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4C.

CORRECTION OF A CONTRADICTION BETWEEN

ELECTRODYNAMIC AND RELATIVISTIC

ELECTROMAGNETIC MASS THEORIES (∗)

“Correzione di una contraddizione tra la teoria elettrodinamica

e quella relativistica delle masse elettromagnetiche,”

Nuovo Cimento 25, 159–170 (1923)

§ 1. – The theory of electromagnetic masses was studied for the first time by M.

Abraham1 before the discovery of the theory of relativity. Abraham therefore, as

was natural, considered in his calculations the mass of a rigid system of charges in

the sense of classical mechanics, and he found that, with the hypothesis that such

a system had spherical symmetry, its mass varied with the speed and is precisely

equal to2 4

3

u

c2
(where u is the electrostatic energy of the system and c is the speed

of light) for zero or very small speeds, but for speeds v comparable to c correction

terms of order of magnitude v2/c2 appear which are a bit complicated. Even before

the theory of relativity, Fitz Gerald introduced the hypothesis that solid bodies

underwent a contraction in the direction of motion in the ratio
√

1 −
v2

c2
: 1

and Lorentz redid Abraham’s theory of electromagnetic masses, considering instead

of rigid systems of electric charges in the sense of classical mechanics, systems that

underwent this contraction. The result was that the rest mass, i.e., the limit of

the mass for vanishing speed, was still
4

3

u

c2
, but the correction terms depending on

v2/c2 changed. The experiences of Kaufmann, Bucherer and others with the mass

of the β particles of radioactive bodies, and with high speed cathodic particles,

decided in favor of the Lorentz theory, known as the contractile electron, against

Abraham’s theory of the rigid electron. This fact at the beginning was interpreted

∗on the same argument see my notes in rend. acc. lincei, (5), 31, pp. 84, 306 (1922).
1Abraham, Theory of Electricity; Richardson, Electron Theory of Matter, Chapter XI; Lorentz,
The Theory of Electrons, p. 37

2The electromagnetic mass of an homogeneous spherical shell of charge e, and radius r is
2

3

e2

rc2
;

but if we observe that the electrostatic energy is u =
1

2

e2

r
, we find the mass

4

3

u

c2
.
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as a proof of the exclusively electromagnetic nature of the electron mass, because it

was thought that otherwise their mass should be constant. Afterwards the discovery

of the theory of relativity led to the consequence that all masses, electromagnetic

or not, must vary with the speed like the mass of Lorentz’s contractile electron; in

this way the previous experiences left undecided the electromagnetic nature or not

of the electron mass, being only a confirmation of the theory of relativity. On the

other hand the special relativity theory first, and after the general theory, led to

attribute to a system with energy u a mass u/c2 and in this way arose a serious

discrepancy between the Lorentz electrodynamic theory, which gives to a spherical

distribution of electricity the rest mass
4

3

u

c2
, and special relativity which attributes

to this distribution the mass u/c2. That difference3 is particularly serious given the

great importance of the notion of the electromagnetic mass as a foundation for the

electronic theory of matter.

This discrepancy showed up dramatically in two recent articles4 in one of which,

using the ordinary electrodynamic theory I considered the electromagnetic masses

of a system with arbitrary symmetry, finding that in general they are represented

by tensors instead of scalars, that reduce to
4

3

u

c2
in the spherical symmetry case;

in the other one instead, starting from general relativity, I considered the weight of

the same systems which was in every case equal to
u

c2
g, where g is the acceleration

of gravity.

In the present work we will demonstrate precisely: that the difference between

the two values of the mass obtained in the two ways originates in the concept of

a rigid body in contradiction with the principle of relativity, which is applied in

the electromagnetic theory (as well as in the contractile electron) and leads to the

mass
4

3

u

c2
, while a better justified notion of rigid body conforming to the theory of

relativity leads to the value u/c2.

We note that the relativistic dynamics of the electron was done by M. Born5 who

starting from a point of view not essentially different from the usual one naturally

found the rest mass
4

3

u

c2
.

Our considerations will be based on Hamilton’s principle as the most suitable

one to study a problem subject to very complicated constraints; in fact our system

of electric charges must satisfy a constraint of a nature that is different from those

considered in ordinary mechanics, since it has to exhibit, depending on its speed,

the Lorentz contraction, as a consequence of the principle of relativity. To avoid

misunderstandings, we note that while Lorentz contraction is of order v2/c2, its

3The experiences of Kaufmann and others cannot be useful to understand which of the two results

is right, because these allow only the measurement of the speed dependent correction terms which
are the same in both theories, while the difference is between the rest masses.
4E. Fermi, N. Cim., VI, 22, pp. 176, 192 (1921).
5Max Born, Ann. d. Phys., 30, p. 1 (1909)
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influence on the electromagnetic mass is on the principal terms of this one, i.e., on

the rest mass and therefore has a rather bigger importance, being appreciable for

very small speeds as well.

§ 2. – So we consider a system of electric charges, sustained by a rigid dielectric

that, under the action of an electromagnetic field generated partly from the system

itself and partly from external sources, moves with a translation motion describing

a time tube in the space-time6.

Let’s explain what we mean by rigid translational motion. To do this we consider

a Lorentz inertial frame and we suppose that in this frame at a certain time a

point of the electric charge system has zero speed; we will say that the motion

is translational if in the same frame at the same time all the other points of the

system have zero speed. This fact is equivalent to saying that the time lines of

our system points are trajectories orthogonal to a family of linear spaces; in fact

in a Lorentz frame where the space axis is one of the spaces of the family and the

time axis is perpendicular to it, the entire system is at rest at t = 0, because the

space axis cuts orthogonally all the worldlines of all the points of the system. Using

this definition of translational motion, which is substantially the one adopted by

M. Born, the rigidity of the system is expressed by the fact that its figure in these

spaces perpendicular to the tube remain invariable, i.e., all the sections of the tube

are like each other.

To be able to apply Hamilton’s principle to our case we need a variation of

our system movement consistent with the constraints of the problem, i.e., with

the rigidity, correctly interpreted. Now we will show that the value
4

3

u

c2
or

u

c2
is

obtained for the electromagnetic mass, if we use either one variation or another that

we will illustrate and distinguish from each other with the letters A and B. The

variation A, however, as will immediately be clear, must be discarded because it is

in contradiction with the principle of relativity. Let T be the time tube described

by the system. In the figure the space (x, y, z) is represented by only one dimension

along the x axis, and the time t is substituted by ict to have a definite metric.

Variation A: the variation that fulfils the rigidity constraint is an infinitesimal

displacement, rigid in the ordinary kinematic sense, parallel to the space (x, y, z),

of each section of the tube parallel to the space itself. In the figure we could obtain

this variation by shifting each section t=const of the tube parallel to the x axis by

an arbitrary infinitesimal segment. If we restrict ourselves to consider translational

displacement, we will therefore have δx, δy, δz as arbitrary functions of only the

time, and δt = 0.

Variation B: the variation that fulfils the rigidity constraint is an infinitesimal

displacement perpendicular to the tube of each section normal to the tube itself,

6In the following we consider a Euclidean space-time, because we suppose that the considered

electromagnetic fields are small enough to not modify the metric structure.
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Figure 1. Translator note: “parallel to x” and “perpendicular to T ”.

rigid in the ordinary kinematic sense. In the figure we could obtain this variation

shifting, by an arbitrary segment, each normal section of the tube parallel to itself.

Among these two variations A is in obvious contradiction with the principle

of relativity and must be discarded because, not even being Lorentz invariant, it

depends on the particular frame (t, x, y, z) we have chosen and can’t be the expres-

sion of any physical notion, like rigidity. The variation B instead, besides satisfying

Lorentz invariance, since it only consists of elements of the tube T completely inde-

pendent of the position of the frame axes, is the only one presents itself naturally,

like that based on a rigid virtual displacement in the frame where at the instant

considered the system of charges has zero speed. Now it would be wrong to think

that the difference between the consequences of the two methods of variation A

and B is significant only for high speeds, i.e., when the tube T has a big slope with

respect to the time axis. Instead the calculations we will do show that the difference

appears for zero speeds too and that exactly A gives for the electromagnetic mass

the value
4

3

u

c2
while B gives instead u/c2.

§ 3. – We indicate the coordinates of time and space by (t, x, y, z) or (x0, x1,

x2, x3) as convenient and let φi be the four-potential and

Fik =
∂φi

∂xk

−
∂φk

∂xi

the electromagnetic field, and E and H the electric and magnetic forces that derive

from it.



March 3, 2011 13:48 Proceedings Trim Size: 9.75in x 6.5in fermi4c

5

The Hamilton’s principle that summarizes the laws of Maxwell Lorentz and

those of mechanics says that7: the total action, i.e., the sum of the actions of the

electromagnetic field and of the material and electric masses, has zero variation

under the effect of an arbitrary variation of the φi and of the coordinates of the

points of the electric charge world lines that respect the constraints and are zero on

the boundary of the integration region. In our case there aren’t material masses,

and the only variable elements are the coordinates of the points on the worldlines of

the charges; therefore it is enough to consider only the action of the electric charges,

i.e.:

W =
∑

i

∫

de

∫

φi dxi

where de is the generic element of electric charge and the second integral is calculated

on the timeline arc described by de that is contained in the four-dimensional region

G of integration. For each system of variations δxi satisfying the constraints and

that vanishes on the boundary of G , one must have δW = 0, i.e.:

∑

ik

∫ ∫

de Fikδxidxk = 0 , (1)

Now we must examine separately the results obtained substituting δxi by the values

given by the system of variations A or B.

§ 4. – Consequences of the system of variations A. — In this case the region of

integration reduces to ABCD. The regions BCG, ADH give no contribution, because

in them all the δxi are zero since they have to vanish on the boundary of G, and

therefore along the curves BG, AH and must be constants for t =const, i.e., on the

straight lines parallel to the x axis. If we label the times of A and B by t1 and t2,

the equation (1) can be written, since δt = 0 and δx, δy, δz are functions of the

time only:

∑

ik

∫ t2

t1

dt δxi

∫

de Fik

dxk

dt
(i = 1, 2, 3) (k = 0, 1, 2, 3) .

Since the δxi are arbitrary functions of t, we obtain the three equations
∫

de
∑

k

Fik

dxk

dt
= 0

i.e.,
∫

de[Ex +
dy

dt
Hz −

dz

dt
Hy] = 0 and the analogous two.

7Weyl, Space, Time, Matter , pp. 194–196; Berlin, Springer (1921).
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If at the chosen instant the system has zero speed in the frame (t, x, y, z) the

three equations can be summarized by a single vector equation:
∫

E de = 0 . (2)

We could have obtained this equation without calculations if, as is usually done in

the ordinary treatment and as M. Born essentially does in the cited work, we had set

to zero from the beginning the total force acting on the system. We wanted deduce

it using Hamilton’s principle to show the fault of its origin, since it follows from

the system of variations A that it is in contradiction with the relativity principle.

From (2) follows immediately the value 4
3

u
c2 for the electromagnetic mass. Suppose

in fact that E is the sum of a part E(i) due to the system itself, plus a field E(e)

uniform due to external sources. (2) gives:
∫

E(i) de +

∫

E(e) de = 0 .

Now
∫

de = e = charge; and then E(e)
∫

de = F = external force. In the spherical

symmetry case, both direct calculation, and the well known considerations of the

electromagnetic moment8 show that:
∫

E(i) de = −
4

3

u

c2
Γ ,

where Γ is the acceleration.

The previous equation then becomes:

F =
4

3

u

c2
Γ

that compared to the fundamental law of point dynamics, F = mΓ, gives:

m =
4

3

u

c2
.

§ 5. – Consequences of the system of variations B. — In this case the same

considerations of the previous section demonstrate that the region of integration

reduces to ABEF, i.e., to the region bounded by two normal sections of the tube

T. By the use of infinite normal sections Decomposing it using an infinite number

of normal sections into layers of infinitesimal thickness, and in order to calculate

the contribution of one of these to the integral (1) we refer to its rest frame, by

considering the space (x,y,z) parallel to the layer. For this δt = 0 will hold, while

δx, δy, δz will be arbitrary constants. Moreover dx = dy = dz = 0, because the

speed of all the points is zero, dt = height of the layer, that will vary for each

point, because the layer has for its faces two normal sections which in general are

8RICHARDSON loc. cit.
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not parallel. If O is a generic point but fixed in the layer, for example the origin of

coordinates, in which dt has the value dt0, and K is the vector with the orientation

of the principal normal to the timeline passing for O and size equal to its curvature,

we have manifestly, since dt is the thickness at the generic point P of the layer:

dt = dt0[1− K · (P − O)] .

Since the speed is zero we have

K = −Γ/c2 ,

and therefore:

dt = dt0

(

1 +
Γ · (P − O)

c2

)

.

Substituting these values we find that the contribution of our layer to the integral

(1) is:

−dt0

{

δx

∫

(

1+
Γ · (P − O)

c2

)

Exde + δy

∫

(

1 +
Γ · (P − O)

c2

)

Eyde+

+ δz

∫

(

1 +
Γ · (P − O)

c2

)

Ezde
}

.

This expression must vanish for all the values of δx, δy, δz and we obtain from

it three equations that can be summarized in the single vector equation:
∫

(

1 +
Γ · (P − O)

c2

)

E de = 0 (3)

A correct application of Hamilton’s principle has then brought us to (3) instead

of (2). Now it’s easy to examine the consequences. Setting

E = E(i) + E(e)

we find
∫

E(i)de +

∫

E(i) Γ · (P − O)

c2
de + eE(e) + E(e)

∫

Γ · (P − O)

c2
de = 0 .

In the spherical symmetry case we have as before
∫

E(i) de = −
4

3

u

c2
Γ ;

substituting in the previous equation we find that E(e) is compared only with the

terms that contain Γ. If we neglect the Γ2 terms9 , we can neglect the last integral,

and we obtain:

−
4

3

u

c2
Γ +

∫

E(i) Γ · (P − O)

c2
de + F = 0 . (4)

9More precisely the number compared to which the quadratic terms are negligible is Γ`/c2, where
` is the largest length which appears in the problem. It is clear that such an approximation is

more than justified in common situations.
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de

To calculate the integral which appears in (4) we observe that E(i) is the sum

of the Coulomb force

=

∫

P − P ′

r3
de′

(P ′ is the point of charge de′ and r = PP ′), and of a term containing Γ that can

be neglected because it would give a contribution containing Γ2. Our integral then

becomes:
∫ ∫

P − P ′

r3

Γ · (P − O)

c2
de de′ ;

or exchanging P with P ′, which doesn’t change matters, and taking the half sum

of the two values obtained in this way:

1

2

∫ ∫

P − P ′

cr3
[Γ · (P − P ′)]de de′ .

We observe that, in our approximation Γ is constant for all the points and then

can be taken out of the integrals. Therefore the x component of the previous integral

is:

1

2c2

{

Γx

∫ ∫

(x − x′)2

r3
de de′ + Γy

∫ ∫

(y − y′)(x − x′)

r3
de de′+

+ Γz

∫ ∫

(z − z′)(x − x′)

r3
de de′

}

.

Now, since the system has spherical symmetry, to each segment PP ′ corresponds

an infinite number of other segments differing only in orientation. In the three

integrals we can therefore substitute

(x − x′)2, (x − x′)(y − y′), (x − x′)(z − z′)

by their average values for all the possible orientations of PP ′, which are; 1
3r2, 0,

0.

With that the x component becomes:

Γx

3c2

1

2

∫ ∫

de de′

r

We now observe that the expression

1

2

∫ ∫

dede′

r

is the electrostatic energy u; going back to vector notation we find for the integral

appearing in equation (4) the expression:
u

3c2
Γ. (4) becomes in this way:

u

c2
Γ = F (5)

that says the electromagnetic mass is u/c2.


