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Abstract 

It is demonstrated how the notorious factor of 4/3, occurring in the electromagnetic mass of the classical electron, can be 
eliminated by a redefinition of the concept of rigid accelerated motion. The mass derived from the self-force on the electron 
is thus reconciled with Einstein’s mass-energy relation. 0 1997 Elsevier Science B.V. 
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1. Introduction 

In the classical model, introduced by Abraham 
and Lorentz at the beginning of the century, the 
electron is pictured as a rigid spherical symmetric 
charge distribution of total charge e. The contribu- 
tion to the electron mass from its electromagnetic 
field can in principle be found in two different ways. 
With the electron moving at constant speed LI*, one 

can calculate the associated field momentum P.r. The 
mass then follows as 

mP = P,/1:, . (1) 

Alternatively, if the electron is accelerated with a 
constant linear acceleration u,, an electromagnetic 

self-force F, opposing the change in state of motion 
will result. The corresponding inertial mass is 

m, = -- F,/a.,. (2) 

(If the motion is relativistic, powers of the Lorentz 
factor will enter.) 

Early “naive” calculations gave as a result 

mP = m, = 4u/3c”, (3) 

where U is the total eiectrostatic energy of the 
electron and c the velocity of light. 

Contrary to expectations, these results do not 
conform with Einstein’s mass-energy relation, and 
the unwanted factor of 4/3 has been under debate 
since the days of Abraham and Lorentz. 

A solution to this apparent inconsistency for the 
self-mass was first given by Fermi [I] as early as in 
1922 by a covariant application of Hamilton’s princi- 
ple. Fermi’s explanation seemingly went unnoticed, 
but his basic idea of the necessity for covariance was 
later rediscovered repeatedly by other authors in 
connection with the momentum derived mass m,,. 

The procedure for eliminating the notorious factor of 
4/3 is essentially to redefine the electromagnetic 
stress tensor as described by Rohrhch [2,3] and by 
Jackson [4]. 

037~-9601/97/$17.00 Q 1997 Elsevier Science B.V. All rights reserved. 
P/l SO37S-9601(~~7)00596-3 



320 tf. Kolbensroedr / Physics Lerters A 234 f 1997) 319-321 

In contrast, very little is found in the literature 

(since Fermi) about the inconsistency of the mass m, 

derived from the force on the electron on itself. We 

here demonstrate how a slight modification of the 
standard textbook procedure harmonizes the self- 

mass m, with relativity. 

2. Rigid motion 

The following phrase is translated from Fermi’s 

1922 article: “The difference between the two val- 

ues [U/c’ and (4U/3c2>] is due to the implicit 

application, in ordinary electromagnetic theory, of 

the non-permitted concept of rigid bodies.” 
In the Lorentz model, the charge distribution rep- 

resenting the electron is assumed to move rigidly in 
the sense that for a given instant of time, all charge 

elements have the same ~~~~~i~ and ~~~e~erution. 

However, if we assume that no elastic stresses are set 
up, the extended electron must be Lorentz contracted 

along the direction of motion when observed in the 
laboratory frame. Furthermore, accelerated motion 
means a time dependent progressive contraction 

which in turn implies that charge elements at the 
“rear” end must be accelerated more than elements 

at the “front” end. 
A rigid accelerated motion of the electron can 

then be defined as a motion during which the elec- 
tron shrinks in the direction of motion with the 
instantaneous Lorentz factor relative to the labora- 
tory frame [S]. This condition is fulfilled only when 
each point of the extended electron performs a hy- 
perbolic motion with proper acceleration [6]. 

u= (Y(l + nX/C*)-i. (4) 

Here X is the coordinate along the direction of 
acceleration in the co-accelerating frame and (Y the 
proper acceleration of the origin X = 0, here taken to 

be the centre of the electron. 

3. The self-field 

Standard presentations of the self-force in the 
classical electron theory are given in the textbooks 
by Heitler [7] and by Panofsky and Phillips [S]. The 
charge distribution representing the electron, acceler- 

ated in the .x-direction, is assumed to be instanta- 
neously at rest at time t = 0 with its centre coincid- 

ing with the origin of the laboratory frame. 
The electric field felt by charge element de with 

position I’ due to another element de’ at r’, is found 

by a series expansion of the retarded Lienard- 

Wiechert field to be 

where R = r - r’ and X is the component of R 

along the direction of acceleration. All quantities 

refer to the time of observation t = 0. If the typical 

dimension of the charge distribution is of the order 

of rO, the retarded times involved are of the order of 
r,/c, corresponding to retarded electron velocities of 
the order of cy~,Jc. Relativistic effects can thus be 

negIected when 

cyr0/c2 -=C 1, (6) 

a condition fulfilled for most reasonable accelera- 
tions. 

4. The self-mass 

The force on element de is simply de d E. Adding 
up contributions from all pairs of charge elements, 
only the ~~-component will be different from zero 
due to symmetry. 

The contribution to the self mass from the de- de’ 
interaction is thus: 

dm= -dedExap’=dede’ 
_, 

(7) 

Note that a’ and a are the laboratory frame accelera- 
tions of de’ and de respectively. In the standard 
treatments these quantities are assumed equal, but 
our modified definition of rigidity makes CI’ and LI 
depend on x‘ and x respectively. 

Since the electron was assumed instantaneously at 
rest at t = 0, the coordinates and accelerations in the 
laboratory frame and the co-accelerating frame are 
the same. From Eq. (4) then follows that 

u = cr(1 + Lyx/cZ))‘, (8) 
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with a similar expression for u’. The condition (6) 
shows that a differs little from CY throughout the 

charge distribution. 
Disregarding terms with positive powers of CY, 

Eqs. (7) and (8) give the total self-mass as 

2X? 
m, = 

1 i- 

X.r X 
dt! de’ TV ~ __ - - c?R-’ 

1 aR-I ’ 
(9) 

where the integration is to be carried out over all 

pairs of charge elements. Note that to this order in 
(Y, the additional term in Eq. (9) compared to Eq. (7) 

stems from the s-dependence of u only. The acceler- 

ation a’ of the source element can be replaced by cy. 
The last term in the parenthesis corresponds to the 

instantaneous Coulomb interaction and gives no con- 
tribution upon integrating. Making use of the as- 
sumed spherical symmetry in the electron’s charge 

distribution, the integrals of Eq. (9) can easily be 
expressed as 

/ de dr’(2X2/R3) = +U, 

/ dc dr’( Xx/R’) = +U, (10) 

where U is the total electrostatic energy stored in the 
electron 

f 

d<’ de’ 
u= __ 

7-R 

Our final result is thus 

m, = U/c’, 

in accordance with expectations. 

(111 

(12) 

5. Conclusion 

The modification of the self-mass calculation pre- 
sented above is based on a redefinition of the con- 
cept of rigid motion. This introduces the extra factor 
of 

F’ = (I f ,#)a-’ (13) 

in the mass element dm of Eq. (7). 
Formally, the nominator, being the square root of 

the metric tensor component g, in the accelerated 

frame, can be absorbed in the electric field of Eq. (5) 

by the substitution 

dE + dE( 1 + KX/C’), (14) 

where IIY now must be considered as a common 

acceleration throughout the system. This. in turn. can 

be interpreted to mean that a rigidly accelerated 

frame behaves like an anisotropic dielectric medium 
with a permittivity [6,9]: 

e=,&‘? = (1 + cY,/V)~ ‘. (IS) 

The modification (14) effectively introduces an addi- 

tional term in the electric field of Eq. (5): 

615 = de’( R,‘R’)( u./‘c2), (161 

in agreement with Fermi’s findings [I]. 
With this additional field. the total self-force is 

readily found to be 

F, = -(ti/+. (‘7) 

The corresponding self-mass, now defined as F,/Lu. 
is again given by Eq. (I?). 

We have been concerned here only with the con- 
sistency of the electromagnetic features of the classi- 
cal electron and we did not touch upon the delicate 

and controversial question of the need for stabilizing 
Poincare forces [ 10- 121. After quantum electrody- 
namics, this aspect seems to be of historical interest 
only. 
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