@© COVARIANT DIFFERENTIATION , PARALLEL TRANSPORT

NOTE ON LOCAL PARAMETRIZATIONS OF SUBMAN|FOLDS OR

SUBMANIFOLDS WTH BOUNDARY

{
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Anadapted coordinate chart (DU on M maps  UNN it RP
Tks inverse (b'l Maps V—fd?(dfﬂ\o back onto UNN and 1s a
diﬁeomorph\'sm since the locd coprdimates X¥= U%o
“are differenhable 'F.mc"t‘lons of the parameters Y%«

xFod (W) = Wodod™(w) = U~
since the {dentity map s ’n‘Mql\g infinitely o\sﬁcrcr\ﬁq‘o\e _

Trus every adaphed local coordinate chart has a canomical local parmmemnzation
associafed with 1+ which uses the wordinates of the submanifeld as the

qua.me’t‘ers.
- @xercise © Goback 1o the exercise on P'90' Now let N= i (x\y2) eM
| O£ Z= _’L} be a submquolal with bouhdqry A Complei-e ‘[P,-QP'} +» coordinates

{Plc? :f} Qdap+ed to M . Make q h’)'W&] Modlﬁccd'ion‘ib 36{‘ aqu'l‘eol coor'qu‘%'fj

{y ‘.9?,93} =1p-L9 £% fir N (assume S tacreases inthe direcHon afﬁwe
inward normal o M )'

5<Press e ‘T:ltgli‘rtm\ nN-: G—l— L|X‘Z+"fyz)_t/z (%“2)(%“2953)

inthe new coordinates . Oblain the unit normal  2-vector
bg normqhzmﬂ a%—i/\)agg . Expressin cartesian coordinates.

Non

EXPWSS TLQN:'ZL’VLL- HBNLN“M ’nNzTLL_r]NlN lﬁ}tmsof‘ﬁ\e
new coordinates.
Evaluate The areq o‘[- N and +he c'\rcumferv_mce 0‘5- ON

Shewthat the mney ortentahion of N induced by Moy Is the opposite of

fhe induced orientabon for which 8/0Y2 Is posthvely oriented.

Express 4he Euclidean metnc g =81 dx'®dx’ and ihs reshhciion fo N and oN
i fems of the new coordinates .,  Compare g% and g% with Ny and M
Let :3: xdy , d8=dxAdy . Evaluate SJN £ and Sng dicecHy m the new
coorttnates . Show ‘anfgou get the same result by GPPIU“‘? +Hhe mMetnc 'f!.)mufaj of
p %4 (Ecn with T =*g#

Repm{— -ﬁr 6 = ygdg nc Yyou ‘f;el Mo'HVQ+Cd .
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BUT FIRST MATRIX GROUPS in a hurry

a matrix group = GLE;:-'@ = nxn r:?‘ nonsingular matrices )
GL (M C) ComP\ex (nonzero determinant

is yust a subgroup of one of these groups ,ie.  AlAre © & A6, A eC,
[The group mulliplication s just matrix mui'\'ii‘:fl'ca'\‘\on-]

Q mairix  Lie u\gebrq % i %QC::_E> = NXn r::l ma‘\"t‘l"ce_‘.‘
QQ(Q,C) complex

1sjust a Lie subalgebra of one of these Lie algebras, fe.a ir e subspace |

st. [A,A2] € C} f Aveg, Azeq..
[The commutaior mu\‘H'Plt'thon A B = [ABI= AB-BA makes
the \/ed'orquc_e of nxn matnces irsto o Lie algcbm,]

- Bvery mairix group G has a maltix Lie olgebrm suth that ot least
focally near 4 € G (fherdently o1y ) ports of © can be obtained by

-exponentioting elements of %, : e B=A e G B 69,
_ )
The matrx  exponential 1s B = ;% B~ B°= 1

PD e k=o E‘ > -

If {Ea? Is a basis oj— %, , with dual basis iW“} J'Hnen

[quEb:] = Cqu Fc c\e]c\nes the componen‘\'s of +he "shucture constant
tensor’of 1n this basis

and we can write : Az eeq e G (l°Cqu‘:3)

A Tepresentation of G 15 just a map from G o the group GLLV) of
' _'nongfngu\ar Wnear 'h‘unsformaﬁons OJC a Vccbrspac.e V inte '\Jf‘self
pr G— GLIV) p(9.9)=p@)PCa)  8,9:¢6
which preserves the mulhiplicahive sfructure of G.

ﬁ\ representution of 0, is just a map from G into the Lie dlgebra (32(‘\/) O]C
_l_iﬂcar“h’unsformahons Of a veclor space V isto 'H‘self

Gt ™) o([AAd) = [0, 0] Auhecq
which preserves the commutater stuchure o& 9
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We 964‘ matrix rEPresen‘mr\'!bns og G and respechivel g by expressin
the linear '\‘mnsf;:’mahons mn berms of a bClSisPe{Eq} : P 3

P5(q)= W(p@er)  9¢G  m=(pi@) e Gl e eUnd
0% (A) =W'(c(Aes)  Acg  gR=GBAD € golmE)or glln Q)
P(G) and_(;’_(%) are a matrix SIALQFDUP and matny |f m=dim V,

Le algebr'q m M dimens tons.

Gwen any repvcscn‘l'arhdn O(" G) 'Hnere 15 q Cmponding reprewnH'ion q( fj, j

such that 9‘[%\ s the matnx Ue algebra of E(G) {-‘;::’:\9 lfp?‘:)e;t‘%'?g A=€

EXAMPLE A choice d[: basis 'fEa} for v ma}x its genemt ‘Im:at‘srbu{)
~ and its Lie qlgebra GLLV) and %(V) onto GL(m}%) and 926“) %.)

n this way  in the same way V° itself is maPPeol onto M

[ive. by expressiog everything in tems of the basis. ]

_ There are two |mFor+nn‘]‘ rePreserﬂ"aﬁons of a pair (G, gb
() The 1dentity representation  (Id, id) of (6 gp):

A mafrix group O acts on RC)as a group of linear ‘fTunS)%r'quﬁDOS so
Td0= p(A) = lineor C) S oA x) A€G
&) = 5 (A) = fansfomation  { in oS Ac

The assoclabed matrix rePrcseq{-quns with respect to the natural basis

SN map every mamx A onto H'sd]c) i.e. are just the t'clenﬁb map.

[Okay a bit Frivial but useful 1o have as ferminology |

(V) The adjoint represenfuﬁon ( Ad, ad) of (6}5/) \

Let V—=%, and define for BG%/ C Then ™Mm=dim G =d1m<} .
pAB= AdMIB= ABA" = mnjugshonby A€G |
G(ARB= ad (A)B = [AB] = leftbracketing by A é%/ ) (L,'] E:&:};};&-

Acking a basis {Ea% gives the associated matrix f'eP“S?".\hh"“Sl Tf X=XE, €9
W ad(@) Ep) =W (%, 8D = W( T [E,B]) = T W (CLe Ba)= CIeb X"
ad (X) = (C'X%) = Xk o ks (C%b) = ad (Eo),

 The maces e sahisfy e, Re) = Cob Bc and gwe an mxw representartion
of the orginal  Pxn matnx Lie algebra.

gne can show ﬁ?_\ (eXaEq> = e’.‘&“’*u\gq giving an 'mxm.fc\grcsef\‘}wl’io-’) of G.
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EXAMPLE  (G,g)= (U@, A0(2))
C‘Pcc\q\ uaitary group 2 dimensions  SUC) = E U e GL(G.C)I ut=u ydet U =4 }

= {U%y | Sweutl®=1 [UHeRY S ag= 1,2,34
)‘o::. Ly 2, 3

where Cy=1 )e“z ~16a 10,,0%,05% f(_l \> CO >(o 1>E /ﬁrur‘gcej
h=u¥S,= / U= -lu'-u?
NERURERNTEAITE
Mamfo dof SUC2) s o\iﬁeomorphlc o G3 = ‘{(U. Ve RY] SwelfUP=1 }

Matrix Lie dgebra  _au(2) = span {45
canonical bosts {£.3 ; (&&= b8 C%b= Ecab
al\‘ion between SU(2) and,o)uCZ) ( Sfﬂ* g=@n° n“n%qh 1:
) = ee s e (g Ga ( icps@ —~|n“Gqssn@ = u”’(e)e%

SUD) s '3*0\lm-erusiond«\ w\)mhrﬁ:lcl of the 16 dimensional real Mcmtfo ld sL(z. O
This relafion becomes o qu‘ame%-nzq{‘lcr\ of SUZ) wher the ranges ol

the 6° are speclﬁed
&ne (6 == ,[ Sal, 06" )\rn'*) = (smBmsp, snbsiny, cose)

233 [Oy'ﬂ') CPE [D\ZT@ X @ & [o)q;l{r> [nu‘\“e “'ZTTLD ea:__,l

_Lden'\‘i’r\j reprcserr[ﬂ‘\'fon
Let SU(2) ack on oh by matay mu\lr‘lpliccd'(of‘a, Elemenits o(’ C? gre <dlled

2~spinors,
Adjont represeriation . ]
05 R = kabc Ke
TRs, B2 B55 < {CJOO (looo ( o)} [_q,__b} Cabe B

Span {Em% = a6 (3, B) == aangmmeJrné, 3x3 mathces (rca\)

Ad ( Qeq%] = e ok, = P(6) €S0BR)= Ad (SUCZD

sIedq\oerogona wp n 3

timensiens (real

“hlsbjusk refec’fs he ‘Lumi \ar (7) ]%d” Jr’mz)r
cdnjugqhns the Pauli ma\'ﬁccs b\j an element of Suc
“rotates them by the wrresponding ot Hon

U 6q U™ = GbC Cbc)bq

The porumeimzation
’ kE= e = ks ¢ seze)

. ®E [O_)ZTD ) 6 € [O,Tﬂ 1(? € [0,21’1) Covers SOCB\\Z) once,
- Te Mmatnces :UCG) corvespond to d single__rbjmhom QC@}_
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REPRESENTATIONS OF THE GENERAL LINEAR GEOUP
The fransformation law for the componertts of a @D"[‘ensor— density of

weigh\' W over a vechor space V under « change of basts is an exqu]c
o a matrix representation of the generl lincar groyp GLNB):
d/

e =esAE  w'= A%

e W A e B 10 B
T Pgi...3q=@eff\) A AR A g 8y 8q,

=[P (AT,

ot GUNR) — GL(@"V ®(@V)
vector space of represcn"mhon
basis + {48 -9E6@ cog'@-@wgq}
1 ma*‘n'x O‘E P‘:'LQ(A‘) l):

P - Si-8q W SC
pw ("Q o UPK...BP %y P l =@eH‘\ ) A 1-5,"' f\ &'
~ single ~ stngle
enfravanant W;?,anJr
ind ex (ndex

Ihntegral weight™ denstties artse by fuking -the natural dual of a
“tensor—valued  form ", f.e. a Tensor witha subset of covariant™ indices

which are antisymmetric [ ditto for " Fensorvalued p-vectors "1
8'g? - g B
EX. T :JQTQB"BZ ex®@ O R OT = @Td 7 ex® eﬂ;ct'sn
antlsym @qu.?“fgn :_‘Zfrq 8.6, € BiBeB3 B

Componen'\‘s o we'lg‘m\'i tensor
Nete ®Tis a basis depedden+, +ensor over V,

Suppose V' Is an ortenfed vedor space with metnc (lhnerpmo{uc+) d suchthat
N s ?oﬁlﬁx/e\y ortented. Then

d!,. on

¥ ngn = Oﬁ%’r‘aﬁano§>

| @Y = ﬁ—, Nopottn € = Nywn==9 1S
is a weight 1 scalardensity ,  but
g2 = }_@YLI gahsﬁes | 9‘/1/2 |detA| 9)/2 )

"Oriented densities +\’unsfom by +he qbso[uhs value oE detA! s 955? is
an oriented  scalar densiby Cwelglﬂ* = L 1f not SPCC‘GEd)-

We can get  ortented densrhes 'o}ang real weI_qHJr"' W by multplymng a
fensor b!j (8}5)\':0' , L
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Suppose we Consider @ Paramc'\'rizecl curve through the identity of the general

linear group * ACQ (A s(e)) ) Alo)= 1 ) Af(o) = g[ﬂ,é}.(o)z B
Then define:

/ ) - P' a
%c =0 T uP@...&L = [ o ()T ] ?t"fw
= BT By T -—BE‘ [T ~ *TNB ,le br-8p
— [ P18 o
BT ] |
[6 CLE- / [ (ndeM“)——Tr AdA -Tr%y
3| dAT'=-ATdAAT Cr,def}\ TrATdA =Tr‘aﬂﬂ
%ﬁ_t_’*/\—!g—tk ¥
6 &y~ ;'s A?l - A,S.("OAS‘Y

AA= A" Ys =let AT 2% m

-( + =1 A-:-' A—I . !
, [dﬂ A+Rdh o] d (de}'A)= o Sﬂ;.?[g,, [Gﬂsm)fl "

kn-t dA Yn
D 8‘6\ 5 @AS‘%‘QA AS-;n
= &A% dA v = detA A7 %5 dA%y,

04 R t( (BN)e(3V)
is 'Hne assoclated represer'ﬁu'Hor\ of %f(h,?)

: Remark For‘cuy repn:senﬂ'aﬁcn G"’ GL—(V) O‘FC( ratny gmuP G
the associated represen'\nﬁon of its M0\+T1X e algebm G ! %-—-& %(V)

can be deﬁnco{ log.&) ‘ G(B) a{_( F(A(%ﬂ for AE) = e
[since p(AB)=¢ e*cc(\a) 4, p(AE) = o(@) o5 = o9 o )SEH:,G]
7
Now yousay | So What !
e notation lozl\:‘ and O-w saves wr‘lhng 0u+‘ [003 'j:cm\q as when 'f‘rnnsformfna
fiel dS or O\\%erenﬁq‘{‘lnﬂ 'ﬁe ds.  Thats all.

Looks like Tave 90’1’ room“b S‘ﬁch i an

ERRATA . p 80: %\7 EOHDE missing at the end of-the 3% |ine ]q'om

TR @ ﬂ.n)f’
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exergise Suppose A 15 a matrix valued j{mc‘no‘q , fDr €X0.m{.>\€, a ﬁmcho-ﬁ
on the real line as above (a funcHon of £). Then observe the )Cbl\owl'ng.

First note that the ernsfomq‘r\on law fofq vecror 1s Yhe tdeniiy r‘ep\rcsenlmhon
SR o vyt e e = N
Chen dPUAY]T = dATs YT = AL AT dATS Y]
o paAy [otAdAY YT

Stoce 15 arbifracy d [pm] = p"A GRS

Mulliggon \eft by P (K)= 014-4(A) - |

| o1 (A d [p"(A]) = G (ATdR)

Or suppressig The superscriph " id " ‘

| PR L] = o (ATdA) | |

So fmf Twe done all the work | Ney you convince gou.rse\f Hrak this formu’\q

holds for all of the tensor density representeions of GL(n,R),

This remains +rue foc any differential operator [ place of d  since it

""" only UsES the Pmo\uc’r ube for demvatives,
In fac+ +Hhis relatfion s True ﬁr any paf'rofasg ociated

| represenfotions (P.O‘)- oj: a ~.Lle-3mu-P- and ifs Lre afgexbm (G %)
I we ge+“fo Lie gmups mafﬁbe we'” vae HﬁfS.

We have used a Pmperjty o? repmserduhon; above.

Note : p(AB) = p(A)p(B)
(1) setB=1 P(P\\ = p(A P(D — 0 (=4 :;ffi;ﬁjrg erns&malﬁcn
(i) setB=A": A= p(i\= (J(F\Ps") = p(ﬁ?p(ﬁ”')-—) pA)= pAY?

= A4
The mamy representing A™ s the =P (A)

(nverse of The malmix vepresenting A

- Thigisa lona Qxerc\'ge)hu\m? TOr me nok ‘ﬁ:\” You,
One \ast ‘hnir\(ﬁ , replace A bj A7 in the BOXEDEOUATION :

/[pm d Tp(AD])= G(Ao\i\"/ |




CONNECTION ON A MANIFOLD

Thevalue of a funchien at a Poin‘\' is just a real number and <an easily
pe transported from that pointof g MQDﬁgold +o any other poinf dleng a
given curve between the two po\'ﬁ'\‘S: the transported value is just The
value at the original ?oin'\‘ and it deesiT matter what curve one “akes between
“he hwo points, the +mnspor'\-ed value of the funchon is always the same,
The result is path independertt,

A Junction is called Cquriuﬂ'HB constant along a curve if its value ot
one point of the curve colncides with the value +ransported fo that point
from every other point of the curve, lLe. if the f\md‘\on has the same value
all along the curve, A funchion is covartantly constant if the Fransported

value of the funchen olways agrees with is value at the new point , i€
ij:Jr\ﬂe funcﬁon is a constant funcHon,

Suppose we try Yo repeat this for vechor fields and the value of such
{ields ot a point, namely tangent vectors.  The closest thing we might try
would be to choose a particular frame onthe manifdld and just require
that the ‘h‘ansPorfed value of q ‘angent vedor along a curve have -the
‘Same componenis in Hhis fran')e as ot the inital point, Clearly his +oo
is Pq‘l“h mdependerﬁ”. A vecter f|e\d is covariqn"r'\g constant a!ong a curve
if ifs Transported value from any inttial pointof the curve agrees with the
value of the vedror fe\d at every other Poirﬁ‘ ojr—: +he curve, A\/cd'br"fle\d
(s covarianty  wnstant if this is frue forall curves,

But Suppose we work In g new ﬁ-ume . The componen-l-s c)f the ﬁuns?oﬁed
vector will not remain constant q[ong a curve , putwiil change In a way +hat

can be determined by 'I‘mnsform'mg from the orginal frame to the new
frame (u,n\ess the new Jci‘ame is related to the ortginal one by a cConstant
transformaton matrix , in which case no change occurs ). However, in
order fo talk about such a rule for transpert we have already
singled oul a dlass of privile_ged Jcmmes , 1.8, we have jmposed more

structure on the manifold.  This shructure 1s called a conpection on
the mantfold gnd there are many Luays of describing it mq-\-hemquthﬂy :

TF amounts to a rule 'ﬁ)r‘ ']T‘qnsporﬁng Tungent™ vectors alcng curves which
therefore gives a correspondence befween tfangent spaces connected by curves, -
e, a way to tompare fangent vedors at dllﬂreren-l- Por_?ﬂ‘s. [Ttis called
a connection since It provtdes a way to relate -fungentspaces at different
poirts of a manifold , ive. it "connects ¥ fangent spaces. ] When the
-~ result is Poﬁ'\m independen'\'. >y As itis 1n our consﬁucHon) +Hie connecHon
is __qu_\f:'cl ]C{cﬁ-~ T our construchHon, qﬂ'vedvrﬁe(ds with conshnt
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Componewﬁ’rs N q P“\’”Q@E‘L* ﬁame arc COVO-riqﬁij constant. LTn
particular the n3-parameter famslg ( n3=dim GL(NR) ; where n=dim M)

of prlul\egec\ fmmes ore Co\/qr{qer\_j cons\—a\'ﬂ‘_

Suppose we have a pseudo-Kiemannian mnlﬁ\d M with metmc
The metric H*se\f {s an additional plece Oj: structure on the manifold .
T we insist that all faner products of tangent vectors remain constant-
under transport | i turns out that the rule J%r* Transport is then
determined uniqyelg (lf one Imposes an addtional @ndition alled symmetry
or zero Torsion as we will later see ).  This connecHon (s called the
mefric conneci-iorl_

Once we Specifg a rule fo transport fungent vectors +hen since
va\uesof funcions  (including The components of tensorfields) are trvially

‘i’mnspori‘ed , We can Hansport any Tensor _}Cield. Tangent _’l-—foms ace
‘I'mnspor\‘ed so that their evaludtions on tangent vectorS  are Jrruns?or‘red
as real numbers | le. remain constant.  Thus if one knows how to

'fth‘E)m) a j:r‘ame a!ong o curve ﬁ’om one ‘i’angeﬂ%‘ Space o ano‘H‘)e(‘)
+hen the dual ﬁ‘ame must be ‘iTansPcr"\‘eo\ so that I+ remamns dual o
fhe ‘l‘runspor"red Jcrame. A ’[’angmlr 4+ensor 1s Then trunsported dlong o
curve so that its components with:  respect to the trunsported frame

remain constant (since ‘Hney are Jusi" numbers ).

For example, suppose c(t) ts a parametrized carve +hrough
X=coye M and €« is a Jcrame on M with dud fmme {wd}-

Let {eo( (Jﬂ} be the wolue of the ﬁ'ame transported to C) along the
wrve from C(0) where e, (0= €ul,.

Define g matriy AlE) by e,t)= ATE®) es\c&) )
By duality %e‘f‘ranspor"}eo\ dua\ﬁ-qme mustbe  ¥®)= A% (L) W5 [c&)

If X=X¥&y is q vedvr‘fiéld , then its value at c&) -h-anPor-l—ed
q\ong The cunre\)crom ClBl=x s JUS+

()= X ety = X, AT ol € TMew .
Conversely | the value at x Transported along the curve back from
B AL T e € T
Skm{\ariy ‘E)F any fensor j:ie(d

T T | Cu@9ow’ e

_ Pa - dlﬁ"lr\dp | 31 T
7 [{0 o,(_A CU)T[)(] BiBq ed‘lf.&}@m@w ]C(,%g -
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_ R has a privileged class of Jcrumes , namely the coordinate frames
associated with any global cartesian coordinate chart, We can 'H‘)er‘e]core
infroduce a flak connection such that these frames are covartantly

constant,
On R" itis clear what we mean by Trunslaiing a fangenT vector.

We just mave it around Reeping s length and dicecton fixed ; in
particular 1T always remains paraliel +o ﬁ's original value. ~ The transport
assodated with the flat connection is just s parallel translation”, so in

andlogy with this  we call fvansport loamlle\ transport ' In general.
Note that all inner products ouﬁomaﬁcql\y remain constant under Paralle]
Trunsport on R™ . since 'Hnea Involve only the cartestan componen+s which
remaln constarnt,  so this Is the connecHon associated with the

usual flat metrc of R" (the connection 1s symmetric as we will see ). Th

Fact this remaiss frue for any metric on  R" wits constant cartestan
compoqen%‘s, Thus botn the Euclidean and Minkowsk! metnics on

RY have the same jcia)r conmmecton.

Suppose we wish o work in o nencartesian ﬁmme) [(Re the one
assoctated with spherical coordinates on R®, for example. How canwe
p_erform Pam”e\ ‘i‘mnspor'\‘ working with such a frame?

Ll Cu= €' %C; , W= widxt . A= (W), A= (E%),
The matrix A transforms components from Hhe cartesian Jcmme to the
roncartesian f’nme. _

well, here tt 15 usefulfo gofo a differental rule : if the cartesian
componerts remaln constant along the curve under qu“ el transport, their
derivative along Fhe curve should be zero.

Butwe also Rnow how o differentiote fensor frelds on R™ as long as
we work in cartesian ﬁames . We defme e covartant dervative of o

tensor field T along a tangent vedor X to be a tungent fensor WiT
of the'same type as T at the locatton of X whose cartesian components
are just ordimary dertvative of the cartestan components of T by X:

(VX_[_)“MIPJ‘.‘.% = X TV,
- When X is a vedor field, TxT isa tensor field of the same dype as'T.
Tt (omponerﬁs in g noncartesian fmme are oblained by ‘h’ar?s_fvrm_ing
fom a cartestan :ﬁ—ame. The covarant denvattve of a function § by X
is just ZF.



ExampLe.  Reall S = €xf. Then

Y4 a8l (T Y) = 0" Y e W (T YY) = we (XBs 1)
= o [ T80 ( YXGLU)J = %[ @333\(@33% + YYXBQBeéb*:\
= XY+ ose) XEYT

O

L Q/
%mcpo?wg:j\sogg" = [y :@u(vegeﬁ > Ve, 4= [Mex €
sconnection A-foms™ ()%= Mgy b = ypes w¥s&)e,
TR | of e 3
= ' ; + 1 ¥ .
X (MY ) The covariant derfvative alons
_ = Ydjg X induces q linear ‘fnr)sﬁ)ma“i'ion
— of the me vectors whose_mqﬁ‘lx
N IYD{ + wo{X(X) YX 1s the Vcﬁ: c:f e connection
N - 1-form matrix on X.

Since The fmme vectors are not

cqur(qn’rlB constant, the covartant
derivative s no+on\9 the denvative of
the wmponents but ncludes $he addiH onal
linear nsﬁrma-hon of Hhose componen‘}*s
due fo the covariant denvatives of The
frame vectors,

EXerTiSe  From the definition we immediately get the relation which follows,
once we recal) The def\'ni'hon of the shruchure JC\\,(nd"lonj GE a fmme :
[, ee] = Chs®y < du=—5C%y wf*
Then Pogy— My = % (dseiy—2v€%) = ¥ [€ae¥)".
= wY([es,e4]) = C %y or [F 251 = S Cusﬂ -
Thus [& {‘ed} is a noncartesian  coordinate ﬁqme then since pqr—hq\

J

dervatives commute | C¥e=0 ard the covariant components of the
_onedion are symmefric . Thisls whatis meant by a symmetric connechion,

Showthat the boxed ecLuqli"rB can be writren
—ro{ = dwo!_,, QJNB,\Q)S =0 EVGnl'S{n'mg ‘f‘DFSiOV‘].

Sinee W€ =08"8 ana Uy obeysthe produc-rule (loy i¥s definthon asthe Ordtm.;'\j. _
denvalive in o cariesian frame R waq) (63) + W(WBe) = $% = O

o (——Vk 0 %= — % (%) &JB‘) . (e (D) = W (T WHE)

Wz



The colculatton we dfd Yo evaluate &Y @n be expressed in a
dlgfererr\‘ Way using the ’h’ansf:or‘majﬁor) motrix A fo“owlng +he

3rouno\u)or\2 of poge 1093,
First WY ds ety X8 =W (X)  can be wrilten AV;K A= w(X).

~ [[roteao (@A) AT = —o@) ] ana:
Then (4= p(AYY suppressing (0 o = F
M =p A0
= (A" W [ PAY) 5 Y 5]

Q(A)LP(A‘V ARG Ve lp(A)']

O_(A WA~ ‘) g ¢ by oblique
boxed equafion on

page 1085 lethng d > Ty

= X Y%+ [0 (AVA) Y ¢
= X Y%+ [olw@) Y]™ .
This same calculafion can be repeated Jor any @J ~ +tensor densthy of weght W
represerttation of GLMR) -
(B T ™ gy = BT g + [T ROEN T Mo,

Since the covariant derivative is linear in X we can inbroduce a qu;b_ +ensor
dens\’r\ﬂ of we\sh"[‘ W called the covanant dermvative 05_ T

oj.0lp . hyen 0
(v T) 31"‘8&86&\ = T | PBI“'BP ;3?1-!
= Ve T s+ 0% (Wag T s,

Cosely related fo the covarrant derivative Vof a *ensor field by a fangentvector X
Is the covartant derivative of a Tensor deﬁned a\on a PammeJrr(‘Z.ed curve .
F\f'sj[' ‘6'\" 1 o C&) be.‘i'he value oS: a ‘{‘ﬁ"\SordenSlJrH 0‘“9 C(ﬁ) and a\eﬁnﬁ

%[To ) = Ve T =1 T . g +[O (W) TT™ "o sgea@- e
~Then correspondtﬁgly f TE) euTP"lM ' ‘15 a ﬁnge-n]r tensor de'nsﬁy de‘ﬁned a\or,g cé)
deﬁne : gt Td‘ dPB gq'(:t) - d’t le B 1 d Al [GEI:; (wcci£&)>>—_s‘£g d‘mdpgt"'“t »

3



D s exactly Tre ﬁ*qnsformeo\ version o qd-m oy the cartesian
dt mm?onen%s of a Jmngeni‘ chnSor dens\\y a—;ned Olon9 CG‘:)

Noke for example s 0 (cig) = m*(%(egocc\&))) .

[eg is the vedor with @mponer‘r\'s 5:-9 Piug Mo ‘f;.srmu\tn_}

Thts allows us o wnnect the covartant derivabive with Pam\le\ JanﬂSPO\’""
A ﬁnsorfleld whidh 1s Para\ cHH ﬁunspov-&’d dlong 4 curve c@)
froen ¢(0) has st artesion com‘yoneﬂjrs and hence SGJl'\Sﬁe‘s‘

DTH) =0
b (%)

Re‘rurnfo J‘he discusston of page O and let
T g (0 = [p S (B THI g

e the comPonerﬁ's j—'ﬂve tensor JC\ eld T({:) qu-ql ellj +mnspor-'red al ong the
curve (b)) fmm x = c{9), The notahon f\ (£} \sused so this malrix is
not ccmﬁlsea with the fmme '%‘rtmsfor-maﬁon matoix .

We can consider 4he Inverse oper‘zﬁ'ioh namely Take the value

of T of clk) and qu\ el Jr\mnspor'\' t back o x . Let X=clo) and
now let  T(E) shund for the fensor ab x with wmponents :
TOe e g )= [P A Toc®] ™ P aigy

Now we can take the ordinary denvative of*a A-parameler J%‘“""‘a of fensors
at x :

o= 4 ™o {001 TT
{=0 \m—i—f -
C'(0) T™" . e (oRY( ;fHﬁca) Tl e
oljret e
=[BT e = ()= )
1

ed(ﬂ €g \c&] d(t) is muar'lqrﬁ' enstant along clt) so

0= D € H:D NGO
G Les ] - 51 [eag™s]

= (a%es A"gd&) egﬁ ifX({)(%EA E&') A d&);H

= Dl - esdﬁ\d@ N w@fj&_amé@

W's(X) e«
4




) c(§%)
C(o)

c(0)

Since we cannot compare Tensors at diffecert points of a manifold
directy, we have o move them all fothe same pont first , whidnis
what Pax—al\el Jn"qns?ori* allows us todo.  Fr the values of a
fensor freld along a curve , we can transport them all back o
The point C(0) where we can -toke the ordinary t denvative of
the one pammelter 'f;.lmllg df‘ fensors  we obtain, This gives us the
ovanant denvative ofi"ne fengor ﬁe\c\ along the fangent Clo)=X
cd' C(O),

METRIC CONNECTION (—]—he metric 1S covqri'qflﬂg cons*‘alfﬁ')

qupose X(JC\ and Y&) are Pam\\e\\j “'mnspor%-eo\ Q[Oﬂg clk) from +Hheir values
XY and Y@ at clo) - IO - o= DYW.
a a %;E_ 0 vaY__E

Fora metric conneclon thetr lnner product dlso rematns constant :

0= & (e cOTO W] - [ ug s cCOXO Y]
= [% 9ueoCl®) | THOYE) + Qugoc® | %f&) (8) +X7E) %_g_( %)J

= (B uect] TR BT, e 4
Siace X and Y are arbiirany S_hm’%;”d {'%?"C&):’ o8

© we must have

Vew D=0 for ey )
hence @ In componertts: Ggwgo = 9ot Gaw — 954 Mg~ JesTow = 0
A et oyt

Or d09ss = |sue gy =Teus = Maax
089w = [Muey + My
—3%9us = ~Mgyu— [vp
{‘ﬁd@}z-‘ﬁ(augm+3395&*3‘0’9&5) = [y@e — Melydl— alead Use ‘SBMV’GIW.D,
o . r‘g:_;f———\—:\g{_uaj T ¥ragy= -.2-_C ol@

Myne = T5%6Y + Dypos + MNopyed + Mupwa = 1¥68% + 5 (Crus Cewot Corva)
__._..r,xds — gﬂ-i\(&& + JZ-..(C%B+ Cqu-%- C:a) _



r‘XdB: {gf@} + ‘chugi- C,@Ud)

{o\?,@} and {98} are called Chris\mgg\ symbols of the JQFS\' ard Second
kind but which 1s ’ET’S]FW'\C\ which 1s second means loo\?}ng up the answer 1n
a book and Tim not In the mood. These are the ComPoqen-‘rs 05— the
conneckon in a coordinate frame ( Cer=0).

onthe other hand in an orthonormal frame ( dgus =0), +hese vanish
and the shudure ﬁncﬁons determine the connecHon camPonerﬁ'S_

In fact Suppose we have an qrbtjrmrﬂ Psmdo-*\elemanmaq o
manifold (Mig). The . same forrmula defines the metnc connedrion whida
fells us how To Jrranspar'\' tensors o ensor densities glong curves in such a
wav Hyat all inner Pr‘odud's rerain Invariant, The oqu Hmr'ug we cannot
~do 1] the nnedHon ts not flot ( parallel fansport path depenaien@ IS

9o back fo a covanantly constant JE'nme ( cartesian frames in the

case of R nY.
CURVATURE

' ReJrumms ‘E‘D En) ha\-e 'HWQJF ‘H‘\t Connech\‘Oh formulq Mmay be u)‘f'l‘H’E’V)
ina S\Aggeshve Way PdBK": L\)bltageL‘a' > W= AdA-l.

Note that ) = dw+wAw =M‘) + MEAAIATY =0
dAAAT = — AdR™A AdA™
~AdAdA

Now suppose we et A= AzAL e itk we fransform from the
cartesian frame §0:5 to the frame €4u  ard then o dno%er—ﬁﬂme 1€, s
0= 21 ( P AN a = QuAy A

, N fo—
no denvalive occurring!! 48

The comection A-form W =W in the final frame s
Q)(z“) =, AO\P\Hii p\:,A\d(AZ.AI)-]: A?’.Alcl(Ai-l Z—t> \
= mAdATAL '+ RAATAN = Asle Al T AzdAs

(W= A wohs + Aydhs|
of  Taler= ASsA AL Y T v AT5 G
(o2 (AT ] e

oMe



So H‘)e omnmection COMPOHEﬁJl‘S dcmo{' +mnsform as a (}2)“*‘9")50\” undec a
Chqhge af fmme buﬂ' hcwe an qo{dﬁ"ﬁono«\ iﬂhomogehEouS ‘!‘eﬂﬂ ol hg

Hhe denvative of the Mns\:umqln'oﬂ rotx ljrge\g_

eeraise 1 using only Hhe definition s

derive ‘HK'? formula w/: AU)A—'! '}'A'U{ A—'i)

so Hus Mngﬁmoﬁoo faw holds far any wnnectHon | not _just
‘H’)C‘Hd{' connecjr\on on K"

IL@Hing _.Q/:—"dco[-kw"/\w( ) u5109 insxreac‘ ‘Hwe -ﬂohﬁono{ +he exercise :
' = d( AwA+ AdATY) £ (AwA cAdAT ) ACAWAT AdA™)

= dAawA ™t AdwA™ - AR L AwawA + AdATAAWA™ 0
N T +,_gf\uf\dﬁ"

oo _ - _ -1
“AdﬂlA@ exertises] — Ak * 6@7‘{\_@ '+ AdA "\édp‘
why? | (3 Acdngh™
= A(dwtwaw )A™ &
/= ALk

ubing back fhe indices , ue see that 15 @ mabnc—valued 2-form
= Wewr W' = R¥gws W'
and the transformation law means
R@B‘ﬁ- = Ade A-‘O-g Aﬁwyﬁuwa‘ "zeowv
are the cmponents of-a @) fensor f\eto\ called the ocurvalure Tensor,
) 15 called the curvature 2-form .
We <aw that tn the case of R", fNl=o = EY¥e¥$,

B L



exercise., | | ‘
Transform Hhe Euclidean meinc on R® into sPhenca\ coordinates

q = 3y ' ®dxd = dredr+ 2 (doedd t sn® olcpaadL(J).

Let fev,e 83 be the orthomomal frame on R?  (singular on the
Z-oxis ) oblained by normalizing the sphencal wordinate frame
{9 .9, 9r]. Let Tu3,y",u3f = {ndies,
Write out the matrix ¢ = 3_>§_€ b [ pame refers to
© o Tme Ca oy°® (9%.) 2 L g—coordmakccmponerﬁs

Fualuate the connedhon i"{:orm matriy 10 This ﬁ'ame .
Notice that it 1s an anfisymmeinc matmx
Evaiuate the curvature ’Z—form mafny \feri@ Hrat 1F vantshes.

Now constder the 2x2 subblock of the connechion matmy with
ndices 4 and 2. Convince yourself thatthis s the connechon
matn assoclated with the reschon of te mefnc @ o a sphere
cricmdms r o

(2)@ = g ld = 12(d6®d0 + sin%H dCP®d-‘(’>_

=0

Evaluate @1 = df’&) fm)wAcz)O\) )ugheee Q}.‘J is the 2% 2 block.

T™his 15 o Zx2 mamx valued vaom on @ 2-manifold (a 2-fom

on g Z-manifold has 4 ma\epcnden%‘ @mPonenJr) _ Notice thatf is

anﬁsgmmeﬁ& so only one of +wo nonzero c,ompmen-ls s 1ndepend ent,
CTrsts Rlaie =Rz . Whatis s value 7
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