(D  GAUGE FIELDS

exercise q) evaluate the curvafure tensor compenents in terms of the
connectton components  starting from Fhe defintion

N%g = dws + WleAw®s = 3 R¥eys w?® and  dw¥=~ % C%y N
The answer you should get is

Rdsxé = 41 %s8 — Os \—Nxs - Cexérdes + l—'dxer‘eag - rdae'vewg
The third term drops outIn a coordinate frume.

(6) You have dlready shown in a previous exemise ( have you ?) thatif we
define the Jorsion 2~ forms

T= 3 Ty w8 = du+afaaw® = Mgz w™- LYy u™
o 3 o
= U‘ cev1— 5 Co%y ) »® or Ty = R pgy— Cay
Then for a symmetric connection one has Togs =0,

Suppose the connection s not symmetric | e the Torsion ts nonZe® and
given by Tis formula  so that Mes1 = 3(Clay +To8%),

How does the formula for M%s¥ on page HS change (also page ne) ?

* : . -
Answer PYols = {oeg} + '\2—. (C“uﬁcg“‘d +C,,,-T3) + -é (TYNG-%- Ts”‘ﬁ’i} s)
S S _

= k¥ * cormtorsion

Notice That by construchion the metric 1s Covar‘[anH\j +ensor
wnsfart with respect fo this connecHon , which is said fo be " @ meiﬂé_
onnection ©  as opposed 4o *the meine annechHon’ whick 15 the unique
such symmetnt manection ( Chr{s%nﬁ'éﬁ symbels in a coordinate ﬁ'ume),

() Since the comnecton components transform with an 1nhomogeneous tem
depending only on the frame mns]cnﬁnaHOH , the diference of—fmc different
connectlons  fransforms homogeneously | Le. as a () ~Fensor field.

The difference between the Symmetric mefnc commecHon and Hhe most
general  (nonsymmetric ) metne connection (s cdled the contorsion,

Show that the torsion components also transform as a (1)~ +ensor followng
the exercise on page . Many curcent theories 1Avolving gravity caup'xed
to hqlf—ln\‘egmi spin jcle'lds have -non\fanré‘fning “+arston: '

@) Show thaT the curvature Fensor can  be w~vartantly deﬁneo{ by the formula
Uy U 2~V % Z -V Z = REGVZE = R%xs 2°X7 1% eu.
[ Bvalugte this 10 a frame and wmpare the result with (@).7]
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et us summarize The way we arrived at the covartant dervative and
parallel fransport for (B )~ fensor density fields of welght W

we started with the vector space  TM, affached to each point x of the
manifold M. A choice of frome {1€ud on M gave us a way o identify
each of these spaces with R™ ( by expressing fangent vectors in terms of

their componen-}s with respec+-f-o e j:rnme )5 the j:rqme vectors themselves
are iden-Hfied with the natural basis oj: R”:

X =Xy —> (Xﬂ)egn.
Elements of the general linear group GL(MR) act on V=R"
corcesponding fo a change of the basis ; this is just the identity l‘epresen‘fﬂjﬁoﬂ
of GL(nR). A change of frame on M s acme\l’sheo\ by the acHon of
a GL(nR)-valued funciion which acts on each space R Gdenjﬁﬁt‘d with
T[\l\x) to ‘h’unsform the ComPoncr}“‘S ofJqu’zgerﬂ‘ vectors or ved‘orfields

e, — o= 17'8, e4 (Xor)__} (X"")=-(L“’3X*’) e P
change of frame change of components

The components of a @)—'{‘ensor denstty of weight W transform by the
corresponding r‘eprescf)‘\'a"‘iorw o§ GL (n,R)

T%. > T = [PWOT] .

The connechion was spec\f\ed by a matnx-valued i—form , e a i—form
with values in %Unl@ , The Lie algebrm of the 9encra| linear group.

IFs value on 4 tangent vector X spectfies the covariant derivatives
aleng X of the frume vechors | or 1f you wtll, of Tthe natural basis

gf 'Rn wH‘H resped-'i'o ‘Hﬂq*‘ choice of frqn'\e .
Vg €u = 0% (X) Ce WL (T) = Moy X

The compenents of the ovartarmt decrivative of a (gj Tensordensity °f “’e‘SHW

are then - o .
(Ve DV o= XT 6. + [0% (0@)T] ..
ki te !
ordinary dertvati compensatin rm Since
of— CO:\?oni;i: e bas\i not chmr‘larﬂ' consiant
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These f)f‘mu\as hold for a speciftc choice offro.me on the mantfo\cl.
Under the above c'hange of fmme the @nnecton _’L-fom ma_‘\‘r'i_x_

 Changes by W= Lol '+ Ldl
which is an inhomogencous  adjoint Jrrqnsformqhon , while the
airvafure 2-form matrix = dwtwaw
transforms  under the agjont representation  (‘conjugation by L)
/= LU

The covariart dervative 'ﬂ“self is "covariant " under a change of frame
Le. it ernsfoms by the same represertation gqs the freld before the

covariant derlvative was taken !

T [P WOET] ..

This was the whole poirﬂ' of !rﬁroc\ucing +Hhe covartant dcrlvah'\{e,
to dotain g dervative operator which did not depend on which
frame we allowed it 1o operate,

I}

A choice o§ ]Crume in which o express Hhe comPoner'd’S of frelds is called
a'chotce of gauge " and the change of frume 4 'Gauge 'i'mnsﬁamqulon !
‘Note that a global frame may not extst-on the mantfold In the same
way that global ordinates may not exist, o0 the 2-sphere, no
everywhere nonzero vector field exists | so no global frame exists
and one is forced to use a local frume on each memberof a
set of open seis covering 7T, such as the cordinate flame on each
‘wordinate patch of a covering of the 2-sphere by focal wordinate
patches .  The Mobius stdp alse has no‘_g_lobal ﬁ'ume (if one existed
one could ortentthe manifold ). |
Tnthis case one says that there tsno " global gauge . Each
local Pai‘c\n on which q stooth (ocal —ﬁfame ts chesen 1s clled q
“local gauge ', and one has a covering of the manifold by
“|ocal gauge Pa{'c\f)es“- One does not necessarily need to use
coordinate Pa’rches , For (?xa.mFle) global jq'ames exist
onthe cirdle St and the 3-sphere S3 5o a globa\

patch exists which 1s the mquo[o( H’Se‘g_
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We can cor

through every step by replacing the geneml
linear group GLCH.;:% and s matrix [ie algebra %ﬁ(n,(@ by any
mxm real or complex matrix group

G c GL(m,R) or GL{mC) and
its mafrix Lie algebra %C %@(mﬂl) or %(M,C)_

If §{Ea} = {EJS 8} isa basis of s matrix Lie algebrm considered
as a real vechor space , ie any element of

B=06Fa. with 6%real,
are defined by

can be exprCSS'E‘d as
then s real shuchuce CO”S"“""'I'S._.

[Ea,Ebj = EoEb—ELEa = C%ab Ec
and any element of the matrix goup close enough to the tdentity

coan be oblained by ex?onenhq{'ing an e!lement of the Lic algebra
s=e%% e G.

That is we consider flelds ory the manifold with values 1n some vector
space V on which a representation of The matrix group 6 acts

(R" or one of its tensor product spaces for the geneml linear gmup))

we fix a basis of V ( the naturml basts of R of its fensorproduct
spaces for GLIMEY) |, and then consider changing the compenents of
+hece  V wulued flelds under the action of the group.

If O is a real or ComPlex matrix grou

, its identity representedion
acks on R or C™  with natural basis

iEA} :
U= (W4, U") = PAEA e RTorCT
YV oVegy = SAZWE Ep

Tf Yisa V-vdued field onthe manfold, V= WAER , with components
VA which are jﬁnc’h‘ons on the Man'qcold», we can iheduce  the G-covariant
dertvative of W or ngotuge co\/qnajn:\- derivative

.bg Speclﬁln_g the
covariant derivahves of the basis vectors , whichis done by giving a
%»-valueo\ nnection ijCOrm |

=V

VX En = AFa (X) Eg

A= (AB/Q = AqEq
A(X) = AYX"Ea

ABa= ASaw =AW E Js

€ %, evaluation on a Tangent vector X
gives a matmx 1n the Lie dgebra
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J\tg{' funchions
Then %X’\"): %’x ('\PAEA\ = ﬁx\yﬁ) Ea + i (6;‘59
< (XY AT )E, = (FV) E

M’

ordinary dervative cormpensating term
of omponents since basis not
wvartantly constan

I5 (p o) s any representation of CG;%/) , then if ® isa Funchon
onthe manifold with values 10 the vector space of the repregerﬂ-ahon

then Seb= Xéd+ CADSD .

 Suppose we transform the compenents of all such fields by a funchion
onthe manifold with values in G

\PA:':_— SAB'P or \4//:9\[/ o

ChOrge of gauge"
A'= SAST'+ SdS™ or
= p(sH)d " gauge transformation”

The connecHon ﬁ)rm sqﬁsfles the same Mnsfomqhon tau) as N +he
generdl linear group case by its definttion as the matrix of covamant
~ derivatives of the basis vectors {Ens in each choice of [ocal gauge,

There is a basic difference between fensor densitics and frelds
which fmnsform under o representation of (G 3,), A
choice of gauge in The general linear group case was a frame
on the manifold used fo map the fangont spaces onto R”,
the frame itself !dcnh'ﬁed with the natural basts of R".
The equathon VI €= W% X ey

may ther be mferpreted as specifying the covariant
derivatives of the natural. basts of R" ineach chotce o
gauge , e, when !den'i‘lﬁcd with a Parh’cular frqmc’

However, fora general matrix group G, there is no
relation between the vector space R™or C™ of the idenfity
FEPresen'faﬁon of Hﬂegmup and the manifoldl H’Sef_ﬁ

So one annot tdentify s natural basis 1 EAS wrth

seme mwartant object living on the manifold , “Fhatis
elements o]c V™ do not come ﬁ;—om ex pressing 'n\/ﬂﬂan'l‘obd'ec{s

on the mamfolol 1 a quﬁcu[qr basts

(23



One just says that % Ea= ASE)ER
SPcclffeS the c,ovarran‘f' dcﬁva'ﬁves OJC ‘H’ic anural
basis in that particular gauge. in which the
connechon J-form 1s A,

Jnshort ONE ONLY HAS COMPONENTS AND NO
INVARIANT  FIELDS.

&
The Cornponcrﬁ's of the covartamt dervatives @X\V)A or @:@ -
‘h‘ans]%rm qucH\j as 'H")e fleldsfl'he mselves.

(Tn physics developments this cendition is used o detemine the transformati on
laws for the @nnectton ]

b)) = p()(%d).

If we define the curvature Z-form moalrix by the same J%rmu\a as tn
the gcneml linear group case but now call 4+ F

F = dA + AAA
then exactly as 1n Hhat case H"Transﬁbms by the adjoint rePresm-h-Han

E/= SES™,

ExPressmg F= F9E, and A= A%Ea (n a basis of Hhe Lie
algebra:  pep,= 4 (AE) + APEsA A°Ee
I

R N

dA"Es  AMAS B Eqg

L ]

1 EpEc~EcEb)= 3 Che E
] c— ke Z
or  F9=dA"+ £CTc AUAS, ¢

Byt F is a malrix valued 2-fom | e displaying all o[: s comPonen'l'S

we have Fs ag fhese 4ra
— ese nsfbm under GL(n,R)
\_P;:;h::t transform underadjeint rer-cser\"'uhon of G

How do we take covariant derivatives of _‘ﬁe\ds with some indices

assoctafed wrth representations of the matrix goup G and others
associated withthe general Unear group ©

Simple . We startoff taking the covariant dervative of the field with
respect tp the melric connectiom and then we add on the termms
associated with the particular representation of G.
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For example, the curvature 2-form  F= 3 Fos whw? 15 a mafrixvalued
Q:"ﬁ)r'm which transforms under the adjoint reP,.ese,ﬁu-Hm of G

F'= p(s)F = SFS” | g(Am)= [AE),F]
=0 (‘6& F)dB = X Fug - Fsa WalD) - Fux CJSB@) + [A(X?) F'asl

-
(% Fag

1n other words e ﬁrs‘l‘ fake the ordhanﬂ dervative of the COmPOnch‘l’S

and then add on the femms arising from the apprvprl'cﬂ‘e linear trans formation

ofeac\q index . LN our CxamP\e the G-indices have been SuPFresscd by
the matnx notation , but we could welte exPﬂci‘Hy '

{%I F)AB s = X F.ABeze"" FAsﬁeQ)Xd(X)- FAgery C-stcr) TAACCK')FCBNB - FAC dsAcBCX-)
ar using the mmponenjrs with Y‘cspec{' tv q basis {Eq} OS: ‘Hﬁe Lie algebm %
(%x_ Fas = (Ve P + Ce AP Sug.

. G
We can also Infroduce V  and the semicdon notation exacHy as on P N2 for

or"dlnqry cwar!arﬁ‘ dert\/ah'ves cmd we can oler quen‘H'\eseS u.r{-Hq ‘H’e
understanding that we mean the components c:f ‘e covartant dervatve

and rot the cvariant denvative of the Cdeoncn'b‘ (which 1= just the ordinary
denvaﬁw). 'Fore'xaa-q,?le

Vs Flug = Fgsy = 0% Fhe— Fide Mo~ Fus o5s + Cbc A FE

I Aqxc L1}

or lj— Y= YAEA ‘h’ansfbrms under the identity repre_ren“\'a{'lon
vV = dV+ oA Y =% AZed®)w¥Ea |
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COVARIANT AND GAUGE COoVARIANT EXTERIOR DERWATWE

A very useful '“\'mg 1o do is introduce The covariant exterior derivative and the gauge
| covariant exyertor derivatve of tensor-valued o\lﬂferenha\ ﬁ:rmS and V-valued

o\lﬁeren\'\a\ forms réépécﬂ{)ely or differenﬁo\ forms with extra indices of bothy tensor
wd 6o,

Example. The curvature tensor Ccom?onen\'s Roevd ) rmay be considetred as
“a (!} Yersor-valued 2~form since 1¥s lasttwo covariartt indites ase antisymmetrc,

11 s fc\d' Fhe matriy of componen‘\‘s cgc‘ﬂﬂs G)"i‘e\sor valued Z—ﬁrm.
Tfwe evaluate the form arguments (X)) | we get the components of
a (") fensor.

let P Eﬁ be the .\;ﬁpfesen‘\‘a"\on'under which the additonal jndices -i-mnsFon'n,

D o= —l-o{m +_ Pt_‘L o(‘..m
DT x:u dl™ g [P (AT I g
€
indices A;&M } ;ﬁJm
Forexamp\e‘. D_ﬂ_dg = 4%+ wd‘&/\-n—xg* W¥eA L%
I e
, — A
ors DO = 4L+ WwALL-2ALD
= [(}_)A_D_-J ombined wedge and commurtator
of W and_ﬂ_

One canshow thot fov'a Sjmmeh'lE: connectenr , Ds JuS]r‘Hﬁe qnhsgmme’mzeol
covariant derivative

P-’}%m (do-)d\p-udl".o(f, = (P'H} B[dl”l Gut“'dP] = @H') v[dp-l-l 0—":"’l"‘°'7‘l’_-‘
{ensor-valued

AT gonandtp = e
b form e dendede = PH Vi | el syop]
extra (p-l—l)—ﬁm o
indices Indices

here means exclude These

indices ﬁzm antisy mmefnzation
Fora \-ualued F—form ,we just add on the wedge of +he connecHon form

ST = 4T + O’(PQ/\T (V-\ndlées Suppressea\>

For e\(am?lc, comsider q Q—form whick hnsfurms urder the aquo]ﬁ— .—tp,-c-gen{—q—l-ioq like the
canvature %rvu\ueo\ 2-form

{r a basfs of 62{ : EF“ = dF %+ CqbcAbAFc

without a basig : DF = dF + AAF—()'FAA = dF + AAEZFAA

\’jf“w ‘ ~ .
Stnce weare using matnix mulfiplication, A must be onthe right- = [AA FJ @mbined
here 50 we have fo move I-form acrosy the 2- rm and

&
(omm‘-t"i’u'l'lf
include the Sgn change (fnvial fora Z—ﬁﬂn) (2C



Tor p-forms with exiva indices of both fypes , the genemlization is dbvious
Br= DT + a®AT ( o) indices suppressed)

B isan aerator which maps a shuff-valued p~form o g stuff-valued +D-form
of the same shff fype whidy Transforms  underua gauge Aransformation and change
. of frame in the same way as the original  stuff -valued p-form,

For example any C@f}(’nw def)s‘i-Jl'y of weight W can be considered as q
tensor densthy valwed  O-form  (same fora  V-valued f!.e'ld)

Jnwhidhase D and D reduce o the covanmant denvative and gauge
-ovartant. dervative

DT e = dT%. +[PW(WTI%. = GT " e)w?
Db = e = IO
Again we lcave oﬂ: Pareh‘\”heses with the Uf\de"’s*ﬂﬁd'.ﬂs +that we mean the

CM?MG-’T\'S 0{: +he ovanant exrenor denvatve amther than the CUva.rj'qn%.,
aderior derivative of the Gam?onen“rj ( which is JUS‘} +he ordinary exienor

_d_m-\ive)
EXAMPLE . F =dA +AAA dA= F—AAA
0= d?®A= dF-dAA + AAdA = dF + AAF-FAA S AW\-M

F-AARA F~ANA -
G
S0 PF=0 (thisis an ldmﬁ*‘y)
For GUNE), DUL=0 is clled the 2™ Blanchi Identity,

For a symmelric conneciion
0= (DSVs)ews =3 Ve Rd\g\ ¥} = 3 Rz (x53¢€3

EXAMPLE . ®%= dW*+WwAw® = D™ dw® = ®%— Wi w?
0= 42w = d®% - dugacf +L0°J3/\é‘lff
@3—u)grAu)Y
= d®"+ WA ®F — dweawf — wW¥gA Wl AW
D®Y — _(Faa QJG

Thus when ®=0 (symmetnc conmction lllke the metne conneckion )
Jz_del\(-l)g: RQ(BYS'(J\)V{E = Rd[ﬁﬁ] wev&‘ =
Ths R%gws3 =0 ( frst Blanchi identity )

Torsion is only deeﬁned for the GLUNE) connecton on a mant fold since H
involveg the manifold shucture . oo
MO TIME NO SPRCE S0 IENCRE THIS REMARIS RICCH DENTITIES &> DZTd@ __,[c;[:;L(_Q7 AMT‘J g
(tanaleg far BF) | gemi = covanant consant @) Hoser valued Q- form
6= D*Gua == 9vell o~ G2 = — (vatSlaw) = — A5Gy =0
Rogvs = Rremvys  The curvaiure fensor s also anfisyinmefnc 4 its firsk fwo ndlices
1277 |



Recall Maxwellis ectuqhéns {or F=dA-
dF = O ( consequence of d3A =0)

wEe-T

s We sau 5697
: g=div carreny A- Fbm e saw on page

| ‘S‘* that this meant- from Sholek Thm
charge conservation

_4deT = ¥diE g §, *T=a= et

S=-dv ~ gpqcel(\ee slice of s?e{ceﬁm-e

+ = conslant .

~ Now consider a general  Grconnechon . A is called the 9qgge__1>o_\-en-\1q\ and
F:Idl-‘\ +ANA the gauge f\elo\ sh:ng#x

. ) .
DF=0 (Conseﬂuence of dPA=0, provious Page> generalizes the ﬁm’r
Maxwell c%uaﬁon

_¥Bxp =—3J  genedlizes the second, whee T=J"Ea s a Lie algebm

o valued 1~form , the current density A-form wheh (s
g:"d’i"e a source of the gauge ﬁc\o\
gaige wvanant | X
dvergence Then 4*T = -d (0*F)=-d(d*F+ (An*F])

ETHAAFD) =0
dv (T — *[Aa*F)) =0

ordmarp
divergen.e

S;@’-j-y [A/\*F’]) = Q= QEa = onshunt

Fhe nonabelian gauge f\e\o\ iself cames charge
which corributes o the fokal Conserve 4

hage  (uhile the photon has ze charge)
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ExXAMPLE . ELECTROMAGNETISM .
let G= U(L)= 1x4 unitary matrices (u'r_. u™)
= {S=e"G | &€ RS
Uedgebra g < uty= {-i6 |oer}
~{=E = basis of Liealgebrn

The 1‘dime05\ond rcpres‘en-l-qhons of U(i) are sPeclﬁco\ bg 'H"le Er‘r\'cg ers

pn(e—uﬁ) - e—h‘le , Gn(-i6) = ~({n® ! _—

n must be an integer smce A= PallL) = Pn(e-‘zrr) =e .

complex  scalar field on Minkowsk! spacetime e g wavefunchon.

Y is allewed 1o undergo  arbitrary phase Fransformetions  since only
relohve phases matter in QM.

1"9 ﬁ_ine N so ¥ ']'mnsform; under the rtPresen}aHom pn of U,

We an specify a  UlL)-connection by a pure imaginany 4~ form
A=A = -1 A¥
Iy V= IY~inADV = T 0u-inADY
Now suppose we pick a new basis of the Lie algebra of Ude) .
Ei= —ie | defire  gq=ne | te e—-me__ e '
Now: A= AEc= ~ieA  gad On(Al=-1¢A
o VeV IV-1q ARV = T¥(du- Ia AV,
(all q= ne the chage of the field ¥ ( TFmust-be an nteg ral multple of c)
Since Gts abelian AAA =0 and

IFE_‘L: F =dA= CMS\ Es -2 F=ClA

: Th\lS a U(-L) Sauje ‘H‘)eﬂry mwolues «q real . .. . _’l-form /A wH"Iﬁ
cOr\"ESPoﬁdldg turvature  F=dA (‘f'hcc_em‘)unen‘l'Sof'fhc connecton and
curvature In the basis {Ei} ) which 'i‘mnsform under o Jauge 'meSf:Dmaﬁaf)

as follows A~ Vgisd‘* + SdS” = A~edb Eg

A eledle' = ido
or A= At d(-eo) (Ouid\ng a d\ﬁ(mn\'!‘a\ of a funchon +o A)
> SKFST'= T (9gauge nvaciart)
We canidenttfy /A with the vector polenttal of the electromagnetic field and TF with the

eledvomagnetic freld 2-fom . IX € isthe elechonic charge (positive) , then q fs the
dame of the wmplex Scalar flcld v, Thus elechomagnettsm has the structure of 4

ALY gauge theory. 129



EXAMPLE | STRONG INTERACTIONS

We can % -H‘]mush the same S\.CPS for 6= SUCB) - 5Pccm\ unitany group in 3
dimeosions = TU€ GLGBO) | detU=1, ut=u"}

© Thistsan 8-dim. meimix group whose Lle algebra @nsists of antthermitian makces
- He aw(@) — HT=—H o H=-(K wih K=K ( hermittan)
. Let {E} bea basis of au@) :  [Ea Esl}= CabEec
o Ea=-1Ea , Ea hermitian and (Ea,€u) = 1Cb &
~ . The identily reprtsenhﬁom acts on C3,
We can write S= e_enEq _ e—-\eqsq

A= ABa=-iA€  F'= dA' LC%ANAS

I'Fwe now Introduce a new -baslﬁ{fﬁmch that
Then A= -igA'€s | F=-lgF €a
Fe= dA%+ gC%c A AS,

Eq:-‘:g Eq

A scalar field whidh ‘hﬁnsﬁmns under the adddinfl'* re

presenfation of SU(3)
s called a Higgs fleld : ) o |
b She g 1990E & d=q*eq
p ) 8 thggs fields
Ved = Kd-igad(A@)d = L - 19 [AD D]

A Dirc spinor field (Whatts that 7)  which transforms under the dentiiy
rcPresen’m’ﬁon is caled a c{}.kar“b f!ela\

WY = Ty -ig ADY Sk ficlds

: (¢] < a D (131
The matnx valued 4~ fom /A s called the cachof uhi ?Iﬁd \rac Spinec
gien freld A= A€

8 i‘fDnnS - 3 9(u0r) ﬁeldg

The clechnueak inferachons are descabed by an SU(D XUW)  Jauge Fheory.
Thegroup has 4 dimensions  so we gei' H connection i—ﬁ:rms which are

assectated with the Pho“'on (ebm gauge Poknhal) and the 3 vedor basons,
See Aberslee \Phys Rep, O not, 1M, 19713

o mant other discugsions
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WHAT WE Don'T HAVE TIME FoR . FIBER BUNDLES , ETT.

We must consider a Coch'ns of the m_qn.iﬁ?ld ( Spqceﬁﬁw@) by local

gauge patches, with differernt locq| gauges related by a gauge ‘h‘ansfomaﬁm
~ onthe averlaP. Or on a manifold with no glebal frame we have the

'Gn‘a.&c_:gous:;': covering by Yocal frames. This is degartly cmbined withthe
manifdd M ot a  lager manifold which is locally the product manifold
of M with a goup (Prlnc\Pq\ flber bund\é} or . vector space. (vec‘rorbundie:),
We then get the frame bundle and tensor bundles over the manifold

( GL(nR) case) or principal G-bundles or vechr bundles over M
inthe G-gouge theory case.

Thesc are extremely useful n physics.  The velocthyy and mementum
P’mse spaces associated with a classical mechanial Cor\flgum‘h‘on space

(= mant-fo\o\@ are Just the tangent and cotangent bundles over the
manifo\o\ y hamely  Zn- dimensional  manifolds whose Po.'r\{-s dre
points o]( M plus Jmhﬁe'ﬁ’r vechors or covectors af these Po'm’rs ( postHen and
: VB\OC‘X“j or ?°51‘“°ﬁ and Momcn'\‘um), The f’ame bundle (q GLQ\EB
pnnt\pa\ bundle whose Fom*S are FO\ﬂ*’S oF M Plus ﬁum:s at these por rﬁ'S) _
is essenha‘ +O discuss SPinorS% S]D\hor anCtlgsis. recc-ured 'for

fields of ha\f uﬁcgml Spin. The sw\-uatﬂ of 2-spinors

(group G= SL21Q) ) o Dirac spinors ( G= group assoclated withh Dirac
algebra | with Lie dgeom = span f\6[q7§33} ) Is camned out as above
exwﬁ the group oboté’\'s are  related fo the manfﬁ’ld Shructure

Cs?‘ﬂors Q‘.’e."‘s'd\ﬁ wnnected o orhonomal f;ames on SPaCEHmc)

Neo Time ‘f{}l" Lngmmgmns,
No fime )Qr- Lqpladhns R geodesics SWWJE\HOW\ theory

X could 9o on Lrgh ng all O}C the ‘Hf\lﬂéS we don't hgue Hime for at
Fhis Poirﬂ'. I \ﬂoPe Some of You are infereskad enouLg(q “+o ﬁnd
the time to read about this ﬁ)f \jourseig



