Group Action on a Space

by bob jantzen [2001]

17 pages of notes for an independent study by Christopher Pilman, in addition to the previous sets of differential geometry notes [1984, 1991], with several pages on the Lie derivative copied from Introduction to Cosmological Models 2.

The rotations in the plane are used to motivate a general 1-parameter group of transformations, using the exponential map, then specializing back to the rotations showing the relation to the matrix generators and matrix transformation. Comoving coordinates are found for this example. Then dragging and the Lie derivative are introduced. Then the relationship between the rotation generators and linear and angular momentum is discussed. Next r-parameter groups and rotations of space, then boosts of 2-d Minkowski spacetime, and the generators of the 4-d Lorentz group. Finally the Lie derivative and isometry actions are touched upon, with a final exercise.

- PDF 700K

Action of a group on a space: from finite to "infinitesimal" back to finite

active transformation: give cords of now point as function of old pt((same cord)

$$
\overrightarrow{\bar{x}}=R(\theta) \vec{x}
$$

new cords of point $=$ old cords of point from whichit comes "dragged along coordinates"

$$
x^{i \prime}(\vec{x})=x^{i}\left(R^{-1}(\theta) x\right) \rightarrow\left[\begin{array}{l}
x^{1} \\
x^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\binom{x_{1}}{x_{2}}=\left[\begin{array}{c}
\cos \theta x_{1}+\sin \theta x_{2} \\
-\sin 6 x_{1}+\cos \theta x_{2}
\end{array}\right]
$$

active rotations of plane by an angle θ (counterdudewise)

$$
\left[\begin{array}{l}
\bar{x}^{1} \\
\bar{x}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\cos \theta x_{1}-\sin \theta x_{2} \\
\sin \theta x_{1}+\cos \theta x_{2}
\end{array}\right]
$$

EX. $\left(x^{\prime} ; x^{2}\right)=(1,0) \longmapsto\left(\overline{x_{1}}, \overline{x^{2}}\right)=(\cos \theta, \sin \theta)$ in forstquad

1-D abelian group:

$$
R\left(\theta_{1}\right) R\left(\theta_{2}\right)=R\left(\theta_{1}+\theta_{2}\right)
$$

inverses: $\quad R(\theta)^{-1}=R(-\theta)$
identity: $R(0)=I_{2}$
automatically associative "multiplication"
passive coordinate transformation: just giving
new coordinates of same point with respect to the new lord system. if $0<\theta<\pi / 2$

As we vary the single parameter, we trace out an "orbit" (circle); fixing (x_{1}^{1}, x^{2}) we can think of $\vec{x}=R(\theta) \vec{x}$ as a paramotnzed curve so we can evaluate its tangent at $\theta=0$ corresponding to the identity to see how points start to mare as we increase θ from 0 :

$$
\begin{aligned}
& \bar{x}^{i}=f^{i}(x, t) \\
& \left.\frac{d \bar{x}^{\prime}}{d t}\right|_{t=0}=\left.\frac{\partial f^{i}}{\partial t}\right|_{t=0}=\xi^{i}(x) \\
& \xi=\xi^{i}(x) \partial_{i} \begin{array}{l}
\text { "generating } \\
\text { vector field }
\end{array}
\end{aligned}
$$

orbits are tangent to ξ as westart out from $t=0$.

$$
\begin{gathered}
x^{\prime}=\cos \theta x^{\prime}-\sin \theta x^{2} \\
x^{2}=\sin 2 x^{\prime}+\cos \theta x^{2} \\
\left(\xi^{\prime}, \xi^{2}\right)=\left(-x^{2} ; x^{\prime}\right) \\
\bar{x}^{i}=R(\theta)^{\prime} ; x^{\prime} \\
\left.\frac{d \bar{x}^{\prime}}{d \theta}\right|_{\theta=0}=\frac{\left.\frac{d R(\theta)^{i}}{d \theta}\right|_{\theta=0} x^{j}}{} \begin{array}{c}
\equiv S_{3}(\theta)^{i} ;
\end{array}
\end{gathered}
$$

plot of ξ on unit circle.

$$
\begin{aligned}
& \left.\frac{\partial x^{\prime}}{\partial \theta}\right|_{\theta=0}=-x^{2} \\
& \frac{\partial x^{2}}{\partial \theta} \theta_{\theta=0}=x^{1} \\
& \xi=x^{i} \partial_{2}-x^{2} \partial_{1} \\
& \\
& \\
& =\left(S_{3}\right)^{1} ; x^{j} \partial_{i} \quad S_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left\{\begin{array}{l}
R(\theta) \text { curve of matrices. } \\
S_{3} \text { is its "tangent" } \\
\text { at } \theta=0.7
\end{array}\right.
$$

In vectorspaces like \mathbb{R}^{n}, we canidentify tangentueclurs with vectors as usual. ($\left.\begin{array}{l}2 \times 2 \text { matrices form } \\ \text { a vector space }\end{array}\right)$

Action of a group on a space (2)
Given any vector field $\xi=\xi^{i}(x) d i$, we can construct its 1-D group of transformations or "flow along its integral cures".
An integral ave is defined by

$$
\frac{d x^{i}(t)}{d t}=\xi^{i}(x(t))
$$

tangent to curve at $x(t)$ is value of ξ there. There is one integral cure through each point of space.
Solve this system of DEs by iteration and Taylor senis:

$$
=\left(1+t \xi+\frac{t^{2}}{2} \xi^{2}+\cdots\right) x^{i}=e^{t \xi} x^{i}=x^{i}(t)
$$

exponential form of finite
transformation.
By definition $\begin{aligned} \xi x^{i} & =\xi^{i} \text { so if, } \xi^{i}=\left(S_{3}\right)^{i} ; x^{j} \text { for a rotation. } \\ & =\left(S_{3}\right)^{i} \cdot x^{j} \text { \& }\end{aligned}$

$$
\xi^{2} x^{i}=\left(S_{3}^{i} ;\left(\zeta_{3}^{j}\right)=\left(S_{3}^{i}\right)\left(S_{3}\right)_{k}^{j} x^{k}=\left(S_{3}^{2}\right)^{i} k x^{k}\right.
$$

so $x^{i}=\left(e^{t s_{3}}\right)^{i} ; x^{j} \quad$ (ca njust replace ξ by s_{3}, diff. by matrix mut)
carrying out matrix exponential:
so we are back to the finite transformations of the group.

$$
\begin{aligned}
& \left(S_{3}\right)^{2}=\left(\begin{array}{cc}
9 & -1 \\
0
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I_{2} \\
& \left(S_{3}\right)^{3}=\left(S_{3}\right)^{2} S_{3}=-I_{2} S_{3}=-S_{3} \\
& \left(S_{3}{ }^{1}\right)=-S_{3}{ }^{2}=I_{2} \\
& e^{t S_{3}}=I_{2}+t S_{3}+\frac{t^{2}}{2} S_{3}^{2}+\frac{t^{3}}{3}!S_{3}^{3}+\frac{t^{4}}{4!} S_{3}^{4}+\cdots=I_{2}\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{4}-\cdots\right) \\
& +\$_{3}\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5} \cdots\right) \\
& =\cos t I_{2}+\sin t S_{3} \\
& =\left(\begin{array}{c}
\cos t \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{cc}
0 & -\sin t \\
\sin t & 0
\end{array}\right)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \text { cost } t
\end{array}\right)=R(t) \text {, ie } t \text { is the polar and }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{d x^{i}(t)}{d t}=\left.\xi^{i}(x(t)) \rightarrow \frac{d x^{i}(t)}{d t}\right|_{t=0}=\xi^{i}(x)=\xi(x) x^{i} \text { (note } x^{i}(0)=x^{i}\right) \\
& x^{i}(t)=x^{i}(0)+\left.\frac{d x^{i}(t)}{d t}\right|_{t \rightarrow 0}+\left.\frac{d^{2} x^{2}}{d t^{2}}\right|_{t=0^{2}} ^{t^{2}}, \cdots \\
& \left.=x^{i}(0)+t \xi^{(x}(x)\right) x^{i}+\xi^{2}(x(0)) x^{i} \frac{t^{2}}{2}+\cdots
\end{aligned}
$$

Action of a group on a space (3)
"infinitesinal transformations" \leftrightarrow small valves of parameter t like in calculus when we work wikhdifferentials $d x, d y$. $\quad \cos t \rightarrow 1, \sin t \rightarrow t$:

$$
\begin{aligned}
& \bar{x}^{\prime}=x^{1}-t x^{2} \quad \\
& \bar{x}^{2}=t x^{1}+x^{2} \\
& \bar{x}^{1}-x^{\prime}={ }^{n} \delta x^{\prime \prime \prime}=-t x^{2} \quad \mid t \ll 1 \\
& \bar{x}^{2}-x^{2}=\| x^{24}=t x^{\prime} \quad \delta \bar{x}^{\prime}=t \xi^{i}
\end{aligned}
$$

"infinitesimal rotation".
But in fact the generating vecher field of this infinitesimal transformation also describes finite transformations thrice its integral curve flow
flow: $\quad \frac{d x^{i}(t)}{d t}=\xi^{i}(x(t)), x^{i}(0)=x^{i} \leftarrow$ start at x^{i}, move along integral cure through x^{i} by parameter amount t. This moves all points of space simultaneously- for each t we get a transformation 8 this is in fact group.

Comoving coordinates.

$$
\xi y^{i}=\delta_{1}^{i}=\text { components of } \xi \text { ind rit. coors } y_{0}^{i}
$$

ξ will have only a unit component along y^{\perp} and zero other components.

$$
e^{t \xi} y^{i}=y^{i}+t \xi y^{i}+\frac{t^{2}}{2} \xi^{2} y^{i}+\cdots \quad=y^{i}+t \delta_{1}^{i} . \quad \begin{aligned}
& y^{1} \rightarrow y^{1}+t \\
& y^{2} \rightarrow y^{2}
\end{aligned}
$$

so in comoung coords the flow of ξ is just translation in the first coordinate. for rotations, solus are

$$
\begin{array}{ll}
y^{\prime}=\arctan \left(\frac{x^{2}}{x_{1}}\right)=\theta & \text { (can still add a constant) } \\
\left.y^{2}=\sqrt{x_{1}^{2}+y_{2}^{2}}=r \quad \text { (or any function of } r\right)
\end{array}
$$

[easy to check by backesubstitution]
These are just polar coordinates in the plane so we could express rotations in the form

$$
\left.\begin{array}{l}
\bar{r}=r \\
\bar{\theta}=\theta+t
\end{array}\right\} \text { rotation by angle } t
$$

Action of a group on a space (4)

dragging along the old coordinate grid by the transformation makes the new coordinate grid whose valves at a given point are the same as the condinades at the inverse transformation point. $\quad x^{\prime \prime}(x)=x^{i}\left(R(\theta)^{-1}\right)$
we can drag along any functions on the space in the same way

$$
\begin{aligned}
& {[R(\theta) F](x) \equiv F\left(R(\theta)^{-1} x\right)} \\
& \text { or } \quad\left(\xi_{t} F\right)(x)=F\left(\xi_{-t}(x)\right)
\end{aligned}
$$

This just digs the graphof the function along with the points.

But by the same Taylor series argument that we used for the coords (active transformation) we can repeat here.

$$
\begin{aligned}
& (\xi t F)(x)=e^{-t \xi} F(x) \\
& \left.\frac{d}{d t}(\xi t F)(x)\right|_{t=0}=-\xi F(x)
\end{aligned}
$$

\leqslant shows how function begins to change as we begin moving with the group. its change comes from the nearby point value of F of about -ty x^{2} from which x^{i} comes.
We can ask: what happens if we drag-alung vector fields? They are tangents to curves. Drag along the cure and take the no tangent.
 value at $\vec{x}=R(0) \vec{x}$ comes from \vec{x} or value at \vec{x} comes from $R(\theta)^{-1} \vec{x}$

The key idea is the vectors are like "infinitesimal" displacement vectors between points in the courdinale grid and if we drag along the coordinate grid, the vector goes with it, namely will have the same components in the dragged along coordinates as it did at the anginal pant before dragging along.

$$
\begin{aligned}
& \text { now cups } \\
& \text { of no u field } Y^{\prime \prime}(x)=Y^{i}\left(R(\theta)^{-1} x\right) \text { old components } \\
& \text { of old field at } R(\theta)^{-1} x
\end{aligned}
$$

at x

Action of a group on a space (5)

But $x^{2 i}=R(-\theta)^{i} ; x^{j}$, passive could tran. $\}$

$$
x^{i}=R(\theta)^{i} ; x^{j j^{\prime}} \text { inverse }
$$

$$
\frac{\partial x^{i}}{\partial j^{\prime}}=R(\theta)^{i} ;
$$

$$
\begin{aligned}
& =\xi^{i} \partial_{i}\left(y^{j} \partial_{j}\right)-Y^{j} \partial_{j}\left(\xi^{i} \partial_{i}^{i}\right) \\
& =\xi^{i}\left(\partial_{i} y^{j}\right) \partial j\left(+\bar{\xi} Y{ }^{j} \partial_{i} \partial_{j}\right) \\
& \left.-Y^{\prime} \partial_{j} \xi^{i}\right) \partial_{i}-y^{j} \xi^{i} \partial_{j} \partial_{i}>0 \\
& \begin{array}{c}
\text { but } d_{i} d_{j}=d_{j} d_{i} \\
\text { denvatives }
\end{array} \\
& \text { smith dummy cortialdenu } \\
& \text { indices }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
=- & \underbrace{\left(\delta^{i} j \xi^{-1}-S_{3}^{i}\right) Y^{j}} . \\
& \equiv\left(\mathcal{Q}_{\xi} Y\right)^{i}=\xi^{j} \phi_{j} Y^{i}-Y^{j} \partial_{j} \xi^{i} \\
& \equiv[\xi, Y]^{i}
\end{aligned} \\
& \equiv[\xi, Y]^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{Y}=\bar{Y}^{i \prime} \partial_{i^{\prime}}=\bar{Y}^{i} \delta_{i}
\end{aligned}
$$

Action of a group on a space (6)
By the same Taylorsenes argumentas above:

$$
\begin{aligned}
\bar{Y}^{i}(x) & =\left.\bar{Y}^{i}(x)\right|_{\theta=0}+\left.\theta \frac{d \bar{Y}^{i}(x)}{d \theta}\right|_{\theta=0}+\left.\frac{1}{2} \theta^{2} \frac{d \bar{Y}^{i}(x)}{d \theta}\right|_{\theta=0} \\
& =Y^{i}(x)+\theta\left(-f_{\xi} Y^{i}\right)+\frac{1}{2} \theta^{2}\left(-f_{\xi}\left(-d_{\xi} Y^{i}\right)\right)+\cdots \\
& =e^{-\theta f_{\xi}} Y^{i}(x)
\end{aligned}
$$

$$
=\left[e^{-\theta\left(\mathcal{I}_{3}+L_{3}\right)} \frac{J_{3}}{} Y(x)\right]^{i}
$$

exponentiating the Lie denvative captures the finite transformation of a veother field induced by "dragging along".
For rotations the tangent to the 1-paraneler fanily of rotations acting on a vechorfceld leads to a sum of 2 operators - an orbital any mum operator which acts on the component functions to move their evaluation point and a spin angular momentum which rotates the component functions.

Why "angular momentum"?
we can repeat his for the translations of the plane

$$
\bar{x}^{i}=x^{i}+a^{i} \text { or } \bar{x}^{1}=x^{1}+a^{1} \quad \bar{x}^{2}=x^{2}+a^{2} . \quad\left\{\begin{array}{c}
2 \text { parameter group }\left(a_{k}, a_{0}^{2}\right) \\
\text { abellan }
\end{array}\right.
$$

we can consider each parander separately.
$\underset{\substack{\text { Operator"" }}}{\text { "translation }} F(\vec{x}+a)=e^{-a^{1} d_{s}-a^{2} d_{2}} F(\vec{x}) \leftarrow$ dragging along.
operater"l \quad dragging along cartesian coords does not change grid 50 no need tochange components here, only reevaluate them at inverse punt.

$$
\begin{aligned}
& \left.\begin{array}{l}
\xi_{1}=\partial_{1}=p_{1} \\
\xi_{2}=\partial_{2}=p_{2}
\end{array}\right\} \text { "lInear momentum operators" } \\
& \xi=x_{2}-x^{2} \partial_{1}=x^{2} p_{2}-x^{2} p_{1}=(\vec{x} \times \vec{p})^{3} \quad \begin{array}{l}
\text { "3rd compuent } \\
\text { of angular } \\
\text { momentum " }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
\xi_{1}^{i}=\left.\frac{\partial \bar{x}^{i}}{\partial a^{1}}\right|_{q^{1}=0} & \delta_{1}^{i}=\xi_{1}^{i} \partial_{1}=\delta_{1}^{i} \partial_{i}=\partial_{1} \\
\xi_{2}^{i}=\left.\frac{\partial \bar{x}^{i}}{\partial a^{2}}\right|_{a^{2}=0}=\delta_{2}^{i} & \xi_{2}=\xi_{2}^{i} \delta_{i}=\delta_{2}^{i} \partial_{i}=\delta_{2}
\end{array}\right] \\
& \text { note }\left[\xi_{1}, \xi_{2}\right] \\
& =\left[\partial_{1}, \partial_{2}\right]=0 \\
& \therefore \text { commute. }
\end{aligned}
$$

Action of a group on a space (7)
rotations \& trandations of plane form 3-parander group $\left(\theta, a^{1}, a^{2}\right)$

$$
\bar{x}^{i}\left(x_{i} \theta, a\right)=R(\theta)^{i} ; x^{j}+a^{i}
$$

3 generating vector feeds $\quad\left\{\xi=x^{8} d_{2}-x^{R} \partial_{2}, \partial_{1}, \partial_{2}\right\}$
commutation relations or "Lie algebra" structure:

$$
\left[\xi, \partial_{i}\right]=-\left(S_{3}\right)_{i} \partial_{j}, \quad\left[\partial_{1}, \partial_{2}\right]=0 \quad \text { (check!) }
$$

important
If $\bar{x}^{i}=f^{i}\left(x^{1} \ldots x^{n} ; a^{\prime}, \ldots a^{r}\right)$ is an r-parameter group of transformations of the space with coordinates $\left(x^{1} \ldots x^{n}\right)$, then letting $\bar{x}^{i}=f(x, a)$ abbreviate this, the composition of 2 transformations must again be a transformation of the group:

$$
f\left(f\left(x, a_{(0)}\right), a_{(a)}\right)=f\left(x, a_{(3)}\right) \text { where } a_{(3)}=\varphi\left(a_{(1)}, a_{(2)}\right)
$$

is the group "multiplication function".
Defining its generating vector fields by s

$$
\xi_{\dot{a}}^{j}=\left.\frac{\partial f^{j}\left(x_{1} a\right)}{\partial a^{a}}\right|_{a^{\star}=0} \quad \xi_{\dot{a}}=\xi_{\dot{a}}^{j} \partial ; \quad a=1_{1} r
$$

Then closure of the group composition translates into closure of the Le algebra: $\quad\left[\xi_{a}, \xi_{b}\right]=C_{a}^{c} b \xi_{c}$ where $C^{C} a b$ are constants, ie He Lie brackets of the generators must also belong tho the vector space of constant linear combinations of those generators. This vector space with the lie bracket is the (vector fold) Lie algebra of the transformation group.
Example: Rotations of \mathbb{R}^{3}
Let $\epsilon_{i j k}=\left\{\begin{array}{ll}1 & \text { if ijk is } \\ -1 & \text { if } i j k \text { is } \\ 132,231,312,321\end{array} \quad\right.$ (totally antisymmetric)
Let $\left(S_{a}\right)_{j}^{i}=-\epsilon_{a i j} \quad$ and $\quad \boldsymbol{k}_{a}=S_{a}^{i} j X^{j} \partial_{i}$
Compute $\left[L_{a}, L_{b}\right]=-E_{a b c} L_{c} \quad$ (check!) (sumover c)
Then $e^{\theta^{a} L a} x^{i}=\underbrace{\left(e^{\theta^{a} S_{a}}\right)^{i}}_{R(\theta)} ; x^{j}=\bar{x}^{i}$
Let $\delta_{i j}= \begin{cases}1 & \text { if } i=j \quad \text { Knonecher delta with both indues down. } \\ 0 & \text { if if). } \\ \text { = components of Eudidear inner product in }\end{cases}$ = components of Eudidean inner product in an orthonormal basis of 3 -vectors
so $r^{2}=\delta_{i j} x^{i} x^{j}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}$.

Action of a grep on a space (8)
invanance of r^{2} under rotations means:

$$
\begin{aligned}
& r^{2}=\delta_{i j} x^{j} x^{j}=\delta_{i j} \bar{x}^{i} \bar{x}^{j}=\delta_{i j}\left(R_{m}^{i} x^{m}\right)\left(R^{j} x_{n}^{n}\right) \\
&=\underbrace{\delta_{m n} x^{m} x^{n}} \begin{array}{l}
\left\{\begin{array}{l}
\text { change rf } \\
\text { duma } \\
\text { indic }
\end{array}\right.
\end{array}=\underbrace{\left.\delta_{i j} R_{m}^{i} R^{j} n\right) x^{m} X^{n}}_{\text {same: }} \\
& \delta_{m n}=\delta_{i j} R_{m}^{i} R_{n}^{j}
\end{aligned}
$$

or $\quad R^{i} m \delta_{i j} R^{j} n=\delta_{m n}$
3×3 identity matrix: I_{3}

FACT if $R=e^{t A}=I+t A+\frac{R^{2}}{2} A^{2}+\cdots$ transpose is inverse for an
then. $\frac{d R}{d t}=A e^{t A}=e^{t A} A \quad\left(\begin{array}{c}\text { check from } 1) \\ \text { so }\left.\frac{d R}{d t}\right|_{t=0}=A\end{array}\right.$ "or Mogonal matrix representing a rotation.
and $\frac{d}{d t} l_{t=0}\left[\left(e^{t A}\right)^{\top}\left(e^{t A}\right)=I_{3}\right]$

$$
\begin{aligned}
\left(e^{O A} A\right)^{T} e^{O A}+\left(e^{O A}\right)\left(e^{O A} A\right) & =0 \\
A^{T}+A=0 & A^{T}
\end{aligned}=-A
$$

so Ais an antisymmetric matrix.
The Lie algebra of the ormogenal group (rotation matrices) matrix.ists of antisymmetric matres since their exponentials are automatically orthogonal.
In components:

$$
\begin{aligned}
& \frac{d}{d t} t_{t=0} \quad {\left[R_{m}^{i} \delta_{i j} R^{j} n=\delta_{m n}\right] } \\
& \underbrace{A_{m}^{i} \delta_{i i}^{j} \delta_{n}^{j}+\delta_{m}^{i} \underbrace{\delta_{i j}^{j} A_{n}^{j}}_{i j}=0}_{A_{j m} \leqslant \begin{array}{c}
\text { defimdion } \\
\text { of index } \\
\text { lowering }
\end{array}} \\
& i_{m A_{i n}=}=0
\end{aligned}
$$

so $A_{j} \delta^{j}{ }_{n}+\delta_{m}^{i} A_{i n}=0 \quad$ lowering
or $A_{n m}+A_{m n}=0 \quad A_{n m}=-A_{m n} \quad \therefore$ antisymanatry of totally covariant form of mixed component A_{j}^{\prime} representing linear transformation.

Action of a group on a space (g)

2-0 Mineowsti spacetime of special relativity Let $\left(n_{\alpha \beta}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ ie: $n_{\infty}=-1, n_{11}=1$

$$
n_{01}=n_{10}=0
$$

spacetime intervals

$$
s^{2}=-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}=n_{\alpha B} x^{\alpha} x^{B}
$$

Lorentz transformation leaves it invanant:

$$
\lambda_{O B} B^{\alpha} r \delta^{\beta} \delta+n_{\alpha B} \delta^{\alpha} \times B^{B} \delta=0
$$

$$
n_{\alpha \gamma} B^{\alpha} \gamma+n_{\gamma B} B^{B} \delta=0
$$

$$
B \delta \gamma+B_{\gamma \delta}=0 \quad B \delta \gamma=-B_{\gamma \delta}
$$

antisymmetry of index lowered matrix

But $B_{0}^{0}=B_{1}^{1}=0$ still, so if B is an offdiagual symmetric matrix, its exponential is a Lorentz transformation preserving spacetime interval
"family of boosts dong x^{\prime} axis", boost parameter α

$$
\begin{aligned}
& \left.e^{\alpha(01} 10\right)=\binom{10}{0}+\alpha\binom{0}{10}+\frac{\alpha^{2}}{2}\binom{1}{10}^{2}+\cdots \quad \text { but } \\
& \binom{01}{10}^{2}=\left(\begin{array}{l}
10 \\
01 \\
10
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { ere. } \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(1+\frac{d^{2}}{2!}+\frac{\alpha^{4}}{4!}+\cdots\right)=\left(\begin{array}{ll}
1 & 0 \\
0
\end{array}\right) \cosh \alpha \\
& +\binom{0}{10}\left(\alpha+\frac{\alpha 3}{3!}+\frac{\alpha 5}{5!}+\cdots\right)+\binom{101}{10} \sinh \alpha-\left(\begin{array}{l}
\cosh \alpha \sinh \alpha \\
\sinh \alpha \\
\cosh \alpha
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}^{\alpha}=L_{B}^{\alpha} X^{\beta} \\
& n_{\alpha B} \bar{X}^{\alpha} \bar{x}^{\beta}=n_{O B}\left({ }^{\alpha} \gamma x^{\gamma}\right)\left(L^{\beta} \delta x^{\delta}\right)=\left(n^{\alpha}\right. \\
& \text { R } 4858^{8} x^{\delta} \\
& =\underbrace{n_{\gamma \delta}}_{\beta} x^{\gamma} x^{\delta} \\
& n_{\alpha B} L^{\alpha} L^{\beta} \delta=n_{\gamma \delta} \\
& \text { If } L=e^{t B},\left.\frac{d L}{d t}\right|_{t=0}=B \text {, so } \text { so }\left._{\downarrow} \leftarrow L_{B}^{\alpha}\right|_{t \rightarrow 0}=\delta_{B}^{\alpha} \text {, identity }\left(e^{0} \neq I\right)
\end{aligned}
$$

Action of a group on a space (10)
So $\quad\binom{x^{0}}{x^{1}}=\left(\begin{array}{l}\cosh \alpha \\ \sinh \alpha \\ \sinh \alpha \\ \cosh \alpha\end{array}\right)\binom{x^{0}}{x^{1}}=\binom{\cosh \alpha x^{0}+\sinh \alpha x^{1}}{\sinh \alpha x^{0}+\cosh \alpha x^{1}}$
determinant: $\cosh ^{2} \alpha-\sinh ^{2} \alpha=1$
2×2 unit determinant matrices belong to group $S L(2, R)$ "special linear group" in 2-D, special since unit deter minant.
Let $\left.\begin{array}{rl}\cosh \alpha & =\gamma \quad \text { (gamma factor) } \\ \tanh \alpha & =\frac{\sinh \alpha}{\cosh \alpha}=v \text { speed }\end{array}\right\}$

$$
\text { so } \sinh \alpha=v \cosh \alpha=\gamma v
$$

$$
\left(\frac{x^{\prime}}{x^{1}}\right)=\binom{\gamma\left(x^{0}+v x^{1}\right)}{\gamma\left(v x^{0}+x^{1}\right)}
$$

$$
\begin{aligned}
& \frac{\cosh ^{2} \alpha-\sinh ^{2} \alpha}{\cosh ^{2} \alpha}=1 \\
& 1-\frac{\tanh ^{2}}{v^{2}}=\frac{1}{\gamma^{2}} \\
& \gamma^{2}=\frac{1}{1-v^{2}} \\
& \gamma=\frac{1}{\sqrt{1-v^{2}}} \begin{array}{c}
\text { Lorentz } \\
\text { gamma } \\
\text { factor }
\end{array}
\end{aligned}
$$

hyperbolas in the plane of constant
spacetime internal $\left(-x^{0}\right)^{2}+\left(x^{1}\right)^{2}=s^{2}$ distance from the ongtn in hyperbstic geometry.
new word axes dragged along $\left(x^{\prime}, x^{\prime \prime}\right)$.

along X^{01} the reciprocal slope is
$\frac{d X^{\prime}}{d x^{\circ}}=\frac{\gamma V}{\gamma}=V=\begin{aligned} & \text { speed of coorldline of particle } \\ & \text { moving along } X^{\prime \prime} \text { axis with }\end{aligned}$ moving along $X^{\prime \prime}$ axis with $X^{1 /}$ fixed, ie. at rest in news coordinates.
dray, stop. This should wet your appetite, no?

Action of a group on a space (11)
Exerases: (1) compute the generator ξ for the boosts with parameter α.
(2) compute $[\xi, \partial i]$, for the only nonzero tie bracket commutator of the lie algebra of the 2-0 Poincare group of boosts and translations.
(3) Let $\xi(A)=A^{i}, x^{j} \partial_{i}$

Show $[\xi(A), \xi(B)]= \pm \xi([A, B])$
where $[A, B]^{i} j=A^{i}+B^{k},-B_{k}^{i} A_{j}^{k}$ getsgnnight. is the matrix commutator

$$
[A, B]=A B-B A .
$$

This gives an 1 somoophism between a matrix lie algebra and a vector field lie algebra of generators
(4) $4 D$ Leratzgrap.

$$
\begin{gathered}
\left(n_{\alpha B}\right)=\left(\begin{array}{ll}
1 & -1 \\
-1 & 0 \\
0 & 0 \\
0 & \delta \\
0 & 0 \\
0 & 0 \\
0 & 01
\end{array}\right)=\left(n^{\alpha \beta}\right) \quad \text { ie: } \quad n_{00}=-1=n^{\infty} \quad \alpha, \beta=0,1,23 \\
n_{i i}=1=n_{B}^{i i} \\
L=e^{t B} \quad n_{\alpha B} L_{\gamma}^{\alpha} L_{\delta}^{\gamma}=n_{\gamma \delta} \rightarrow B_{\sigma B}=-B_{B \alpha}
\end{gathered}
$$

so $B_{B}^{\alpha}=n^{\alpha \gamma} B_{\gamma B}$.
\rightarrow Show that $B_{i}^{0}=+B_{0}^{i}, \quad B_{j}^{i}=-B_{i}^{j}$ if $i \neq j=1,2,3$

\rightarrow compute the commutator:: $\begin{array}{lll} & \left(s_{2}, s_{2}\right] & {\left[k_{2}, k_{3}\right)} \\ & {\left[s_{3}, s_{1}\right]} & {\left[k_{3}, k_{1}\right]} \\ & {\left[s_{1}, s_{2}\right]} & {\left[s_{1}, k_{1}\right]} \\ & {\left[k_{1}, k_{2}\right]} & {\left[k_{2}\right]} \\ & {\left[k_{1}, k_{3}\right]}\end{array}$

LIE DERIVATIVE
$x^{\mu} \rightarrow \bar{x}^{\mu}=f_{(x)}^{\mu}$
(x)
1-parameter family of
ICM2: 10 point trans formations

$$
\sum_{i=f_{(x)}(x)} \begin{aligned}
& \bar{x} \xi \\
& x=f_{(x)}^{-1}(\bar{x})
\end{aligned}
$$

("diffeomorphisms")
$f_{(0)}^{\mu}(x)=x^{\mu}$ identity transformation generating vector field :

$$
\xi^{\mu}(x) \equiv \frac{d f^{\mu}}{d \lambda}(x) \quad, \quad \xi=\xi^{\mu} \frac{\partial}{\partial x^{\mu}}
$$

(vector fields identified with differential operators)
powerserles expansion:

$$
\begin{aligned}
\bar{x}^{\mu}=f_{(0)}^{\mu}(x)+\lambda \frac{d f^{\mu}}{d \lambda}(0)(x)+\frac{1}{2} \lambda^{2} \frac{d^{2} f^{\mu}}{d \lambda^{2}}(x)+\cdots & =x^{\mu}+\lambda \xi^{\mu}(x)+\cdots \\
& \approx x^{\mu}+\lambda \xi^{\mu}(x) \text { for } \lambda \ll 1
\end{aligned}
$$

inverse transformation satisfies $f_{(\lambda)}^{-1 \mu}\left(f_{(\lambda)}(x)\right)=x^{\mu}, f_{(0)}^{-1 /}(x)=x^{\mu}$, so by chain rule, $\left.\frac{d}{d \lambda}\right|_{\lambda=0}$ of the first equation gives:

$$
\frac{d f^{-1 \mu}}{d \lambda}(0)(\underbrace{f(0)}_{x}(x))+\left.\frac{d}{d \lambda}\right|_{\lambda=0} \underbrace{f_{(0)}^{-1}(f(x)(x)}_{f_{(\lambda)}^{\mu}(x)})=0 \rightarrow \frac{d f_{(0)}^{-1 /}(x)}{d \lambda}-\frac{d f_{(0)}^{\mu}(x)}{d \lambda}=-\xi^{\mu}(x)
$$

so a similar powerseries expansion yields

$$
f_{\mu}^{-1 \mu}(x)=x^{\mu}-\lambda \xi^{\mu}(x)+\cdots \quad \approx x^{\mu}-\lambda \xi^{\mu}(x) \quad x \ll 1
$$

$$
\underbrace{f(x)}_{f^{-1}(x)} \phi\left(f^{-1}(x)\right)
$$

If $\phi(x)$ is a (scalar) function, let $\bar{\phi}(x)(x)$ be the function transformed by the point transformation

$$
\bar{\phi}(x)=\phi(x) \quad \text { or } \quad \bar{\Phi}_{(x)}(x)=\phi\left(f_{(x)}^{-1}(x)\right)
$$

new value at old value new point at old point
This definition moves the function in the direction of the point transformation.
The rate of change of $\Phi(\lambda)$ with respect to λ at $\lambda=0$ tells how ϕ begins to change under the point transformation and defines the negative of the Lie derivative of ϕ with respect to the generating vector field

$$
\begin{aligned}
& \left.\frac{d}{d \lambda}\right|_{\lambda=0} \Phi_{(\lambda)}(x)=\frac{\partial \phi}{\partial x^{\mu}}\left(f_{(0)}^{-1}(x)\right) \frac{d f^{-1 \mu}}{d \lambda}(x)=-\xi^{\mu}(x) \frac{\partial \phi}{\partial x^{\mu}}(x)=-\xi(x) \phi \\
& \mathcal{L}_{\xi} \phi \equiv-\left.\frac{d}{d \lambda}\right|_{\lambda=0} \bar{\phi}_{(\lambda)}=\xi \phi=\xi^{\mu} \frac{\partial}{\partial x^{\mu}} \phi=\phi, \mu \xi^{\mu}
\end{aligned}
$$

The Le derivative of a scalar by a vector field ξ is just the directional denvative of the scalar along that vector field

A vector field is transformed by the point transformation as follows: $\overbrace{\text { jacobian }}^{f^{r}(f)}$

Now calculate its Lie derivative exactly as for the scalar:

$$
\left(\mathscr{L}_{\xi} Y^{\mu}\right)
$$

$$
=-[\underbrace{\frac{\partial f_{(0)}^{\mu}}{\partial x^{\nu}}(\underbrace{f_{(0)}^{-1}(x)}_{(0)})}_{\frac{\partial x^{\mu}}{\partial x^{\nu}}=\delta^{\mu} \nu}] \underbrace{\frac{\partial Y^{\nu}}{\partial x^{\rho}}\left(f_{(0)}^{-1}(x)\right) \frac{d f_{(0)}^{-1}(x)}{d x}}_{-\xi^{\rho}(x) \frac{\partial Y^{\nu}}{\partial x^{\rho}}(x)}-\frac{\partial}{\partial x^{\nu}}[\underbrace{\frac{d f_{(0)}^{\mu}}{d \lambda}}_{\xi^{\mu}}]\left(f_{(0)}^{-1}(x)\right) Y^{\nu}(\underbrace{\left.f_{(0)}^{-1}(x)\right)}_{x}
$$

$$
\begin{aligned}
& =[\xi^{\rho} \frac{\partial Y^{\nu}}{\partial x^{\rho}}-\underbrace{\text { of components }}_{\begin{array}{c}
\text { just like in scalar case } \\
\text { directional } \\
\text { derivative }
\end{array}} \begin{array}{c}
\text { estranging } \\
\text { components. }
\end{array} \\
& \text { If we do the same thing for a } \\
& \text { covariant vector field }
\end{aligned}
$$

$$
\bar{Z}_{\mu}^{(\lambda)}=\underbrace{\frac{\partial f_{(\lambda)}^{-1}}{\partial x^{\mu}}}(x) Z_{\nu}\left(f_{(\beta)}^{-1}(x)\right)
$$

the λ-derivative of this term leads instead to $-\xi_{\mu}^{\nu} Z_{\nu}$ so we get

$$
\mathcal{Z}_{\xi} \phi=\phi_{s} \rho \xi^{p}
$$

$$
\mathcal{Z}_{\xi} Y^{\mu}=Y_{, p}^{\mu} \xi^{p}-\xi^{\mu}{ }_{p p} Y^{p}
$$

$$
\longrightarrow
$$

\square

$$
\mathcal{W}_{\xi} Z_{\mu}=Z_{\mu, p} \xi^{p}+Z_{p} \xi^{p}, \mu
$$

$$
\rightarrow \underbrace{\mathcal{F}_{\xi} g_{\mu \nu}=\underbrace{g_{\mu \nu, \rho}} \xi^{\rho}+g_{\rho \nu} \xi_{, \mu}^{0}+g_{\mu \rho} \xi_{\nu \nu}^{\rho}}
$$

For the metric we get one of these terms for each covariant index, but always/ the first term is just the directional derivative of the components 1 to yeld:

$$
\begin{aligned}
\mathcal{Z}_{\xi} g_{\mu \nu} & =g_{\rho \nu} \xi^{P} ; \mu+g_{\mu \rho} \xi^{p} j \nu=\left(g_{\rho \nu} \xi^{\rho}\right)_{; \mu}+\left(g_{\mu \rho} \xi^{\rho}\right)_{; \nu} \\
& =\xi_{\nu ; \mu}+\xi_{\mu ; \nu} \quad\left(\text { since } g_{\rho \nu} ; \alpha=0\right)
\end{aligned}
$$

* Note that $\mathcal{L}_{\xi} \mathcal{Y}=[\xi, Y]=-\mathcal{E}_{Y} \xi$, where $[1]$ is the commutator of the vector fields as differential operators.
top of page ll Le denvative explanation interns of dragged along courds
active transformation

$$
x^{\mu} \rightarrow x^{\mu}=f_{(\lambda)}^{\mu}(x)
$$

$$
\lambda=\text { parameter of } 1 \text {-parameter family }
$$ of transformations.

so $\frac{\partial x^{\mu}}{\partial x^{\mu}}(x)=\frac{\partial f_{(\rightarrow)}^{\mu}(x)}{\partial x^{\nu}} \quad$ Jacobian.
and inverse $\quad \frac{\partial x^{\nu}}{\partial x^{\prime \prime}}(x)=\frac{\partial f_{(\lambda)}^{\nu}(x)}{\partial x^{\mu}} \quad$ inverse corresponds to $\lambda \rightarrow-\lambda$
evaluated at $f_{(-1)}^{M}(x)$:

$$
\frac{\partial x^{\nu}}{\partial x^{\mu}}\left(f^{\mu}(-\lambda)(x)\right)=\frac{\partial f^{\nu}\left(x_{1}\left(x_{j} f_{(-\lambda)}^{\mu}(x)\right)\right.}{\partial x^{\mu}}
$$

so changing coords at old point of a vector there

$$
Y^{\mu^{\prime}}\left(f f_{\dot{-\lambda})}(x)\right)=\frac{\partial x^{\nu}}{\partial x^{\mu^{\prime \prime}}}\left(f_{(-\lambda)}^{\mu}(x)\right) Y^{\mu^{\prime}}\left(f_{(-\lambda)}^{\mu}(x)-\right)
$$

but the transformed components of the field at the inverse point define the components at x of a new field, the dragged along field at x.

$$
\bar{Y} \frac{\mu}{(\lambda)}(x)=y^{\mu}\left(f_{(x)}(x)\right)=\ldots
$$

- whichis the equation which starts page lt.

$$
\begin{aligned}
& \text { passive transformation: }
\end{aligned}
$$

page 11 insert
In the March notes, I neglected to talk explicitly about the invariance of a field under a transformation.
In the case of a 1-paramoter family of point transformations, invariance of a tensor field $T^{\mu \ldots \ldots}$ means that

$$
\overline{T_{(\lambda)}} \stackrel{\mu \cdots}{\nu \cdots}=T_{\nu \cdots}^{\mu \ldots}
$$

the transformed field equals the original field for all λ, thence taking the λ-denvative at $\lambda=0$, one has vanishing Lie derivative :

$$
\mathscr{L}_{\xi} T_{\nu \cdots}^{\mu \cdots}=0 .
$$

For a metric, invariance means:

$$
\begin{aligned}
& \bar{g}_{(\lambda) \mu \nu}=g_{\mu \nu} \\
& \mathcal{Z}_{\xi} g_{\mu \nu}=0 . \quad \text { or } \quad 0=\xi(\mu ; \nu) .
\end{aligned}
$$

later: covariant denvative.
ξ is called a Killing vector field, and the equation Killing's equation. Its solutions are the generators of the full group of motions of the metric. We evaluated explicity the Killing vectors for the flat spaces of arbitrary signature, and consequently, for the imbedded pseudospheres, homogeneous and isotropic spaces with maximum symmetry.

On a group G, the generators of right translations $\left\{e_{a}\right\}$ later and the generators of left translations $\left\{\tilde{e}_{a}\right\}$ commute since the left translations commute with the right translations:
$\left[e_{a}, \tilde{e}_{b}\right]=0: \longrightarrow \mathcal{Z}_{\widetilde{e}_{b}} e_{b}=0$ means $\left\{e_{b}\right\}$ are leftinvanant $\rightarrow \mathscr{L}_{e_{a}} \tilde{e}_{b}=0$ means $\left\{\tilde{e}_{a}\right\}$ are right invariant

ICM2: lt
CONSTANTS OF THE MOTION FOR GEODESICS
later when we do coañant denatures.
A very useful property of killing vector fields is that each independent KVF yields a conserved momentum for a geodesic.

Suppose $x^{\mu}=x^{\mu}(q)$ is a timelike geodesic parametnzed by the proper time τ. The unit four-velocity $u^{\mu}=d x^{\mu}\left(e^{e}\right) / d \tau$ satisfies $\frac{D U^{\mu}}{d \tau} \equiv U^{\mu} ; \nu U^{\nu}=0$, where $\frac{D}{d t}=" ; \nu U^{\nu "}$ is the covanant denvative along the tangent.

If ξ^{μ} is a $K V F$, then the momentum like quantity $p=\xi_{u} U^{\mu}$, sort of component of the velocity along the symmetry direction, is conserved:

$$
\frac{D}{d \tau}\left(\xi_{\mu} U^{\mu}\right)=\left(\xi_{\mu} U^{\mu}\right) ; \nu U^{\nu}=\xi_{\mu}(\underbrace{\left.U_{j \nu}^{\mu} j U^{\nu}\right)}_{\substack{=(\text { geodesic) }}}+\underbrace{\sum_{(\mu ; \nu)}^{\downarrow}}_{\substack{=0 \\ \text { (killing eq) }}} U^{\mu} U^{\nu}=0
$$

If ξ^{u} is timelike, then $-p$ can be interpreted as an energy, and if instead spacelike, as some kind of momentum (linear or angular).

Action of a group on a space
short exercise.
Suppose we have a linear group of transformations

$$
X^{\alpha} \rightarrow \bar{X}^{\dot{\alpha}}=A_{B}^{\alpha} X^{\beta}
$$

If this leaves a metric invariant then

$$
\bar{g}_{\alpha \beta}=g_{\gamma \delta} A_{\alpha}^{-1 \alpha} A_{\beta}^{-1 \delta}=g_{\alpha \beta} .
$$

If the matrix generators are $\quad A=e^{B}$

$$
\xi(B)=B^{\dot{\alpha}}{ }_{B} X^{\beta} \partial_{\alpha}
$$

then $\varepsilon(B)^{\dot{\alpha}}=B_{B}^{\alpha} X^{B}$

$$
\xi(B)^{\alpha}, B=B_{B}^{\alpha}
$$

Now evaluate $\mathcal{f}_{\xi(B)} g_{\mu \nu}$ using the formula on page ll and use index lowering notation ' $B_{\alpha s}=g_{a r} B_{B}^{\gamma}$ for the case of a constant metric $g_{u v, d}=0$ corresponding to a global inner product on the space like the Euclidean metric $\quad g_{\mu V}=\delta_{\mu V}$ of \mathbb{R}^{n} or the Lorentemetric $n_{\alpha s}$ of $4-1$ spacetime.

What condition does the killing equation

$$
\begin{array}{cc}
\mathcal{L}_{\xi(B)} g_{\mu \nu}=0 & \text { place on the coranant components } \\
\text { of } B ?
\end{array}
$$

