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PREF ACE TO THE SECOND EDITION

SOON after the publication of the first edition an important paper,
entitled 'Self-energy and stability of the classical electron', was pub­
lished by F. Rohrlich. It clarified the old puzzle of the 4/3 factor
appearing in the expression for the electromagnetic mass mo of an
electron when expressed in terms of its electrostatic energy, as derived
by M. Abraham and H. A. Lorentz. Rohrlich proved that in a consistent
application of the special theory of relativity, the 4/3 factor does not
occur and must be replaced by 1. Rohrlich's paper initiated new in­
terest in the problem and it turned out that actually a similar solution
had already been proposed by B. Kwal in 1949 and the same result
obtained as far back as 1922 by E. Fermi who used a different method.
It can now be stated that the abolition of the 4/3 factor is also
implicit in Dirac's paper on the classical theory of the electron (1938).
It is difficult to explain why all the earlier papers passed unnoticed.
Possibly this was due to Poincare's idea to link the 4/3 factor with the
instability of an electric charge on purely electrostatic forces. This new
situation required a revision of the part of the book dealing with electro­
dynamics and to give a clear exposition of this development I found
it necessary to enlarge this part considerably and also to include a
paragraph on the retarded and advanced potentials as well as a brief
account of the Wheeler-Feynman absorber theory of radiation. On
revising the book, I also made a number of improvements, particularly
in the part dealing with spinors.

To Dr. G. A. Perkins I am indebted for some criticism in connexion
with the Proca field.

,T. A.
Jmperial College
London, S. W. 7
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where a is a space-like surface to which all observers must refer when
transformations are envisaged. The difficulty with this four-vector is,
as indicated, its dependence on the hypersurface a. P/,-(a) will be in­
dependent of a only in the abs ence of charges, when oT/,-vjoxv = O. In
the presence of charges this is no longer the case and various choices of
a will lead to different energy-momentum vectors. Essentially only one
choice could satisfy (5.4) . This difficulty was resolved independently by
K wal and Rohrlich. They pointed out that when considering an electron
in motion it is not sufficient to introduce a relativistic four-vector in
accordance with (5.6) , but it is also necessary to select a hypersurface a

which is linked to the motion of the electron in a relativistically in­
variant manner. Since a is a space-like surface and its normal is a time­
like vector, the only possible choice which results from the above
condition is to have the hypersurface orthogonal to the four-velocity
at the intersection of the world line with the surface. Since the charge
is assumed to be concentrated in a small region or else in a point, the
surface can be chosen arbitrarily outside the region of intersection
(where oT/,-vjoxv = 0). For this reason the hyperplane may be assumed

as plane. Let d - d (5 7)U v - cr .nv' .

where n
v

is a unit vector perpendicular to the hyperplane and da (a

or, to use a more relativistic notation, to find out whether

P/,- = (p, i :) = mOeUw (5.5)

What this really amounts to , is to determine whether a unique and
relativistically invariant definition of the total energy and momentum
of the field can be given so that (5.5) will hold.

Let T/'-v be the energy-momentum tensor of the electromagnetic field
of an electron. Then, as was already shown on p. 113, it is possible to

form a four-vector P/,-(a) as follows:

amounts to finding out whether the energy Wand momentum P of the
electromagnetic field when the electron is moving with a velocity u,
turns out to be equal to

(5.2)

(5.1)

(4.17)
Ep h

mr p h = 7 '
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mO = moe+mom- (5.3)

mo would thus be the observed mass of the electron. The problem now

WO = t fff E02 d3xO, po = o.
In accordance with the theory of relativity

WO
mOe = C2

will have to be looked upon as the rest mass of the electron or at least
as an electromagnetic contribution to the mass. Denoting any other
contribution by mOm (the 'mechanical ' mass) and the total rest mass by
mo, we get

In the case of photons (or any other particle of zero mass) , we cannot
use (4.16), because the quotient becomes indefinite. We must revert
to the original definition when we get

5. THE ENERGy-MOMENT UM VE CTOR OF A N ELE CTR ON

In the preceding sections we were dealing with particles in a primitive
sense. They were specified by their mass and kinematic properties.
Tacitly, they were also assumed to be very small. In addition no fields
were assumed to surround them and contribute to their properties. Such
an idealization is useful in many applications and such particles are
often referred to as bare particles. However, in general particles are
surrounded by some field, and in particular, electrons are surrounded by
an electromagnetic field which obeys Maxwell's equations. In this
section we shall deal with the question of whether this additional feature
interferes with the particle concept. In other words , the question which
arises is whether an electron together with the electromagnetic field
which accompanies it and which undergoes changes as the state of
motion of the electron is altered, can still be treated as a particle obeying
relativistic dynamics. This turns out to be the case, although in one
respect the dynamics has to be extended. When the electron is accelera­
ted a certain amount of energy is radiated and extra work has to be done
to account for this loss of energy.

To begin with, consider an electron at rest. The field is then the
electrostatic Coulomb field. Let WO be the total energy of the field
and po its total momentum. For an electron at rest the field has spherical
symmetry and consequently the total momentum should be zero . Thus
we have
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If one commits the further mistake (as also pointed out by Kwal) of
using on the one hand the covariant tensor transformation (5.15) to

On transforming this tensor to a system which moves relative to the
rest system with a velocity -u, we get (in the same way as in (3.6),

p.98):

i; == [Y2(T~1 - fi2T~4) yT~2 yT~3 i y2f3( T~1 - T~4) ]
yT~2 Tg2 Tg3 iy(3T~2 (5 15)
YT~3 Tg3 Tg3 iy(3T~3 ' .

iy2fi(T~I- T~4) iyfiT~2 iyfiT~3 -y2fi2T~1+y2T~4

where fi == ue-1 . (As a check one can verify that the trace of the matrix
T~v is equal to that of TJLv' since "2 TiLJL is an invariant.) From (5.6) and

(5.13) follows

P,,(a) = -Hfff y(T"l ~+iT"4) d
3xO]. (5.16)

From the spherical symmetry in the rest system it follows that Integrals
of T~2' T~3' Tg3over the whole space vanish. Also, since T~k is zero, on
inserting from (5.15) in (5.16) we get:

~(a) = -y ~fff T~4 d3
x

O= yrnoeux = moeV1>

P2(u) == 0,

P3(u) == 0,

P4(a) = -~ fff iy3T~4(1-,82) d3xO= iymoec = mOe V4, (5.17)

and more generally PJL(u) == mOe UJL. (5.18)

In this way (5.5) is proved and the four-vector character of the energy
and momentum of the field of an electron is verified.

It must be added that for a long time a great deal of confusion prevailed
in connexion with the energy and momentum of the field of an electron.
This was caused by not holding to the same hyperplane when trans­
forming from the rest system to the laboratory system in which the
electron moves. Thus, instead of using the surface to == const. in both
systems, the surface t == const. was used in the laboratory system.
Naturally, the four-vector character of the energy and momentum of
the field did not come out. According to Abraham and Lorentz, the total
energy and momentum of the field were to be calculated from

PtL = -~ fff T,,4 d3x . (5.19)
t=const.

(5.8)

(5.9)

(5.10)

n~ == -1.

o,
n; == c'

U
duv === do .n; === du~.

e
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scalar) is the magnitude of the surface element duv. Since n; is a time-like
unit vector, we have

duv and n; must be parallel to Uv. Consequently, on using U~ = -e2

we get the following relations:

dUI == ,yd3xO ~, dU2 == 0, dU3 == 0, dU4 == iyd3xO. (5.13)
e

This is also obtainable through a Lorentz transformation of (0,0,0, id3xO),

using (9.17), p. 35. Let T~v be the energy-momentum tensor in the rest
system. From (4.13), p. 100, this tensor is given by

TO === [WO-E02 -EO EO -EO EO 0] == [TO TO TO 0]/LV x x v x z 11 12 13

-E~Eg WO_Eg2 -EgE~ 0 T~2 Tg2 Tg3 0
-E~E~ -E~E~ WO_E~2 0 T~3 Tg3 Tg3 0 .

o 0 0 - WO 0 0 0 T~4

(5.14)

(5.10) expresses the invariant link between the four-velocity of the
electron and the hyperplane which must be chosen to define the energy­
momentum vector of the electromagnetic field which accompanies the
electron.

do is a scalar and may be evaluated in any frame of reference. The
simplest is the rest system of the electron (xe). In this case Uk === 0
(k == 1,2,3), U4 == ie, nk == 0, n 4 == i and it follows that

du == dxOdyOdzO = d3xO. (5.11)

Moreover, it can now be seen that the hyperplane which has been selected
in accordance with (5.10) is given by

to == const. (5.12)

This is in agreement with (5.1), where the surface over which the energy
density is integrated has already been chosen as to == const. The world
line in the rest system consists of a parallel to the to-axis and the plane
to == const. is perpendicular to it.

The situation is now as follows: do; has relative to the rest system
the components du~ == dug == dug == 0, du~ == id3xO. On using (5.10), for
a system of coordinates relative to which the electron moves along the
x-axis with a velocity U x == u, we get the following result:
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constant over the extension of the electron. Often the passage is also
made to a point electron. This passage produces a divergence but it is
possible to circumvent this difficulty by a renormalization procedure
which leaves all the observables of motion and radiation unaltered with­
out destroying relativistic covariance. It must be mentioned at this
stage that in certain theories which treat the electron as a point charge,
it is assumed that the electron does not interact with itself at all and
that the field of the electron only produces the interaction with other
charges. In particular, as already mentioned, Wheeler and Feynman
have elaborated on a theory in which radiation from an electron can
take place only if other charges are present to absorb the radiation. On
the basis of this theory an equation of motion for an electron can be
derived only if an adequate absorber is also introduced (the absorber
theory). We shall deal with this aspect briefly later on.

The first elaborate theory of an electron of finite size was produced by
Abraham who considered the electron to be a rigid spherical particle.
Abraham attempted to explain the whole mass of the electron as due
to its self-field (the reaction of the field of the electron) and accepted
the rigidity and the fact that the electron holds together in spite of the
electrostatic repulsion between its parts, in the same way as we deal in
ordinary dynamics of rigid bodies with their motion, without inquiring
how the rigid body is held together. This separation of the dynamics of
the electron from the problem of its internal stability is forced upon us to
this day. However, Abraham's theory could not be relativistic because
the concept of a rigid body with its six degrees of freedom cannot be
reconciled with the theory of relativity. For one reason, a rigid body
would enable us to transmit instant signals from one locality to another.
Another non-relativistic feature in Abraham's theory was the assump­
tion that the electron remained spherical while in motion. An improve­
ment on Abraham's theory in this respect was achieved by Lorentz who
took into account the Lorentz-Fitzgerald contraction, so that a spherical
electron became an oblate ellipsoid while in motion. However, this does
not reconcile the theory of relativity with the concept of a rigid body
which would enable us to attach an invariant significance to simul­
taneity and hence to a hyperplane t = const., in direct contradiction to
the Lorentz transformation. As a consequence of this, in Abraham's
theory as well as in that of Lorentz, the calculation led to a result which
is not acceptable in a relativistic theory. It led to an electromagnetic
mass which is given by !WOjc2 , where WO is the electrostatic energy,
instead of WOjc2• This error is similar tothe one which was discussed in

FKA is the sum of the external field F~A and a certain average of the self­
field F:A• For an electron at rest, or when in uniform motion, this
average field is zero, as a result of the symmetry of the self-field. When
the electron is accelerated the average field is no longer zero.

In (6.1) it is already assumed that the electron is held together by
some non-electric force which counteracts the electrostatic repulsion
between the various charge elements. We thus assume that the world
tube is of constant width.
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(6.1)e
FK == - FKAUA•c
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the previous section in connexion with the energy-momentum four­
vector. Hence, a relativistic theory of an electron of finite extension
cannot be achieved by considering it as a rigid body, and a Lorentz
contraction cannot remedy the situation. The only possible relativistic
treatment of an electron of finite size can be achieved by considering it
as a region of charge of a given shape, not at time t = const. but over a
hypersurface t(x, y, z) which bears an invariant relationship to the
world-tube of the electron. This relationship must also be maintained
in the limit when the electron is taken to be a point charge and the world
tube becomes a world line. The first to realize this was Fermi, as
far back as 1922, but Fermi's paper went somehow into oblivion. Also
it derived only the mass term and not the complete equation of motion
including the radiative reaction. Fermi obtained for the electromagnetic
mass the value WOjc2•

A relativistic equation of motion for a point electron was first derived
by Dirac in 1938. It involved the calculation of a self-field in the vicinity
of the electron. According to Dirac's theory, the electrostatic energy
contributes to the mass the amount WOjc2 without a factor t, as in Fermi's
theory. But somehow this result and its close relation to the energy­
momentum vector did not get sufficient attention. Perhaps this was due
to the fact that one of Dirac's main objects was to devise a method
of subtracting the infinite electrostatic self- mass without violating
relativistic covariance and without interference with the observed
radiation. In Dirac's theory the remaining mass then is not electro­
magnetic and is not deduced but taken as observed.

The simplest approach to the problem is to postulate both the required
interaction between the field and the electron as well as Maxwell's
equations (as was done so far for the latter) without seeking a variational
principle. The interaction will be assumed to result in a force which is
given as follows:

RELATIVISTIC PARTICLE DYNAMICS166
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(6.5)

FIG. 27

at

az

~ = d:
c
ffff c-lJAF~A do d«,
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where da is the invariant magnitude of a surface element on a surface a

and CdT an invariant line element perpendicular to a. We have

cdo .dT == d4x
K • (6.6)

A great simplification in the problem of deriving an equation of motion
is achieved if we consider a quasi-stationary motion, in which the
acceleration is small and the radiation may be neglected. The situation
is parallel to the one encountered in the theory of quasi-stationary
currents. To get to the quasi-stationary limit, two ways are open to us.
The first, much in line with Fermi, is to work out the integral in (6.5) with
the permissible approximations under quasi-stationary conditions.
The other way is to make use of the fact that at each moment and
corresponding velocity, the field of the electron yields an energy­
momentum vector. Under quasi-stationary conditions we may assume
that all the external force is doing is to alter the energy-momentum
vector at a rate which is proportional to the external force. This method

by Fermi, that they bear an invariant relationship to the world tube.
This can be achieved by taking the end pieces al and a 2 to be orthogonal
to the world tube. The mistake committed by Abraham, Lorentz, and
many others can be traced to their choosing surfaces t l == const. and
t
2

== const. (as indicated in Fig. 27) and
taking the different surfaces t~ == const. and
t; == const. when a change to another frame
of reference is performed. Such a procedure
would be justified if simultaneity was abso­
lute and a rigid body could exist. As pointed
out by Fermi, the nearest approach to a rigid
body can be achieved if at each moment we
transform the electron to rest and assume
that in the surfaces to == const. the electron
has the same shape and size. This leads to the
surfaces which are perpendicular to the tube
and have the same cross-section.

When dealing with an electron of small size, it is convenient to
introduce a central world line T c relative to which all the other lines
will be referred. With the help of this central line the resultant self-
force may be postulated as follows:

(6.3)

(6.2)

(6.4)
e
-F)..U)..==O.c K

1
fK == cPOFK).. U)..,

e .
- FK).. U)..-mom UK == 0,
C
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A more fundamental equation than (6.1) which can be derived from
a variational principle (see H. Weyl, Space, Time, and Matter) is the
following:

Until recently, it was thought that on relativistic grounds Abraham's
idea of a purely electromagnetic mass is untenable. However, the
situation has altered since the correction of the t factor was achieved and
the four-vector character of the energy and momentum of the field
proved. It only remains to see whether any future solution of the
stability problem of the electron will entail an additional mass term.
The idea of a point electron and the procedure of renormalization which
it requires (such as Dirac's subtraction of the electromagnetic self­
energy) is also, in all probability, provisional.
_ The first step for deriving the equation of motion consists in getting
a relativistic expression for the resultant force which arises from the
self-field or the average self-field. Each element of charge and current
interacts with all the other elements, and because of retardation we must
consider the electron not at a given time t but over a space-time exten­
sion, so that the averaging will involve a four-dimensional integral over
a region in the Minkowski space. Each element of the charge traces a
world line and an extended electron will thus produce a world tube (see
Fig. 27). The region of integration will be bounded by the invariant wall
of the tube and by two end surfaces, al and a 2• It is essential not only that
these surfaces be adopted by all observers, but also, as pointed out first

where f K is a force density, Po is the rest density of the charge, and FK ).. the
actual total field. f K is obtained from a force by dividing by the rest
volume. Similarly, to obtain Po we divide total charge by rest volume.
Po is a scalar and f K a four-vector.

If the electron possesses a 'mechanical mass' mOm, its acceleration
will give rise to an additional inertial force -mom -0 and (6.1) will give

where the dot indicates differentiation with respect to proper time. On
the other hand, if one adopts the Thomson-Abraham point of view that
the mass of the electron is purely of electromagnetic origin (mom == 0),
we have instead of (6.3)



where A = +(O~)! (6.13)

is the magnitude of the acceleration. Let Kp. be a space-like four-vector
along the radius of curvature with magnitude A/c2• Then

K = -QJL (6.14)
p. c2

and mOm is any mechanical mass which the electron may possess.
Following Fermi,'] we evaluate the integral (6.5) to the relevant

approximation as follows. We must first express the dependance of dT on
dTc in terms of the separation between the world lines T and Tc• Let R
be the radius of curvature of a world line T and let R, be this radius for
the central world line. This radius is closely related to the acceleration

~ _ (d~p./dT)2(d2Xp./dT2)2_(dxp./dT d2xp./dT2)2 _ U~ O~ - (Up. 0 p.)2
R~ - --- - ------- - --- -----(X:J3-- -- -- --------- ---- - (U~)3
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(6.19)

(6.18)

(6.17)

(6.16)

(6.15)

R
R c

"tt
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R = R
c

- Kp.7TfLC
2

A

FIG. 28

This expression becomes simpler if the rest system of the electron is
introduced (dT -+ dt, Op.7Tp. -+ U7t, do -+ dxOdyOdzO, J1 == J2 == J3 == 0,
J4 == icp, FkA-+ E, pOdxOdyOdzO == de):

(FS)rest system = IES(1+~;) de. (6.20)

Fermi was the first to derive this formula and pointed out that it
corrects the result obtained by Lorentz and repeated by many others
with regard to the factor t for the electromagnetic mass. If instead of

Consequently, (6.5) becomes

F~ = :T IIfI C-1JAF%A (1+~:JL)dadTc,
0'0

F~ = III C-1JAF%A(I+ O~;JL) da.
a

and to a sufficient approximation

dT == R == 1-Kp.7Tp.C
2

== l-Kp.7Tp.
dTe n, ARc

so that dT = dTc{l-KJL7TJL) = dTc(l+ O~;JL).

is the curvature of the world line. Let 7TfL be a space-like vector joining
the intersections of T e and T with ao. C2Kp./A is a unit vector and as can
be seen from Fig. 28,

(6.8)

(6.7)

(6.11 )

(6.9)

(6.10)

(6.12)

u~ = -c2
, Up. 0P. = 0,

1 0 2
---1!'
R 2 - 4'

c C

c2

Re = A'
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was not available to Fermi in 1922 because at that time the four-vector
character of the energy and momentum of the field of an electron was
not yet recognized. With this knowledge at our disposal, we get under
qu asi -stationary conditions:

dPK ( + )dUK eFinU-d = mOe mOm -d = - KA A'
T T C

where mOe depends on the electrostatic energy WO as follows:
WO

mOe = C2

170

On using

we get

t The average self-force as defined in (6.5) is due to the author and not to Fermi.
Fermi based his calculation on an action principle for a continuously distributed charge
which retains its shape in the rest system, and argued that variations which consist of
shifts of the space xyz along planes t = const. are not consistent with the theory of
relativity under the conditions of the problem, and that instead the variations should
consist of shifts of a-surfaces which leave these perpendicular to the world lines. One
consequence of this condition is that the region over which the action is integrated
must be bounded by surfaces 0'1 and 0'2 as indicated in Fig. 27. If the action is integrated
over u region bounded by the surfaces t1 = const. and t2 = const. and the variations are
along surfaces t = const., one gets the factor t. In the correct method the factor is 1­
(See also Chapter 4, section 1, the variation principle.) In a field theory the choice of
0'1 and 0'2 is arbitrary as long as they are space surfaces. In our present case we are
dealing with an electron which retains its shape in its rest system and the perpen­
dicularity of the surfaces to the world lines is essential.



~ dede',
r 3
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the surfaces aoand a chosen by Fermi one takes to = const. andt = const.,
we have d-r = dTe (instead of (6.17)) and the self-force comes out to be
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(6.36)

(6.35)

(6.33)

dUa _ ~ [u, H]+eE.m°---a;t-c
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The fourth component of (6.32) yields

dW (dX dy dZ)lit = eE.u = e E Xdt .sn, dt +Ez dt ·

h (
dX dy dz .) ( .) ( )

were u),. = dt' dt' dt' ic = U,tC. 6.34

Inserting for FaA the corresponding expressions in terms of E and

H we get

where }~A === F~~.

dropped.
For the three space components K = x, y, z we thus get

us, e Fmo-d === - aAUA,
t c

where m
o

is the total rest mass of the electron, is used whenever radiation
is negligible, and has many practical applications. In particular it is
used in all methods for determining the observable rest mass mo,in which
FkA is a static or quasi-static electromagnetic field.

Expressed in terms of a Newton force (6.31) becomes

dU ( U
2)1. emOT = 1-c
2

2 cFK),. U),., (6.32)

In the remainder of this section the superfix 'in' is

and (6.23) follows.
Eqn. (6.7) for the quasi-stationary case, which may be expressed as

dPK _ dUK _ ~Fin U (631)
dT - mo drr - c Kit A' •

Taking the arithmetic mean of these two expressions and noting that

7t-7t' = r, we get

I === ~2 II ~ [U(7t-7t')] dede' = 2-II ~3 (ru) dede'. (6.28)
2c rJ 2c2 r

Consider the x-component

t, = -; II (X~x') [u,,(x-x')+uy(y-y')+uz(z-z')] dede'. (6.29)
2c r

Here we may replace (X-X')2, (x-x')(y-y'), (x-x')(z-z') by their
average in all directions for any given r. These averages are !r2

, 0, 0

respectively. Hence
I === ~ II dede' === WO U (6.30)

x 6c2 r 3c2 x

(6.21 )

(6.22)

(6.23)

(6.24)

(6.26)

(6.27)

WO. •
Fs = --2 U = -rnOeu.

c

(FS) _ 4 WO •
rest system - F = - - - u3 c2 •

I = ~ ff ~ (ure) dede'.

d' ~1t~r The value of this integral is not changed if
O~p de and de' are exchanged. r becomes -r

e and 7t which points from 0 to P (see Fig. 29)
becomes a vector 7t' which points from 0 to
P'. Hence,

I = ~ ff ~ (ure ) dede' = -;ff ~ (un') dede'.

FIG. 29

(FS)rest system = f Es de (according to Lorentz).

It is this integral which yields

Fermi showed that if we restrict ourselves to terms linear in u the
additional term appearing in (6.20) is given by

f Es U7t d _ WO •
c2 e - 3c2 U,

so that

From this result in the rest system it follows further that in an arbitrary
inertial frame we shall have

F~ = -mOe OK (6.25)

and (6.8) will hold when an external force is present. The proof of
(6.23) proceeds as follows. E", which appears in the integral, is the sum
of two forces: (1) the Coulomb force

where r is the distance between the charge elements de and de', and (2)

a force which is proportional to the acceleration u (see next section,
(7.49)). Hence, when this part is multiplied by uit will give a contribution
which is proportional to u2• To obtain the mass term we are only
interested in terms with uas a factor, hence we disregard the second part
of E" and we are left with the evaluation of


