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88. Tsometry Groups and Homogeneous Geometries

Let (N\)g) be an nfafmet5$§OQOV (Ps’eudo~) Riemannian
manifold M with ‘a nondegenerste metric tensor field: Q of -
 signature. S=29-n. Let M =<diag(4,.,-1,..) bethe diagonal
matrix whose First ¢ diagonal "values are 4. and theremaini ng
ones =1 . An orthonormal frame {€a} is one sahisfying

LICK eb) Nab, let OCa,n-q) = {0e6lnR) | oTTO =71
be the orthogonal group for the signafue s and  SO(4,0-a)
the o responding special orthogonal group. (Forq; n these
are O(mMR) and SO(n,R) respectively ) Then any Fwo_orthonormal
| Srames ata poirt are related by an element of - O(a,na)
or if they hove the same orientation , by.an slement of SO(a,n-q.).
An isometry of (M| g) iro Trself is an elemert he D(M)
which leaves the metric invariant under dmgglﬂg hg =K. It
then follows from (3. 2) Mat - :

g(X‘I)(x)- hg(hX h‘D(h(x)) = g ("X, hY) (h(m

Thus a frame af h&) dragged along from an orthonormal
frame at X is also orthonormal.  We may also consider |
isomefries between manifelds 3  N: (M,g)— (M,g) is an
\Some+rg lf in addiion 1o bem9 a d(ﬁeomorph\sm it drags
g3,

An r-parameter groupof isometries of (M, g) is an action
of an r- d._lmeﬂSlOﬁC\\,gmup G on M such that § fq \QGG} are
isometries. The Lie dervahve of 8 with respect tothe Lie
algebra of generators of that action  must vanish :

@ Az =o , Xeg .

 This is Ca|\ed Kll\mgs equation and 'H'va e\emen‘\'s of §C%«)

| Killing vector fields.

Suppose the isometric action of G on (W, 8) is s\mp\9

L Transitivel, This means that the action is transitive butthe
| isotrapy group af every point of M is frivial | so M is diffeomorphic
o ©/1a:1= G. Tf X, is any fixed point of M ,then Fy,: G=M
i5 o diffeomorphism which maps the right invariant vector fields

| onfo the generators of the action of G on M\ according to (1.23) :




1Fe'g ®n G since by @) (®2)and (3.8):
o Rz (Fgg)r=0 , . Xe% ‘
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e B X-5@) ) Fosm=X.
,_ Pulhng the mefric_ g back to @ yields a \eﬁ' tn\/anarﬂ- me\-nc

and ]Une elements of,,% generafe Hhe lef\* ‘l‘mns\orhons Thus

(M, g) is_isometric to G uith a left invariant metric. Since

| any two points of M may be mapped. into each other by an
isometry ,we are led +o call CM.%) a homogeneous geometry,
| Ue groups with left invariart mefrics are homogeneous geometries
| and any homogeneous geometry is isomelric o one Qf%ese_‘
Fhe elements of %’, : qre Killing vector fields ef any left

| invariant metric on G ; such metrics have constant components
| in any left invariant frome. 7

, The space of \eft invariant Riemannian metrcs on G is
|naturally  identifiable with the space MU(G) of posttive-definite
inner products on g . Let {€a] bea basis of g, and {W s dual
1basis. An inner product <, > on 9 is essentially a tensor g=

~ 19ab u)“_@?gdb over %,A)_@here Qab = <eq,€'b7 = gCeq,eb). Since ,
we have idertified the dual basis W with leftinvariant 1 -forms

{onG, g iself is idenfified with a leftinvariant Metnc on G.

] A choice of basis {€a} of %,_ehqb\es‘ TV\(%,) +to be (g\enﬁﬁed o
 |in a_natural way with M, the meimc Subman'\fo\d of GL(HR):
e §=dbwew €M) > g =gab&% ¢ M |
| Depending on the choice of the matrix g , the COmp\e\'e group
| of isometries of (G,Q). may be larger than the left translations.
ldbne. The existence of Killing vector fields linearly independert
lof §, may or may not impose restrictions on g, When such fields

Jexst 6 will be a subgroup of a larger.group of isometries of (6,4).

[Amarnifold en which a group acts frussitively is colled a homageneous
_|space. Our homogeneous geomefmes are therefore examples of
| homogeneous spaces. which are themselves gw_oups.) o
1 Suppose an r-dimensional Riemannian homogeneous geometry

| (6,8) admits _a complete group of isometies of dimension m>r
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so that the isotropy group Ty ateach point x gnd the linear
_|isotropy group DIy acting on TMy are each of dimension p= M-,
1(Ty and’ BT, are isomorphic foran issmetry group. since Fixing
a point x and its fangert space fixes all geodesics emanating
§rom x gnd thus immobilizes the geomefry. This implies that
the Rermel of the homomor'phi's;m Som Ty onfo DIy is trivial
and hence Ix= DIy, ) The achtor of DTk, on TMx s
draggungAbg isometries  which |eaves orthonormal frames ,
orthonormal, The maﬁ'hx representation of DIy with respect
| to an orthonormal basis of TMx 1s therefore a subgroup of
O(r,R)  and so its dimension P must equal the dimension
of a possible subgroup of O(F,R).  When this subgroup 15 0(r &)
rself | (6,%) 15 not-only homogeneous but isohropic about every
point ; it is in fuct a space of constant curvature,  Since »
the subgroups of O(3R) have dimensions 0,4 and 3, the
complete '\some'hy group of a_bomogeneous . 3-9eome{_—ry o
| can only bove dimension 3,H or 6. ,
For the special dimension 3 ‘r\'\e SCT ofo Lie o\gebm
| admits a_very useful decomposition ito a covector and a.

(24) In componertt

symmetnc second rank fensor density.
| language | this arises from the equivalence in this dimenston of
lan artisymmetmic pair of indkces with one index vig the duo.l_&g
operahion, Ta\?\hg the dual on the lower indices qff,_Cqbc”g\fe_ld_s
Lo weght-one  density C® which has a symmetnc part neb=
| CP and anantisymmetric part CIP = gobeac  whichisthe
duol of a  covector which is not surprisingly thetrace qub? R0g -
6.4)  C% = 5 C%g€PH9 = NP+ €9ca.
Cc= C%€dbe = €ocd N+ ag T2

~ R0c¢= C%%€abe = 3 C%g€Pf9€apc= C%a,
The contracted Jacobi identity ((.15) implies ‘ﬁ'n’r N annihil od'es Qe
6.5 O= 3€C¥bChe= 0eC™= aen°®
When Qb is nonzero this implies that the mah‘\x qf cofoctors
| A(D) of the matnx N=N% &% is_proportional to 0,Qp&%
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(49)

_|so a proportionality  factor h (of weight zero) is defined by .
186) Qb= NA(Mab = Qh €acd €bfq ﬂcfhdg T

| Evaluating  the: components of the Killing form defined by (l. 1\.&
{interms of this decomposition  quickly yields:

4@»7) Bob= —(AtN) A(Mab. : o L
LeT {Eo} be a basis of a . 3‘d'tmen510nq\ L\é algebma

[rew ba&@s €a= €b A~ ‘b N ,._/‘_\ € ,5!-(3,,‘?7; Jﬁq CQMPQQ@D"}»QE ,
I the SCT fronsform as in (1L16), The component transfomation
| laws Jor the other quantities justdefined are:
e NP =(detAT) ATNTIASg

Qb Qc,f'\lcb,7 h=h.

. |Theonly invariants of the set of componer)b of ‘f‘ﬂe SCT under_
_|basis transformation are the rank and the absolute value of

 [the signature of the symmetnc matnx. N and the parameter h
|(defined 1o be zero when Qo vanishes),

Let (6,9) bea homegeneous  3-geometry with

3vector €uaz = ©ABaAe; regpectively i -
€ abe = W*(eagp,e)  €%C= e\zz(w w ;UO‘}

measure. IS components are defined py: . o

,A(‘B 9) . Mabe= /‘.\ Eabe L. .9= de‘{'g -

Tt is convenient Jm introduce  Mabe into fhe 3+mc_mre cons-\qrﬁ—

| indiseriminantly n calculations @

1819 C%c= Nped M £048% | meb= gapeb

~ A matrix_notation is qc\gp\’ed whcrever _pessible, The .

L tensor decompostion__so that indices may be rufsed and lowered

g givenby (83) in a leftinvariant Srame € with dual frame
1 fweY and SCT mponerts Cibe.  This frome will be used to. . .
| take components of the various geometric {lelds generated by the
L metric, All indices will be lowered and raised using Jab and

| s inverse g% , except for fhose on_ €abe ond €9 which are
| the comporents of ¥he basis . 3-form  (2'*?= WAWIAW? and

1. The volume .~ 3-fom_ M, ,p,rwxde,s.. G with ;q,;Le,g-:tmvmgnT o
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_|entries of- all squate matrices. except '8,9%end 0. are
understood to be the components of the mixed forms of the
corresponding  second rank fields | The upper left index
\dbeling the rows and the lower right index_ the columns.
_For example : T -
(s). M= MWpE% agT= g° av€°n,
A very useful setof matrices are the symmetrizations wr\‘h
respect to g o,f the adjoint maimix group generators :
(8.2) Ka= % (Rat 9_",?.;3,) . T Ka = Q0a.
Ka bc - C(b o , :

(ie,%Lbc-‘—' “QKabc : ,
The last relation is an immediate consequence of CA N) or
_alfernatively , follows by directly taking the Lie denvative of
| (83) using (3.23). Note that if T s a mamy ansing from
1aq ngmeﬁc tensor f\'e\d
8w - T Kel =TF kRal.,
“We now evaluate the jormu{os of‘l‘r)e appendix ;for 'Pﬂe
components of the metric connection and curvature fields and
covariant - derivahives and. divergences. We break withthe
| conventions of MTW only in defining the connechon components :
@19 Ve, €= M abec. .
_|With 3agbc = 0, the comnection jowu\os become
181s) . MCee= 3 Cab+ Kb, - IV

 Pecarb=3Cpea %= -2ab=—1"s% Mec=0
With 3dM%c =0 Hhe curvature formulas bécome : o
(810)  R*%ca = Mcslab-Mogg Mep— Mg Cfed
R¥ pd = R¥9pgd = = 20¢ Mdb ~ M5, MFgd
R¥ = 97 R*pd =-4asaf 1 £u g

| fields when (G, S) is a spacelike hypersurface in spacehme.,

of the scT decompasition, After some cother lengthy algebra
one finds for the matrix of the Ricc tensor :

The asterix will help us later distinguish these from spacehme‘_w o

Tnorder to be useful these fomuas must be evaluated 1h +em\s e



 Correchion for poge 8.6, (nsert affer 4%sentencer

Occasionally it is comvenient o use an alfemahve expression for
fhe last two terms in the formulas for R and G* -
-2aa"-2a%Ke = [m,A] - 2a0.a%1
A= acne bb é,bc\ . |
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§9. Bianchi Classification

L We may classify homogeneous . 3-geometries by the type ,
e Jof  _ _3-dimensional  Lie group G _defining the homogeneity . . __
~ |Since the Lie olgebra g defermines G upto global structure,
- _lour problem is reduced Tothe classification of =~ 3-dimensional )
_ __|lle digebras. = Bianchi was the first fo_classify. both hemogeneous
B B‘QEQL“_EtF.‘_@S,(‘)-_?),Qﬂd.,.,_.__-a::d_mehsmno\ Lie algebrus (2 ),k_,‘,_ .
- | hence the classification bears his name.  However, a more
_ | modern gpproach due To Behr _<2L‘) will be followed here, S
-__, _ Let {€a3}. bethe standard basis OifR?—} and WS its L
_ ___|dual basis.  Consider the _ 9 -dimensional real vector space I
i 1 G ®(AEA ) of . _(2) - ensors. ,c;\/gg%__ub\;c;b_ug\:e Cartisymmetme in
. | their covorLarﬁ‘ aguments: R
o TT=% T%e eq®<w‘°Aw°) . e I
o ) The"fhree re\ahons B E: »Qats—Ft cw:ﬁ;omdiefme a_ 6 dume_gg_nonol o
e | submanifdd C inthis space whose elements we dencte. bg _

oy . C = ZCqbc ea®(wb/\b~)c) T - ; . o
. _| Each_ C € € may be used to convert C\O., imo.a e algejqu bg R
o ) de&mmg - - ' o
oy [ea, eb] CS b€e. L
et GLGBR) has g ngtural _leftaction_on ‘e descr\bed N
] |componertt_form by: . e
. 92 C > $,(C) (ﬂ(c» o= A%l A“fb A“g
o ,A,,,,ABAgL,-.(L-!_@_,,_,fé-ﬁg) is_a_new - structure consfontj;e_nsor on %
_____luhich induces g new Lie algebra shucture isomorphic tothe .
I Qnehv,induced,,,b_ng__._IJ:VAJir_?rDGﬁY@‘.g--a_“pgﬁs.&@.-vfesgpgiot_mag, be .

o Token by inferpreting the components of the new tensor Sa(c)
 —_linthe natural basis_ as ﬁwe ompenents of the same tensor C in__
a new basis. €4= ebA ‘ ] Let us call two. poirts of \E equivalent

o . ,1§_ih_e%@co.rr§spmdﬂfr_c.au_\_so,rnor_ph\gﬁ._‘_l‘g _.O_Q@QEGQ_QH«%‘_.._.IQQ _equivalence

B _classes are just the orbits_of T under this action. _Our problem
is_To_characterize these orbifs or equivalence classes and then

. |setup.a classification_scheme, o .
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__The decomposition (8.4 ) of the shructure  congtant tensor makes
this easy:

dq

0w C%ce= €ocdN? 4t Qd , e

ﬂ“de \©) . Qale = 3 5N ech beg ncf ﬂd9

signature S of the matrix N.. These guantities therefore

The on\q invariants of C%bc under the achcmof; GL(3\R) . are ‘Hﬁew,_
| onstant N and the ranR_r and_absolute value of the

.completely characterize the eguivalence classes,

class A and classB | according to whether h ( or_eqguivalently Qp)

~The equivalence classes divide into twa 9enem| Ca+e90r\es

______Of_,,h_,,,u)h!@h.&5. m_f\m’re jo,r r=0,1 . and fmde for r=a Rm“her

To cheose g _canonical glement as a representative of each

than presenting g toble of these combinations |, T ls,,qu\jg_gg_e«ﬁJ_L_ o

Lvamshes or not.  Forcass A | hvonishes and thereare only six.
| differert combinations of r and IS). Forclass B, Qb (S nonvanishing
; and sothe monkof N is at mos\' two, ll'mi‘h’r)g the number of

__ equivalence class, This is done by using the action of 6LGZR) to

I map g general_element of the class to a_fixed one with a canonical

set of @mponents.

, o Smce 0 is symmetric i may. be transformed o " S‘B\Ves‘\'er

(9.5) N=(detA') AnNAT = diag(1,.,,-4,.,0,. )

motrix. then scaling the nonzero diagonal values to_absolute

We accomplish this by first dtaqonah‘zmg N with an_ or"(hcgonaL_q,,.,,,_,,_,_.;.w

value unity and changing their overall sign i}f desfred ( which

we may do_using f_‘f.é since _N%b Transforms liRe a weight-one

density ) and finally by permuh’ng the diagonal values i

necessary. The end results. R and Gu=0acA ' may be

N

m‘\’erprei'ed QS COmDonen‘\‘S N a new basis €a=EbA~ lb For

dC\SS B orbits the re\ahon ﬁabe. O IMP\\ES tHhat *H‘>e new

basis may be chosen so that only one of the components ay, -

N—




9.3

is_nonvanighing | in which case the corresponding diagonal value of D

must vanish,  We malge the choice  Ou=Q 8%.

when C has been " diagonalized” in this way we have

(drq‘zg\'ng bars ) 3

(Q.G> D_ = d\ag ( D""n“’;ﬂ"’?) - ; [Eziea’l': ﬂ(‘)e| —de,
dp=dé%h an?=o0 [esed= N?es+ae,
4 h.:_ .aa/(n"’n“’) [e.Leﬂ = n(ﬂea

For general values of ‘N, a  we call this the diagonal form

for the basts of the Lie algebra . bhere adapted to the thid

, a
element of the basis. When Q#0 and r< 3 then h=go gnd

a_moy be nomalized fo unify , while if r=a the sign of a is

unimpoctant and may be assumed posttive.,  The following table

lists our choice of canontcal fC0mPonen’i‘S ;@f“each eqywa\ence class.

( For later convenience we. permute the Sylvester form for ‘lype]I;)

LN

BIANCHI

37) |ciass| e | G |N© N nol ""%,@ dim(Ad(eﬂzlé?ogi&@‘ dim (Aut(g))
1 olo|Oo|lo|Oo| O O G (R=0) 9
I olojo|4d] 0O 2 2 (i A ‘
Alwm |olti-1|lolo| 5| 3 |3 y
W, |o|1|t|o|o] s 3 | ueled| y g
Yo (o1l {10} ¢ 3 3 3 ‘2_
X |olelt]1]ole | 3 |uced 3 4
Y |[!|Oo|lo|o|eo| 3 3 |46l ¢ 2
N |t|1]o]|o|ew|5 | 3 |3 y 5
B M=V | |!|-t]o|-1] 5 2 Y y o
Wpwea| 00| 1 [V [0 |-aq5+.| 3 |3 gy |
WVl 0| a>o0] | f 1O | Q* 5+ 3 Y,c(kc9) Y )

~—7

N

The Roman numerals ( Bianchi +59e> were _assigned by Bianchi

who used o different classification scheme involving the struciure

of the deried [ie algebrg [%%] which may have dimension zero

(T). one (II), two (W-VIT) orthree (VIL,1X). (These fur coses




|
|

!
j

s’rgn’r‘éurva‘hre%
mension Is G. |

the gn
n thatd)

nof

i o

I

the i

|

|
|
|
!
|

with

I

|

_lonthe - G-dimensional manifold C. The isoftopy group
_|poiat Ce T s af leost of dimension 9-6=3, If AeI,

| sligntly _different

1(141) _bholds
‘I basis {€aT of the Q@E@@l&ﬂ,g@g_p__ﬁuf% the Lie

' o\gebra o, with SCT C. The orbit or equivalence class

@mspdero the possible values of the rankefthe malrix CoPéb. ] 9.4

This leads to the
chowces of canonical componeﬂ’fs which often appear

5
(2 ) Three columns give the dimension

in the Iiterdture,

| g[_f each_egquivalence. g\mjadgfjts_@ rresponding adjointand automorphism grups

my gnes The possible dimensions  of larger isometry groups of homageneous
each =

3- geomelries of Bionchi type, | These will be
discussed in the next section, _

- Consider_again the action of the = _ 9-dimensional  group GL(3,R)

_L¢ ata

then

thergfore T is The mafrix representation |‘n The

containing C is__diffeomorphic to_ GU3R) /T so its dimension

(s 9—-dimI.. Let 5I dencte the Special \So\‘mDu qrouD

a- C_and hence the motrix representation (n “fJne bO.SlS 1 eq}

T SAutly,
CT(:‘H’IE soecxa\ qurbmorohtsm group, o(} the Lie alqe)orq Q, wrth

1.SCT. €. This group is importunt in 'Hﬁe dynamics_of soahql\u

homogeneous_universe models,

A basis {ﬁq}_j a  3-dimensional Lie olgebra a ‘For which

{the SCT_ components . C%wc assume the anonical values_ will be aalled

|a_canonicol_tasis.  Since the matrix_represertations of the adjoint goup

(or goup of fnnefgui'omqrphism'Q and_automorphism group of g..are defermined

| completely by the values of the SCT. mporents they are indeperdent of

T‘r)g,,ngh‘_c_ulqr carnonical Dasis_chosen and herce che can speak of the

canonical_adjoint and _automerphism _matrix group _for each Bianchi tupe |

pamely . TAute(q) and A&ie{_%‘)w;fp_rgqg_mmni_gq&._@s s _Y€a§of 9
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§10. Bianchi Groups , Adjeint and Automorphism Groups , 3-gemetries and Maximial Tsometry Groups

Th this section we imbed in GLE3,RYY o Lie group of each of

the Bianchi {ypes by manipulation of fhe adjsint Lie ‘algebra. When

the structure congtant tensor components are in the diagonal form (9.6),

the matrices of the adjoirt matrix Lie algebra wreesponding to the

d\'qgvmq\izing basis are - -given by v

A
) R = -n®28% + n®2 -g€?

Ro= —n@€; + n“’éﬂ\ -aé% .

R.= -n"&2 + n@ &€, +q(8,+8%)

(2, Rsl= Nk -ak an®=0

Lks, Rid= NDPa +ak Tr.Ba= 20q= 2084

[Ry,R2]= n®k,

The matnx Rz is responsible for the nonunimodularily of the class B adjoint

Qroup .,
"4

v

Canonical coordinates of the second Rind lead to the following

parametrization of the adjoint matrix R 3 the exporentiation can be done

explicitiy : , N .
¥ = B X, ks
(10.2) R¥W=e " e e = i ,
- . ~ ax
1 O —oax' |{ca o n%, cae - NS o |
o C @ —avy Q) ax? ax3
| i - NG, o \ ax n#s;e CGe O
| © s, c s, © | O o 1]

The following abbreviations and identities are used:

(10.3) M@= (-n®n©)? @@= (nmnm)‘/’ (a,b,¢) cyelic

Ca = (@shM@X® = cog e X°

Sa = (M®Y ' sinh @ X® = (@) ! sin Moy

(Ca,Sa)— (4,%%) as m@— O

(C)* = (M®G)2 = (Ca)+ (M@Sa)* = 4

dCa = (M*)* SudX? dSa = 'cqo\xq )

let T9=1 -8%= £°%+8% (no summations and (a,b,c) cuclic ) and

infroduce the notation Ra for the matnices obtained by sefting a=o0 in

(10.). One may easily verify the relotions :

Ra)>= @)L  (Ra)*=(M™3*Re  a#3

(R;)a_—. (mm)z Iﬁ}) . (E;)3= (mm)ggg




0.2

These allow us to gather even and odd powers of-the above matrix N

_exponential series into frigonomeimic hyperbolic and truncated secies

for the.coefficients of 1, L Ra for a¥ 3, Since Rz=K:i+al®

S Bp—

, {RS} are COMP\J'\'O\)\G ﬁom ‘\'\'TE \"c\ahoqs -
fo4)  R'IR = Raw® - dRR'- \eaw

|relations. The calalation is made less h@i@ﬁwbgjhc,mgkb_og_,_qfi%}),,
_{Theresult is: :
{io5) w'=¢e’ ax? <C1C3dx\+n“)53dxz>

land Rz and lf') oommu\'e we may e _)gponef‘fha'\'e them gqura\-e\q and

mu\hp\g the results | exgonerﬂ‘\ohhg_ B; as dbove, This quickly yields
~{G02),(10.3),

Tne leftand ngh\' \rmnqn\’ ‘dudl frames defermined by the “basis"

The mvahon\‘ _fmmes themselves are eqsdg consitucted bgi’\rve duqh’g

CQ'= g+ @sa—ax)dx?
7ﬁu@3_ -ax (Q N 25z ax! +C3d.x“) 32 = cdx® - (9 5, +a%?) dx3
@i: n(.ﬂszd‘x ‘A th} T % n“” S\A%2 + CCa de
€= qxaﬁn“’saau CaCs' (0~ n“’szagl B gf A -

=g (Cséz 550y (A NS, 38) &= Cd2- NP GG (32-08230)

G3= 03 S ,v_,:eif N%S102+ GC27' (03~ 1“9$291)
L - o + a (x‘ag+x2c)2)
-wl‘lB e“?‘if C dx\zg ,,,W,,f;, Cadx22 ’ detR = ana _

In the above we assumed that f Ra} are \inearly mdependeni’ so

_ [that the adjoint group is of full dimension three. However, forthe

_Idegenerate types T, JL WL 4his dimension is 02,2 respechively since

Ra,Ra2 wanish for types T, while Re=-Ra fortype ML, TThe type L

Itype T, W adjoint matrix groups _may be olttained by sething X2 and X?

adjoirt matmx gmup is tnvial, namely {4} 5 canomcal parametrizations on the

respechively 1o zero and in the Vatter case relabling X by X% Since everuthing

is analuhc inthe parameters {n®, q}, however (10.5) are the invariant fields

cxpressed in canonical aoordinates Q( the second RiNd on . 3-dimensiond

aswell™

as in (G.’Z‘l) for actual 3—dlmensonal $ubgroups of GL(3;“23 _we must

exponentiate _and differertiate " the following Lie algsbra bases'{ €al :




0.3

A
(0. I, {%'u &%, 6%} )

SR PR OO 3,85, &%

| The invariant §ields in canonical cordinates _of 4he second _kind _obtained

e e e e e e

. &2+ %6, Beimae! & or” {e n% NI

- | adjoint matnx groups  have the same \ﬁ\'erpre:\'ahon as_their h=0, Court\‘erpor\s

_|_$rom_these bases_ggree with (0.5) evaluated ot the cancaical yalues of {0, a};
| The diternahve basis for type T is. somewhat sinpler  bul with_ qlﬁcren\'
.| structure cons\‘ar\‘\' gomgonerﬂ-s L e
o) s = N8 P&, | dlhgtex,e") 1].(+ x"éj.
.;_L_eg,,,eﬂ:o = [&,$] tu_@z\k S e
1 W= dxzzzfq 3-=.dx3~=a')3 w' = —’@.C\X! ’l\;:\ dY. -% '\X3 S
~ere” aL,epbz €1, €3=0:,&=01, €3=03tX . __
Eva\ucr\'\ng (0.1) —40.S) ot the canonical values o&{D‘“‘ Q} gyeq_bg@'\l \eads o
Yo _the canorrcal _adjoint mcx\*n&_grrg;P of eachtype, This .

instructive_to examirie each of these separately 1h order.not.fo be overwhelmed

_ by eur simubtunecus ootution. s ' e

| .. The cononical adjoirt_matx_groups. gf‘\gpesuﬂla*moymhméare e
| more famliar as the grpupof isomeines of the lorentz and Euckdean plames,

50(2 D)

_the  3-dimensionol (proper) Loreritz goup ik @nd the rotuhon group
| S0(3,®) resped’fulig E"\z\'\e.j\rs\' two ses W= 09%? -and Yy2=-n@x*
Qescrlbe the mndohons of the plane i g_r\-esmn ordinates _and_ _)@ jbe, .

_angle of _hyperbolic or_ordinany. rotation, . Th e type ﬂh W, conemeal

-except thot o boost or rotohion by X3 is accompanied_bya. _dx\gh@rx-.o_ﬁ‘lhg,, -

__Lplane oy g factor eqxi while. Tupe N involves oniy the dilation (aswellas
_| the franslations).  Thetype T group is befer known os the. groupof translahions
| of R?, while the tupe Il represertutive is the subgrup of GLZR)Y consising of

__ unif rupper-diagonal matrices (Zemos below the diagonal  ‘with .ones. on the diagonal )

_| (4ne Heisenberg group).  Repregerstations of the classA  groups gswellas
| their_global structure and 2% matrix reqlizations gre digcussed by Vilenkin

My

_but the class B gmps o o Nave ‘oten somewhat neglected by ! mathematicians,

: ‘Represerttation ’t\\eorg is ymportart for. perturbation ‘ﬂ'»eorg_anc\ particle R
| ereahon in_spatially homogeneous _cosmdogy. D _/




oY

Tn the |iterature Eu\er angle coordingtes _are used almost exclugively ™

i for *‘uoeIZ L Trese are g SDBC‘AQ\ case oF the Fol\owlno

crordhates ualid § ﬁwmw%uﬂ

(10.8)  Re= e¥B K& Xk o L |

i

This exponcn‘l‘icrh‘on can be done as above, The lefl— invariart frame and dual
frame are similarly found to be:

(109)  @'= c3dx' + N°NDS,5;dxt €= C3d1 + S3(5.)7'(0,-¢,93)

e, = (D(n)" (,_ n<->n°753 o + Cs (sl)-l(al -G 93))
OF = C\d\X2+dX3 €z~ 93

These coordinates fail \ af the dentity.

W= n® (-S;ax'+ S.cgdxz)

group_ DBR) with Lie algebra 43,8 = span {458 & ad(3,R), Th addton

019 {€alacoq- =14 diagd, 1-a> dieg (3,-3,00% .
KEnBeYon=_ 6N . N =diag(t,151), R L

the following basis isuseful:

M Sl

Adqg\ed 1o the aove direcksum decompostiion - quaspond\QQ ‘b‘\'he d\\qhor\ md

|_shear subgroups, this basis 15 orthogonal with respectfothe Dswtfrtmne.rpwduct. )

| \eave the bas(s Or'kjnoqonq\ The enhire basis {eA} remains orthogonal under theachon
of. <02 ﬁ boosts have $ound application N spnha\\9 homogeneous dynamics, [{l

L Wenow inveshigate ’rherm-omorph\sm and special automorphism matx
canomca

.| groups . Atﬁe(%/) and SAbfteC%/)

| For types IX _and YT +he weighted character of 0 = diag (4,4 ,21) adds

mmcrphsm_ e
_|0o freedom_and the corresponding .canonical yadijont matnx groups_are

7 Aor each _Bianchy Tupe.

_The dbove GLBE) realization of the fype T group is jusk the scale

Thefraceless basis {é:& is adapted Fothe third.axis . Rotations of this basis
| by 120° permute the diagonal values eyclically forward; rototions byany angle .

s (8, =% 83 o (o), e

20
1.50(3, R) o.nds?\(. whidy are unithedular,  When =3 we may scale the

fwo _basis vectors {€1,e2§ of the Lie algebra. undormly wihout offecting  8a=

a8s or N= diag (4,24 ,0) due to its weighted nature, This sgaingis
generated by e matnx T%= diag (1,1,9) ;0 terms of whidn Ra= s +al®

Except for the degenerare fype I | the -

. —~
_ H:dimensional _aufomorpmsm group

has_one extra dimension_thanthe adjont group -corvesponding Fothis scaling.

ﬁéﬁgct\:fnnqﬂ_gﬁ these types Tis gen ecated k;%‘ﬁwe basis ie?'.,e 2y 23 1(3) ,

the first three clementsof whidh generote the specal automorphism group.
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)= ade

the natual

. »R) subgroup of SL(3
of ®3 fixed when aching db‘("’)ai'spftce 1a)

leaves tHe third axis

way. )

_|agree. ‘Our choice of coordinates and the expressions (10.5)_dre therefore

10.5

A .
|Excegrfor type L, % €*,€% ) may be replaced. by the inearly \ndependent™
cormbinations  Ri=-a8€3{~0®8&3, | B =182 -a€%  wnle (k3 I%}

{maybe replaced by (B, TS, For 4he.fwo cases r=1 we assume N@=87
| Jor. mifgm'ﬂgtﬁgdnqme_,@,g 1mpeses the conddion. A"lfﬁi\ée’fﬁ I
‘onelements of GL(3,R) yelding forthe class A type I _a & -dimensional
_group whose unimodular suogrup is the  5.- dimensional subgroup of SH3E)
forwhich A% =387, pWhen Ga=0a83 is nenzero (type W), M5 vanance

|_requires \n addition that: Aa= 8% which forces A= AZ 70 pythe

_previous  tondition, rgsuHing.}n a  H=dimemsional .. . T goup

| Cagan _generated by 181,82,%3, T8 ) whose unimodulac. subgroup as

A=AR=4 and is therefore The above matnk cealizahion _of the fypedl group gienn @d).
| When r=o but azo (typeV)  invariance of Qo requies only A*a=8%

{

| resulfing ina_. Gi~dimensiona) group witha = S-dimensional unwmodular

| subgroup, 4 Tnthe fmvial tupeT case ;, GLBR) and SLBR) arethe

[[automorphism_and_special automorphism  maimx _groups.  Finally | subtraching
| $he automorpbism _ group. dimenston_ from. 9 (the dimension of GLBIY).
_lyelds the equivalence dass dimensions quoted in Hhe toble (9.1,

. We now refum_our gitemtion o the homogeneous 3-geometnes

- 1€6,9) of $8, _ Regardliess of the: global siructure of G, T will bavethe, some
| local strudure as one of the above _moatnx groups.. For example o \ocal isomorphism
Js provided by identifying _canonical coordinates of the second kind token .

Lwith_respeck 4o bases in which_ tne structure constont tensee_comyponents

(Hem autes

hasthe same significance as above. )

_ lalways volid _pear the idertihy and wewill assume them in discussing
possible  additionel. Kidling vector fields, Here the onginal work of Bidnchi
will be quoted with some medification. One mustsee forwhat . _ .
|specializations of the wosfont motrix Q@ of components Tokenintre

canonical basis {€a% of (10.5) do Killing's equations admit addrhonal

|soluhons linearly independent of the dhree right invamant veclor fields .
| §a=€a. ‘Wealready krow from €8 thatonly one or three addiional
| Wnearly independent Kiling vedtors Lare allowed . .

Types I TV are specidl in the respect that ang left




10.6

N ;myarmn\' meinc necessarily has a complete isometry group of dimension 6,
o MHMand G _respechively. Con_sﬂg\:j*tigpes;,,qnsi\Y_\abqss-_bgmg@gous
__ 3tgeometmies are necessarily spaces of wnstort zero and negahive curvature
o _rspectively. The left invariant vector {f\'e\d__,_s_ and  1-forms (l0.5) |
_____ are exp\\‘c\"r\u
1don). GXQE€(8\+8 %3} ax? €a= exple (&1 +83)%32] aq B ) o
where €=0 and 4 respectively.. By choosing new coordingles }_)(' Xl} \inear

4he old_ordingles so that § dat are or\:\t;@gq_\m and_ g (2,0)= ,g@z;@zl- B
1 =9z, a gener metne  QabW®WP may be reduced fo the fom
933 8db WA0W® where WY are fhe same expressions (0.0) butin the
| new qorinates, (ThtypeT the facter 9za may be eliminated as well, ) _Th

Qn¢V_mmc§ are \someh‘\c 1o the me\'ﬂc - e
Q‘L‘Z)A 7 gg&,ma®_@b = ZEX(dX\wX +dX?@dXZ> 1‘60(3@(1)(3 o

fortype T (ﬂqﬁ*spaces , the fhree Killing vedors Sa+z= C abc Xba L

. generate the action of the rofahion grup which 5 the isotropy gouwp
| abthe identily,  For typeV the space has wnstant negative curvature

~1 and the exira Killing veckors are ; e
e Sy= w0y - va (e 'rQOi—Q@z)bzﬂ“ Xzbzv,, S

o ss= (e ) XX X0
%= X02-¥y, -
| The isciropy group af the dentity 1s qenerrw\'ed bjx}“r\‘\e ordered basxs
5 r‘\‘"fr’é'ha*ﬁ‘ove"*i’s%;h* 3624 S5-%€,, §¢.f which has the canonical type IX brocket =

~ " lalgebrap.Tn the tupe T and type V coses the Killing vectorfields
WMWQ with the expressmns 05 forthe
) ﬂ canonical _fields_ 3 €adof types Wl and VI, respectively, The
metncs _ (10.12) therefore admit simply transiive isomety subgroups
| of frese respechive fypes. =~
'3 Tn foct consider the tgge Wl metric m‘n 9= d\aq( Gunda):
Sﬂgl\w) QWRWP =. gy %% (dx'®ax ! + IK®AXD) + 9 dxFed3 L
gé’ B =033 (Q y? ﬁg‘ﬁdg‘+d92®dy’~)+dg3®dg Y/a*
e where \4“ G(Qu/ 9:)2%' , 4?=0a@u/43)"*X>, y?=ax?, Aparyfoma

I




Correction for page 0.6,
Add tothe end of the Pomgmph Following (o2 :

For type L the three Killing vector fields {83 belong o aut (G) and
satisfy ade ( €gea) = Eabe _é_cb , provided that G has the fopology of R3
le. is simply wnnected. Tnthe type W case only §¢ belongs to aut(G)

and satisfies ade(Se) = é}n—élz .

Corrections for page (0.7,
Insertat end of paragraph (after k)= - ekc ) Containing (10.15) the

fdlowing :

<y is In jqd- an element of aut (G) since by explicit caleulation one finds
that ade ngB = élz'é_zi . Rra metric with 2 = diagfgn,‘%n,%b,a
simple scaling cj‘ﬁve owordinates  shows that the additional Kt'\\x'mg vector

fteld S, may be wntten:
(1007) SuT 2 [(922/90()(?‘)2— (31/922)(XD Pyt X' Q=X

Insert at the endof parag raph containing (o 13) the J%Ilowmg :

The Pammeh?r N labds the 4— parameter :fdmi\g of aanformq\ isometry
dasses of left invariant fype Il  Rievannian metrics. T is easy To see
by a simple saling of the wordinates that any metric 3 with

E: diag (G, ,gu7§;;) in the noncanonical basis belongs: fo the
clags with n=0. TInthis cse the additional Killing vedor fleld §,

can be written : -,
(IO.I‘)) gq = é [ (g%/gn)ezx" (?')7‘] 5‘ —Ylga



. | group 9enerui§d-b9 { euﬁzg.,ﬁs, §6} P

5ubs\'rh:\'iom)

| reducible o

| corresponding Killng field Sy are: e

110.45)  Sabdx®®dx® + X2 (dx'edx3+ o\x3®ds<) +()? d><'®d><‘ e

o exp\\cﬁ'\g
L (0.e)

0.7

constant scale factor this is just (10.2) withy the replacement XY, =

| Replacing X" by (). inthe expressions (10.13) ‘yields theexda kiling. . _

vecors {Su,8s5,Say of (0.14) . (Norethat Se is invariant underthis

Hom,e\{,eg,‘_o_ng,*gpg* I ,not
this form_admits no additiondl Killing felds,
_ By similar arguments one may show that all type T metncs are

for. g=1 the camonical metnc ord .

AN such mehbs are #\‘\enefore \‘somemt: 1o w%in a

~ sometnic fo within a constont conformal foactor and admitone
ladditional K\'\\\'ngjeld

Su=  $(0@*EDD 93+ XX

fu gemrdes a rotafion_about the X3 coord\anre axis wh\ch wn

__Ibe wrtten down expheitdy: .

X'(x)= x'wst -x?*snt.
D= Xsint +x2aost .

YR = (@)~ m")z) Sin Zt ~ 5 XX (l+cos?3c)

: X3 S
_ Bianchi_shouws ‘j‘ha\'A_Qng fype TL_metnc s isometne o g mefﬂ'r\c;

<1, letm= (N7 Tnhe mefnc and additenal Kiling vedor are

e dX®c\x‘ )rd(xzaédsz2 + ne

wr\‘\"n components. G =4 +n(f%4+E'%) in the altemative basis (10.0),(o 7)
| N may e assumed nonnegative ; positive- defintteness then requires

(dx ©dx2+ W@df() +dx3®cb?3 o

_Juy= ;(me (¥)2>5l —mn g f) "Xtaa e

o . The vedpr Jrelds. ieg,gq)e } generate a Lie Suba\geb\'q 5 jor nZQ.
_ | they oredlso everywhere {inearly independent and hence generate o -
| smply tronsive fype VI subgroup of isometries  ( the g,rde.r_ed,._;bqs}ssﬁ.M.__M,__

1£8,, € +500G (& -$)433 hasthe canonical type VI bracket algebm), _

: | The metric._component matrix_in the canomical basis is 9= dwag(t+n,-n,4). -
~ . ‘We hext consider the nondegenerate class A +ypes, forwhich itis =
B | convenmient fo recoll the rela¥on (B48) : . ,




- dmg(gl‘)gu)qh) e

029 B
. {When +he, matrix Ke for fixed ¢ vanishes  €c becomeg an. qddrhono\ -
Ll ng f\e\d T5 the en’nreSe\' {Kc}- varishes .

108

igcg - KcobUO ©U~)b . Kc-—z(kc*'glhcg)

" the meimc_ unl\ Q\SO be R

group ‘pg_v_gmdﬂzahcn_

and the notohon. Qb“ = Bb B ;’rhe L mq’mces § K4a$ aregiven by: .

@o Zl) 2K = _(n?-ne 262782, +( n“’ 287 @) 83, —a (E3,+ 2878,
2
Zk.{ - (nm n® e 263 )ég + ( nm 23 nm) /‘l ~a (Q.32 +623 2 )ﬁ -
= 21
2' (n(ﬂ n(,l\ 7—3 )e (n(ﬂ-’)e - (l)) e \ + Zq (e ] +e 2) B

~ prim
Thmremmds us oF the restrichon to quona\ metnc malnces,

_imaking Sc= €3 an odditional Killing vector | while in type I

L For types Wi, VT TX when B%=0 (@n=9%2), K3 varghes

('2=8%%=8*=0 (91=9%2=9s3) wrresponds to a bi-invariant mefrc,

of a geomelry having constont positive qurvature 7‘; when 3=4, The

B”=0 metrics are explicitly

(10,7) V..  9u (dxedx' + dxzadxi) + 933 AX3® dx3 e

VI IX: gu(CRdx'edx' +ax®edx?) +

02 (52 dx0dx! + 52 (Ax @A +d36d )+ d2@ds)

and _hence_gdmit _two additional Kii\(no fields -

The first shows ~that such type Vlig m;ctq;csm_cgmggpgo,d__fg_‘,_ﬂqt__spgce.,,A,,W__A______-_

B ORI T £ P O PR
1 Type YW requires an indefinde metne !
- fucther Killing fields. Tk remaining Bianchi types V1o, Vi , W adeat ...

$5= %' %3n—¥X'0z X (Qu/gaz)%'
9= diag (.L

no_additional Killihg Helds, C Tupe Vo re%un&s an_indefinde metnc

1.9 =dwag (9u,~9u, J33) for €3 t0o become q Kiting fre\d as mjhecr\‘her

A toadmit

nondegeneraire class A types, )

T only part  _of thisradditonal Killing structuce has any - -
_putaT .rrﬁp\ica‘h'on Sor JSpa\l'q\\_\.; homogeneous cessmology .+ Consider the foll owing
-;Ehé%g\i | metnc on RXG withy  9ab funcions only of £ - (this will be developed iy o
) | more detuil in_ & 12): e SO
N N (%Y Q= -d@dt + Gapw QWS e

_in.addrhon 1o s

1

Suppose. 5§ =%%Qq (wth §° possibly  T-dependerit. -




(0.9

" |x-deperndence) is q Killing vector field of the induced metric
9do WBLW® on constunt t hypersucfaces. Only the (0,a)
components of the spacetime  Killing equation (A.14) in the
basis 1€«J= {aet, e} reman tobe satisfied . These are
PUT AT equivalent to  98°%/0t=0. Th’érejore essérﬂﬁally only Those
END additional Kl“iﬂ9 vector fields discussed above which are

SECTIN independerit of the metrc componests remain’ Killing vecrer
flelds of the spacetime meh‘\c, - Whether or not it is possible
to have metncs of the special Jorm for which this (s true

| depends on the dynamics, T will tum out that only three
situations  exist corresponding to flat spacetime (IHEIOD)
TaublikRe models wth an additional Killing vector field

TAW, T, 1T, YAV, , VI ,IX ) and Friedmann models with
three additional Killing vector frelds (TNVlo, VNI K, ).

TN

L\ﬂ—/ when N s d\asoﬂa\ and has a pair of o\tagonal values
of equal magrittude but opposite sign , a rotahion by 4 about
| the elgenvector corresponding - o the remaining ohagc)nal value
brmgs N into a new canonical form N,  Consider ‘lype EI;,
| with D:QC ez) and Qq= aSq:,,

(\0.240 ﬁ = exp 2 R Rtx - ~Va ( tl —‘\ 8&) , A"=_ﬁ‘r

oo Q'

3

32
2

Al
3.8

A
&

0= ApA'= q (&4+€%) & Qa=Qa,

| R=-@ra)€% |, R=@oE:  EKa=@dE\ +(a0e:
Notice that the special automorphism generator —_lé_; = q(é',—ézz)
MA, q_ s related +o a and h by the relation
a?=-hq?; define A= a/a. Then =1, A=a"* corresponds
fo our canontical ﬁjPe Eo\ co'mponer)‘l's 5 Q=a=xr=1 o
type Il | q=o0=n fo4ype V and q=o=a +v type I . If

v | $€a% 15 a basts of the Lie algebra of a Lie group wrh the
ﬁ r unbarred SCT COmPonerﬂ'S then {€q=ebﬂ~'bq 3’ is a
basis with the fo\\meS brackets : A |
tons) [€2,€3] = @) Ex [63 €l= (C{:"G)@i , E,&l=0.

2
Fal

e
15 a basis of aute(g).

[

MM nous {_élh




10.10

Suppose we perform the corresponding m(-trhéh’ about
the first basis vedor i type ¥ where. N= &'\1€%-E% ; V o
10.2)  A=egpTRI=x% (aﬁ oo) . Ba=€pA P

=t
0.1

B Q“éQﬁT /€\1+é 3+€ 2y
o ,>(~éa,‘é3-‘\=§‘ K (€3, e l=€3 (@ 62]— ea., _
1 The basis {€aj here is oloselg related to - qundws cholce
For the " Taublike " type Vil me’rncs 9= diag Cgu,gn,%s) and
| €3 is an addrhonal_ Killing, figld wh\ch commutes wn”g all the
nght mvanant vector fields {€,3 and hence with  &a=&bA™ . |
s;me,_v[é;,é]«é he ordercd set { &=C4, ez, o
| ea* R g+ 63) } has the same bracket a(gebr'a as (lO'I)
1and generates a simply transthive 1sometry subgroup of type T,
‘ This second canonical form for types VI, and VI is
ho\fwa\j between our dtagona\ form__and one used bg Eils .
land Mac Callum .“?  for type VT, it 15 closely related 4o
| Buandnis. chowce of canoncal SCT- camponerﬁ‘s Hlsyamme*EF hB
1is related to b by : R
a9y D= *(H‘hs)l/fl hlﬂa o | o
A single - VQlued relation 15 ob‘i‘amed by resﬁ’tcﬁﬂg hB +0Hne R
inferval  [-1,4.) | on which = R o
e _hg= (h-\ +A-AYE )/(l+h) ., a= (Prha)/(—he) |
[T we et B =A ((he-1)/2)7 A,y__,whe_re_ ._.fj,_tqus in (1022). .
1then Ne and @g)a= G88a for Bianchi's SCT cemponents
|are related o our  canonical N and da by the formula 8
with B i placeof A there: L
fios) De= £(h-D(83+8%)  _desihe-Da = — L(+he),
| smilarly _Bianchi's chowce of type ULy, SCT comporents 15
 irelated o our canoncal choiwce by the same ﬁansﬁma'ho‘n (3.8
~lout with B now a combined dilation and Boos‘}'" meer-Thar) )
__{adilaghon and totohon: - . o
@3 B= ~ cosh28 expl-0(€tR) taqbaeiifz,/(!tb)}f‘ff:ybs>,
I’)e— -I“)i-*he(ﬁ?zw“@ ) Ag=-2% hs .




Cortection  for page (10.9). At bokom of page add (same Pamgraph)-.

For the explicit type VT, basis {€a$ given in (0.5) , the wordinate
expressions for {&%and {&%3 in ferms of new coordinates X=A% X°
{ mnonical coordinates Of the second Rind with respect to the new bas(;g>

meg)'ve;? ’ecqm)?—l i @ (WX o
g,= e—(‘l““)7352 = e @9 X3 a2
€~ 9 w?= dx?
The correspondirmg right invariant basis is :
(o.27) &= 73, €,= 9, €,= 33+ (ra) X'd ~ (q-a) X2,

The fype W=V, pases of (07) are exactyof this form wih q=a= 7 .

After the first paragvaph o} page(l().c)) (Which jsto be Pu+a+ the end of
the sed‘ton) add (same Pamgmplﬂ :

As an example consider type I metrics with g diagonal the
noncaronical basis.  The extra kil\'mg vedor discussed above depends
only on te ratio (3u/Gaz) and hence is hn"\e—-ihdepehderﬁ‘ ‘tfand
only if (@./9_33)'———0; Since &' generates an automorphism , one may
pck o new basts with the same  structure constant tensor components 10
which this ratio is unity when 't is fime-independent, Thus for
fype Il spacetime metrics with an additional  Killing vector field of This
sorf one may assume ET— diag (Gy, 9, 03,) -



