ↔ ψ̄2 , (A.5)

i.e.,

ψ4 → ψ4 , ψ3 → ψ3 + bψ4 ,

ψ2 → ψ2 + 2bψ3 + b2ψ4 ,

ψ1 → ψ1 + 3bψ2 + 3b2ψ3 + b3ψ4 ,

ψ0 → ψ0 + 4bψ1 + 6b2ψ2 + 4b3ψ3 + b4ψ4 . (A.6)

(3) class III:

ψ0 → A−2e2iθψ0 , ψ1 → A−1eiθψ1 , ψ2 → ψ2 ,

ψ3 → Ae−iθψ3 , ψ4 → A2e−2iθψ4 . (A.7)
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The NP scalars I, J , K, L, N given in Eqs. (1), (2) and (9), respectively, are

related to the discriminants of the quartic equation (13) defining the PNDs. Let us

start with Eq. (15), i.e.,

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 , (A.8)

with rescaled coefficients ai given in Eq. (16). The general solutions can be written

as

λ1,2 = −a1

4
− 1

2

[

−√
y ±

√

y − 2

(

p+ y +
q√
y

)

]

,

λ3,4 = −a1

4
− 1

2

[

√
y ±

√

y − 2

(

p + y − q√
y

)

]

, (A.9)

where

p = a2 −
3

8
a2
1 =

6

ψ2
4

L , q = a3 −
1

2
a1a2 +

1

8
a3
1 = − 4

ψ3
4

K , (A.10)

and y is a solution of the auxiliary cubic equation

y3 + 2py2 + (p2 − 4r)y − q2 = 0 , (A.11)

with

r = a4 −
1

4
a1a3 +

1

16
a2
1a2 −

3

256
a4
1 , (A.12)

so that

p2 − 4r =
4

ψ4
4

N . (A.13)

Writing the cubic equation (A.11) as

y3 + b1y
2 + b2y + b3 = 0 , (A.14)

with coefficients

b1 = 2p , b2 = p2 − 4r , b3 = −q2 , (A.15)

a solution is given by

y = −b1
3

+

[

−Q
2

+

√

Q2

4
+
P 3

27

]1/3

+

[

−Q
2
−
√

Q2

4
+
P 3

27

]1/3

, (A.16)

where

P = b2 −
1

3
b21 = − 4

ψ2
4

I , Q = b3 −
1

3
b1b2 +

2

27
b31 =

16

ψ3
4

J . (A.17)
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The scalars K, N and L are invariant under null rotations of class II, but

transform under null rotations of class I and III, respectively, as follows:

K → K + (2ψ1ψ4ψ3 − 9ψ4ψ
2
2 + 6ψ2

3ψ2 + ψ0ψ
2
4)ā

+5(−3ψ1ψ4ψ2 + 2ψ2
3ψ1 + ψ0ψ4ψ3)ā

2

+10(ψ0ψ
2
3 − ψ2

1ψ4)ā
3 − 5(2ψ2

1ψ3 − 3ψ0ψ3ψ2 + ψ1ψ4ψ0)ā
4

−(ψ2
0ψ4 + 6ψ2

1ψ2 + 2ψ1ψ3ψ0 − 9ψ2
2ψ0)ā

5 − (−3ψ1ψ2ψ0 + ψ2
0ψ3 + 2ψ3

1)ā
6 ,

L→ L + (−2ψ2ψ3 + 2ψ1ψ4)ā+ (ψ0ψ4 − 3ψ2
2 + 2ψ1ψ3)ā

2

+2(−ψ1ψ2 + ψ0ψ3)ā
3 + (−ψ2

1 + ψ2ψ0)ā
4 ,

N → 12L′2 − ψ′2
4 I , (A.18)

and

K → A3e−3iθK , L→ A2e−2iθL , N → A4e−4iθN . (A.19)
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