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Preface

Physical theories, while devised to model a particular range of phenomena, are
evidently linked in a hierarchical fashion. It is this structure which keeps fascinat-
ing me. In statistical mechanics, my scientific home-town, the link between atomic
and macroscopic properties is one central issue. There we are taught that the emer-
gence of a more restricted theory from a more general one has a richer structure
than merely letting some parameter tend to infinity. I understood at some point, by
accident, that similar issues appear in the dynamics of classical charges coupled to
the Maxwell field. Since I could not find a satisfactory discussion in the literature,
I decided to write up my own account. The theory so covered is the classical elec-
tron theory, a subject which is commonly regarded as settled with some modest
revival through astrophysical applications. On the other hand, the quantized ver-
sion of this theory is more lively than ever through the amazing advances in atomic
physics and quantum optics. It thus seemed to me a welcome opportunity to expand
my enterprise and to cover also nonrelativistic quantum electrodynamics, stressing
its classical counterpart more than is done usually.

The research which has led to this book goes back about seven years and in
part much longer. I am grateful for the constant help from my collaborators Volker
Betz, Brian Davies, Rolf Dümcke, Detlef Dürr, Christian Hainzl, Masao Hirokawa,
Fumio Hiroshima, Frank Hövermann, Matthias Hübner, Valery Imaikin, Sasha
Komech, Markus Kunze, Joel Lebowitz, József Lőrinczi, Robert Minlos, Gianluca
Panati, and Stefan Teufel. In this list I also include Michael Kiessling for many
illuminating observations. In addition I thank him for a careful reading of a draft
of the book.

As the project expanded I received comments, criticisms, remarks, and ques-
tions which in their total sum shaped my understanding of the subject and the way
things were written down eventually. All I can do here is to deeply thank Robert
Alicki, Asao Arai, Volker Bach, Gernot Bauer, Jens Bolte, Thomas Chen, Stephan
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Marcel Griesemer, Vojkan Jakšić, Caroline Lasser, Elliott Lieb, Michael Loss,
Claude-Alain Pillet, Mario Pulvirenti, Markus Rauscher, Luc Rey-Bellet, Fritz
Rohrlich, Wolfgang Schleicher, Michael Sigal, and Hong-Tzer Yau. In addition,
I appreciate the help with the figures from Patrik Ferrari.

This book is dedicated to my parents in deep gratitude for a wonderful child-
hood. My father furnished stability and my mother cared for the three boys, en-
couraging our curiosity to learn about the world around us. This gift constitutes a
marvellously complex lasting source of joy.

Herbert Spohn
München

May 2004
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1

Scope, motivation, and orientation

If one accepts gravitational forces on the Newtonian level of precision and ignores
nuclear fission and fusion, then most physical phenomena on the scale of the Earth
are accounted for by electrons, nuclei, and photons. Here photons play a double
role: they mediate the interaction between charges, and appear freely propagating
in the form of electromagnetic radiation. In their first role it often suffices to ig-
nore all dynamical aspects and replace the photons by the effective electrostatic
Coulomb interaction. Conversely, in the study of radiation phenomena, matter in
the form of nuclei and electrons can mostly be replaced by prescribed macroscopic
quantities like charge, current, and polarization densities. In our treatise we plan
to dwell on the border area, where the interaction between photons and electrons,
respectively nuclei, must be fully retained. Our goal is to discuss the dynamics of
the coupled system, charges and their radiation field.

Although such a description might give the impression that we will deal with
relativistic quantum electrodynamics (QED), in fact we will not even touch upon
it. This theory has been devised for predicting a few very specific effects, like the
anomalous g-factor of the electron, and it does so with astounding precision. Rel-
ativistic QED is, however, not well adapted to discuss, say, the fluorescence of the
hydrogen atom. Thus the subject to be covered is what is commonly known as
nonrelativistic quantum electrodynamics. In fact our enterprise also has a classical
part. Just as in studying quantum mechanics a good grasp of classical mechan-
ics is most useful, we believe that an understanding of classical electron theory,
i.e. classical charges in interaction with the Maxwell field, serves as a solid basis
for taking up the corresponding quantum theory. The classical models discussed
will be semirelativistic with one exception, namely a fully relativistic theory of
extended classical charges.

Classical electron theory was at the forefront of research in the early 1900s
when the development of a dynamical theory of the then newly discovered elec-
tron was attempted. The basic prediction was an energy–momentum relation for
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2 Scope, motivation, and orientation

the electron (compare with chapter 4), which, however, depended on the details
of the particular electron model adopted. This enterprise came to a standstill be-
cause of the advent of the theory of special relativity, which, advancing with a
totally different set of arguments, required a relativistically covariant link between
energy and momentum for massive particles. Classical electron theory further de-
teriorated simply because it had become evident that for the investigation of radia-
tion from atoms the newly born quantum mechanics had to be used. A brief revival
occurred in the struggle to formulate a consistent relativistic quantum theory for
the electron–positron field coupled to the photons. The hope was that a refined
understanding of the classical theory should give a hint on how to quantize and
how to handle correctly the ultraviolet infinities. But as the proper quantum field
theory surfaced, classical considerations faded away. In fact the theory emerged in
a worse state than before as summarized in the 1963 opinion of R. Feynman: “The
classical theory of electromagnetism is an unsatisfactory theory all by itself. The
electromagnetic theory predicts the existence of an electromagnetic mass, but it
also falls on its face in doing so, because it does not produce a consistent theory.”

Because of its peculiar history, classical electron theory never had any share
in the good fortune of being rewritten, modernized, and rewritten again, as can
be seen from a rapid sample of standard textbooks on electrodynamics. While the
conventional chapters essentially follow the same intrinsic pattern, obviously with
a lot of variations on details, once it comes to the chapter on radiation reaction,
Pandora’s box opens. As a student I was rather dissatisfied with such a state of
affairs and promised myself to come back to it at some point. The first few chapters
of this treatise are my own rewriting of the classical theory. It is based on two
cornerstones:

• a well-defined dynamical theory of extended charges in interaction with the elec-
tromagnetic field;

• a study of the effective dynamics of charges under the condition that they are far
apart and the external potentials vary slowly on the scale given by the size of the
charge distribution. This is the adiabatic limit.

Our approach reflects the great progress which has taken place in the theory of
dynamical systems. After all, charges coupled to their radiation field can be con-
sidered as one particular case, but with some rather special features. Perhaps the
most unusual one is the appearance of a center manifold in the effective dynamics,
in case friction through radiation is included.

For nonrelativistic QED the situation could hardly be more different. Through
the efforts made in atomic physics and quantum optics a structured theory emerged
which is well covered in textbooks and reviews. It would make little sense in trying
to compete with them. However, almost exclusively this theory is based either on
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such drastic simplifications that an exact solution becomes possible or on second-
order time-dependent perturbation theory. In recent years there has been substan-
tial progress, mostly within the quarters of mathematical physicists, in gaining an
understanding of nonperturbative properties of the full basic Hamiltonian, among
others the structure of resonances the relaxation to the ground state through emis-
sion of photons, the nonperturbative derivation of the g-factor of the electron,
and the stability of matter when the quantized radiation field is included. These
and other topics will be covered in the second half of the book. Readers less
interested in the classical theory may jump ahead to chapter 12, where the con-
clusions of chapters 2–11 are summarized and the contents of the quantum part
outlined.

A few words on the style are in order. First of all, I systematically develop
the theory and discuss some of the most prominent applications. No review is in-
tended. For a subject with a long history, such an attitude looks questionable. After
all, what did the many physicists working in that area contribute? To compensate,
I include one historical chapter, which as very often in physics is the history as
viewed from our present understanding. Since there are excellent historical stud-
ies, I hope to be excused. Further, at the end of each chapter I add Notes and Ref-
erences intended as a guide to all the material which has been left out. The level
of the book is perhaps best characterized as being an advanced textbook. I assume
a basic knowledge of Maxwell’s theory of electromagnetism and of nonrelativistic
quantum mechanics. On the other hand, the central topics are explained in detail
and, for the reader to follow the discussion, there is no need of further outside
sources. This brings me to the issue of mathematical rigor. In the case of classical
electron theory, many claims of uncertain status are in the literature, hardly any nu-
merical work is available, and there are no quantitative experimental verifications,
as yet, with the exception of the lifetime of an electron captured in a Penning trap.
More than in other fields one has to rely on fixed points in the form of mathematical
theorems, which seems to be the only way to disentangle hard facts from “truths”
handed down by tradition. For the quantum theory we venture into the nonpertur-
bative regime which by definition requires a certain mathematical sophistication.
In a few cases I decided to provide the full proof of the mathematical theorem.
Otherwise I usually indicate its basic idea to proceed then with the formal compu-
tation. To give always full details would overload the text on an unacceptable scale
and, in addition, would be duplication, since mostly the complete argument can be
found elsewhere in the literature. Of course, there are stretches, possibly even long
stretches, where such a firm foundation is not available and one has to proceed on
the basis of limited evidence.

Our introduction might give the impression that all basic problems are resolved,
nonrelativistic quantum electrodynamics is in good shape, and one only has to
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turn to exciting applications. This would be a far too simplistic reading. What I
hope is to bring the dynamics of charges and their radiation field properly into fo-
cus. Once this point is reached, there are many loose ends. On the theoretical side,
to mention only a few of them: on the classical level, the comparison between
the true microscopic and approximate particle dynamics could be more precise; a
similar program for the relativistic theory of an extended charge is hardly tackled;
in the quantum theory the removal of the ultraviolet cutoff at the expense of en-
ergy and mass renormalization is still not understood; and the dynamics of many
charges remains largely unexplored. Also quantitative experimental confirmation
of the effective dynamics of an electron, as given through the Lorentz–Dirac equa-
tion on its center manifold, remains on the agenda. The greatest reward would be
if my notes encourage further research.



Part I

Classical theory





2

A charge coupled to its electromagnetic field

We plan to study the dynamics of a well-localized charge, like an electron or a pro-
ton, when coupled to its own electromagnetic field. The case of several particles is
reserved for chapter 11. In a first attempt, one models the particle as a point charge
with a definite mass. If its world line is prescribed, then the fields are determined
through the inhomogeneous Lorentz–Maxwell equations. On the other hand, if
the electromagnetic fields are given, then the motion of the point charge is gov-
erned by Newton’s equation of motion with the Lorentz force as force law. While
it then seems obvious how to marry the two equations, such as to have a coupled
dynamics for the charge and its electromagnetic field, ambiguities and inconsisten-
cies arise due to the infinite electrostatic energy of the Coulomb field of the point
charge. Thus one is forced to introduce a slightly smeared charge distribution, i.e.
an extended charge model. Mathematically this means that the interaction between
particle and field is cut off or regularized at short distances, which seems to leave a
lot of arbitrariness. There are also strong constraints, however. In particular, local
charge conservation must be satisfied, the theory should be of Lagrangian form,
and it should reproduce the two limiting cases mentioned already. In addition,
as expected from any decent physical model, the theory should be well defined
and empirically accurate within its domain of validity. In fact, up to the present
time only two models have been worked out in some detail: (i) the semirelativis-
tic Abraham model of a rigid charge distribution; and (ii) the Lorentz model of a
relativistically covariant extended charge distribution. The aim of this chapter is
to introduce and explain both models at some length. On the way we recall a few
properties of the inhomogeneous Lorentz–Maxwell equations for later use.

A short preamble on units and other conventions is in order. We use the
Heaviside–Lorentz units. In particular, the Coulomb potential is simply the inverse
of the Laplacian with no extra factor. The vacuum susceptibilities are ε0 = 1 = µ0,
which fixes the unit of charge. c is the speed of light. Mostly we will set c = 1 for
convenience, thereby linking the units of space and time. If needed, one can easily

7



8 A charge coupled to its electromagnetic field

retrieve these natural constants in the conventional way. At some parts below we
will do this without notice, so as to have the dimensions right and to keep better
track of the order of magnitudes. In the nonrelativistic setting we use ∇× for ro-
tation, but switch to the more proper exterior derivative, ∇g∧, with g the metric
tensor, in the relativistic context. We will use standard notation as often as possi-
ble. Since a fairly broad spectrum of material is covered, double meaning cannot
be avoided entirely. At the risk of some repetition we strive for minimal ambigu-
ity within a given chapter. In the classical part of the book we use boldface italic
letters, x, for three-vectors and boldface roman letters, x, for four-vectors. In the
quantum section such a notation tends to be cumbersome and we use lightface
letters, x , throughout.

2.1 The inhomogeneous Maxwell–Lorentz equations

We prescribe a charge density, ρ(x, t), and an associated current, j(x, t), linked
through the law of charge conservation

∂t ρ(x, t) + ∇ · j(x, t) = 0 . (2.1)

Of course, x ∈ R
3 and t ∈ R, where we use R

3 to describe physical space and R

as the time axis. The Maxwell equations for the electric field E and the magnetic
field B consist of the two evolution equations

c−1∂t B(x, t) = −∇ × E(x, t) ,

c−1∂t E(x, t) = ∇ × B(x, t) − c−1 j(x, t) (2.2)

and the two constraints

∇ · E(x, t) = ρ(x, t) , ∇ · B(x, t) = 0 . (2.3)

� How are the Maxwell equations written and named? According to my survey,
there seems to be no universally accepted standard. As indicated by the name
“electromagnetic”, the order E, B is very common and also adopted here. In
the Lagrangian version B is position-like and −E is velocity-like, which would
suggest the opposite order, namely (B, −E). In the nineteenth century the time-
derivative was written at the right side of the equation. By present standards, in
evolution equations like the Boltzmann, Navier–Stokes, and Schrödinger equation,
the time-derivative is always at the left, which is also our convention here.

The common practice is to call the first equation of (2.2) together with the sec-
ond equation of (2.3) the “homogeneous Maxwell equations” and the remaining

Paragraphs indicated by � give explanations of notation and names.



2.1 The inhomogeneous Maxwell–Lorentz equations 9

pair the “inhomogeneous Maxwell equations”. We follow here the convention
used in the context of wave equations and call (2.2) with j = 0 the “homogeneous
Maxwell–Lorentz equations” and (2.2) with j �= 0 the “inhomogeneous Maxwell–
Lorentz equations”. The constraints (2.3) are always understood. “Maxwell–
Lorentz equations” and “Maxwell equations” are used synonymously. �

We solve the Maxwell equations as a Cauchy problem, i.e. by prescribing the
fields at time t = 0. If the constraints (2.3) are satisfied at t = 0, then by the con-
tinuity equation (2.1) they are satisfied at all times. Thus the initial data are

E(x, 0) , B(x, 0) (2.4)

together with the constraints

∇ · E(x, 0) = ρ(x, 0) , ∇ · B(x, 0) = 0 . (2.5)

The choice t = 0 is merely a convention. In some cases it is preferable to prescribe
the fields either in the remote past or the distant future. We will only consider
physical situations where the fields decay at spatial infinity and thus have the finite
energy

E = 1

2

∫
d3x

(
E(x, t)2 + B(x, t)2) < ∞ . (2.6)

In a thermal state at nonzero temperature, typical fields fluctuate without decay
and one would be forced to consider infinite-energy solutions.

The Maxwell equations (2.2), (2.3) are inhomogeneous wave equations and are
thus easy to solve. This will be done in Fourier space first, where the Fourier trans-
form is denoted by ̂ and defined through

f̂ (k) = (2π)−n/2
∫

dnx e−ik·x f (x) . (2.7)

Then, setting c = 1, (2.2) becomes

∂t B̂(k, t) = −ik × Ê(k, t) ,

∂t Ê(k, t) = ik × B̂(k, t) − ĵ(k, t) (2.8)

with the constraints

ik · Ê(k, t) = ρ̂(k, t) , ik · B̂(k, t) = 0 (2.9)

and the conservation law

∂t ρ̂(k, t) + ik · ĵ(k, t) = 0 . (2.10)
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To solve the inhomogeneous equations (2.8), we rely, as usual, on the solution of
the homogeneous equations,

Ê0(k, t) = (
cos |k|t + (1 − cos |k|t )̂k ⊗ k̂

)
Ê(k, 0) +

( 1

|k| sin |k|t
)

ik × B̂(k, 0) ,

B̂0(k, t) = (
cos |k|t + (1 − cos |k|t )̂k ⊗ k̂

)
B̂(k, 0) −

( 1

|k| sin |k|t
)

ik × Ê(k, 0) .

(2.11)

Here k̂ = k/|k| is the unit vector along k and for any pair of vectors a, b, a ⊗ b is
the tensor of rank 2 defined through (a ⊗ b)c = a(b · c) as acting on the vector c.

We insert (2.11) in the time-integrated version of (2.8). Taking account of the
constraints, making a partial integration, and using charge conservation, we arrive
at

Ê(k, t) = (cos |k|t)Ê(k, 0) + (|k|−1 sin |k|t)ik × B̂(k, 0)

+
t∫

0

ds
( − (|k|−1 sin |k|(t − s))ikρ̂(k, s) − (cos |k|(t − s)) ĵ(k, s)

)

= Êini(k, t) + Êret(k, t) , (2.12)

B̂(k, t) = (cos |k|t)B̂(k, 0) − (|k|−1 sin |k|t)ik × Ê(k, 0)

+
t∫

0

ds(|k|−1 sin |k|(t − s))ik × ĵ(k, s)

= B̂ini(k, t) + B̂ret(k, t) . (2.13)

The first terms are the initial fields propagated up to time t , while the second terms
are the retarded fields. If one wanted to solve the Maxwell equations run into the
past, then the retarded fields should be replaced by the advanced fields.

Next, let us introduce the fundamental propagator, Gt (x), of the wave equation
which is defined as the Fourier transform of (2π)−3/2 |k|−1 sin |k|t and satisfies

∂2
t G − �G = δ(x)δ(t) . (2.14)

This means Gt (x) = (2π)−1 δ(|x|2 − t2) and in particular for t > 0

Gt (x) = 1

4π t
δ(|x| − t) . (2.15)
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Then in physical space the solution (2.12), (2.13) of the inhomogeneous Maxwell–
Lorentz equations reads as

E(t) = ∂t Gt ∗ E(0) + ∇ × Gt ∗ B(0) −
t∫

0

ds
(∇Gt−s ∗ ρ(s) + ∂t Gt−s ∗ j(s)

)
= Eini(t) + Eret(t) , (2.16)

B(t) = ∂t Gt ∗ B(0) − ∇ × Gt ∗ E(0) +
t∫

0

ds∇ × Gt−s ∗ j(s)

= Bini(t) + Bret(t) . (2.17)

Here ∗ denotes convolution, i.e. f1 ∗ f2(x) = ∫
dn y f1(x − y) f2(y).

For later purposes it will be convenient to have a more concise notation. In
matrix form, the solution of the homogeneous Maxwell–Lorentz equations can be
written as

d

dt

(
E(t)
B(t)

)
=

(
0 ∇×

−∇× 0

) (
E(t)
B(t)

)
,

d

dt
F(t) = AF(t) (2.18)

with the column vector F = (E, B). They have the solution

F(t) = U(t)F(0) , U(t) = eAt (2.19)

with U(t) given explicitly by the terms with subscripts ‘ini’ in (2.17), (2.16). If we
set g(t) = ( j(t), 0) as a column vector, then

d

dt
F(t) = AF(t) − g(t) , F(t) = U(t)F(0) −

∫ t

0
dsU(t − s)g(s) . (2.20)

The expressions (2.16), (2.17) remain meaningful even in case ρ, j are gener-
ated by the motion of a single point charge. Let us denote by q(t) the position and
by v(t) = q̇(t) the velocity of the particle carrying charge e. Then

ρ(x, t) = eδ(x − q(t)) , j(x, t) = eδ(x − q(t))v(t) . (2.21)

Upon inserting this in (2.16), (2.17) one arrives at the Liénard–Wiechert fields.
Since their derivation is presented in most textbooks, we do not repeat the com-
putation here and only discuss the result. We take the world line, t �→ q(t), of the
particle to be given for all times. Since the particle is assumed to have a relativistic
kinetic energy, |q̇(t)| < 1. Next we prescribe the initial data for the fields at time
t = t0 and take the limit t0 → −∞ in (2.16), (2.17). Then, at a fixed space-time
point (x, t), the contribution from the initial fields vanishes and the retarded fields
become the Liénard–Wiechert fields. To describe them we introduce the retarded
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time tret, depending on x, t , as the unique solution of

tret = t − |x − q(tret)| . (2.22)

tret is then the uniquely defined time point at which the world line crosses the
backward light cone with apex at (x, t). Furthermore, we introduce the unit vector

n̂ = x − q(tret)

|x − q(tret)| . (2.23)

Then the electric field generated by the moving point charge is given by

E(x, t) = e

4π

[ (1 − v2)(̂n − v)

(1 − v · n̂)3|x − q|2 + n̂ × [(̂n − v) × v̇]

(1 − v · n̂)3|x − q|
]∣∣∣

t=tret
(2.24)

and the corresponding magnetic field is

B(x, t) = n̂ × E(x, t) . (2.25)

Equations (2.24) and (2.25) are less explicit than they appear to be, since tret

depends through (2.22) on the reference point (x, t) and the particle trajectory.
The first contribution in (2.24) is proportional to |x − q|−2 and independent of
the acceleration. This is the near field, which in a certain sense remains attached
to the particle all through its motion. The second contribution is proportional to
|x − q|−1 as well as to the acceleration. This is the far field, which carries the
information on the radiation field escaping to infinity. Whenever q(t) is smooth
in t , the Liénard–Wiechert fields are also smooth functions except at x = q(t),
where they diverge as |x − q(t)|−2. The corresponding potentials have a Coulomb
singularity at the world line of the particle.

2.2 Newton’s equations of motion

We take now the point of view that the electromagnetic fields E, B are given. The
motion of a charged particle, with charge e, position q(t), and velocity v(t), is then
governed by Newton’s equations of motion,

d

dt

(
m0γv(t)

) = e
(
E(q(t), t) + c−1v(t) × B(q(t), t)

)
, (2.26)

γ (v) = 1/
√

1 − (v/c)2, which as an ordinary differential equation has to be sup-
plemented with the initial conditions q(0), v(0). The force law is determined
through the Lorentz force and thus (2.26) is also called the Newton–Lorentz equa-
tions. The particle is relativistic with rest mass m0 as measured through the re-
sponse to external forces. Once the particle is dynamically coupled to the Maxwell
field, m0 will attain a new meaning.
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The (E, B) fields in (2.26) are not completely arbitrary. They are subject to the
Maxwell equations with source (ρ, j). In other words, we have divided all charges
into a single charged particle whose motion is determined through (2.26) and the
rest whose motion is taken to be known.

The Newton–Lorentz equations (2.26) are of Hamiltonian form. To see this we
introduce vector potentials φ, A such that

E(x, t) = −∇φ(x, t) − c−1∂t A(x, t) , B(x, t) = ∇ × A(x, t) . (2.27)

Then the Lagrangian associated with (2.26) is

L(q, q̇, t) = −m0c2(1 − c−2q̇2)1/2 − e(φ(q, t) − c−1q̇ · A(q, t)) . (2.28)

To switch to the Hamiltonian framework, one introduces the canonical momentum

p = m0γ (q̇)q̇ + e

c
A(q, t) (2.29)

and obtains the Hamiltonian function

H(q, p, t) = (
(c p− eA(q, t))2 + m2

0c4)1/2 + eφ(q, t) . (2.30)

In particular, whenever the fields are time independent, the energy

E(q,v) = m0γ (v) + eφ(q) (2.31)

is conserved along the solution trajectories of (2.26).
It should be noted that in general the solutions to Newton’s equations of motion

(2.26) will have a complicated structure even for time-independent fields. This
has been amply demonstrated for particular cases. Depending on how the external
fields are chosen, the motion would range from regular to fully chaotic with a
mixed phase space as a rule.

2.3 Coupled Maxwell’s and Newton’s equations

While for most practical purposes, barring a few exceptional cases, it suffices to
use either Maxwell’s equations with prescribed sources or Newton’s equations
with prescribed forces, from a more fundamental point of view such a procedure is
unsatisfactory. Physically it would seem more natural to have a coupled system of
equations for the time evolution of the charged particles together with their elec-
tromagnetic field and to regard the two cases discussed above as emerging limit
situations. If for the moment we restrict ourselves to a single particle, it is obvious
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how to proceed. From (2.2), (2.3) we have

∂t B(x, t) = −∇ × E(x, t) ,

∂t E(x, t) = ∇ × B(x, t) − eδ(x − q(t))v(t) (2.32)

with the constraints

∇ · E(x, t) = eδ(x − q(t)) , ∇ · B(x, t) = 0 . (2.33)

Moreover, from (2.26) we have

d

dt

(
m0γv(t)

) = e
(
Eex(q(t)) + E(q(t), t) + v(t) × (Bex(q(t)) + B(q(t), t))

)
.

(2.34)

We added the external electromagnetic fields Eex, Bex, which will play a promi-
nent role later on. They are derived from potentials as

Eex = −∇φex , Bex = ∇ × Aex . (2.35)

We assume the potentials to be time independent for simplicity, although a con-
siderable part of the theory to be developed will work also for time-dependent
fields. As before, (2.32)–(2.34) are to be solved as an initial value problem. Thus
E(x, 0), B(x, 0), q(0), and v(0) are supposed to be given. Note that the continu-
ity equation is satisfied by fiat.

Equations (2.32), (2.34) are the stationary points of a Lagrangian action, which
strengthens our trust in these equations, since every microscopic classical evolution
equation seems to be of that form. We continue to use the underlying electromag-
netic potentials as in (2.27), (2.35). Then the action for (2.32), (2.34) reads

A([q, φ, A]) =
∫

dt
[ − m0(1 − q̇(t)2)1/2 − e

(
φex(q(t)) + φ(q(t), t)

− q̇(t) · (Aex(q(t)) + A(q(t), t))
)]

+ 1

2

∫
dt

∫
d3x

[
(∇φ(x, t) + ∂t A(x, t))2 − (∇ × A(x, t))2] .

(2.36)

The only difficulty is that (2.32) and (2.33) taken together with (2.34) make no
proper mathematical sense. As explained, the solution of the Maxwell equations is
singular at x = q(t), and in the Lorentz force we are asked to evaluate the fields
precisely at that point. One might be tempted to put the blame on the mathematics
which refuses to handle equations as singular as (2.32)–(2.34). However before
such a drastic conclusion is drawn, the physics should be properly understood. The
point charge carries along with it a potential which at short distances diverges as
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the Coulomb potential, cf. (2.24), and which therefore has the electrostatic energy

1

2

∫
{|x−q(t)|≤R}

d3x E(x, t)2 �
R∫

0

drr2(r−2)2 =
R∫

0

drr−2 = ∞ . (2.37)

Taken literally, such an object would have an infinite mass and hence would not
respond to external forces. It would keep its velocity for ever, which is inconsistent
with what is observed.

Thus we are forced to regularize at short distances the coupled system consisting
of the Maxwell equations and Newton’s equation of motion with the Lorentz force.

In carrying out such a program there are two, in part, complementary points of
view. The first one, which we will not follow here, starts from the idea that regu-
larization is a mathematical device with the sole purpose of making sense of a sin-
gular mathematical object through a suitable limiting procedure. To illustrate this
approach we can think of the following prominent mathematical physics example.
The free scalar field, φ(x), in Euclidean quantum field theory in 1 + 1 dimensions
fluctuates so wildly at short distances that an interaction such as

∫
d2xV (φ(x))

with V (φ) = φ2 + λφ4 cannot be properly defined. One way, not necessarily op-
timal, to regularize the theory is to introduce a spatial lattice with spacing a.
Such a lattice field theory is well defined in any finite volume. On taking the
limit a → 0 along with a simultaneous readjustment of the interaction potential,
V (φ) = Va(φ), a Euclidean-invariant, interacting quantum field theory is obtained.
Ideally this limit theory should be independent of the regularization scheme. For
instance one could start with the free scalar field in the continuum and regularize
φ(x) as φ ∗ g(x) with a suitable test function g concentrated at 0. Then the reg-
ularized interaction is

∫
d2xV (φ ∗ g(x)) and in the limit g(y) → δ(y) a quantum

field theory should be obtained identical to the one from the lattice regularization.
In the second approach one argues that there is a physical cutoff coming from a

more refined theory, which is then modeled in a phenomenological way. While this
is a standard procedure, it is worthwhile to illustrate it again with a concrete exam-
ple. Consider a large number (∼= 1023) of He4 atoms in a container of adjustable
size and suppose we are interested in computing their free energy according to
the rules of statistical mechanics. The more refined theory is here nonrelativistic
quantum mechanics which treats the electrons and nuclei as point particles carry-
ing a spin 1

2 , respectively spin 0. As far as we can tell, this model approximately
covers the temperature range T = 0 K to T = 105 K, i.e. way beyond dissocia-
tion, and the density range ρ = 0 to ρ = ρcp, the density of close packing. Beyond
these limits relativistic effects must be taken into account. However, there is a
more limited range where we can get away with a model of classical point par-
ticles interacting through an effective potential of Lennard-Jones type. Once this
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pair potential is specified classical statistical mechanics makes well-defined pre-
dictions at any T, ρ. There is no limitation in principle. Only outside a certain
range of parameters would the classical model lose the correspondence with the
real world. Already from the way the physical cutoff is described, there is a con-
siderable amount of vagueness. How much error should we allow in the free en-
ergy? What about more detailed properties like density correlations? An effective
potential can be defined quantum mechanically, but it is temperature dependent
and never strictly a pair potential. Despite all these imprecisions and shortcom-
ings, the equilibrium theory of fluids relies heavily on the availability of a classical
model.

In the same spirit we modify the coupled Maxwell and Newton equations by
introducing an extended charge distribution as a phenomenological model for the
omitted quantum electrodynamics. The charge distribution is stabilized by strong
interactions which act outside the realm of electromagnetic forces. On the classical
level, say, an electron appears as an extended charged object with a size roughly of
the order of its Compton wavelength, i.e. 4 × 10−11 cm. We impose the obvious
condition that the extended charge distribution has to be adjusted such that, in
the range where classical electrodynamics is applicable, the coupled Maxwell and
Newton equations correctly reproduce the empirical observations.

Such general clauses seem to leave a lot of freedom in the construction of the
theory. However, charge conservation and the Lagrangian form of the equations
of motion severely limit the possibilities. In fact, essentially only two models of
extended charge distribution have been investigated so far.

(i) The semirelativistic Abraham model of a rigid charge distribution. The
charge e is assumed to be smeared out over a ball of radius Rϕ . This means that in
(2.32)–(2.34) the δ-function is replaced by a smooth charge distribution eϕ. ϕ(x)

is taken to be radial, vanishing for |x| > Rϕ , and normalized as
∫

d3xϕ(x) = 1.
Equivalently, having (2.32)–(2.34) recast in Fourier space, the couplings between
the field modes with |k| � 1/Rϕ and the particle become suppressed. This partic-
ular choice for the internal structure of the charge is called the Abraham model
(for a single nonrotating charge). For zero coupling the model is relativistic. How-
ever, ϕ is taken to be rigid, thus velocity independent in a prescribed coordinate
frame, which breaks Lorentz invariance. The standard examples are that the charge
is uniformly distributed either over the ball, ϕ(x) = (4π R2

ϕ/3)−1 for |x| ≤ Rϕ ,
ϕ(x) = 0 otherwise, or over the sphere, ϕ(x) = (4π R2

ϕ)−1δ(|x| − Rϕ). In the
quantized version of the Abraham model, cf. chapter 13 below, often a sharp cutoff
in Fourier space is adopted, i.e. ϕ̂(k) = (2π)−3/2 for |k| ≤ � = R−1

ϕ , ϕ̂(k) = 0
otherwise; this has the slight disadvantage of being oscillating and having slow
decay in position space.
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Once the charge distribution is extended, besides its center of charge, also ro-
tational degrees of freedom must be taken into account. The Abraham model al-
lowing for a spinning charge will be discussed in chapter 10. Since the dynamical
behavior then becomes more complex, it is advisable to omit spin in the first round.

The Abraham model will be studied in considerable detail. While defined for
all velocities |v(t)| < c, it becomes empirically inaccurate at velocities close to c.
Despite this drawback we hope that the Abraham model will serve as a blueprint
towards a more realistic description of matter.

(ii) The Lorentz model of a relativistically rigid charge distribution. More in
accord with special relativity is to require that eϕ is the charge distribution in the
momentary rest frame of the particle. While such a principle was already stated by
Lorentz and Poincaré, a satisfactory dynamical theory has been arrived at only very
recently. As we will explain in section 2.5, in a relativistic theory translational and
rotational degrees of freedom are intrinsically coupled. To gain an understanding
of how relativistic invariance would modify the theory, we insert some features of
the Lorentz model, although our understanding of its dynamical properties is far
less developed than that of the Abraham model.

We emphasize that for extended charge models the diameter Rϕ of the charge
distribution defines a length (and upon dividing by c also a time) scale, relative to
which the approximate validity of effective theories, like the Lorentz–Dirac equa-
tion, can be addressed quantitatively. In fact, apart from the external forces, Rϕ is
the only natural length scale available.

2.4 The Abraham model

Following Abraham, we model the charged particle as a spherically symmetric,
rigid body to which the charge elements are permanently attached. The charge dis-
tribution is prescribed and independent of the particle’s velocity, which singles out
the laboratory frame. In a relativistic theory the charge distribution would appear
to be Lorentz contracted. To be specific the charge distribution eϕ is assumed to
be smooth, radial, and supported in a ball of radius Rϕ , and normalized to e, i.e.

Condition (C):

ϕ ∈ C∞(R3) , ϕ(x) = ϕr(|x|) , ϕ(x) = 0 for |x| ≥ Rϕ ,

∫
d3xϕ(x) = 1 .

(2.38)

� eϕ(x) is the charge distribution and ϕ̂(k) is the form factor, since in Fourier
space it multiplies the current as (2π)3/2ϕ̂(k) ĵ(k, t). �
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Our goal is to set up the Abraham model as a well-defined dynamical system.
Usually this point is taken for granted. Since the occurrence of ill-defined equa-
tions of motion was one of our main objections to the δ-charge, it is worthwhile to
understand why this objection is no longer valid for a smeared out δ.

The equations of motion for the Abraham model are

∂t B(x, t) = −∇ × E(x, t) ,

∂t E(x, t) = ∇ × B(x, t) − eϕ(x − q(t))v(t) , (2.39)

∇ · E(x, t) = eϕ(x − q(t)) , ∇ · B(x, t) = 0 , (2.40)
d

dt

(
mbγv(t)

) = e
(
Eex(q(t)) + Eϕ(q(t), t) + v(t) × (Bex(q(t)) + Bϕ(q(t), t))

)
,

(2.41)

where we have set c = 1. In (2.41) we use the shorthand Eϕ(x) = E ∗ ϕ(x) and
Bϕ(x) = B ∗ ϕ(x) so as to resemble (2.34). Strictly speaking also Eex, Bex should
be smeared over ϕ; however, this would only amount to a redefinition of the exter-
nal potentials. In contrast to Newton’s equations of motion (2.26), for the Abraham
model we denote the mechanical mass of the particle by mb to emphasize that this
bare mass will differ from the observed mass of the compound object “particle
plus surrounding Coulomb field”. The external potentials φex, Aex can be fairly
arbitrary. We only require them and their derivatives to be smooth and locally
bounded, to avoid too strong local oscillations. No condition on the increase at in-
finity is needed, since |v(t)| ≤ 1. However, it is convenient to have the energy, as
defined in (2.44), uniformly bounded from below. To keep things simple we make
the (unnecessarily strong) assumptions

Condition (P):

φex ∈ C∞(R3) , Aex ∈ C∞(R3, R
3), φex ≥ φ̄ > −∞ . (2.42)

Moreover, there exists a constant C such that |∇φex| ≤ C, |∇ Aex| ≤ C .

The Abraham model is derived from the Lagrangian

L = − mb(1 − q̇2)1/2 − e
(
φex(q) + φϕ(q) − q̇ · Aex(q) − q̇ · Aϕ(q)

)
+ 1

2

∫
d3x

(
(∇φ + ∂t A)2 − (∇ × A)2) . (2.43)

Correspondingly, the energy

E(E, B, q,v) = mbγ (v) + eφex(q) + 1

2

∫
d3x

(
E(x)2 + B(x)2) (2.44)

is conserved.
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As for any dynamical system, the first step in dealing with (2.39)–
(2.41) is to construct a suitable phase space. The dynamical variables are
(E(x), B(x), q,v) = Y which is called a state of the system. We have q ∈ R

3,v ∈
V = {v | |v| < 1}. In addition, the energy (2.44) should be bounded. Thus it is nat-
ural to introduce the (real) Hilbert space

L2 = L2(R3, R
3) (2.45)

with norm ‖E‖ = (
∫

d3x |E(x)|2)1/2 and to define L as the set of states satisfying

‖Y‖L = ‖E‖ + ‖B‖ + |q| + |γ (v)v| < ∞ . (2.46)

In particular for the field energy, 1
2(‖E‖2 + ‖B‖2) < ∞. The norm || · ||L gives

rise to the metric

d(Y1, Y2) = ‖E1 − E2‖ + ‖B1 − B2‖ + |q1 − q2| + |γ (v1)v1 − γ (v2)v2| .
(2.47)

In addition, the constraints (2.40) have to be satisfied. Thus the phase space, M,
for the Abraham model is the nonlinear submanifold of L defined through

∇ · E(x) = eϕ(x − q) , ∇ · B(x) = 0 . (2.48)

M inherits its metric from L.
On various occasions below we will need the property that the system forgets

its initial field data. For this purpose it is helpful to have a little bit of smoothness
and some decay at infinity. Formally we introduce the “good” subset Mσ ⊂ M,
0 ≤ σ ≤ 1, consisting of fields such that componentwise and outside a ball of
radius R0, |x| ≥ R0, we have

|E(x)| + |B(x)| + |x|(|∇E(x)| + |∇ B(x)|) ≤ C |x|−1−σ . (2.49)

The Liénard–Wiechert fields (2.24), (2.25) are included in M0; moreover, M0 is
dense in M. However Mσ = ∅ for σ > 1, by Gauss’s law (2.40) with e �= 0.

The evolution equations (2.39)–(2.41) are of the general form

d

dt
Y (t) = F(Y (t)) (2.50)

with Y (0) = Y 0 ∈ M. We turn to the question of the existence and uniqueness of
solutions of the Abraham model (2.50).

Theorem 2.1 (Existence of the dynamics for the Abraham model). Let the con-
ditions (C) and (P) hold and let Y 0 = (E0(x), B0(x), q0, v0) ∈ M. Then the
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integral equation associated with (2.50),

Y (t) = Y 0 +
t∫

0

ds F(Y (s)) , (2.51)

has a unique solution Y (t) = (E(x, t), B(x, t), q(t),v(t)) ∈ M, which is contin-
uous in t and satisfies Y (0) = Y 0. Along the solution trajectory

E(Y (t)) = E(Y 0) (2.52)

for all t , i.e. the energy is conserved.

For short times existence and uniqueness follow through the contraction mapping
principle with constants depending only on the initial energy. For smooth initial
data, energy conservation is verified directly and by continuity it extends to all
finite-energy data. Thus we can construct iteratively the solution for all times.

We first summarize some properties of the Maxwell equations. They follow di-
rectly from the Fourier and convolution representations (2.12), (2.13), respectively
(2.16), (2.17).

Lemma 2.2 In the Maxwell equations (2.2), (2.3), let eϕ(x, t) = eϕ(x −
q(t)), j(x, t) = eϕ(x − q(t))v(t), with prescribed t �→ (q(t),v(t)) continuous.
Then (2.2), (2.3) has a unique solution in C(R, L2 ⊕ L2). The solution map
(E0, B0) �→ (E(t), B(t)) depends continuously on (q(t),v(t)).

Proof of Theorem 2.1: Let b > 0 be fixed and choose initial data such that
E(Y 0) ≤ b .
(i) There exists a unique solution Y (t) ∈ C([0, δ],M) for δ = δ(b) sufficiently
small.

We write (2.41) in the form

d

dt

(
mbγ v(t)

) = Fex(t) + Fini(t) + Fself(t) (2.53)

by inserting E(x, t), B(x, t) from the Maxwell equations according to (2.16),
(2.17). Let

Wt (x) = e2
∫

d3k|ϕ̂(k)|2 eik·x 1

|k| sin |k|t

= (2π)3e2
∫

d3y
∫

d3y′ϕ(y)ϕ(y′)
1

4π t
δ(|y + x − y′| − t) . (2.54)
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Then

Fex(t) = e−(
Eex(q(t)) + v(t) × Bex(q(t))

)
, (2.55)

Fini(t) =
∫

d3x eϕ(x − q(t))
[
∂t Gt ∗ E0(x) + ∇ × Gt ∗ B0(x)

+v(t) × ∂t Gt ∗ B0(x) − v(t) × (∇ × Gt ∗ E0(x))
]
, (2.56)

Fself(t) =
t∫

0

ds
[ − ∇Wt−s(q(t) − q(s)) − v(s)∂t Wt−s(q(t) − q(s))

+v(t) × (∇ × v(s)Wt−s(q(t) − q(s)))
]
. (2.57)

We now integrate both sides of (2.53) over the time interval [0, t]. The resulting
expression is regarded as a map from the trajectory t �→ (q(t),v(t)), 0 ≤ t ≤ δ,

to the trajectory t �→ (q̄(t), v̄(t)) and is defined by

q̄(t) = q0 +
t∫

0

ds v(s) , (2.58)

mbγ (v̄(t))v̄(t) = mbγ (v0)v0 +
t∫

0

ds
(
Fex(s) + Fini(s) + Fself(s)

)
,

where Fex(s), Fini(s), and Fself(s) are functionals of q(·),v(·) according to
(2.55)–(2.57). Since ϕ, W, φex, and Aex are smooth, this map is a contraction in
C([0, t], R

3 × V), i.e.

sup
0≤s≤t

(|q̄2(s) − q̄1(s)| + |v̄2(s) − v̄1(s)|
)

≤ c(t, b) sup
0≤s≤t

(|q1(s) − q2(s)| + |v1(s) − v2(s)|
)
, (2.59)

with a constant c(t, b) depending on b and c(t, b) < 1 for sufficiently small t . Such
a map has a unique fixed point which is the desired solution (q(t),v(t)). By the
Maxwell equations also B(x, t), E(x, t) are uniquely determined.
(ii) The solution map Y 0 �→ Y (t) is continuous in M.

This follows from Lemma 2.2 and the continuous dependence of (q(t),v(t)) on
the initial data.
(iii) The energy is conserved.

We choose smooth initial fields such that E, B ∈ C∞(R3) and

|∇α E(x)| + |∇α B(x)| ≤ C(1 + |x|)−(2+|α|) . (2.60)
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Here α = (α1, α2, α3) is a multi-index with αi = 0, 1, 2, . . . . This subset is dense
in M. By the convolution representation (2.16), (2.17) of the solution to the
Maxwell equations we have E(x, t), B(x, t) ∈ C1([0, δ] × R

3) and |E(x, t)| +
|B(x, t)| ≤ C(1 + |x|)−2. Also v(t) ∈ C1([0, δ]). Thus we are allowed to differ-
entiate,

d

dt
E(Y (t)) = γ 3v · v̇+ v · ∇φex(q) +

∫
d3x(E · ∂t E + B · ∂t B)

=
∫

d3x
(
E · (∇ × B) − B · (∇ × E)

) = 0 , (2.61)

since the fields decay and hence the surface terms vanish. Thus E(Y (t)) = E(Y 0)

for 0 ≤ t ≤ δ. By continuity this equality extends to all of M.
(iv) The global solution exists.

From (iii) we know that E(Y (δ)) = E(Y 0) ≤ b. Thus we can repeat the previous
argument for δ ≤ t ≤ 2δ, etc. Backwards in time we still have the solution (2.16),
(2.17) of the Maxwell equations, only the retarded fields have to be replaced by
the advanced fields. Thereby we obtain the solution for all times. �

Theorem 2.1 ensures the existence and uniqueness of solutions for the Abraham
model. For initial data Y 0 ∈ M the solution trajectory t → Y (t) lies in the phase
space M, is continuous in t , and its energy is conserved. We have thus established
the basis for further investigations on the dynamics of the Abraham model.

2.5 The relativistically covariant Lorentz model

To improve on the semirelativistic Abraham model, following Lorentz, it is nat-
ural to assume that when viewed in a momentary inertial rest frame the charge
and mass distribution of the particle remain unchanged. This is what one would
call a relativistically rigid extended charge. Our requirement fixes uniquely the
four-current density. The equations of motion then follow from a relativistically
covariant action.

For obvious reasons we will switch to relativistic notation, where we follow the
conventions of Misner, Thorne, and Wheeler. Our arena is the Minkowski space-
time M

4. A Lorentz frame, FL, in M
4 is specified through the tetrad {e0, e1, e2, e3}

of fixed unit vectors. They have the inner product

eµ · eν = gµν , (2.62)

where gµν is the metric tensor with g00 = −1, gµµ = 1, µ = 1, 2, 3, and gµν = 0
otherwise. Therefore M

4 can be identified with R
1,3. In the given basis, a vector

x ∈ M
4 is expanded as

x = xµeµ (2.63)
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using the Einstein summation convention over repeated indices. We group x =
(t, x) with t ∈ R the time and x ∈ R

3 the space coordinate. The scalar product is
x · y = gµνxµyν and |x|2 = x · x.

The motion of a particle is specified through its world line τ �→ q(τ )

parametrized in terms of the eigentime τ , dτ 2 = −dx · dx. Denoting by q̇ differ-
entiation of q(τ ) with respect to τ , the four-velocity is u(τ ) = q̇(τ ). u is time-like,
u · u = −1, and u0 > 0 for a particle moving forward in time. In the given Lorentz
frame we have

u = (γ, γv) , γ = (1 − |v|2)−1/2 (2.64)

with v the usual three-velocity.
If the charged particle is at rest, then, as before, its charge is smeared according

to the charge distribution eϕ. In addition we assume that now the bare mass, mb,
is smeared also according to ϕ. In principle, one should distinguish between the
charge and mass form factor. We suppress such a distinction, since it can be un-
ambiguously recovered from the prefactors e and mb. By the definition of a rigid
charge, we require that in any momentary rest frame the mass, respectively charge,
distribution are given by mbϕ, respectively eϕ.

Since our charged body is extended, in its kinematical description, besides q(τ )

and the velocity u(τ ) = q̇(τ ), we have to specify its state of rotation. Let us in-
troduce the (noninertial) body frame Fbody through the tetrad {e′

µ}µ=0,...,3 of unit
vectors. Fbody is fixed in the charged body and thus comoving and corotating. We
set e′

0 = u(τ ). e′
1, e′

2, {e′
3} gives then the spatial orientation of Fbody in the momen-

tary rest frame. In the course of time Fbody evolves according to

d

dτ
e′
µ = −Ω · e′

µ , µ = 0, . . . ,3 , (2.65)

where Ω is the antisymmetric tensor of the instantaneous rate of four-gyration of
Fbody as seen in the Lorentz frame FL.

Even if there is no external torque acting on the rigid charged body, the frame
Fbody rotates. This is the famous Thomas precession, determined by the Fermi–
Walker transport equation

d

dτ
ēµ = −ΩFW · ēµ , µ = 0, . . . ,3 , (2.66)

where

ΩFW = u̇ ∧ u . (2.67)

Here the exterior product of two vectors is defined by a ∧ b = a ⊗ b − b ⊗ a or,
as acting on a vector c, (a ∧ b) · c = a(b · c) − b(a · c). Together with the initial
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conditions ē0(0) = u(0), ēµ(0) = eµ, µ = 1, 2, 3, (2.66) defines the noninertial
frame FFW.

If there is an external torque acting, then Fbody �= FFW and it is natural to intro-
duce the intrinsic (Eulerian) four-gyration by

ΩE = Ω − ΩFW . (2.68)

As Ω, ΩFW, also ΩE is antisymmetric and satisfies

ΩE · u = 0 . (2.69)

Therefore ΩE has only three independent components and is dual to a space-like
four-vector wE which satisfies

ΩE · wE = 0 , wE · u = 0 . (2.70)

In FFW, wE is of the form (0,ωE), where ωE is the usual angular velocity vector
which points along the instantaneous axis of body gyration in the space-like three-
slice of FFW. For zero torque ωE = 0.

We conclude that relative to FFW the rotational state is either given by ΩE(τ )

or by wE(τ ). wE(τ ) is space-like, |wE(τ )|2 ≥ 0.

2.5.1 The four-current density

Our task is to construct a relativistically covariant current density, which will serve
both as the source term in Maxwell’s equations and as the force, respectively
torque, term in Newton’s equations of motion.

For a given world line let F ′
L be the momentary rest frame at time τ centered at

q(τ ) with spatial axes oriented as in FL. In the coordinates of F ′
L, by definition,

the four-current density is given by

j′(t ′, x′) = eϕr(|x′|)δ(t ′)(1, 0) . (2.71)

Transformed to our laboratory frame FL the current density becomes

j(x) = eϕr(|x − q(τ0)|)u(τ0)|σ(τ0) . (2.72)

Here σ(τ) is the hyperplane defined by σ(τ) = {y|u(τ ) · (y − q(τ )) = 0} and
the subscript in (2.72) means that for given x we have to choose τ0 such that
x ∈ σ(τ0), see figure 2.1. In general, there will be several such planes, see figure
2.2. Of course, they contribute to the current only if x − q(τ0) is space-like and
the distance |x − q(τ0)| satisfies |x − q(τ0)| ≤ Rϕ . Let us assume for the moment
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x1

x0

(τ)q

Figure 2.1: World line of an extended charge and the associated current density.

x1

x0

left center right

Figure 2.2: World line of an extended charge with large acceleration and back-
ward currents.
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that with this restriction there is only a single hyperplane intersecting x. Then

j(x) =
∫

dτeϕr(|x − q(τ )|)u(τ )δ(τ − τ0)|σ(τ0)

=
∫

dτeϕr(|x − q(τ )|)u(τ )
(
1 + u̇(τ ) · (x − q(τ ))

)
δ(u(τ ) · (x − q(τ ))) .

(2.73)

The additional term comes from the change in the volume element, since

d

dτ
u · (x − q) = u̇ · (x − q) − u · u = 1 + u̇ · (x − q) . (2.74)

Note that, because of δ(u · (x − q)), the factor u(1 + u̇ · (x − q)) in (2.73) may
be replaced by u − ΩFW · (x − q). The Thomas precession generates a current in
addition to that due to translations.

In general, the body-fixed frame will be rotated by Ω and we arrive at the final
form of the four-current density as

j(x) =
∫

dτeϕr(|x − q|)δ(u · (x − q))(u − Ω · (x − q)) . (2.75)

One readily verifies the charge conservation

∇g · j(x) = 0 , (2.76)

where ∇g f = (−∂x0 f, ∇ f ) .

Before proceeding to the action for the dynamics, we should understand whether
the current (2.75) conforms with naive physical intuition. An instructive example
is a uniformly accelerated charge, the so-called hyperbolic motion. We assume that
the particle is accelerated along the positive 1-axis starting from rest at the origin.
In the orthogonal direction the current traces out a tube of diameter 2Rϕ and it
suffices to treat the two-dimensional space-time problem. The center, C , of the
charge moves along the orbit

C =
(

t, g−1
(√

1 + g2t2 − 1
))

, t ≥ 0 , (2.77)

where g > 0 is the acceleration. The curves traced by the right and left ends, C+
and C−, are determined from (2.73) and are given in parameter form as

C± =
(
(1 ± Rϕg)t, g−1

(
(1 + Rϕg)

√
1 + g2t2 − 1

))
, t ≥ 0 . (2.78)

The equal-time distance between the center and C+ is t−1((Rϕg)2 + 2Rϕg)/(2g2

(1 + Rϕg)) for large t and is thus well bounded. However the left end motion
depends crucially on the magnitude of Rϕg. If Rϕg < 1, then the distance to the
center is t−1((Rϕg)2 − 2Rϕg)/(2g2(1 − Rϕg)) for large t . On the other hand, for



2.5 The relativistically covariant Lorentz model 27

Rϕg > 1, the left end moves into the past and the current density looks strangely
distorted. To gain a feeling for the order of magnitudes involved we insert the
classical electron radius. Then

g >
c2

Rϕ

= 1031 [m s−1] , (2.79)

which is far beyond the domain of the validity of the theory. Of course, one would
hope that for reasonable initial data such accelerations can never be reached. But
the mere fact that charge elements may move backwards in time is an extra diffi-
culty.

2.5.2 Relativistic action, equations of motion

For given current density, j , the Maxwell equations read

∇g ·∗ F = 0 , ∇g · F = j , (2.80)

where F is the antisymmetric electromagnetic field tensor of rank 2 and ∗F its
star dual. Equations (2.80) can be regarded as the Euler–Lagrange equations of an
action functional Af, which most conveniently is written in terms of a Lagrange
density Lf(x) + Lint(x). The field part of the Lagrangian is given by

Lf(x) = −1

4
tr[F(x) · F(x)] . (2.81)

The interaction Lagrangian, Lint(x), is defined through minimal coupling. We re-
call that (2.80) implies that F is the exterior derivative of a vector potential A,
F = ∇g ∧ A. If we adopt the Lorentz gauge ∇g · A = 0, then

Lint(x) = A(x) · j(x) . (2.82)

The variation of

Af =
∫

(Lf(x) + Lint(x))d4x (2.83)

with respect to A yields indeed (2.80).
Thus we are left with writing down the particle Lagrangian. One might be

tempted to simply take −mb
∫

dτ from the relativistic mechanics of a single
particle. This cannot be correct, unless all mass is concentrated at the center,
i.e. ϕ(x) = δ(x), since −mb

∫
dτ ignores the energy stored in the inner rotation.
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Including rotation the Lagrangian density for the particle becomes

Lp(x) = −
τ2∫

τ1

(1 − |ΩE · (x − q)|2)1/2mbϕr(|x − q|)δ(u · (x − q))dτ, (2.84)

where q = q(τ ), u = u(τ ), and ΩE = ΩE(τ ) along the world line of the particle.
Let us check that (2.84) yields the physically correct equations of motion when

A(x) is taken to be given. We have

Ap =
∫

(Lp(x) + Lint(x))d4x (2.85)

and must work out the variation of the world line τ �→ q(τ ) at fixed end points,
δq(τ1) = 0 = δq(τ2), which induces also a change in the Fermi–Walker frame.
The second independent variation is the body-fixed frame Fbody relative to FFW.
Thereby we obtain two equations of motion, which we write as

d

dτ
p(τ ) = f(τ ), (2.86)

d

dτ
s(τ ) + ΩFW · s(τ ) = t(τ ) . (2.87)

Let us discuss each equation separately. p is the momentum of the particle,
related to the velocity by

p = mgu . (2.88)

mg depends on |ωE| and is defined by

mg =
∫

R1,3
(1 − |ΩE · x|2)−1/2mbϕr(|x|)δ(u · x)d4x . (2.89)

mg is the bare gyrational mass, a Lorentz scalar. For small gyration frequency it
can be expanded as

mg = mb + 1

2
Inr|ωE|2 + O(|ωE|4) (2.90)

with

Inr = mb
2

3

∫
d3xϕ(x)x2 , (2.91)

the moment of inertia in the nonrelativistic limit. f(τ ) in (2.86) is the Minkowski
force

f(τ ) =
∫

R1,3
F(x) · (u − Ω · (x − q))eϕr(|x − q|)δ(u · (x − q))d4x . (2.92)
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It reduces to the Lorentz force, eF · u, in the case where F(x) is slowly varying on
the scale of Rϕ .

In the rotational equation (2.87), s is the four-vector of spin angular momentum
and is related to the four-gyration by

sb = IbwE (2.93)

with Ib the relativistic moment of inertia relative to q,

Ib(|ωE|)g =
∫

R1,3
(|x|2g − x ⊗ x)(1 − |ΩE · x|2)−1/2mbϕr(|x|)δ(u · x)d4x .

(2.94)

In (2.87) s is kinematically Fermi–Walker transported by ΩFW and changed
through the external Minkowski torque t(τ ). From the variation of (2.85) we obtain

t(τ ) =
∫

R1,3
(x − q) ∧ (F(x) · (u − Ω · (x − q)))⊥eϕr(|x − q|)δ(u · (x − q))d4x ,

(2.95)

where by definition a⊥ = (g + u ⊗ u) · a . In the case of slow variation of F, (2.95)
becomes the BMT equation, cf. section 10.1.

We remark that through (2.86), (2.87) the translational and rotational motion are
coupled in a rather complicated way with some simplification for a slowly varying
external potential Aex.

Having discussed the action (2.83) for the field at prescribed currents and the
action (2.85) for the particle at prescribed fields, the action for the Lorentz model
of an extended charge is inevitable. The Lagrangian density reads

L(x) = Lp(x) + Lint(x) + Lf(x) (2.96)

with the corresponding action

A =
∫

�

L(x)d4x . (2.97)

To include an external potential, Lint from (2.82) has to be merely modified to
Lint(x) = A(x) · j(x) + Aex(x) · j(x).

One has to be careful with the domain of integration, �. It is a region of M
4,

which is bordered by two space-like surfaces, ∂�i , i = 1, 2. One first fixes an
interval [τ1, τ2] of eigentimes. Restricted to a ball of radius Rϕ , ∂�i = {y| u(τi ) ·
(y − q(τi )) = 0}, i = 1, 2. ∂�1, ∂�2 are then smoothly extended to hypersurfaces
such that they do not intersect each other, see figure 2.3. The variation is carried
out at fixed end points, which means that q(τ1), q(τ2),ΩE(τ1),ΩE(τ2), and A on
the hypersurfaces ∂�i , i = 1, 2, are prescribed. In addition we require a properly



30 A charge coupled to its electromagnetic field
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Ξ

Figure 2.3: Space-like boundary surfaces in the variation of the action.

time-ordered history of momentary charge slices. Then the Euler–Lagrange equa-
tions for (2.97) are given by Maxwell’s equations (2.80), by Newton’s equations
(2.86) for the translational degrees of freedom together with (2.88), (2.89), (2.92),
and by Newton’s equations (2.87) for the rotational degrees of freedom together
with (2.93), (2.94), (2.95), as a coupled set of equations for the extended charge
and the Maxwell field.

As for the Abraham model we should discuss the existence and uniqueness of
solutions. This project is hampered by the fact that we have two constraints. The
equator must have a subluminal speed of gyration, which is ensured by |ωE|Rϕ <

1. In addition, the charge slices have to move forward in time, which is ensured
by |q̈|Rϕ < 1. The difficulty is that, even if these conditions are met initially, there
seems to be no mechanism which ensures their validity later on. At present, the
general Cauchy problem is known to have a solution only for a finite interval of
time, whose duration depends on the initial data.

Notes and references

Sections 2.1 and 2.2

The material discussed can be found in most textbooks. I find Landau and Lifshitz
(1959), Panofsky and Phillips (1962), Jackson (1999), and Scharf (1994) particu-
larly useful.

Section 2.3

In our history chapter, chapter 3, we discuss the Wheeler–Feynman approach
which cannot be subsumed under short distance regularization. In the literature
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the size of a classical electron, rcl, is usually determined through equating the rest
mass with the Coulomb energy, mec2 = e2/rcl, which gives rcl = 3 × 10−13cm.
This is really a lower bound in the sense that an even smaller radius would be
in contradiction to the experimentally observed mass of the electron (assuming a
positive bare mass, cf. the discussion in section 6.3). Milonni (1994) argues that
due to quantum fluctuations the electron appears to have a classical spread, which
is given by its Compton wavelength λc = rcl/α, with α the fine structure constant.
Renormalization in Euclidean quantum field theory is covered by Glimm and Jaffe
(1987) and Huang (1998). Effective potentials for classical fluids are discussed,
e.g., in Huang (1987).

Section 2.4

The Abraham model was very popular in the early 1900s as studied by Abraham
(1903, 1905), Lorentz (1892, 1915), Sommerfeld (1904a, 1904b, 1904c, 1905),
and Schott (1912), among others. The extension to a rigid charge with rotation was
already introduced in Abraham (1903) and further investigated by Herglotz (1903)
and Schwarzschild (1903); compare with chapter 10. The dynamical systems point
of view is stressed in Galgani et al. (1989). The proof of existence and uniqueness
of the dynamics is taken from Komech and Spohn (2000), where a much wider
class of external potentials is allowed. A somewhat different technique is used
by Bauer and Dürr (2001). They also cover the case of a negative bare mass and
discuss the smoothness of solutions in terms of the smoothness of initial data.

Section 2.5

This section is based on Appel and Kiessling (2001). Amongst many other results
they explain the somewhat tricky variation of the action (2.97). Global existence
of solutions is available in the case where the charge moves with constant velocity
(Appel and Kiessling 2002). Appel and Kiessling (2001) rely on the monumental
work of Nodvik (1964), but differ in one crucial aspect. Nodvik assumes that the
mass of the extended body is concentrated in its center, which implies Ib = 0.
Newton’s equations for the torque degenerate then into a constraint, which makes
the Cauchy problem singular. A discussion of the Nodvik model can be found in
Rohrlich (1990), chapter 7-4. The relativistic Thomas precession is discussed in
Thomas (1926, 1927), Møller (1952), and in Misner, Thorne and Wheeler (1973),
which is an excellent source on relativistic electrodynamics. Another informative
source is Thirring (1997).

Of course, relativistic theories were studied much earlier, e.g. Born (1909). I
refer to Yaghjian (1992) for an exhaustive discussion. The early models use a
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continuum description of the extended charge where each charge element has a
velocity. They are not dynamical models in our sense, simply because there are
more unknowns than equations. Also inner rotation is neglected, which, as we dis-
cussed, is not admissible in a relativistic theory.

The current generated by a point charge can be written as

j(x) = e

∞∫
−∞

dτu(τ )δ(x − q(τ )) . (2.98)

McManus (1948) proposes to smear out the δ-function as

j(x) = e

∞∫
−∞

dτu(τ )ϕMM((x − q(τ ))2) , (2.99)

which is to be inserted in the Lagrange density (2.82). He does not identify
the conserved four-momentum, see also Peierls (1991) for illuminating explana-
tions. Schwinger (1983) discusses the structure of the electromagnetic energy–
momentum tensor in the case of rectilinear motion of the charge.

A more radical approach to a fully relativistic theory is to give up the no-
tion of a material charged object and to regard electrons as point singularities
of the Maxwell–Lorentz field. The guiding example are point vortices in a two-
dimensional ideal Euler fluid, whose motion is governed by a closed set of differ-
ential equations which are of Hamiltonian form with the 1- and 2-component of the
position as a canonically conjugate pair. In electrodynamics such a program was
launched by Born (1933) and Born and Infeld (1933) and has not lost in attraction
even now, mostly through activities in high-energy physics and string theory. Still,
to have meaningful Newtonian equations of motion for the singularities is not so
readily achieved. A recent proposal, based on the Hamilton–Jacobi equation, has
been made by Kiessling (2003). He also provides a coherent overview of earlier
attempts.
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Historical notes

3.1 Extended charge models (1897–1912)

When in 1897 J. J. Thomson identified the cathode rays as consisting of parti-
cles with charge −e, not only had he discovered the first elementary particle, but
posed the theoretical challenge of computing the energy–momentum relation of
this novel object. To put it concisely, we write the equations of motion in approxi-
mately uniform E and B fields as

m(v)v̇ = e(E + c−1v× B) (3.1)

with m(v) the velocity-dependent mass as a 3 × 3 matrix. The challenge was to
predict the ratio m(v)/e. For small velocities it was well established that the mass
is independent of v. But for the electron with its tiny mass and unprecedented range
of accessible velocities the case was wide open. In fact, Thomson (1881) himself
had pointed out that, in analogy with a ball immersed in a fluid, the coupling to
the self-generated electromagnetic field will induce a velocity dependence of the
mass.

So which theory could be used to determine m(v)? In fact, there was little
choice. Since the phenomenon under consideration is clearly electromagnetic, the
Maxwell–Lorentz equations had to be used, and since the trajectory of a single
charge was measured, one had to couple through Newton’s equations of motion.
Thus the electron was pictured as a tiny sphere charged with electricity. In the
inhomogeneous Maxwell equations the current generated by that moving sphere
had to be inserted. On the other hand the electromagnetic fields react back on
the charge distribution through the Lorentz force. Thereby the so-called extended
charge model was introduced. Abraham (1903, 1904) adopted a charge distribution
which is rigid in the laboratory frame. The corresponding energy–momentum re-
lation is discussed at length in the second volume of his book on electromagnetism
(Abraham 1905), compare with section 4.1. For Abraham’s model, Sommerfeld

33
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(1904a, 1905) obtained an exact equation of motion for the electron. As a com-
plicating and unfamiliar feature it contains memory terms through the integration
over the retarded fields. Lorentz (1904a, b) proposed a charge distribution which
is rigid in its momentary rest frame, and therefore, as seen from the laboratory
frame, contracting parallel to its momentary velocity. It was left completely open
by which forces this charge distribution would be kept in place. Poincaré (1905,
1906) developed nonelectromagnetic models where additional stresses counter-
acted the Coulomb repulsion. Bucherer (1904, 1905) and Langevin (1905) intro-
duced a charge distribution Lorentz contracted under the constraint of constant
volume.

Up to 1900 electromagnetism was dominated by mechanics, in the sense that
physicists felt compelled to introduce mechanical models for electromagnetic
fields. Light would propagate through a rather mysterious gas, called the ether,
and not simply through vacuum. The great revolution of the young electrodynam-
icists of the day was to reverse this position and consider inertial mass to be of
purely electromagnetic origin. This electromagnetic world picture was nourished
by the fact that in all extended charge models the velocity-dependent mass has the
additive structure m(v) = mb1l + mf(v), as 3 × 3 matrices with 1l the unit matrix,
where mb is the bare mechanical mass of the particle, in accordance with Newto-
nian mechanics taken to be velocity independent, and mf(v) is the mass due to the
coupling to the field, which was to be computed from the model charge distribu-
tion. In the spirit of the electrodynamic world picture it was natural to set mb = 0.
Then Lorentz predicted the standard relativistic velocity dependence, which only
for |v/c| > 0.3 differed significantly from the results of Abraham and Bucherer.

While experiments were on the way to decide between the competing theories,
the whole enterprise came to a sudden end, since Einstein (1905a, b) forcefully
argued that just like electromagnetism in vacuum also the mechanical laws had to
be Lorentz invariant. But if Einstein was right, then the energy–momentum rela-
tion of the electron had to be the relativistic one, as emphasized independently by
Poincaré (1906). Thus the only free parameter was the rest mass of the electron
which anyway could not be deduced from theory, since the actual charge distribu-
tion was not known. There was simply nothing left to compute. At the latest with
the atomic model of Bohr, to say 1913, it became obvious that a theory based on
classical electromagnetism could not account for the observed stability of atoms
nor for the sharp spectral lines. Classical electron theory, as a tool for explaining
properties of atoms, electrons, and nuclei, was abandoned.

The experimental status remained ambiguous for some time. Kaufmann (1901)
favored Abraham’s model up to 1906. Only through the experiments of Bucherer
(1908, 1909) were the predictions of Einstein and Lorentz considered to be rea-
sonably confirmed. Of course, by that time Einstein had already convinced the
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theoreticians, and any other outcome would have been in serious doubt. A repeti-
tion of these historical experiments dryly concludes that “it seems fair to say that
the Bucherer–Neumann experiments proved very little, if anything more than the
Kaufmann experiments, which indicated a large qualitative increase of mass with
velocity”, Zahn and Spees (1938).

The effective equation of motion for the electron as given by Eq. (3.1) could
not possibly have been the full story. Through the work of Larmor it was already
understood that a charge loses energy through radiation at a rate roughly propor-
tional to v̇2. Lorentz observed that in the approximation of small velocities this
loss could be accounted for by the friction or radiation reaction force

Frr = e2

6πc3
v̈ , (3.2)

which had to be added to the Lorentz force in Eq. (3.1). In 1904 Abraham obtained
this friction force for arbitrary velocities as

Frr = e2

6πc3

[
γ 4c−2(v · v̈)v+ 3γ 6c−4(v · v̇)2v+ 3γ 4c−2(v · v̇)v̇+ γ 2v̈

]
. (3.3)

He argued that energy and momentum are transported to infinity through the far
field. On that scale the charge distribution is like a point charge and the electromag-
netic fields can be computed from the Liénard–Wiechert potentials. Using conser-
vation of energy and momentum for the total system he showed that the loss at
infinity could be balanced by the friction-like force (3.3). Von Laue (1909) real-
ized that the radiation reaction (3.3) is relativistically covariant and can be written
as

Frr = e2

6πc3

[
ü − c−2(u̇ · u̇)u

]
, (3.4)

with u the four-velocity. It is in this form that the radiation reaction appears in the
famous 1921 review article of Pauli on relativity. But apparently there was no in-
centive to study properties of Newton’s equations of motion (3.1) including the full
radiation reaction correction (3.3). Using the data from the Kaufmann experiment
Abraham estimated the radiation reaction to be down by a factor of 10−9 relative
to the Hamiltonian motion. Schott (1912) after studying the motion in a uniform
electric field concluded: “Hence the effect of the reaction due to radiation is quite
inappreciable in this and probably in all practical cases.”

The first chapter on the dynamics of classical electrons closes around 1912 with
the relativistic version of elasticity theory for deformable bodies by Born (1909)
and von Laue (1911a, b). In essence there were two results: (i) a relativistically
covariant expression for the radiation reaction and (ii) an energy–momentum rela-
tion for the charged particle dependent on the particular model charge distribution.
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Of these models only Lorentz’s model of a charge distribution properly contract-
ing along its instantaneous velocity is consistent with Einstein’s theory of special
relativity.

3.2 Nonrelativistic quantum electrodynamics

The time lapse was short: In late 1925 Heisenberg formulated his matrix mechan-
ics and in early 1926 Schrödinger had come to wave mechanics. Through Dirac’s
transformation theory both approaches were shown to be equivalent. But more
importantly in our context, Dirac clearly formulated the rules of canonical quanti-
zation, providing the tools for quantizing any Hamiltonian system including those
with an infinite number of degrees of freedom. In 1928 Dirac discovered the rela-
tivistic generalization of the Schrödinger equation. From then on the theoretician’s
avant garde strived for creating a relativistic quantum electrodynamics understood
as a specific quantum field theory – no small effort – which in a broad sense still
continues with us today. The nonrelativistic theory, our concern here, was regarded
as being settled. In fact, in its basic theoretical aspects, the research monograph of
Heitler (1936) does not differ significantly from modern variants. But obviously,
many fascinating phenomena and theoretical developments still lay ahead.

Let us briefly recall the major steps. Born, Heisenberg and Jordan (1926) quan-
tized the wave equation by regarding it as corresponding to an infinite set of har-
monic oscillators. They studied the energy fluctuations and derived Planck’s law.
On 2 February 1927 Dirac proudly reported to Bohr that, on the basis of the new
quantum theory, he knew how to compute the lifetime and the line shape of an
excited state of an atom in the approximation where only a single photon is emit-
ted. A systematic quantum treatment of emission and absorption of radiation is
Dirac (1927). Fermi (1930) recognized the importance of the Coulomb gauge and
quantized a system with an arbitrary number of charges. His 1932 review article
discusses the quantization of the (many-particle) Abraham model as we know it
today; compare with chapter 13. With the theoretical foundations laid down, most
physical processes of interest could be handled through second-order perturbation.
Perturbation theory as applied to an isolated bound state had been well established.
However, for radiation one has to deal with resonances, i.e. unperturbed energies
embedded in the continuum energy of field modes. On a practical level Fermi’s
golden rule settled the issue. The reason why and in what sense this was the cor-
rect answer triggered a continuing theoretical effort. As the body of radiation phe-
nomena explainable through quantum mechanics accumulated, the trust in the new
theory increased. Divergences were of concern, but, according to Heitler, “it seems
now that there is a certain limited field within which the present quantum electro-
dynamics is correct”. High frequencies had to be cut off to taste. In this spirit Bethe
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arrived at his famous prediction for the Lamb shift of the 2S level of the hydrogen
atom.

As well as ultraviolet divergence, nonrelativistic quantum electrodynamics is
also infrared divergent, as discovered by Bloch and Nordsieck (1937) and more
exhaustively studied by Pauli and Fierz (1938). Even today infrared divergence is a
somewhat elusive physical phenomenon. It says that an accelerated charge radiates
an infinite number of photons. Since their total energy is finite, by necessity these
photons must have ever-increasing wavelengths.

3.3 The point charge

In the 1930s and early 1940s it was a fairly widespread belief that one way to
overcome the difficulties of quantum electrodynamics is a better understanding of
the classical theory of point charges coupled to their radiation field. Of course,
this was to be understood only as an intermediate step to the final goal, namely a
consistent quantized theory. Our third section deals with a single paper: “Classical
theory of radiating electrons” submitted by P. A. M. Dirac on 15 March 1938.
Dirac’s paper was equally motivated by quantum electrodynamics; however, as
such it is concerned only with classical electron theory.

We have to report the findings of Dirac in sufficient detail, since most later
activities start from there. The formal argument in the original paper can be well
followed and alternative versions can be found in Rohrlich (1990), Teitelbom et al.
(1980), and Thirring (1997). Thus there is no need for repetition and we can focus
on the conclusions. At first reading it is best to disregard all philosophical claims
and concentrate on the equations. But before that, let us see how Dirac himself
viewed the 1897–1912 period:

The Lorentz model of the electron as a small sphere charged with electricity, possessing
mass account of the energy of the electric field around it, has proved very valuable in
accounting for the motion and radiation of electrons in a certain domain of problems,
in which the electromagnetic field does not vary too rapidly and the accelerations of the
electrons are not too great.

Dirac’s goal was to construct quantum electrodynamics. There the electron is re-
garded as an elementary particle with, almost by definition, no internal structure.
Thus Dirac had to dispense with model charges and develop a theory of point-like
electrons.

What then did Dirac really accomplish? Of course, he assumes the validity of
the inhomogeneous Maxwell equations. The current is generated by a point charge
whose motion is yet to be determined. Mechanically this point charge is relativistic
with bare mass mb. There is no explicit reaction of the field back onto the charge,
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since at no stage would Dirac invoke the Lorentz force. Instead conservation of
energy and momentum should suffice to fix the true trajectory of the point charge.
Note that this is very different from the extended charge models where the starting
point is a closed system of equations for the particle and the Maxwell field. Dirac
studies the flow of energy and momentum through a thin tube of radius R around
the world line of the particle. The computation simplifies by writing the retarded
fields generated by the motion of the point charge as

Fret = 1

2
(Fret + Fadv) + 1

2
(Fret − Fadv) (3.5)

in all of space-time. The difference term turns out to be finite on the world line of
the charge and, through a balancing of energy and momentum, yields in the limit
R → 0, the relativistic radiation reaction (3.4).

The more delicate term in (3.5) is the sum, which is divergent on the world
line of the particle. At the expense of ignoring other divergent terms, cf. Thirring
(1997), Eq. (8.4.16), Dirac obtains the expected result, namely

− e2

4π Rc2
u̇ = −mfu̇ . (3.6)

Adding the radiation reaction (3.4) and equating with the mechanical four-
momentum, the final result is an equation of motion which determines the tra-
jectory of the particle,

(mb + mf)u̇ = mexpu̇ = eFex · u + e2

6πc3

[
ü − c−2 (u̇ · u̇)u

] + O(R) (3.7)

with an error of the size of the tube, where we have added the prescribed electro-
magnetic field tensor Fex of external fields.

To complete his argument, Dirac had to take the limit R → 0. Since mf → ∞,
this amounts to

mb → −∞, mf → ∞, mexp = mb + mf fixed, (3.8)

where mexp is adjusted such that it agrees with the experimentally determined mass
of the charged particle. The combined limit (3.8) is the classical mass renormal-
ization.

Dirac admits that “such a model is hardly a plausible one according to current
physical ideas but this is not an objection to the theory provided we have a reason-
able mathematical scheme.”

Equation (3.7), dropping the terms O(R), is the Lorentz–Dirac equation. Within
the framework of Dirac it makes no sense to ask whether the Lorentz–Dirac equa-
tion is “exact”, since there is nothing to compare with. The Lorentz–Dirac equation



3.3 The point charge 39

comes as one package, so to speak. One could compare only with real experiments,
which is difficult since the radiation reaction is very small, or one could compare
with higher-level theories such as quantum electrodynamics. But this has never
been seriously attempted, since, to begin with, it would require a well-defined rel-
ativistic quantum field theory which is a difficult task.

The Lorentz–Dirac equation is identical to the effective equations of motion ob-
tained from extended charge models, if we ignore for a moment the possibility that
the kinetic energy might come out differently depending on which model charge
is used. In this sense Dirac has recovered the previous results through a novel ap-
proach. However, there is an important distinction. For extended charge models
one has a true solution for the position of the charged particle, say q̃(t). One can
then compare q̃(t) with a solution of the Lorentz–Dirac equation and hope for
agreement in asymptotic regimes, like slowly varying potentials. In addition, for
an extended charge model one can set the bare mass to some negative value and
study the consequences.

Dirac continues with a remark which shattered the naive trust in classical elec-
tron theory. He observes that even for zero external fields Eq. (3.7) has solutions
where |v(t)/c| → 1 as t → ∞ and |v̇(t)| increases beyond any bound. Such un-
physical solutions he called runaway solutions. It is somewhat surprising that run-
aways apparently went completely unnoticed before, which only indicates that
no attempt was made to apply the Lorentz–Dirac equation to a concrete physi-
cal problem. If one inserts numbers, then runaways grow very fast. For instance,
for an electron v̇(t) = v̇(0)et/τ with τ = 10−23 s. Thus if the Lorentz–Dirac equa-
tion (3.7) is a valid approximation in an extended charge model, which after all
was the general understanding of the 1897–1912 period, then this model must
also have runaway solutions – a conclusion in obvious conflict with empirical
evidence.

Dirac proposed to eliminate the runaway solutions by requiring the asymptotic
condition

lim
t→∞ u̇(t) = 0 . (3.9)

As a bonus the problem of the missing initial condition is resolved: since in (3.7)
the third derivative appears, one has to know q(0), q̇(0), as in any mechanical
problem, and in addition q̈(0). If one accepts (3.9), the initial condition for u̇ is
replaced by the asymptotic condition (3.9). Dirac checked that for zero external
forces and for a spatially constant but time-dependent force the asymptotic condi-
tion singles out physically meaningful solutions. By the end of 1938 the classical
electron theory was in an awkward shape, in fact in a much worse shape than by
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the end of 1912. Formal, but even by strict standards careful, derivations yielded
an equation with unphysical solutions. How did they come into existence? While
Dirac’s asymptotic condition seemed to be physically sensible, it was very much
ad hoc and imposed post festum to get rid of unwanted guests. Even physicists
willing to accept the asymptotic condition as a new principle, like Haag (1955),
could not be too happy. Solutions satisfying the asymptotic condition are acausal
in the sense that the charge starts moving even before any force is acting. To be
sure, the causality violation is on the time scale of τ = 10−23 s for an electron, and
even shorter for a proton, and thus has no observable consequences. But acausality
remains as a dark spot in relativistic theory. The clear recognition of runaway so-
lutions generated a sort of consensus that the coupled Maxwell–Newton equations
have internal difficulties.

In the preface of his book Rohrlich writes:

Most applications treat electrons as point particles. At the same time, there was the
widespread belief that the theory of point particles is beset with various difficulties such as
infinite electrostatic self-energy, a rather doubtful equation of motion which admits phys-
ically meaningless solutions, violation of causality, and others. It is not surprising, there-
fore, that the very existence of a consistent classical theory of charged particles is often
questioned.

In Chapter 28 of the Feynman Lectures we read:

Classical mechanics is a mathematically consistent theory; it just doesn’t agree with ex-
perience. It is interesting, though, that the classical theory of electromagnetism is an un-
satisfactory theory all by itself. The electromagnetic theory predicts the existence of an
electromagnetic mass, but it also falls on its face in doing so, because it does not produce
a consistent theory.

And finally to quote from the textbook on mathematical physics by Thirring:

Not all solutions to (3.7) are crazy. Attempts have been made to separate sense from non-
sense by imposing special initial conditions. It is to be hoped that some day the real solution
of the problem of the charge–field interaction will look differently, and the equations de-
scribing nature will not be so highly unstable that the balancing act can only succeed by
having the system correctly prepared ahead of time by a convenient coincidence.

To be sure, these issues were of concern only to theoretical physicists in search
of a secure foundation. Synchrotron radiation sources were built anyhow. The
loss in energy of an electron during one revolution can be accounted for by
Larmor’s formula. This is then the amount of energy which has to be supplied
in order to maintain a stationary electron current. The radiation emitted from
the synchrotron source is computed from the inhomogeneous Lorentz–Maxwell
equations with a point charge source, i.e. from the Liénard–Wiechert potentials.
No problem.
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3.4 Wheeler–Feynman electrodynamics

To avoid the infinities of self-interaction Wheeler and Feynman (1945, 1949) de-
signed a radical solution, at least on the classical level, since the quantized version
of their theory was never accomplished.

Their basic tenet is to have as dynamical degrees of freedom only the trajectories
of the particles. As such there are no electromagnetic fields, even though one still
uses them as a familiar and convenient notational device. As Wheeler (1998) puts
it later on, the 1940s were his period of “all particles – no fields” and he wanted to
understand how far this point of view could be pushed.

Wheeler–Feynman electrodynamics starts from an action which was first writ-
ten down by Fokker (1929). Let us consider N particles, where the i-th particle has
mass mi , charge ei , and a motion given by the world line qi (τi ), i = 1, . . . ,N . The
world line is parametrized by its eigentime τi and the dot ‘˙’ denotes differentiation
with respect to this eigentime. The action functional has the form

S = −
N∑

i=1

mi c2
∫

dτi + 1

2

N∑
i, j=1
i �= j

ei e j

∫ ∫
δ((qi − q j )

2)(q̇i · q̇ j )dτi dτ j . (3.10)

A formal variation of S leads to the equations of motion

mi q̈i = ei

c

N∑
j=1
j �=i

1

2

(
Fret( j)(qi ) + Fadv( j)(qi )

) · q̇i . (3.11)

Here Fret( j)(q i ) and Fadv( j)(q i ) are the retarded and advanced Liénard–Wiechert
fields generated by the charge at q j and evaluated at q i . They are derived from the
retarded and advanced potentials

Aret( j)(x) = e j q̇ j (τ jret)[(x − q j (τ jret)) · q̇ j (τ jret)]
−1 , (3.12)

Aadv( j)(x) = e j q̇ j (τ jadv)[(x − q j (τ jadv)) · q̇ j (τ jadv)]
−1 (3.13)

with τ jret, respectively τ jadv, the eigentime when the trajectory q j crosses the
backward, respectively the forward, light cone with apex at x. Notationally (3.11)
looks like a set of ordinary differential equations. In fact, the locations of the other
particles have to be known both at the advanced and retarded times, a situation
which is not covered by any of the standard techniques. Even if the existence of
solutions is taken for granted, it is widely open which data would single out a
specific one.

To transform (3.11) into a familiar form, we use the decomposition (3.5) and
Dirac’s observation that (Fret − Fadv)/2 at the trajectory of the particle yields the
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radiation reaction. Then

mi q̈i = ei

c

N∑
j=1
j �=i

Fret( j)(qi ) · q̇i + e2
i

6πc3

( ...
qi − c−2 (q̈i · q̈i ) q̇i

)

+ ei

c

N∑
j=1

1

2

(
Fadv( j)(qi ) − Fret( j)(qi )

) · q̇ i . (3.14)

Of course, being symmetric in time, we could have equally transformed to the
advanced fields for the force and a radiation reaction with reversed sign.

As a specific example let us consider the scattering of two charges with all other
charges far apart. In the framework of the Lorentz model one would start with two
charges and their comoving Coulomb field, sufficiently far apart and with incoming
velocities. If radiation reaction is neglected, the bare mass is renormalized, and
the force on one particle is due to the other particle at the retarded time. In the
Wheeler–Feynman theory for two particles, the mass is just the bare mass, the
forces are the average of retarded and advanced, and there is no radiation reaction.
The Wheeler–Feynman theory seems to be at variance with empirical observations.

The crucial new element of their theory is that even in the case of two-particle
scattering, the motion of all other charges cannot be ignored. Thus in (3.14), we
take only i = 1, 2, but sum over large N . Wheeler and Feynman spend a consider-
able amount of effort to argue that when averaged over the random-like motion of
all other charges, the last term in (3.14) vanishes and they call this the condition
of a perfect absorber. The exact cancellation is hard to check and one has to be
satisfied with qualitative arguments. The perfect absorber granted, in the first sum
of (3.14) only the terms j = 1, 2 contribute by assumption and one has achieved
the reduction to a two-particle problem with retarded forces. In its 18-dimensional
phase space there is a 12-dimensional submanifold of physical solutions; all others
run away. Wheeler and Feynman discuss an energy-like quantity for the system of
N charges which seems to ensure that all solutions to (3.11) are well behaved. As a
consequence, only the physical solutions to (3.14) with perfect absorber are a valid
approximation to the motion of N charges as governed by (3.11) and agreement
with the conventional theory is accomplished.

Notes and references

Section 3.1

An authorative, highly recommended source on the history of the classical elec-
tron theory is Miller (1997), which should be augmented by Pais (1972, 1982),
by Rohrlich (1973), and by the introductory chapters of Rohrlich (1990). For a
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discussion of the Kaufmann experiments I refer to Cushing (1981) and Miller
(1997). The monograph by Schott (1912) is the most complete technical account.
It contains lots of material which has become an integral part of our present-day
textbooks on electrodynamics and discusses in detail properties of various electron
models. Reviews of classical electron theory are Hönl (1952), Caldirola (1956),
Erber (1961), Barut (1980), Teitelbom et al. (1980), Coleman (1982), and Pearle
(1982). The interconnection with quantum electrodynamics before the 1947 Shel-
ter Island conference is vividly described in Schweber (1994).

Section 3.2

There are excellent studies of the historical development of quantum electrody-
namics as culminating in the work of Dyson, Feynman, Schwinger, and Tomon-
aga, in which as one part also the nonrelativistic theory is discussed. The most
complete coverage is Schweber (1994), where the mentioned letter by Dirac is re-
produced. Miller (1994) covers the history up to 1938 and includes reprints of the
most important papers. A somewhat different selection is Schwinger (1958) with
a recommended introduction. A further source is the monumental work of Mehra
and Rechenberg (2000) on The Historical Development of Quantum Theory. The
relevant volume is no. 6, part 1. Modern textbooks and research monographs on
nonrelativistic quantum electrodynamics are Heitler (1936, 1958), Power (1964),
Louisell (1973), Healy (1982), Craig and Thirunamachandran (1984), Cohen-
Tannoudji, Dupont-Roc and Grynberg (1989, 1992), Milonni (1994) among others.
They all have a common core, but emphasize rather diverse aspects once it comes
to applications.

Section 3.3

Kramers’ (1948) investigations on the mass renormalization in the classical theory
were instrumental for a correct computation of the Lamb shift. We refer to Dresden
(1987) and Schweber (1994).

Section 3.4

The two-body problem in Wheeler–Feynman electrodynamics is discussed by
Schild (1963). The existence and classification of solutions is studied by Bauer
(1997). A few explicit solutions are listed in Stephas (1992).

The opposite extreme “no particles – all fields” is briefly mentioned in the Notes
to section 2.5.
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The energy–momentum relation

If the external forces vanish, the equations of motion must have a solution, in which
the particle travels at constant velocity v in the company of its electromagnetic
fields. There seems to be no accepted terminology for this object. Since it will be
used as a basic building block later on, we need a short descriptive name and we
call this particular solution a charge soliton, or simply soliton, at velocity v, in
analogy to solitons of nonlinear wave equations. The soliton has an energy and a
momentum which are linked through the energy–momentum relation.

For the Lorentz model, by Lorentz invariance, it suffices to determine the four-
vector of total momentum in the rest frame, where it is of the form (ms, 0), ms

being the rest mass of the soliton. ms depends on |ωE|. Through a Lorentz boost
one obtains the charge soliton moving with velocity v and, of course, the relativis-
tic energy–momentum relation. No such argument is available for the Abraham
model and one simply has to compute its energy–momentum relation, which can
be achieved along two equivalent routes. The first one is dynamic, as alluded to
above, while the second one is static and directly determines the minimal energy
at fixed total momentum. The minimizer is the charge soliton.

In the following two sections we compute the conserved energy and momentum,
the charge solitons, and the energy–momentum relation for both the Abraham and
the Lorentz model. φex = 0, Aex = 0 is assumed throughout.

4.1 The Abraham model

The mechanical momentum of the particle is given by

mbγv (4.1)

and the momentum of the field by

Pf =
∫

d3x
(
E(x) × B(x)

)
. (4.2)

44
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Thus we set the total momentum

P = mbγv+ Pf (4.3)

as a functional on M. It is easily checked that P is conserved by the coupled
Maxwell and Newton equations (2.39)–(2.41). To ensure that P corresponds physi-
cally to the total momentum we note that the Lagrangian (2.43) of the Abraham
model is invariant under spatial translations. By Noether’s theorem, this symmetry
is linked with a conserved quantity which turns out to be P .

We want to minimize the energy at fixed total momentum. One eliminates v

from (2.44) and (4.3) and thus has to minimize

(
m2

b +
(
P −

∫
d3x(E × B)

)2)1/2 + 1

2

∫
d3x(E2 + B2) (4.4)

at fixed P and subject to the constraints ∇ · E = eϕ , ∇ · B = 0. By translation
invariance we may center ϕ at an arbitrary q ∈ R

3. For q = 0, say, the minimizer
is unique and given by

Ev(x) = −∇φvϕ(x) + v(v · ∇φvϕ(x)) ,

Bv(x) = −v× ∇φvϕ(x) (4.5)

with v ∈ V = {v| |v| < 1}. Here

φ̂v(k) = e[k2 − (v · k)2]−1 , (4.6)

or in physical space

φv(x) = e(4π)−1(γ −2x2 + (v · x)2)−1/2 , (4.7)

and φvϕ is shorthand for the convolution φv ∗ ϕ, i.e. φ̂vϕ(k) = (2π)3/2ϕ̂(k)φ̂v(k).
v has to be adjusted such that P = Ps(v) with

Ps(v) = mbγv+ e2
∫

d3k|ϕ̂(k)|2([k2 − (k · v)2]−1v

− γ −2[k2 − (k · v)2]−2(k · v)k)
= v

(
mbγ + mf |v|−3 [ − |v| + (1 + v2)arctanh|v|]) , (4.8)

where mf is the electrostatic energy of the charge distribution eϕ,

mf = 1

2
e2

∫
d3x d3x ′ϕ(x) ϕ(x′)(4π |x − x′|)−1 . (4.9)

The map V � v �→ Ps(v) ∈ R
3 is one-to-one and therefore P = Ps(v) has a
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unique solution. The minimizing energy is given by

Es(v) = mbγ + 1

2
e2

∫
d3k|ϕ̂(k)|2 [k2 − (k · v)2]−2((1 + v2)k2

− (3 − v2)(v · k)2)
= mbγ + mf |v|−1[ − |v| + 2 arctanh|v|] . (4.10)

Eliminating now v from Es and Ps yields the energy–momentum relation

Eeff(p) = Es(v(p)) (4.11)

with v(Ps) the function inverse to Ps(v). It is emphasized that Eeff depends on the
charge distribution only through its electrostatic energy.

We note that

Ps(v) = ∇vT (v) , (4.12)

where

T (v) = −mbγ
−1 + 1

2
e2 γ −2

∫
d3k|ϕ̂(k)|2 [k2 − (k · v)2]−1

= −mbγ
−1 − mf |v|−1(1 − |v|2) arctanh|v| , (4.13)

and that

Es(v) = Ps(v) · v− T (v) . (4.14)

This suggests that T will play the role of the inertial term in an effective
Lagrangian and Es the role of an effective Hamiltonian as our notation in (4.11)
indicates already. In particular,

v = ∇p Eeff(p) (4.15)

and, equivalently,

dPs(v)

dv
v = ∇v Es(v) (4.16)

which implies that v is to be interpreted as a velocity and dPs/dv, regarded as a
3 × 3 matrix, as the velocity-dependent mass.

For a relativistic theory one expects that

Es(v) = (mb + mf)γ , Ps(v) = (mb + mf)γv . (4.17)

Since the Abraham model is semirelativistic, there is no reason for such a prop-
erty to be satisfied. Still, as in the relativistic case, the energy–momentum relation
depends on the charge distribution eϕ only through mf.
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To gain a feeling for the field contributions to the mass we define

mf(v) = d(Ps − mbγv)

dv
= ml(v)̂v⊗ v̂+ mt(v)(1l − v̂⊗ v̂) , (4.18)

where v̂ is the unit vector along v; ml(v) is the longitudinal and mt(v) is the trans-
verse field mass. Using (4.8) one obtains

ml(v) = mf|v|−3(2|v|(1 − |v|2)−1 − 2 arctanh|v|) , (4.19)

mt(v) = mf|v|−3( − |v| + (1 + |v|2)arctanh|v|) , (4.20)

and by expanding in small v, i.e. small |v|/c,

ml(v) = 4

3
mf

(
1 + 6

5
|v|2 + 9

7
|v|4 + · · ·

)
, (4.21)

mt(v) = 4

3
mf

(
1 + 2

5
|v|2 + 9

35
|v|4 + · · ·

)
. (4.22)

In particular one has

Es(v) − Es(0) ∼= 1

2

(
mb + 4

3
mf

)
v2, Ps(v) =

(
mb + 4

3
mf

)
v . (4.23)

Thus the effective mass in the nonrelativistic approximation is

meff = mb + 4

3
mf . (4.24)

We compare (4.19)–(4.22) with a relativistic particle for small v and of the same
mass. Then

mrel = mrel
l v̂⊗ v̂+ mrel

t (1l − v̂⊗ v̂) (4.25)

with

mrel
l (v) =

(
mb + 4

3
mf

)
γ 3 =

(
mb + 4

3
mf

)(
1 + 3

2
|v|2 + 9

8
|v|4 + · · ·

)
, (4.26)

mrel
t (v) =

(
mb + 4

3
mf

)
γ =

(
mb + 4

3
mf

)(
1 + 1

2
|v|2 + 3

8
|v|4 + · · ·

)
. (4.27)

If one sets the bare mass to zero, mb = 0, even for |v| = 0.5 the error in the
velocity-dependent mass is less than 5%. Only at speeds |v| > 0.5 will the
Abraham model lose its empirical validity. The model could be partially saved by
declaring the Compton wavelength as the characteristic size of the charge distri-
bution. Then mf/mb ∼= 0.01 and the relativistic dispersion would be violated only
for speeds very close to one.
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The energy minimizer has a simple dynamical interpretation. We look for a
solution of (2.39)–(2.41) traveling at constant velocity. Let us first define

Sq,v = (Ev(x − q), Bv(x − q), q,v) (4.28)

with v ∈ V, q ∈ R
3, and Bv, Ev from (4.5). Then the solution traveling at constant

velocity is

Y (t) = Sq+vt,v . (4.29)

The particular state (4.28) will play an important role and is called a charge soliton,
labeled by its center q and its velocity v. It has the energy E(Sq,v) = Es(v) and
momentum P(Sq,v) = Ps(v). The set of all charge solitons is

S = {Sq,v| v ∈ V, q ∈ R
3} ⊂ M . (4.30)

Sometimes we use the same words and symbols for the field configuration only.
There is an instructive alternate way to represent the charge soliton. We consider

the inhomogeneous Maxwell–Lorentz equations (2.39) and prescribe the initial
data at time τ . We require that the particle travels along the straight line q = vt .
If we let τ → −∞ and consider the solution at time t = 0, then in (2.16), (2.17)
the initial fields will have escaped to infinity and only the retarded fields survive.
Using (2.16), (2.17) this leads to

Ev(x) = −
0∫

−∞
dt

∫
d3y

(∇G−t (x − y) eϕ(y − vt)

+ ∂t G−t (x − y)veϕ(y − vt)
)
, (4.31)

Bv(x) =
0∫

−∞
dt

∫
d3y ∇ × G−t (x − y)veϕ(y − vt) , (4.32)

which can be checked either in Fourier space or as being a solution of the Maxwell
equations traveling at constant velocity v.

4.2 The Lorentz model

We fix a Lorentz frame, FL, and seek a solution with q(τ ) = 0, w(τ ) = w for all
τ . The corresponding four-current is

j(x) = eϕr(|x|)Ω · x (4.33)
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and provides the source for the electromagnetic vector potential. The inhomoge-
neous Maxwell equations yield

φ0,ω(x) =
∫

d3x ′ 1

4π |x − x′|eϕ(x′) , (4.34)

A0,ω(x) =
∫

d3x ′ 1

4π |x − x′|ωE × x′eϕ(x′) , (4.35)

the index 0 standing for v = 0.
Outside the support of the charge distribution, φ0,ω is the Coulomb potential,

φ0,ω(x) = e

4π |x| , |x| ≥ Rϕ , (4.36)

and A0,ω is the vector potential generated by the magnetic moment

µ = 1

2

∫
d3xx × (ωE × x)eϕ(x) = µωE with µ = 1

3
e
∫

d3xϕ(x)x2 ,

(4.37)

which means

A0,ω(x) = µ × x
4π |x|3 , |x| ≥ Rϕ . (4.38)

To check the Lorentz force and torque we note that a well-defined momentum
and angular momentum requires the equator to have subluminal speed, i.e.

ωRϕ ≤ 1 , ω = |ωE| . (4.39)

Inserting the fields (4.34), (4.35) in Eqs. (2.92), (2.95) we indeed find f (τ ) = 0,
t(τ ) = 0 and thus (2.86), (2.87) are satisfied.

The family of charge solitons is obtained from (4.34), (4.35) through a Lorentz
boost with velocity u = (γ, γv). They are labeled by their center at t = 0, set equal
to zero here, by the velocity v, and by their angular velocity ω. Explicitly we have

φ(x, t) = φv,ω(x − vt) , A(x, t) = Av,ω(x − vt) . (4.40)

Because of the convolution structure φv,ω, Av,ω are more easily written in Fourier
space, where

φ̂v,ω(k) = e

k2 − (k · v)2

[
ϕ̂(D−1k) + v · (ω × i∇kϕ̂)(D−1k)

]
, (4.41)

Âv,ω(k) = e

k2 − (k · v)2

[
vϕ̂(D−1k) + 1

γ
(ω × i∇kϕ̂)(D−1k)

+ γv

1 + γ
v · (ω × i∇kϕ̂)(D−1k)

]
(4.42)
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with D−1k = k − (γ −1 − 1)(̂v · k)̂v. We note that (4.40), (4.42) coincide with
(4.5), (4.6) for ω = 0 and D = 1. Put differently, (4.40) and (4.42) properly incor-
porate the Lorentz contraction of the charge distribution and the extra fields due
to the nonvanishing magnetic moment. To obtain the energy–momentum relation
we only have to compute the energy of the soliton in its rest frame. By rotation
invariance, this energy depends on ω through its absolute value ω = |ω|. From
(2.89) the bare gyrational mass of the particle is given by

mg(ω) = mb

∫
d3xϕ(x)(1 − |ωE × x|2)−1/2

= mb

∫ ∞

0
dr4πr2ϕr(r)

1

ωr
arctanhωr . (4.43)

The field energy is defined through

mf = 1

2

∫
d3x(E2 + B2) . (4.44)

Inserting from (4.34), (4.35) results in

mf(ω) = 1

2
e2

∫
d3k|ϕ̂|2 1

k2
+ 1

3
ω2e2

∫
d3k|∇kϕ̂|2 1

k2
. (4.45)

Thus the charge soliton carries the energy

ms(ω) = mg(ω) + mf(ω) (4.46)

and its energy–momentum relation is necessarily relativistic,

E = (p2 + m2
s )

1/2 . (4.47)

The rotational degrees of freedom are handled in the same spirit. The charge dis-
tribution carries the magnetic moment defined in (4.37). µ sets the rotational cou-
pling to the electromagnetic field. Like the charge, it is not renormalized through
the interaction with the field. According to (2.93), (2.94), the bare angular momen-
tum of the particle is

sb = Ib(ω)wE , (4.48)

where

Ib(ω) = mb

∫ ∞

0
dr4πr2ϕr(r)

1

2ω2

( − 1 + 1 + ω2r2

ωr
arctanhωr

)
. (4.49)

In addition, the soliton carries a field angular momentum defined by

sf =
∫

d3xx × (E × B) (4.50)
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with E, B in their rest frame inserted from (4.34), (4.35). One obtains

sf = IfwE , If = 2

3
e2

∫
d3k|∇kϕ̂|2 1

k2
. (4.51)

Thus the charge soliton carries the spin

ss = sb + sf = (Ib(ω) + If)wE . (4.52)

4.3 The limit of zero bare mass

The bare mass seems to be an artifact of the theory, since there is no way to
determine its value through experiments involving only electromagnetic forces
(unless the charge distribution could be probed). Thus a natural and conceptu-
ally attractive proposal is to take mb = 0, thereby declaring all mass to be of
electromagnetic origin. We discuss here the limit mb → 0+ on the level of the
energy–momentum relation, whereas the correct procedure would be to study
this limit on the level of a solution to the evolution equations. The problem re-
mains unexplored, since for the equations of motion zero bare mass is rather
singular.

(i) Abraham model. Since ms is additive, the only choice is simply to set mb =
0. In particular, the kinetic energy equals 1

2(4
3mf)v

2 for small velocities. If we
equate 4mf/3 with mexp, the experimental mass of the electron, we conclude that
Rϕ

∼= rcl = 3 × 10−13 cm with a prefactor which depends on the choice of the
form factor ϕ̂.

(ii) Lorentz model. Since mg depends on ω, the Lorentz model offers more
variety. We recall Eq. (4.43). If the integral is bounded, which in particular is
the case for ϕ bounded and ωRϕ ≤ 1, then mg vanishes in the limit mb → 0.
We conclude that ms = mf(ω) and Is = If. A novel situation occurs if the inte-
gral in (4.43) can be made to diverge, for which we must choose ϕ to be well
concentrated at the sphere with radius Rϕ . To be concrete let us set R = Rϕ and
ϕ(x) = δ(|x| − R)(4π R2)−1. We also reintroduce c. Then the integral in (4.43)
becomes

mg(ω) = mb
c

ωR
arctanh

ωR

c
. (4.53)

We let ωR/c → 1 and mb → 0 such that

mb arctanh
ωR

c
→ m̄ (4.54)

with m̄ ≥ 0 still at our choice. Note that in this limit the equator rotates with
the speed of light. For the mass, moment of inertia, and magnetic moment of the
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soliton, one obtains, respectively,

ms = m̄ + 11

18

e2

c2 R
, Is = 2

3
m̄cR + 2

9

e2

c
, µ = 1

3
eR , (4.55)

which leaves us with R and m̄ as free parameters. They can be fitted through the
experimentally determined mass and gyromagnetic ratio of the electron. While for
the mass we simply set ms = mexp, the g-factor requires a more elaborate discus-
sion which will be taken up in section 10.1.

Notes and references

Section 4.1

Abraham (1905) computes the energy–momentum relation in essence along the
same lines as outlined here (except for the variational characterization). Sommer-
feld (1905) uses the expansion of the exact self-force, as will be explained in chap-
ter 7. Lorentz (1904a) proposes a model charge which relativistically contracts
parallel to its momentary velocity. Thus provisionally we replace the charge dis-
tribution eϕ(x) by its Lorentz contracted version

ϕL(x) = γ ϕr([x2 + γ 2(x · v)2]1/2) , ϕ̂L(k) = ϕ̂r([k2 − (v · k)2]1/2) . (4.56)

This expression is substituted in (4.5) and gives the electromagnetic fields comov-
ing with the charge at velocity v. Their energy and momentum are computed as
before with the result

PL(v) = v
(

mbγ (v) + 4

3
mfγ (v)

)
, (4.57)

EL(v) = mbγ (v) + mfγ (v)
(

1 + 1

3
v2

)
. (4.58)

The momentum has the anticipated form, except for the factor 4/3 which should
be 1. The energy has an unwanted v2/3. In particular the relation (4.16) does not
hold, which implies that the power equation d

dt EL(v) differs from the force equa-
tion v · d

dt PL(v). We refer to Yaghjian (1992) for a thorough discussion, which
however somehow misses step zero, namely to specify a relativistically covariant
model for an extended charge, as, e.g., in section 2.5. Schott (1912, 1915) em-
ploys a deformable elastic medium as a model charge. To compute the velocity-
dependent mass he uses essentially the same method as Sommerfeld, an exact
self-force and an expansion in the charge diameter. Schott considers also elec-
tron models different from those of Abraham and Lorentz. Reviews are Neumann
(1914) and Richardson (1916).
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There have been various attempts to improve on the oversimplistic version
(4.56) of the Lorentz model. Fermi (1922) argues that in a relativistic theory energy
and momentum have to be redefined. His argument has been rediscovered several
times and is explained in Rohrlich (1990). Poincaré (1906) takes the elastic stresses
into account. We refer to Rohrlich (1960) and Yaghjian (1992), and the instructive
example by Schwinger (1983).

Section 4.2

Since the Lorentz model is defined through a Lagrangian, the total energy and
momentum are determined from Noether’s theorem for space-time translations.
The transformation as a four-vector is then automatically guaranteed, a property
which we used in the computation of the soliton mass.

Section 4.3

The limit of zero bare mass is discussed in Appel and Kiessling (2001).
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Long-time asymptotics

For any dynamical system one of the first qualitative issues is to understand
whether there are general patterns governing the long-time behavior. In this spirit
we plan to study the long-time asymptotics of the Abraham model with prescribed
external potentials. The basic mechanism at work is the loss of energy radiated to
infinity, which is proportional to v̇(t)2 according to Larmor’s formula. Since the
energy is bounded from below, we expect

lim
t→∞ v̇(t) = 0 (5.1)

under rather general conditions. In fact, one would also expect that the velocity
tends to a definite limit,

lim
t→∞v(t) = v∞ ∈ V , (5.2)

which leaves us with two qualitatively rather different cases.

(i) v∞ = 0. The charged particle comes to rest confined by the external potentials.
(ii) v∞ �= 0. The charge escapes into a region with zero external potentials and

travels there with constant velocity.

If we take also the asymptotics for t → −∞ into account, then four familiar cases
arise: excitation by incident radiation and subsequent relaxation, (i) → (i); ioniza-
tion, (i) → (ii); capture through radiation losses, (ii) → (i); and scattering of light
from a freely moving charged particle, (ii) → (ii).

There must be a corresponding long-time asymptotic for the radiation field. It
consists of a part attached to the motion of the particle and a part scattered to
infinity. Thus a more complete description of the long-time solution is

Y (t) ∼= Sq(t),v(t) + (Eout(t), Bout(t), 0, 0) (5.3)

54
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for large t . Here Sq(t),v(t) is the charge soliton at the current position and momen-
tum and Eout(t), Bout(t) are the solution of the homogeneous Maxwell equations
with appropriately adjusted initial conditions, the scattering data which depend on
Y (0).

At present two techniques are at hand for establishing a limit like (5.3). The first
one exploits the fact that energy cannot be radiated to infinity forever. This route
requires that all field modes are coupled to the particle as expressed by the

Wiener condition (W):

ϕ̂(k) > 0 . (5.4)

The second route is based on a contraction method. It needs no extra condition and
gives explicit convergence rates. However, it requires |e| to be sufficiently small,
i.e. |e| < ē with a suitable ē depending only on the initial energy. Presumably (W )

and ē are artifacts of our mathematical technique.

5.1 Radiation damping and the relaxation of the acceleration

We will establish the limit (5.1) under the Wiener condition, but otherwise in com-
plete generality. The proof follows rather closely physical intuition and leads to an
equation of convolution type which has a definite long-time limit.

Let us consider a ball of radius R centered at the origin. At time t the sum of
the field energy in this ball and of the mechanical energy of the particle is given by

ER(t) = E(t) − 1

2

∫
{|x|≥R}

d3x
(
E(x, t)2 + B(x, t)2) (5.5)

provided R is sufficiently large. Using the conservation of total energy, E(t) =
E(0), ER changes in time as

d

dt
ER(t) = −R2

∫
d2ω ω̂ · [E(Rω̂, t) × B(Rω̂, t)] , (5.6)

where ω̂ is a vector on the unit sphere, d2ω the surface measure normalized to 4π ,
and E×B the Poynting vector for the flux in energy at the surface of the ball under
consideration. Since the total energy is bounded from below, we conclude that

ER(R) − ER(R + t) = −
R+t∫
R

ds
d

ds
ER(s) ≤ C (5.7)

with the constant C = E(0) − φ̄ independent of R and t .
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In (5.7) we first take the limit R → ∞, which yields the energy radiated to
infinity during the time interval [0, t] through a large sphere centered at the origin.
Subsequently we take the limit t → ∞ to obtain the total radiated energy. To state
the result let us define

E∞(ω̂, t) = − e

4π

∫
d3y ϕ(y − q(t + ω̂ · y)) (5.8)

× [
(1 − ω̂ · v)−1v̇+ (1 − ω̂ · v)−2(ω̂ · v̇)(v− ω̂)

]∣∣
t+ω̂·y

which is a functional of the actual trajectory of the particle. Whatever its motion
we must have ∫ ∞

0
dt

∫
d2ω |E∞(ω̂, t)|2 ≤ C < ∞ . (5.9)

Note that the integrand in (5.9) is proportional to v̇(t)2, which therefore is expected
to decay to zero for large t .

To establish (5.9) is somewhat tedious with pieces of the argument explained
in the section below and in section 8.5. One imagines that the trajectory t �→ q(t)
is given and solves the inhomogeneous Maxwell–Lorentz equations according to
(2.16), (2.17). If the time-zero fields are in Mσ , 0 < σ ≤ 1, see the definition
(2.49), then Eini(t) and Bini(t) decay as stated in (5.28). Therefore | d

ds ER(s)| <

C R2(1 + s)−2−2σ and the contribution to (5.7) from the initial fields vanishes in
the limit R → ∞. Next one has to study the asymptotics of the retarded fields,
which is carried out in section 8.5. There ε is fixed, and for our purpose we may
set ε = 1. In addition in (8.48) the sphere of radius R is centered at qε(t), rather
than at the origin. This means, in the present context one can use the asymptotics
(8.51), (8.52) as R → ∞ with qε(t) replaced by 0. Combining both arguments
proves that (5.9) follows from (5.7) in the limit R → ∞.

The real task is to extract from (5.9) that the acceleration vanishes for long
times.

Theorem 5.1 (Long-time limit of the acceleration). For the Abraham model sat-
isfying (C), (P), and the Wiener condition (W ) let the initial data be Y (0) =
(E0, B0, q0,v0) ∈ Mσ with 0 < σ ≤ 1. Then

lim
t→∞ v̇(t) = 0 . (5.10)

Proof : By energy conservation |v(t)| ≤ v̄ < 1. Inserting in (2.41) and using (P)

we conclude that |v̇(t)| ≤ C . Differentiating (2.41) and using again (P) also
|v̈(t)| ≤ C uniformly in t . Therefore E∞(ω̂, t) is Lipschitz continuous jointly in
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ω̂, t . Since the energy dissipation (5.9) is bounded, this implies

lim
t→∞ E∞(ω̂, t) = 0 (5.11)

uniformly in ω̂.
We analyze the structure of the integrand in (5.8). The retarded argument de-

pends only on y‖ = ω̂ · y. Therefore the integration over y⊥ = y − y‖ω̂ can be
carried out and we are left with a one-dimensional integral of convolution type.
We set ϕa(x3) = ∫

dx1dx2 ϕ(x). Then

E∞(ω̂, t) = e

4π

∫
dy‖ ϕa(y‖ − q‖(t + y‖))

× [
(1 − ω̂ · v)−2ω̂ × ((ω̂ − v) × v̇)

]∣∣
t+y‖

= e

4π

∫
dsϕa(t − (s − q‖(s)))

× [
(1 − ω̂ · v)−2ω̂ × ((ω̂ − v) × v̇)

]∣∣
s . (5.12)

Since |q̇‖(s)| < 1, we can substitute θ = s − q‖(s) and obtain the convolution rep-
resentation

E∞(ω̂, t) =
∫

dθ ϕa(t − θ)gω̂(θ) = ϕa ∗ gω̂(t) , (5.13)

where

gω̂(θ) = e

4π

[
(1 − ω̂ · v)−2ω̂ × ((ω̂ − v) × v̇)

]∣∣
s(θ)

. (5.14)

From (5.11) we know that lim
t→∞ ϕa ∗ gω̂(t) = 0. If ϕ̂(k0) = 0 for some k0, hence

ϕ̂ violating the Wiener condition, then we could choose gω̂(θ) periodic with fre-
quency |k0| and still have ϕa ∗ gω̂(t) = 0. At this point no further progress seems
to be possible. However under the Wiener condition (W ) and with the smoothness
of gω̂(θ) already established, Pitt’s extension to the Tauberian theorem of Wiener
assures us that

lim
θ→∞

gω̂(θ) = 0 , (5.15)

which, since θ(t) → ∞ as t → ∞, implies

lim
t→∞ ω̂ × ((ω̂ − v(t)) × v̇(t)) = 0 (5.16)

for every ω̂ in the unit sphere. Replacing ω̂ by −ω̂ and summing both expressions
yields ω̂ × (ω̂ × v̇(t)) → 0 as t → ∞. Since this is true for every ω̂, the claim
follows. �
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Note that by fiat Theorem 5.1 avoids any claims as regards the convergence of
(q(t),v(t)) as t → ∞.

Since the acceleration vanishes for large times, the comoving electromagnetic
fields will adjust locally to the appropriate charge soliton. We established already
that Eini(t) and Bini(t) decay. Thus one only has to consider the retarded fields
Eret(x + q(t), t), Bret(x + q(t), t) relative to the position of the particle and com-
pare them with the soliton fields Ev(t)(x), Bv(t)(x) at the current velocity. For
this purpose one uses the representations (4.31), (4.32) for the charge soliton and
(2.16), (2.17) for the retarded fields. We insert the explicit form (2.15) of the prop-
agator. This yields

Ev(x) = e
∫

d3y (4π |x − y|)−1(|x − y|−1ϕ(y − v|x − y|)̂n
+v · ∇ϕ(y − v|x − y|)(v− n̂)

)
, (5.17)

Bv(x) = e
∫

d3y(4π |x − y|)−1n̂ × ( − |x − y|−1ϕ(y − |x − y|v)v
+v · ∇ϕ(y − |x − y|v)v) , (5.18)

where n̂ = (x − y)/|x − y|. Similarly for the retarded fields

Eret(x + q(t), t) =
∫

d3y (4π |x − y|)−1(|x − y|−1ϕ(y + q(t) − q(τ ))̂n

+v(τ ) · ∇ϕ(y + q(t) − q(τ ))(v(τ ) − n̂)

− ϕ(y + q(t) − q(τ ))v̇(τ )
)
, (5.19)

Bret(x + q(t), t) =
∫

d3y(4π |x − y|)−1n̂ × ( − |x − y|−1ϕ(y + q(t)

− q(τ ))v(τ ) + v(τ ) · ∇ϕ(y + q(t) − q(τ ))v(τ )

− ϕ(y + q(t) − q(τ ))v̇(τ )
)
, (5.20)

where τ = t − |x − y| and t ≥ tϕ = 2Rϕ/(1 − v̄).
We compare the fields locally and use the result that lim

t→∞ v̇(t) = 0. Then, for

any fixed R > 0,

lim
t→∞

∫
{|x|≤R}

d3x
((

E(x + q(t), t) − Ev(t)(x)
)2

+ (
B(x + q(t), t) − Bv(t)(x)

)2
)

= 0 . (5.21)

The scattered fields are not covered by (5.21) and will be studied in section 5.3.
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5.2 Convergence to the soliton manifold

In the case of zero external potentials, in essence any solution Y (t) rapidly con-
verges to the soliton manifold S as t → ∞, in particular v(t) → v∞. Such behav-
ior will be of importance in the discussion of the adiabatic limit, see chapter 6,
where it will be explained that in the matching to a comparison dynamics one
cannot use the naive v(0) but instead must take v∞. For hydrodynamic boundary
value problems such a property is known as the slip condition, since the extrap-
olation from the bulk does not coincide with the boundary conditions imposed
externally.

To prove the envisaged behavior we need a little preparation. Firstly we must
have some decay and smoothness of the initial fields at infinity. We already intro-
duced such a set of “good” initial data, Mσ , compare with (2.49), and therefore
require here Y (0) ∈ Mσ , 0 < σ ≤ 1. Secondly, we need a notion for two field
configurations being close to each other. At a given time and far away from the
particle the fields are determined by their initial data. Only close to the particle are
they Coulombic. Therefore it is natural to measure closeness in the local energy
norm defined by

‖(E, B)‖2
R= 1

2

∫
{|x|≤R}

d3x
(
E(x)2 + B(x)2) (5.22)

for given radius R.
The true solution is Y (t) = (E(x, t), B(x, t), q(t),v(t)) which is to be com-

pared with the charge soliton approximation
(
Ev(t)(x − q(t)), Bv(t)(x − q(t)),

q(t),v(t)
)
. We set Z1(x, t) = E(x, t) − Ev(t)(x − q(t)), Z2(x, t) = B(x, t) −

Bv(t)(x − q(t)), Z = (Z1, Z2) and want to establish that ‖Z (· + q(t), t)‖R → 0
for large times at fixed R.

Proposition 5.2 (Long-time limit for the velocity). For the Abraham model with
zero external potentials and satisfying (C) let |e| ≤ ē with sufficiently small ē and
let the initial data be Y (0) ∈ Mσ for some σ ∈ (0, 1]. Then for every R > 0 we
have

‖Z (· + q(t), t)‖R ≤ CR(1 + |t |)−1−σ . (5.23)

In addition, the acceleration is bounded as

|v̇(t)| ≤ C(1 + |t |)−1−σ (5.24)

and there exists a v∞ ∈ V such that

lim
t→∞v(t) = v∞ . (5.25)



60 Long-time asymptotics

Proof : Using the Maxwell equations together with the identities (v · ∇) Ev =
−∇ × Bv + eϕv, (v · ∇)Bv = ∇ × Ev one obtains

d

dt
Z(t) = AZ(t) − g(t) , (5.26)

where A is defined in (2.18) and g (t) has the components (v̇(t) · ∇v)Ev(x − q(t)),
(v̇(t) · ∇v)Bv(x − q(t)), and therefore

Z(t) = U(t)Z(0) −
∫ t

0
ds U(t − s)g(s) (5.27)

with U(t) = eAt .
For the first term we note that Z1(x, 0) = E0(x) − Ev0(x − q0), Z2(x, 0) =

B0(x) − Bv0(x − q0) ∈ Mσ by assumption. Using the solution of the inhomo-
geneous Maxwell–Lorentz equations in position space and the bound (2.49) one
has

|Z1(x, t)| + |Z2(x, t)| ≤ C t−2
∫

d3y δ(|x − y| − t)
(|Z1(y, 0)| + |Z2(y, 0)|)

+ C t−1
∫

d3y δ(|x − y| − t)
(|∇Z1(y, 0)|

+ |∇Z2(y, 0)|)
≤ C t−2

∫
d3y δ(|x − y| − t)(1 + |y|)−1−σ

+C t−1
∫

d3y δ(|x − y| − t)(1 + |y|)−2−σ

≤ C (1 + t)−1−σ . (5.28)

The integrand in the second term of (5.27) will be estimated in section 7.3 with the
bound

‖U(t − s)g(s)‖Rϕ ≤ C(v̄)e2(1 + (t − s)2)−1‖Z(· + q(s), s)‖Rϕ ; (5.29)

compare with (7.36).
We choose R ≥ Rϕ . From (5.29) and (5.28)

‖Z(· + q(t), t)‖R ≤ C(1 + t)−1−σ

+ C(v̄)e2
∫ t

0
ds (1 + (t − s)2)−1‖Z(· + q(s), s)‖R . (5.30)
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Let κ = sup
t≥0

(1 + t)1+σ‖Z(· + q(t), t)‖R . Then

κ ≤ C + C(v̄)e2
( ∫ t

0
ds (1 + (t − s)2)−1(1 + s)−1−σ

)
κ , (5.31)

which implies κ < ∞ provided C(v̄) e2 is sufficiently small.
To estimate the decay rate for the acceleration we start from Newton’s equations

of motion in the form

d

dt

(
mbγv(t)

) = e
(
Eϕ(q(t)) − Ev(t)ϕ(0) + v× (Bϕ(q(t)) − Bv(t)ϕ(0))

)
,

(5.32)

which uses the fact that the force from the soliton field vanishes. By energy con-
servation |v(t)| ≤ v̄ < 1. Therefore (5.32) implies

|v̇(t)| ≤ C e ‖Z(· + q(t), t)‖Rϕ (5.33)

and (5.24) follows from (5.23). Since v(t) = v(0) + ∫ t
0 ds v̇(s), one has |v(t) −

v∞| ≤ C (1 + |t |)−σ . �

5.3 Scattering theory

We still have to provide an analysis of the scattered wave. Our results are somewhat
fragmentary and we start with an easy and sufficient integrability condition.

Theorem 5.3 (Existence of scattering solutions). For the Abraham model satis-
fying (C) and (P) let Y (t) ∈ M be a solution. If∫ ∞

0
dt |v̇(t)| < ∞ , (5.34)

then there exist scattering data (Esc, Bsc) such that

lim
t→∞

(‖E(t) − Ev(t)(· − q(t)) − Esc(t)‖
+ ‖B(t) − Bv(t)(· − q(t)) − Bsc(t)‖

) = 0 , (5.35)

where (Esc(t), Bsc(t)) = U(t)(Esc, Bsc) propagate according to the homoge-
neous Maxwell–Lorentz equations.

Note that in (5.35) the difference is in the global energy norm and therefore
carries the information on the scattered wave.
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Proof: The difference in (5.35) is Z(t) by definition. (5.26) remains valid in the
presence of external forces, which means that

Z(t) = U(t)
(
Z(0) −

∫ t

0
dsU(−s)g(s)

)
. (5.36)

We set

Esc(x) = E0(x) − Ev0(x − q0) −
∫ ∞

0
dt (v̇(t) · ∇v)Ev(x − q(t)) ,

Bsc(x) = B0(x) − Bv0(x − q0) −
∫ ∞

0
dt (v̇(t) · ∇v)Bv(x − q(t)) . (5.37)

Since |v(t)| ≤ v̄ < 1, the integrands have uniformly bounded energy norm. Thus
by assumption (5.34) the integrals converge in M and define (Esc, Bsc) ∈ M.
Hence (5.35) follows. �

There are two cases of interest for which the integrability condition (5.34) can
be checked.

(i) Compton scattering (zero external potential). If |e| ≤ ē, then by (5.24)

|v̇(t)| ≤ C(1 + |t |)−1−σ which implies (5.34). For a freely moving charge the
asymptotic motion is rectilinear and the scattered waves propagate according to
the free Maxwell equations. Such a result also applies to a charge reaching an
essentially potential-free region. The standard example is a charge scattered by
an infinitely heavy nucleus. For sufficiently long times the incident fields have de-
cayed already and we assume that the charge has reached, with its velocity pointing
outwards, a large sphere centered at the nucleus. Then the external force decays as
1/t2 which combined with Theorem 5.3 yields the desired asymptotics.

(ii) Rayleigh scattering (bounded motion). Under the Wiener condition (W ) we
already know that limt→∞ v̇(t) = 0. If in addition the motion is bounded,

|q(t)| ≤ q̄ (5.38)

for all t , then necessarily

lim
t→∞v(t) = 0 , (5.39)

i.e. the particle comes to rest. Inserting in Newton’s equations of motion (2.34) and
using the fact that the fields become locally soliton-like, we infer that

lim
t→∞ ∇φex(q(t)) = 0 . (5.40)

Let us define the set A of critical points for the potential φex, A = {q | ∇φex(q) =
0}. By (5.40), q(t) approaches A as a set. If A happens to be a discrete set, then,
by the continuity of solutions in t , q(t) has to converge to some definite q∗ ∈ A.
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Such reasoning yields no rate of convergence. The situation improves in the case
where q∗ is a stable local minimum of φex. We linearize the Maxwell equations at
Y ∗ = Sq∗,0. The solution to the linearized equations converges exponentially fast
to zero. Therefore, once q(t) is in the vicinity of q∗, the velocity decays exponen-
tially ensuring (5.34). In particular, if φex is strictly convex and if (W ) holds, then
the asymptotics (5.35) of Theorem 5.3 hold for every Y (0) ∈ M.

A standard situation not covered by (i) and (ii) is the motion in a uniform mag-
netic field. Even if one assumes that the motion is bounded, one can only conclude
that v(t) → 0. The attractor A equals R

3. Physically one would expect the charge
to spiral inwards and to come to rest at its center of gyration. Another instruc-
tive example is the motion in a confining φex with a flat bottom, say {x | |x| ≤ 1}
and Aex = 0. Each time the particle is reflected by the confining potential, it loses
energy. Thus v(t) → 0 as t → ∞, but q(t) has no limit.

Notes and references

Section 5.1

The long-time asymptotics are studied in Komech and Spohn (2000), where the
details of the proof can be found. See also Komech, Spohn and Kunze (1997).
Pitt’s version of the Wiener theorem is proved in Rudin (1977), Theorem 9.7(b).
We remark that Theorem 5.1 provides no rate of convergence. Thus to investigate
the asymptotics of the velocity and position requires extra considerations.

Theorem 5.1 can also be read that under the Wiener condition the Abraham
model admits no periodic solution. In the literature, Bohm and Weinstein (1948),
Eliezer (1950), and in particular the review by Pearle (1982), periodic solutions of
the Abraham model have been reported repeatedly for the case of a charged sphere,
i.e. ϕ(x) = (4πa2)−1δ(|x| − a), which is not covered by Theorem 5.1 since (W )

is violated. These computations invoke certain approximations and it is not clear
whether the full model, as defined by (2.39)–(2.41), has periodic solutions. Pearle
(1977) argues that in the Nodvik model there are no periodic solutions. Kunze
(1998) proves that if there is a periodic solution, its frequency is determined by the
zeros of the radial part of the form factor ϕ̂, which under (C) form a discrete set.
If ϕ̂ has a zero, then the linearized system admits a periodic solution. However, the
full nonlinear equations have no periodic solution, at least in a small neighborhood
of the linearized periodic solution.

As will be explained in chapter 11, the Abraham model extends in the obvious
way to the dynamics of many charges. The argument of Theorem 5.1 applied to
this case yields that the acceleration of the center of mass relaxes to zero. One
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would expect particles to form neutral lumps, each of which is traveling at constant
velocity for large t . No argument towards a proof is in sight.

Section 5.2

The contraction method was first developed in Komech, Kunze and Spohn (1999).
Komech and Spohn (1998) prove the convergence to the soliton manifold in the
case of a scalar wave field requiring only (W ) and not the restriction |e| < ē. No
convergence rates are obtained. Their result is extended to the Abraham model by
Imaikin, Komech and Mauser (2003). Orbital stability was established before by
Bambusi and Galgani (1993). Bambusi (1994) investigates the long-time stability
in the case of an attractive central potential.

Section 5.3

Our results are based on Imaikin, Komech and Spohn (2002). The linearization
argument is fully carried out in Komech, Spohn and Kunze (1997).
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Adiabatic limit

If we assume that the mass of an electron is purely electromagnetic, then by equat-
ing its rest energy and electrostatic Coulomb energy the charge distribution must
be concentrated in a ball of radius

rcl = e2

mec2
= 3 × 10−13 cm (6.1)

which is the so-called classical electron radius. Quantum mechanically one argues
that on the basis of light scattering the electron appears to have an effective size
of the order of the Compton wavelength λc = �me/c = (e2/�c)−1 rcl = 137 rcl.
Thus empirically Rϕ is limited to rcl ≤ Rϕ ≤ 137rcl. Electromagnetic fields which
can be manipulated in the laboratory vary little over that length scale. rcl defines
a time scale through the time span for light to travel across the diameter of the
charge distribution,

tcl = rcl/c = 10−23 s , equivalently a frequency ωcl = 1023 Hz . (6.2)

Again, manufactured frequencies are much smaller than ωcl. Space-time variations
as fast as (6.1) and (6.2) lead us deeply into the quantum regime. Thus it is natural
and physically compelling to study the dynamics of a charged particle under exter-
nal potentials which vary slowly on the scale of the charge radius Rϕ , which is the
only length scale available. This means we have to introduce a scale of potentials
and enquire about an approximately autonomous particle dynamics with an error
depending on the scale under consideration. We will introduce such a scheme in the
following section. The resulting problem has many similarities with the derivation
of hydrodynamics from Newtonian particle dynamics – with the most welcome
bonus that it is simpler mathematically by many orders of magnitude. Still, the
comparison is instructive.

65
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6.1 Scaling limit for external potentials of slow variation

For the Abraham model, see Eq. (2.41), the Lorentz force has in addition to the
dynamical fields E(x, t), B(x, t) also prescribed external fields, which are the gra-
dients of the external potentials φex(x), Aex(x).

We want to impose the condition that φex and Aex are slowly varying on the scale
of Rϕ . Formally we introduce a small dimensionless parameter ε and consider the
potentials

φex(εx) , Aex(εx) , (6.3)

which are slowly varying in the limit ε → 0. Most of our results extend to po-
tentials which vary also slowly in time. For simplicity we restrict ourselves to
time-independent potentials here. Clearly, ε appears as a parameter of the poten-
tial, just like ω0 is a parameter of the harmonic oscillator potential 1

2 mω2
0x2. But

ε should really be thought of as a bookkeeping device which orders the magnitude
of the various terms and the space-time scales according to the powers of ε. Such
a scheme is familiar from very diverse contexts and appears whenever one has to
deal with a problem involving scale separation.

So how small is ε? From the discussion above one might infer that if φex, Aex

vary over a scale of 1 mm, then ε = 10−12. This is a totally meaningless statement,
because eφex, eAex have the dimension of energy and thus the variation depends
on the adopted energy scale. In (6.3) we merely stretch the spatial axes by a factor
ε−1 and fix the energy scale. Since from experience this point is likely to be con-
fusing, let us consider the specific example of a charge revolving in the uniform
magnetic field Bex = (0, 0, B0). The corresponding vector potential is linear in x,
and to introduce ε as in (6.3) just means that the magnetic field strength equals
εB0. The limit ε → 0 is a limit of small magnetic field strength relative to some
reference field B0. Thus to obtain ε we first have to determine the reference field
and compare it with the magnetic field of interest. This shows that in order to fix ε

we have to specify the physical situation in detail, in particular the external poten-
tials, the mass of the particle, the charge of the particle, γ (v), and the time span of
interest.

The scaling scheme (6.3) has the great advantage that the analysis can be car-
ried out in generality. In a second step one has to figure out ε for a concrete sit-
uation, which leads to a quantitative estimate of the error terms. For instance, if
in the case above we consider an electron with velocities such that γ ≤ 10, then,
by comparing the Hamiltonian term and the friction term, the reference field turns
out to be B0 = 1017 gauss. Laboratory magnetic fields are less than 105 gauss and
thus ε < 10−12. In this and many other concrete examples, ε is very small, less
than 10−10, which implies that, firstly, all corrections beyond radiation reaction
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are negligible. Secondly, we do not have to go each time through the scheme in-
dicated above and may as well set ε = 1 thereby returning to conventional units.
Still on a theoretical level the use of the scale parameter ε is very convenient. In
an appendix to this section we will work out the example of a constant magnetic
field more explicitly. If the reader feels uneasy about the scaling limit, (s)he should
consult this example first.

Adopting (6.3), Newton’s equations of motion now read

d

dt

(
mbγv(t)

) = e
(
Eϕ(q(t), t) + εEex(εq(t))

+v(t) × (
Bϕ(q(t), t) + εBex(εq(t))

))
, (6.4)

where

Eex = −∇φex , Bex = ∇ × Aex . (6.5)

Note that if Eex, Bex are smeared by ϕ, as would be proper, the resulting error in
(6.4) is of order ε3, which can be ignored for our purposes.

Equation (6.4) has to be supplemented with Maxwell’s equations (2.39), (2.40).
Our goal is to understand the structure of the solution for small ε, and as a first
qualitative step one should discuss the rough order of magnitudes in powers of ε.
But before that we have to specify the initial data. We give ourselves q0,v0 as
the initial position and velocity of the charge. The initial fields are assumed to be
Coulombic, i.e. of the form of a charge soliton centered at q0 with velocity v0,
compare with (4.28), which we formalize as

Condition (I ):

Y (0) = Sq0,v0 . (6.6)

Equivalently, according to (4.31), (4.32), we may say that the particle has traveled
freely with velocity v0 for the infinite time span (−∞, 0]. At time t = 0 the ex-
ternal potentials are turned on. Geometrically, our initial data are exactly on the
soliton manifold S considered as a submanifold of the phase space M. If there
are no external forces, the solution stays on S and moves along a straight line. For
slowly varying external potentials as in (6.3) we will show that the solution stays
ε-close to S in the local energy distance.

On general grounds one may wonder whether such specific initial data are re-
ally required. In analogy to hydrodynamics, we call this the initial slip problem. In
times of order tϕ (= Rϕ/c), the fields close to the charge acquire their Coulombic
form while the external forces are still negligible; compare with figure 6.1. How-
ever, during that period the particle might gain or lose in momentum and energy
through the interaction with its own field and the data at time tϕ close to the particle
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y(t)

S

Figure 6.1: Schematic phase space with attractive soliton manifold S. Away
from S the motion is fast, on S it is slow.

are approximately of the form Sq̃,ṽ, where q̃ and ṽ are to be computed from the
full solution. Of course, at a distance ct away from the charge, the field still re-
members its t = 0 data. Thus we see that the initial slip problem translates into the
long-time asymptotics of a charge at zero external potentials but with general ini-
tial field data. We refer to section 5.2, where this point has been studied in detail.
At the moment we just circumvent the initial slip by fiat.

Let us discuss the three relevant time scales, where we recall that tϕ = Rϕ/c.
(i) Microscopic scale, t = O(tϕ), q = O(Rϕ). On this scale the particle moves

along an essentially straight line. The electromagnetic fields adjust themselves to
their comoving Coulombic form. As we will see, they do this with a precision O(ε)

in the energy norm.
(ii) Macroscopic potential scale, t = O(ε−1tϕ), q = O(ε−1 Rϕ). This scale

is defined by the variation of the potentials, i.e. on this scale the potentials are
φex(x), Aex(x). The particle follows the external forces. Since it is in company
with almost Coulombic fields, the particle responds to the forces according to the
effective energy–momentum relation, which we determined in chapter 4. On the
macroscopic scale the motion is Hamiltonian up to errors of order ε. There is no
dissipation of energy and momentum.

(iii) Macroscopic friction scale. Accelerated charges lose energy through
radiation, which means that there must be friction corrections to the effective
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Hamiltonian motion. According to Larmor’s formula the radiation losses are pro-
portional to v̇(t)2. Since the external forces are of the order ε, these losses are
proportional to ε2 when measured in microscopic units. Integrated over a time
span ε−1tϕ the friction results in an effect of order ε. Thus we expect order ε

dissipative corrections to the conservative motion on the macroscopic scale.
Followed over the even longer time scale ε−2tϕ , the radiation reaction results in
O(1) deviations from the Hamiltonian trajectory.

On the friction time scale the motion either comes to a standstill or stays uni-
form. In addition, as will be shown, the dissipative effective equation has the same
long-time behavior as the true solution. Thus we expect no further qualitatively
distinct time scale beyond the friction scale.

From our description, in a certain sense, the most natural scale is the macro-
scopic scale and we transform Maxwell’s and Newton’s equations to this new scale
by setting

t ′ = εt , x′ = εx . (6.7)

We have the freedom of how to scale the amplitudes of the dynamic part of the
electromagnetic fields. We require that their energy is independent of ε. Then

E′(x′, t ′) = ε−3/2 E(x, t) , B′(x′, t ′) = ε−3/2 B(x, t) . (6.8)

Finally the new position and velocity are

q ′(t ′) = εq(t) , v′(t ′) = v(t) , (6.9)

so that d
dt ′ q ′ = v′. There is little risk of confusion in omitting the prime. We then

denote

qε(t) = εq(ε−1t) , vε(t) = v(ε−1t) , ϕε(x) = ε−3 ϕ(ε−1x) , (6.10)

which means that
∫

d3x ϕε(x) = 1 independent of ε and that ϕε is supported in
a ball of radius εRϕ . In the macroscopic coordinates the coupled Maxwell’s and
Newton’s equations read

∂t B(x, t) = −∇ × E(x, t) ,

∂t E(x, t) = ∇ × B(x, t) − √
εeϕε(x − qε(t))vε(t) ,

d

dt

(
mbγv

ε(t)
) = e

(
Eex(qε(t)) + vε(t) × Bex(qε(t))

)
+ √

ε e
(
Eϕε (q

ε(t), t) + vε(t) × Bϕε (q
ε(t), t)

)
(6.11)

together with the constraints

∇ · E = √
ε eϕε(· − qε(t)) , ∇ · B = 0 . (6.12)
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On the macroscopic scale the conserved energy is

Emac = mbγ (v) + eφex(q) + 1

2

∫
d3x

(
E(x)2 + B(x)2) . (6.13)

Also the initial data have to be transformed and become

Condition (Iε):

Y ε(0) = Sε
q0,v0 = (Eε

v0(x − q0), Bε
v0(x − q0), q0,v0) (6.14)

with

Eε
v = −∇φε

v + v(v · ∇φε
v) , Bε

v = −v× ∇φε
v , (6.15)

where now

φ̂ε
v(k) =

√
ε eϕ̂(εk)

k2 − (v · k)2
. (6.16)

On the macroscopic scale, the scaling parameter ε can be absorbed into the
“effective” charge distribution

√
εeϕ̂ε. Its electrostatic energy,

me = 1

2
e2

∫
d3k ε|ϕ̂ε(k)|2 1

k2
= 1

2

∫
d3k|ϕ̂(k)|2 1

k2
, (6.17)

is independent of ε, while its charge

e
∫

d3x
√

ε ϕε(x) = √
ε e (6.18)

vanishes as
√

ε. Recall that ε is a “bookkeeping device”.
We argued that on the macroscopic scale the response to external potentials in

the motion of the charges is of order one. We thus expect that qε(t) tends to a
nondegenerate limit as ε → 0, i.e.

lim
ε→0

qε(t) = r(t) , lim
ε→0

vε(t) = u(t) . (6.19)

The position r(t) and velocity u(t) should be governed by an effective Lagrangian.
In section 4.1 we determined the effective inertial term. If the potentials add in as
usual, one has

Leff(q, q̇) = T (q̇) − e
(
φex(q) − q̇ · Aex(q)

)
, (6.20)

which results in the equations of motion

ṙ = u , m(u)u̇ = e(Eex(r) + u × Bex(r)) . (6.21)
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The velocity-dependent mass m(u) has a bare and a field contribution. From (4.12)
we conclude that

m(u) = dPs(u)

du
(6.22)

as a 3 × 3 matrix. If instead of the velocity we introduce the canonical momentum,
p, then the effective Hamiltonian reads

Heff(r , p) = Eeff(p − eAex(r)) + eφex(r) (6.23)

with Hamilton’s equations of motion

ṙ = ∇p Heff , ṗ = −∇r Heff . (6.24)

Our plan is to establish the limit (6.19) and to investigate the corrections due to
radiation losses.

6.1.1 Appendix 1: How small is ε?

We consider an electron moving in an external magnetic field oriented along
the z-axis, Bex = (0, 0, B0). The corresponding vector potential is Aex(x) =
1
2 B0(−x2, x1, 0). According to our convention the slowly varying vector potential
is given by Aex(εx) = 1

2 εB0(−x2, x1, 0). Thus B0 is a reference field strength,
which is to be determined, and B = εB0 is the physical field strength in the lab-
oratory. The motion of the electron is assumed to be in the 1–2 plane and we set
v = (u, 0). According to section 9.2, example (iii), within a good approximation
the motion of the electron is governed by

γ u̇ = ωc(u⊥ − βωcu) . (6.25)

Here u⊥ = (−u2, u1), ωc = eB/m0c is the cyclotron frequency, and β =
e2/6πc3m0. The first term is the Lorentz force and the second term accounts for
the radiation reaction.

We now choose the reference field B0 such that the two terms balance, i.e.

B0 = (βe/m0c)−1 . (6.26)

For electrons

B0 = 1.1 × 1017 gauss (6.27)

and even larger by a factor (1836)2 for protons. For a laboratory field of 105 gauss
this yields

ε = 10−12 . (6.28)
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Written in units of B0, (6.25) becomes

γ u̇ = εω0
c(u

⊥ − εu) (6.29)

with βω0
c = 1, i.e. ω0

c = e B0/m0c = 1.6 × 1028 s−1. Thus friction is of relative
order ε and higher-order corrections would be of relative order ε2. As will be
demonstrated, the dimensionless scaling parameter ε serves as a bookkeeping de-
vice to track the relative order of the various terms contributing to the dynamics.

6.1.2 Appendix 2: Adiabatic protection

The adiabatic limit, as discussed above, relies on the fact that photons have zero
mass. If they had finite mass, radiation damping would be hindered. This point can
be most easily argued in the context of a scalar wave field. Moreover, rather than
having a particle interacting with the field, it suffices to have a source fixed at the
origin.

The scalar wave field is denoted by φ with canonically conjugate momentum
field π . They are governed by

∂tφ(x, t) = π(x, t) , ∂tπ(x, t) = 
φ(x, t) − κ2φ(x, t) + α(t)δ(x) . (6.30)

α(t) is a smooth function vanishing outside the interval [0, T ]. Assuming that φ =
0, π = 0 initially we want to determine how much energy is radiated in the long-
time limit.

The local field energy is given by

e(x, t) = 1

2

(
π(x, t)2 + (∇φ(x, t))2 + κ2φ(x, t)2) (6.31)

from which, using (6.30), the energy current

je = −π∇φ (6.32)

follows. The energy flow through a sphere of radius R is given by

−
∫ ∞

0
dt R2

∫
d2ωπ(ωR, t)ω · ∇φ(ωR, t)

= −4π R2
∫ ∞

0
dtπ(R, t)φ′(R, t)

= −4π

∫ ∞

0
dt Rπ(R, R + t)Rφ′(R, R + t) . (6.33)

The first step uses radial symmetry of the solution to (6.30), while retaining the
notation for the radial fields and setting φ′(R, t) = ∂Rφ(R, t), and the second step
uses the condition that the solution is supported inside the light cone. To separate
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between near and far field one still has to take the limit R → ∞ in (6.33). Thus

Ediss = lim
R→∞

−4π

∫ ∞

0
dt Rπ(R, R + t)Rφ′(R, R + t) . (6.34)

The fundamental solution of (6.30) is(
φ(t)

π(t)

)
=

(
∂t G G

∂2
t G ∂t G

)(
φ

π

)
. (6.35)

G is the propagator for t ≥ 0,

G(x, t) = 1

4π |x|δ(t − |x|) − 1

4π
κ2 F

(
κ
√

t2 − x2
)
χ(x2 ≤ t2) (6.36)

with

F(z) = 1

z
J1(z) (6.37)

and J1 the integer Bessel function of order 1. For the initial conditions φ = 0, π =
0 the solution to (6.30) is then

φ(x, t) =
∫ t

0
dsG(x, t − s)α(s) , π(x, t) =

∫ t

0
ds∂t G(x, t − s)α(s) . (6.38)

Before inserting them in (6.34) both terms have to be somewhat simplified through
partial integrations using the condition that α(0) = 0. For the momentum field one
obtains

4π Rπ(R, R + t) = α̇(t) − κ2 R
∫ t

0
ds F

(
κ
√

(t − s)(2R + t − s)
)

α̇(s) .

(6.39)

For the scalar field there are two subleading contributions, which vanish as R →
∞, and the leading term

4π Rφ′(R, R + t) = −α̇(t) + κ2 R
∫ t

0
ds F

(
κ
√

(t − s)(2R + t − s)
)

× R

R + t − s
α̇(s) + O

( 1

R

)
. (6.40)

We insert (6.39) and (6.40) into (6.33), which results in four terms. The first
one is clearly (4π)−1

∫ ∞
0 dt α̇(t)2. For the cross-term the integral involving F con-

verges to α̇(t) as R → ∞. Thus the cross-terms add up to −(2π)−1
∫ ∞

0 dt α̇(t)2.
The fourth term requires more work. The t-integration of (6.33) is split into [0, T ]
and [T, ∞]. The first integral yields (4π)−1

∫ ∞
0 dt α̇(t)2, thereby cancelling terms
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1 to 3. The remainder is

Ediss = lim
R→∞

1

4π

∫ T

0
dsα̇(s)

∫ T

0
ds′α̇(s′)

∫ ∞

T
dtκ4 RF

(
κ
√

(t − s)(2R + t − s)
)

× RF
(
κ
√

(t − s′)(2R + t − s′)
) R

R + t − s′ . (6.41)

At this point one can use the asymptotics of J1 for large arguments leading through
oscillating integrands to

Ediss = 1

2π

∫ ∞

κ

dω
1

ω

√
ω2 − κ2|ωα̂(ω)|2 . (6.42)

In the limit κ → 0 one obtains the familiar analog of the Larmor formula as

Ediss = 1

4π

∫
dt α̇(t)2 . (6.43)

If α has slow time variation, incorporated as α(εt), ε 	 1, then

Ediss = ε
1

4π

∫
dt α̇(t)2 , (6.44)

which in our working example would determine the time scale for radiation damp-
ing. On the other hand, for κ > 0

Ediss = ε
1

2π

∫ ∞

κ/ε

dω
1

ω

√
ω2 − (κ/ε)2|ωα̂(ω)|2 . (6.45)

If α̂ has exponential decay, α̂(ω) ∼= e−γ |ω| for large |ω|, then Ediss = εe−γ κ/ε. The
low frequencies of the source do not couple to the medium.

If photons were massive, the adiabatic motion of charges would be protected in
the sense that radiation damping is of order e−1/ε rather than of order ε2 as is the
case for photons with dispersion ω(k) = c|k|.

6.2 Comparison with the hydrodynamic limit

In hydrodynamics one assumes that a small droplet of fluid with center r has its
intrinsic velocity, u(r), and that relative to the moving frame the particles are dis-
tributed according to thermal equilibrium with density ρ(r) and temperature T (r).
For such notions to be reasonably well defined, the hydrodynamic fields ρ, u, T
must be slowly varying on the scale of the typical interparticle distance. This is
how the analogy with the Maxwell–Newton equations arises. As for them we have
three characteristic space-time scales.

(i) Microscopic scale. The microscopic scale is measured in units of a colli-
sion time, respectively interatomic distance. On that scale the hydrodynamic fields
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are frozen. Possible deviations from local equilibrium relax through collisions. To
prove such behavior one has to establish a sufficiently fast relaxation to equilib-
rium. For Newtonian particles no general method is available. For the Maxwell
field the situation is much simpler. Local deviations from the Coulomb field are
transported off to infinity and are no longer seen.

(ii) Macroscopic Euler scale. The macroscopic space-time scale is defined by
the variation of the hydrodynamic fields. If, as before, we introduce the dimen-
sionless scaling parameter ε, then space-time is O(ε−1) in microscopic units. On
the macroscopic scale the time between collisions is O(ε), the interparticle dis-
tance O(ε), and the pair potential for the particle at position q i and the one at q j

is V (ε−1(q i − q j )). On the macroscopic scale the hydrodynamic fields evolve ac-
cording to the Euler equations. These are first-order equations, which must be so,
since space and time are scaled in the same way. The Euler equations are of Hamil-
tonian form. There is no dissipation, and no entropy is produced. In fact, there is a
slight complication here. Even for smooth initial data the Euler equations develop
shock discontinuities. There the assumption of slow variation fails and shocks are
a source of entropy.

(iii) Macroscopic friction scale. In a real fluid there are frictional forces which
are responsible for the relaxation to global equilibrium. One adds to the Euler
equations diffusive-like terms, which are second order in spatial derivatives, and
obtains the compressible Navier–Stokes equations incorporating the shear and vol-
ume viscosity resulting from friction in momentum transport and thermal conduc-
tivity resulting from friction in energy transport. On the macroscopic scale these
corrections are of order ε. In the same spirit, based on the full Maxwell–Newton
equations, there will be dissipative terms of order ε which have to be added to
(6.21). Of course, in this context one has to deal only with ordinary differential
equations as effective dynamics.

6.3 Point-charge limit, negative bare mass

The conventional point-charge limit is to let the diameter of the charge distribution
tend to zero under the condition that the total charge remains fixed. Accordingly,
let us consider now Rϕ as a reference scale and let R/Rϕ → 0. Then for the point
charge one sets

ϕR(x) = R−3ϕ(x/R) (6.46)

and takes the limit R → 0. This means that the charge diameter is small in units
of the variation of the external potential, since this is the only other length scale
available. At first sight, one just seems to say that the potentials vary slowly on
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the scale set by the charge diameter and that hence the point-charge limit and
the adiabatic limit coincide. To see the difference let us consider the electrostatic
energy

1

2
e2

∫
d3k|ϕ̂R(k)|2 1

k2
= 1

R
mf . (6.47)

In particular, the ratio of field mass to bare mass grows as R−1 in the point-charge
limit and remains constant in the adiabatic limit.

To display the order of magnitude of the various dynamical contributions we
resort again to our standard example of an electron in a uniform magnetic field
Bex = Bn̂, n̂ = (0, 0, 1) with B of the order of 1 tesla = 104 gauss, say. It suf-
fices to consider small velocities. In the adiabatic limit we set B = εB0 where the
reference field is B0 = 1.1 × 1017 gauss; compare with appendix 1 to section 6.1.
Up to higher-order corrections, the motion of the electron is then governed by

(
mb + 4

3
mf

)
v̇ = e

c
εB0(v× n̂) + e2

6πc3
v̈+ O(ε3) (6.48)

on the microscopic scale. Going over to the macroscopic time scale, t ′ = ε−1t,
(6.48) becomes

(
mb + 4

3
mf

)
v̇ = e

c
B0(v× n̂) + e2

6πc3
εv̈+ O(ε2) . (6.49)

Setting m0 = mb + 4
3 mf, ω0

c = e B0/m0c, β = e2/6πc3m0, and restricting to the
motion on the critical manifold, as will be explained in chapter 9, Eq. (6.49)
becomes

v̇ = ω0
c

(
v× n̂ + εβω0

c (v× n̂) × n̂
) + O(ε2) , (6.50)

equivalently, on the microscopic time scale

v̇ = ωc
(
v× n̂ + βωc(v× n̂) × n̂

) + O(ε3) (6.51)

with the cyclotron frequency ωc = e εB0/m0c = eB/m0c.
For the point-charge limit we rely on the Taylor expansion of section 7.2. Then,

for small velocities,(
mb + R −1 4

3
mf

)
v̇ = e

c
B(v× n̂) + e2

6πc3
v̈+ O(R) . (6.52)

Since based on the same expansion, as long as no limit is taken, of course, we can
switch back and forth between (6.52) and (6.48), respectively (6.49), provided the
appropriate units are used. This can be seen more easily if we accept momentarily
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the differential–difference equation

mbv̇(t) = e
(
Eex(q(t)) + c−1v(t) × Bex(q(t))

)
+ e2

12πcR 2

(
v(t − 2c−1 R) − v(t)

)
, (6.53)

which is exact for a uniformly charged sphere at small velocities, see section 7.1.
If we expand in the charge diameter R, then

(
mb + e2

6π Rc2

)
v̇ = e(Eex + c−1v× Bex) + e2

6πc3
v̈+ O(R) , (6.54)

which is the analog of (6.52). On the other hand, if we assume that the external
fields are slowly varying, as explained in section 6.1, then on the macroscopic
scale

εmbv̇(t) = ε e
(
Eex(q(t)) + c−1v(t) × Bex(q(t))

)
+ e2

12πcR 2
ϕ

(
v(t − 2εc−1 Rϕ) − v(t)

)
, (6.55)

where Rϕ is now regarded as fixed. Taylor expansion in ε yields

(
mb + e2

6π Rϕc2

)
v̇ = e(Eex + c−1v× Bex) + ε

e2

6πc3
v̈+ O(ε2) (6.56)

which is the analog of (6.49).
As can be seen from (6.52), in the point-charge limit the total mass becomes

so large that the particle hardly responds to the magnetic field. The only way out
seems to formally compensate the diverging R −1 (4/3)mf by setting

mb = −R −1 (4/3) mf + mexp (6.57)

with mexp the experimental mass of the charged particle. But this is asking for trou-
ble, since the energy (2.44) is no longer bounded from below and potential energy
can be transferred to kinetic mechanical energy without limit. To see this mecha-
nism in detail we consider the Abraham model with Bex = 0 and φex varying only
along the 1-axis. The bare mass of the particle is now −mb, with mb > 0 as before.
We set q(t) = (qt , 0, 0), v(t) = (vt , 0, 0), Eex = (−φ′(q), 0, 0). φ is assumed to
be strictly convex with a minimum at q = 0. Initially the particle is at rest at the
minimum of the potential. Thus E(x, 0) = E0(x) from (4.5) and B(x, 0) = 0. We
now give the particle a slight kick to the right, which means q0 = 0, v0 > 0. By
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conservation of energy

−mbc2 γ (vt ) + e φ(qt ) + 1

2

∫
d3x

(
E(x, t)2 + B(x, t)2)

= −mbc2γ (v0) + eφ(q0) + 1

2

∫
d3x E(x, 0)2 . (6.58)

We split E into longitudinal and transverse components, E = E‖ + E⊥, Ê‖ =
k̂(̂k · Ê). Clearly

∫
d3x E‖ · E⊥ = 0 and therefore∫

d3x E(x, t)2 ≥
∫

d3x E‖(x, t)2 =
∫

d3k (̂k · Ê(k, t))2

= e2
∫

d3k |k|−2 |ϕ̂(k)|2 =
∫

d3x E(x, 0)2 , (6.59)

since the initial field has zero transverse component. Inserting in (6.58) yields

q̇2
t ≥ 1 − [

γ (v0) + (e/mbc2)(φ(qt ) − φ(q0))
]−2

. (6.60)

Since γ (v0) > 1, q̇t > 0 for short times. As the particle moves to the right,
(φ(qt ) − φ(q0)) is increasing and therefore q̇t → 1 and qt → ∞ as t → ∞. Note
that v0 and mb can be arbitrarily small. Not surprisingly, the Abraham model with
a negative bare mass behaves rather unphysically. A tiny initial kick suffices to
generate a runaway solution.

The point-charge limit is honored by a long tradition, which however seems
to have constantly overlooked that physically it is more appropriate to have the
external potentials slowly varying on the scale of a fixed-size charge distribution.
Then there is no need to introduce a negative bare mass and there are no runaway
solutions.

Notes and references

Section 6

The importance of slowly varying external potentials has been emphasized re-
peatedly. In the early literature slow variation appears as the quasi-stationary hy-
pothesis and quasi-stationary motion (Miller 1997). Such principles remain vague
and, interestingly enough, in more mathematical considerations the size Rϕ of the
charge distribution is taken as an expansion parameter rather than the appropriate
parameter in the potential. To me it is rather surprising that, apparently, there is
no systematic study of the equations of motion with external potentials of slow
variation. We use the notion “adiabatic limit” to correspond to the adiabatic theo-
rem in classical and quantum mechanics which refers to a Hamiltonian with slow
time-dependence. More appropriately we should speak of “space-adiabatic limit”,
since the slow variation is in space, the slow variation in time being a consequence.
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Section 6.1

In the context of charges coupled to the Maxwell field the adiabatic limit was first
introduced in Komech, Kunze and Spohn (1999) and in Kunze and Spohn (2000a).
The fundamental solution (6.36) of the Klein–Gordon equation is discussed in
Morse and Feshbach (1953). De Bièvre (private communication) points out that
the dissipated energy (6.42) can be guessed also from elementary considerations.
In Fourier space the wave equation becomes

∂2
t φ̂t (k) = −ω(k)2φ̂t (k) + (2π)−3/2α(t) (6.61)

with ω(k)2 = k2 + κ2. For a forced harmonic oscillator the equation of motion
reads ẍ = −ω2x + f (t) and the energy transferred by the forcing is π | f̂ (ω)|2.
Inserting in (6.61) and integrating over all k yields (6.42). Schwinger (1949) uses
a similar argument for the radiated energy.

Section 6.2

A more detailed discussion of the hydrodynamic limit can be found in Spohn
(1991).

Section 6.3

In the early days of classical electron theory, one simply expanded in Rϕ . Rϕ was
considered to be small, but finite, roughly of the order of the classical electron ra-
dius. Schott (1912) pushes the expansion to include the radiation reaction. Appar-
ently, the notion of a point charge is first stated explicitly by Frenkel (1925). The
difficulties resulting from the point charge were clearly understood by P. Ehrenfest
as stressed by Pauli in his 1933 obituary. The point-charge limit is at the core of
the famous Dirac (1938) paper, cf. section 3.3. Since then the limit mb → −∞ has
become a standard piece of the theory, reproduced in textbooks and survey articles.
The negative bare mass was soon recognized as a source of instability. We refer
to the review by Erber (1961). On a linearized level stability is studied by Wilder-
muth (1955) and by Moniz and Sharp (1977) and Levine, Moniz and Sharp (1977).
Bambusi (1996), Bambusi and Noja (1996), and Noja and Posilicano (1998, 1999)
discuss the point-charge limit in the dipole approximation and show that then the
true solution is well approximated by the linear Lorentz–Dirac equation with the
full, both physical and unphysical, solution manifold explored. An extension to the
nonlinear theory is attempted by Marino (2002). The bound (6.60) is taken from
Bauer and Dürr (2001), which seems to be the only quantitative handling of the
instability for the full nonlinear problem.
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Self-force

The inhomogeneous Maxwell equations have been solved in (2.16), (2.17). Thus
it is natural to insert them into the Lorentz force in order to obtain a closed, albeit
memory equation for the position of the particle.

According to (2.16), (2.17) the Maxwell fields are a sum of initial and retarded
terms. We discuss first the contribution from the initial fields. By our specific
choice of initial conditions they have the representation, for t ≥ 0,

Eini(x, t) = −
0∫

−∞
ds

∫
d3y

(∇Gt−s (x − y) eϕ(y − q0 − v0s)

+ ∂t Gt−s (x − y)v0 eϕ(y − q0 − v0s)
)
, (7.1)

Bini(x, t) =
0∫

−∞
ds

∫
d3y ∇ × Gt−s (x − y)v0eϕ(y − q0 − v0s) ; (7.2)

compare with (4.31), (4.32). Since Gt is concentrated on the light cone, one con-
cludes from (7.1), (7.2) that Eini(x, t) = 0, Bini(x, t) = 0 for |q0 − x| ≤ t − Rϕ .
If we had allowed for more general initial data, such a property would hold only
asymptotically for large t .

Next we note that constrained by energy conservation the particle cannot travel
too far. Using the bound on the potential, one can find a v̄ < 1 such that

sup
t∈R

|v(t)| < v̄ < 1 , (7.3)

cf. Eq. (7.26). The charge distribution vanishes for |x − q(t)| ≥ Rϕ . Therefore,
once

t ≥ t̄ϕ = 2Rϕ/(1 − v̄) , (7.4)

80
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the initial fields and the charge distribution have no overlap. We conclude that for
t > t̄ϕ the initial fields make no contribution to the self-force and it remains to
discuss the effect of the retarded fields.

We insert (2.12), (2.13) into the Lorentz force for which purpose it is convenient
to use the scaled version (6.11). The external potentials are set equal to zero for a
while. Then on the macroscopic scale, for t ≥ εt̄ϕ ,

d

dt

(
mbγ vε(t)

) = Fε
self (t) (7.5)

with the self-force

Fε
self (t) = e2

t∫
0

ds ε

∫
d3k |ϕ̂(εk)|2 e−ik·(qε(t)−qε(s))((|k|−1 sin |k|(t − s))ik

− (cos |k|(t − s))vε(s) − (|k|−1 sin |k|(t − s))vε(t) × (ik × vε(s))
)
,

(7.6)

which in position space for ε = 1 was already written down in Eq. (2.57).
Equation (7.5) is exact under the stated conditions on the initial fields. No in-

formation has been discarded. The interaction with the field has been merely tran-
scribed into a memory term. To make further progress we have to use a suitable
approximation which exploits the assumption that the external forces are slowly
varying. Since this corresponds to small ε, we just have to Taylor-expand Fε

self (t),
which is carried out in section 7.2 with the proper justification left for section 7.3.
But before that, and to make contact with previous work, we take a closer look at
the memory term.

7.1 Memory equation

Equation (7.6) can be simplified, for which it is convenient to set ε = 1. By partial
integration

t∫
0

ds
∫

d3k |ϕ̂(k)|2 e−ik·(q(t)−q(s))v(s)
d

ds
|k|−1 sin |k|(t − s)

= −
∫

d3k |ϕ̂(k)|2 e−ik·(q(t)−q(0))v(0)|k|−1 sin |k|t

−
t∫

0

ds
∫

d3k|ϕ̂(k)|2 e−ik·(q(t)−q(s))(|k|−1 sin |k|(t − s))
(
v̇(s)

+ i(k · v(s))v(s)) . (7.7)
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Since t ≥ t̄ϕ , the boundary term vanishes. Inserting (7.7) into (7.6), returning to
physical space, and setting t − s = τ , one has for t ≥ t̄ϕ

Fself (t) = −e2

∞∫
0

dτ
[
v̇(t − τ) + (1 − v(t) · v(t − τ))∇x

+v(t − τ)(v(t) − v(t − τ)) · ∇x
]
Wt (x)|x=q(t)−q(t−τ) , (7.8)

where

Wt (x) =
∫

d3k |ϕ̂(k)|2 e−ik·x|k|−1 sin |k|t . (7.9)

In (7.8) we have extended the integration to ∞, since the integrand vanishes any-
way for τ ≥ t̄ϕ . Carrying out the integrations on the angles in (7.9) one obtains

Wt (x) = |x|−1(h(|x| + t) − h(|x| − t)
)
, (7.10)

h(w) = 2π

∞∫
0

dk g(k) cos kw (7.11)

with g(|k|) = |ϕ̂(k)|2. Since ϕ vanishes for |x| ≥ Rϕ, h(w) = 0 for |w| ≥ 2Rϕ .
Note that |q(t) − q(t − τ)| ≤ v̄ τ . Thus for t ≥ t̄ϕ we indeed have Wt (q(t) −
q(t − τ)) = 0, as claimed before. Fself(t) has a finite memory extending back-
wards in time up to t − t̄ϕ .

To go beyond (7.10) one has to use a specific form factor ϕ̂. Two choices, popu-
lar at the time, are ϕs(x) = (4π R2

ϕ)−1 δ(|x| − Rϕ) and ϕb(x) = e (4π R3
ϕ/3)−1 for

|x| ≤ Rϕ, ϕb(x) = 0 for |x| ≥ Rϕ . For the uniformly charged sphere one finds

h(Rϕw) =
{

(8π Rϕ)−1(1 − |w|/2) for |w| ≤ 2 ,

0 for |w| ≥ 2 ,
(7.12)

and for the uniformly charged ball

h(Rϕw) =
{

(8π Rϕ)−1 9
8 h̃ ∗ h̃(w) for |w| ≤ 2 ,

0 for |w| ≥ 2 ,
(7.13)

with h̃(w) = (1 − w2) for |w| ≤ 1 and h̃(w) = 0 otherwise.
For the charged sphere Wt (x) is piecewise linear and, by first taking the gradi-

ent of W , the time integrations simplify. In the approximation of small velocities
the motion of the charged particle is then governed by the differential–difference
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equation

mbv̇(t) = e
(
Eex(q(t)) + v(t) × Bex(q(t))

) + e2

12π R2
ϕ

(
v(t − 2Rϕ) − v(t)

)
,

(7.14)

where we have reintroduced the external fields.
The memory equation (7.14) is of suggestive simplicity. To have a well-defined

dynamics one has to prescribe q(0) and v(t) for −2Rϕ ≤ t ≤ 0 as initial data.
Of course, the coupled system determines these data completely. However, the
supporters of differential–difference equations regard (7.14) as the starting point
with no instruction for the choice of initial data. Their claim is that solutions to
(7.14) are not very sensitive to this choice. While there is some evidence on the
linearized level, the dependence on the initial data for the full nonlinear problem
remains to be studied.

7.2 Taylor expansion

We return to Eq. (7.5). As will be explained in section 7.3, one knows that there
exists a constant C , independent of ε for ε < ε0, such that

|q̈ε(t)| ≤ C , |...q ε(t)| ≤ C
(
1 + ε(ε + |t |)−2) ,

|....q ε(t)| ≤ C
(
1 + ε(ε + |t |)−2 + ε(ε + |t |)−3) (7.15)

for all t , provided the total charge e is sufficiently small. This smallness condition
merely reflects the fact that at present we do not know how to do better mathemat-
ically. Physically we expect (7.15) to hold no matter how large e.

Note that in higher time derivatives the mismatch of the initial conditions be-
comes visible. Only if the charge is allowed to move for a time span of order ε1/3,
which is short on the macroscopic scale but long as O(ε−2/3) on the microscopic
scale, do the derivatives become uniformly bounded.

Because of (7.15) we are allowed to Taylor-expand in (7.6). To simplify notation
we set vε(t) = v and t − s = τ . Then

vε(s) = vε(t − τ) = v− v̇τ + 1

2
v̈τ 2 + O(τ 3) , (7.16)

e−ik·(qε(t)−qε(s)) = e−ik·(qε(t)−qε(t−τ)) = e−i(k·v)τ
(

1 + 1

2
τ 2i(k · v̇) − 1

6
τ 3 i(k · v̈)

− 1

2

(1

2
τ 2(k · v̇) − 1

6
τ 3(k · v̈)

)2 + O((|k|τ 2)3)
)

. (7.17)
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Inserting in (7.6) and substituting s′ = ε−1s, k′ = εk yields

Fε
self(t) = e2

ε−1t∫
0

dτε−1
∫

d3k|ϕ̂(k)|2e−i(k·v)τ
{
(|k|−1 sin |k|τ)ik

− (cos |k|τ)
(
v− ετ v̇+ 1

2
ε2τ 2v̈

)
− (|k|−1 sin |k|τ)

(
v× (ik × v)

−v× (ik × ετ v̇) + 1

2
v× (ik × ε2τ 2v̈)) + 1

2
ετ 2i(k · v̇)

× (
(|k|−1 sin |k|τ)ik−(cos |k|τ)(v−ετ v̇)−(|k|−1 sin |k|τ)(v×(ik×v)

−v× (ik × ετ v̇))
) +

(
− 1

6
ε2τ 3i(k · v̈) − 1

8
ε2τ 4(k · v̈)2

)
× (

(|k|−1 sin |k|τ)ik − (cos |k|τ)v− (|k|−1 sin |k|τ)(v× (ik × v))
)}

+O(ε2) . (7.18)

The terms proportional to ε−1 cancel by symmetry. We sort all other terms,

Fε
self(t) = e2

∫
d3k |ϕ̂(k)|2

{( − (v · v̇)∇v + v̇(v · ∇v)
)ε−1t∫

0

dτe−i(k·v)τ (|k|−1 sin |k|τ)

+ (
v̇+ 1

2
v(v̇ · ∇v)

) ε−1t∫
0

dτ τe−i(k·v)τ (cos |k|τ) + ε
(1

2

[ − (v2 − 1)

× (v̇ · ∇v)∇v + v(v · ∇v)(v̇ · ∇v) + (v · v̈)∇v − v̈(v · ∇v)
]

+ 1

6

[ − (1 − v2)(v̈ · ∇v)∇v − v(v · ∇v)(v̈ · ∇v) + 3(v · v̇)(v̇ · ∇v)∇v

−3v̇(v · ∇v)(v̇ · ∇v)
] + 1

8

[
(v2 − 1)(v̇ · ∇v)

2∇v

−v(v · ∇v)(v̇ · ∇v)
2]) ε−1t∫

0

dτ τe−i(k·v)τ (|k|−1 sin |k|τ)

+ ε
(

− v̈− 1

6

[
v(v̈ · ∇v) + 3v̇(v̇ · ∇v)

]) ε−1t∫
0

dτ τ 2e−i(k·v)τ cos |k|τ
}

+O(ε2) . (7.19)
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To take the limit ε → 0 we go back to position space and use the fundamental
solution of the wave equation. Then

lim
ε→0

ε−1t∫
0

dτ

∫
d3k|ϕ̂(k)|2 e−i(k·v)τ (|k|−1 sin |k|τ) τ p

=
∞∫

0

dt
∫

d3x
∫

d3y ϕ(x)ϕ(y)
1

4π t
δ(|x + vt − y| − t) t p

=
{ ∫

d3k |ϕ̂(k)|2[k2 − (k · v)2]−1 for p = 0 ,∫
d3x ϕ(x)

∫
d3yϕ(y) (γ 2/4π) for p = 1 .

(7.20)

By the same method

lim
ε→0

ε−1t∫
0

dτ

∫
d3k |ϕ̂(k)|2 e−i(k·v)τ τ 1+p d

dτ
(|k|−1 sin |k|τ)

= −(
1 + p + (v · ∇v)

) ∞∫
0

dt
∫

d3k |ϕ̂(k)|2 e−i(k·v)t (|k|−1 sin |k|t)t p

=
{− ∫

d3k |ϕ̂(k)|2(k2 + (k · v)2)[k2 − (k · v)2]−2 for p = 0 ,

− ∫
d3x ϕ(x)

∫
d3yϕ(y) (2γ 4/4π) for p = 1 .

(7.21)

Collecting all terms the final result reads

Fε
self(t) = − mf(v)v̇+ ε(e2/6π)

[
γ 4(v · v̈)v+ 3γ 6(v · v̇)2v

+3γ 4(v · v̇)v̇+ γ 2v̈
] + O(ε2) (7.22)

for t > 0 with

mf(v) = me

[(|v|−2γ 2(3 − v2) − |v|−3(3 + v2)arctanh|v|)̂v⊗ v̂

+ ( − |v|−2 + |v|−3(1 + v2) arctanh|v|)1l
]
. (7.23)

Note that mf(v) = d(Ps − mbγv)/dv as a 3 × 3 matrix.
Up to order ε, Fε

self(t) consists of two parts of a rather different character. The
term −mf(v)v̇ is the contribution from the electromagnetic field to the change in
total momentum. We computed this term already in section 4.1 via a completely
different route. As emphasized there, since the Abraham model is semirelativistic,
the velocity dependence of mf has no reason to be of relativistic form and indeed
it is not. The term proportional to ε in (7.22) is the radiation reaction. Again there
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is no a priori reason to expect it to be relativistic, but in fact it is. Using the four-
vector notation of section 2.5, the radiation reaction can be rewritten as

ε(e2/6π)(ü − (u̇ · u̇)u) = ε(e2/6π)(g + u ⊗ u) · ü . (7.24)

The space part is the term proportional to e2 of (7.22), i.e. the radiation reaction
force, and the time part is the work done by this force per unit time.

7.3 How can the acceleration be bounded?

We return to the microscopic time scale. From the conservation of energy together
with condition (P), we have

Es(v
0) + eφ(εq0) = E(E0, B0, q0,v0) = E(E(t), B(t), q(t),v(t))

≥ mbγ (v(t)) + e φ̄ (7.25)

and therefore

sup
t∈R

|v(t)| ≤ v̄ < 1 . (7.26)

In (6.4) the external forces are of order ε. Superficially the self-force is of order
one. However for a Coulombic charge soliton field the self-force vanishes. Thus
if we could show that the deviations from the appropriate local soliton field are of
order ε, then the acceleration would satisfy

sup
t∈R

|v̇(t)| ≤ C ε (7.27)

with C a suitable constant. This is what we want to prove. We will not keep track
of the constants, and the value of C changes from equation to equation. We make
sure, however, that the e-dependence is explicit and that C depends only on v,
and thus is determined by the initial conditions. Of course, to justify the Taylor
expansion of section 7.2, we also need analogous estimates of higher derivatives,
which can be obtained with considerably more effort through the same scheme.
Here we want to explain how to get (7.27) and why we need e to be sufficiently
small, at least for the moment.

From the equations of motion one has

v̇ = m0(v)
−1 [

εe
(
Eex(εq) + v× Bex (εq)

) + e
(
Eϕ(q) + v× Bϕ(q)

)]
, (7.28)

where m−1
0 (v) = (mbγ )−1(1l − v̂⊗ v̂) is the matrix inverse of m0(v). Clearly by

(7.26) we have ‖m0(v)
−1‖ ≤ C and, by condition (P), the first term is bounded as

ε
∣∣e(Eex(εq) + v× Bex(εq)

)∣∣ ≤ C |e|ε . (7.29)
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On the other hand, the self-force looks to be of order one. To reduce it in order
we have to exploit the fact that E, B deviate only slightly from Ev, Bv close to the
charge distribution, i.e. we subtract zero and rewrite the self-force as

e
(
Eϕ(q) − Evϕ(q) + v× (Bϕ(q) − Bvϕ(q))

)
. (7.30)

Our goal is to show that this difference is of order ε.
Let us define then

Z (x, t) =
(

E(x, t) − Ev(t)(x − q(t))
B(x, t) − Bv(t)(x − q(t))

)
. (7.31)

Using Maxwell’s equations and the relations (v · ∇) Ev = −∇ × Bv + eϕv,
(v · ∇)Bv = ∇ × Ev one obtains

d

dt
Z (t) = A Z (t) − g (t) , (7.32)

where A is defined in (2.18) and

g (x, t) =
(

(v̇(t) · ∇v)Ev(x − q(t))
(v̇(t) · ∇v)Bv(x − q(t))

)
. (7.33)

Therefore (7.32) has again the structure of the inhomogeneous Maxwell equations.
Since Z (0) = 0 by our assumption on the initial data, one has

Z (t) = −
t∫

0

ds U (t − s)g (s) . (7.34)

In terms of Z(t), using (7.28), (7.30), the acceleration is bounded through

|v̇(t)| ≤ C(ε + |e|)
∫

d3xϕ(x)|Z1(x + q(t), t) + v(t) × Z2(x + q(t), t)| .
(7.35)

Let us set W (t, s) = U (t − s)g (s). Below we will prove that

|W1(t, s, q(t) + x)| + |W2(t, s, q(t) + x)| ≤ |e|C |v̇(s)|(1 + (t − s)2)−1 (7.36)

for |x| ≤ Rϕ . Therefore inserting (7.36) in (7.35) one obtains

|v̇(t)| ≤ |e|C
(

ε + |e|
t∫

0

ds (1 + (t − s)2)−1 |v̇(s)|
)

. (7.37)
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Let κ = sup
t≥0

|v̇(t)|. Then (7.37) reads

κ ≤ |e| C

(
ε + |e|κ

∞∫
0

ds (1 + s2)−1
)

, κ ≤ |e| C

1 − e2 C
ε . (7.38)

From the computation below we will see that C depends on v̄ (and on model
parameters like the form factor ϕ̂), but not on e. Thus taking |e| sufficiently small
one can ensure e2 C < 1 and therefore κ ≤ Cε as claimed.

We still have to establish (7.36). U (t) is given in Eqs. (2.12), (2.13). Since
∇ · g1(s) = 0 = ∇ · g2(s), the term proportional to k ⊗ k drops out. In real space
|k|−1 sin |k|t becomes Gt from (2.15) and cos |k|t becomes ∂t Gt . Therefore

W1(t, s, x) = 1

4π(t − s)2

∫
d3y δ(|x − y| − (t − s))

× [
(t − s)∇ × g2(y, s) + g1(y, s) − (x − y) · ∇g1(y, s)

]
,

W2(t, s, x) = 1

4π(t − s)2

∫
d3y δ(|x − y| − (t − s))

× [ − (t − s)∇ × g1(y, s) + g2(y, s) − (x − y) · ∇g2(y, s)
]
.

(7.39)

We insert g from (7.33). Ev and Bv are first-order derivatives of the function φvϕ

which according to (4.7) is given by

φvϕ(x) = e
∫

d3yϕ(x − y)(4π)−1 [(
(1 − v2)y2 + (v · y)2)]−1/2

. (7.40)

Using (4.5) one has componentwise

|∇vEv(x)| + |∇vBv(x)| ≤ C ( |∇φv(x)| + |∇∇vφv(x)|) ,

|∇∇vEv(x)| + |∇∇vBv(x)| ≤ C ( |∇∇vφv(x)| + |∇∇∇vφv(x)|) (7.41)

and taking successive derivatives in (7.40) one obtains the bounds

|∇φv(x)| + |∇∇vφv(x)| ≤ e C (1 + |x|)−2 ,

|∇∇φv(x)| + |∇∇∇vφv(x)| ≤ e C (1 + |x|)−3 , (7.42)

which imply

|g1(x, s)| + |g2(x, s)| ≤ e C |v̇(s)|(1 + |x − q(s)|2)−1 ,

|∇g1(x, s)| + |∇g2(x, s)| ≤ e C |v̇(s)|(1 + |x − q(s)|3)−1 . (7.43)
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We insert the bound (7.43) in (7.39) which results in an upper bound on
W (t, s, q(t) + x). Using the condition that |x| ≤ Rϕ and |q(t) − q(s)| ≤ v̄|t − s|
finally yields (7.36).

We summarize our findings as

Theorem 7.1 (Bounds on the velocity and its derivatives). For the Abraham
model satisfying conditions (C), (P), and (I ) there exist constants C, depending
through v̄ only on the initial conditions, and ē such that

|v(t)| ≤ v̄ < 1 , |v̇(t)| ≤ Cε , |v̈(t)| ≤ C
(
ε2 + ε(1 + |t |)−2) ,

|...v(t)| ≤ C
(
ε3 + ε2(1 + |t |)−2 + ε(1 + |t |)−3) (7.44)

for all t on the microscopic time scale, provided the charge is sufficiently small,
i.e. |e| < ē.

By keeping track of the constant C , one could get a bound on the charge ad-
missible in Theorem 7.1. Since we believe this restriction to be an artifact of the
method anyhow, there is no point in the effort.

Notes and references

Section 7.1

Sommerfeld (1904a, 1905) systematically uses memory equations. In fact he con-
siders the Abraham model with the kinetic energy mbv

2/2 for the particle and
wants to understand what happens when v(0) > c. He argues that the particle
rapidly loses its energy to become slower than c by emitting what we now call
Čerenkov radiation. The differential–difference equation (7.14) is derived by Page
(1918) and its relativistic generalization by Caldirola (1956). For reviews we refer
to Erber (1961) and Pearle (1982). Moniz and Sharp (1974, 1977) supply a linear
stability analysis and show that the solutions to (7.14) are stable provided Rϕ is not
too small. For that reason Rohrlich (1997) regards (7.14) and its relativistic sister
as the fundamental starting point for the classical dynamics of extended charges.
We take the Abraham model as the basic dynamical theory. Memory equations are
a useful tool in analyzing its properties.

Section 7.2

The Taylor expansion is taken from Kunze and Spohn (2000a). Such an expansion
was already used in Sommerfeld (1904a, 1905), to be repeated in various disguises.
The traditional expansion parameter is the size of the charge distribution, which in
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our context is replaced by the scaling parameter ε controlling the variation of the
potentials.

Section 7.3

The contraction argument appears in Komech, Kunze and Spohn (1999). The
bound on v̇(t) is taken from Kunze and Spohn (2000a), where also higher deriva-
tives are discussed. It is claimed that |v̈(t)| ≤ Cε2 and |...v(t)| ≤ Cε3. In the ar-
gument some initial terms are overlooked and the correct bounds are as given in
(7.44).
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Comparison dynamics

The expansion of the self-force suggests that if we are willing to accept an error
of order ε2, the trajectory of the charged particle is governed by an autonomous
equation – a substantial simplification of the hitherto coupled problem. An error of
order ε2 in the equation does not imply an error of the same order in the solution.
This point must be discussed, but let us proceed for a while in good faith and
simply ignore the error in Eq. (7.22). Then we obtain the following approximate
equation for the motion of the charge,

q̇ = v ,

m(v)v̇ = e
(
Eex(q) + v× Bex(q)

) + ε(e2/6π)
[
γ 4(v · v̈)v

+ 3γ 6(v · v̇)2v+ 3γ 4(v · v̇)v̇+ γ 2v̈
]
. (8.1)

Here m(v) is the effective velocity-dependent mass. It is the sum of the bare mass
and the mass (7.23) induced by the field,

m(v) = mb(γ 1l + γ 3v⊗ v) + mf(v) . (8.2)

As anticipated in section 4.1, via a distinct route, the leading contribution to
(8.1) is derived from the effective Lagrangian

Leff(q, q̇) = T (q̇) − e
(
φex(q) − q̇ · Aex(q)

)
, (8.3)

or equivalently from the Hamiltonian

Heff(q, p) = Eeff
(

p − eAex(q)
) + eφex(q) . (8.4)

For later purposes it is more convenient to work with the energy function

H(q,v) = Es(v) + eφex(q) , (8.5)

which is conserved by the solutions to (8.1) with ε = 0; compare with (4.14).

91
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The term of order ε in (8.1) describes the radiation reaction. If included, the
energy of the particle fails to be conserved and the energy balance becomes

d

dt
H(q,v) − d

dt
ε (e2/6π) γ 4(v · v̇) = −ε (e2/6π)

[
γ 4v̇2 + γ 6(v · v̇)2] . (8.6)

The term −ε(e2/6π)γ 4(v · v̇) = Eschott(v, v̇) is the Schott energy. It has no def-
inite sign. The Schott energy is stored in the near field and can be reversibly ex-
changed with the mechanical energy of the charge. The right-hand side of (8.6) is
the irreversible loss of energy through radiation; compare with section 8.4. Equa-
tion (8.6) is analogous to the balance equations in hydrodynamics and a familiar
way to rewrite it is

ev · Eex(q) = d

dt

(
Es(v) + Eschott(v, v̇)

) + ε (e2/6π)
[
γ 4v̇2 + γ 6(v · v̇)2] .

(8.7)

In other words, the work done by the external electric field acting on the charge is
divided up into the change in its kinetic energy, the change of the Schott energy,
and radiation.

If we set Gε = Es + Eschott, then Gε is decreasing in time, and integrating both
sides of (8.6) yields

−Gε (q(t),v(t), v̇(t)) + Gε (q(0),v(0), v̇(0))

= ε (e2/6π)

t∫
0

ds
[
γ 4 v̇(s)2 + γ 6 (v(s) · v̇(s))2] . (8.8)

The mechanical energy is bounded from below, but the Schott energy does not
have a definite sign. If (!) the Schott energy remains bounded in the course of time,
then

∞∫
0

dt
[
γ 4 v̇(t)2 + γ 6 (v(t) · v̇(t))2] < ∞ , (8.9)

which implies

lim
t→∞ v̇(t) = 0 . (8.10)

The same conclusion was already reached for the Abraham model in Theorem
5.1, with no adiabatic limit there. Instead of (8.9) we used the bounded energy
dissipation (5.9). Since both the approximate and the true solutions have the same
long-time asymptotics, we expect no further time scale, i.e. higher corrections to
(8.1) should not change the qualitative behavior of solutions and merely increase
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in precision. One important difference must be stressed, however: Theorem 5.1
holds for every solution, whereas (8.10) holds only for those with bounded Schott
energy.

Unfortunately, the energy balance (8.7) by itself does not tell the full story. As
noticed apparently first by Dirac (1938), Eq. (8.1) has solutions which run away
exponentially fast. This does not contradict (8.8). Gε(t) diverges to −∞ and the
time integral diverges to +∞ as t → ∞. The occurrence of runaway solutions can
be seen most easily in the approximation of small velocities, setting Bex = 0, and
linearizing φex around a stable minimum, say at q = 0. Then (8.1) becomes

q̇ = v , mv̇ = −m ω2
0 q + ε km v̈ (8.11)

with km = e2/6π . The three components of the linear equation (8.11) decou-
ple and for each component there are three modes of the form ezt . The char-
acteristic equation is z2 = −ω2

0 + εkz3 and to leading order the eigenvalues
are z± = ± iω0 − ε(kω2

0/2), z3 = (1/εk) + O(1). Thus in the nine-dimensional
phase space for (8.11) there is a stable six-dimensional hyperplane, Cε. On
Cε the motion is weakly damped, with friction coefficient ε (kω2

0/2), and re-
laxes as t → ∞ to rest at q = 0. Transversal to Cε the solution runs away as
e(t/εk).

Clearly such runaway solutions violate the stability estimate (7.15). Thus the
full Maxwell–Newton equations do not have runaways. They somehow appear as
an artifact of the Taylor expansion of Fε

self(t) from (7.6). Dirac simply postulated
that physical solutions must satisfy the asymptotic condition

lim
t→∞ v̇(t) = 0 . (8.12)

In the linearized version (8.11) this means that the initial conditions have to lie
in Cε. In Theorem 5.1 we proved the asymptotic condition to hold for the Abra-
ham model. Thus only those solutions to (8.1) satisfying the asymptotic condition
can serve as a comparison dynamics to the true solution. We then have to under-
stand how the asymptotic condition arises, even more so the global structure of the
solution flow to (8.1).

We note that in (8.1) the highest derivative is multiplied by a small prefactor.
Such equations have been studied in great detail under the header of (geometric)
singular perturbation theory. The main conclusion is that the structure found for
the linear equation (8.11) persists for the nonlinear equation (8.1). Of course the
hyperplane Cε is now deformed into some manifold, called the critical (or center)
manifold. We explain a standard example in the following section and then apply
the theory to (8.1).
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8.1 An example for singular perturbation theory

As a purely mathematical example we consider the coupled system

ẋ = f (x, y) , ε ẏ = y − h(x) . (8.13)

h and f are bounded, smooth functions. The phase space is R
2. The question we

address is to understand how the solutions to (8.13) behave for small ε. If we set
ε = 0, then y = h(x) and we obtain the autonomous equation

ẋ = f (x, h(x)) . (8.14)

Geometrically this means that the two-dimensional phase space has been squeezed
to the line y = h(x) and the base point, x(t), is governed by (8.14). {(x, h(x))| x ∈
R} is the critical manifold to zeroth order in ε.

To see some motion appear in the phase space ambient to C0 we change from
t to the fast time scale τ = ε−1t . Denoting differentiation with respect to τ by ′,
(8.13) goes over to

x ′ = ε f (x, y) , y′ = y − h(x) . (8.15)

In the limit ε → 0 we now have x ′ = 0, i.e. x(τ ) = x0 and y′ = y − h(x0) with
solution y(τ ) = (y0 − h(x0))eτ + h(x0). Thus on this time scale, C0 consists ex-
clusively of repelling fixed points. This is why C0 is called critical. The lineariza-
tion at C0 has the eigenvalue 1 transverse and the eigenvalue 0 tangential to C0.
In the theory of dynamical systems zero eigenvalues in the linearization turn out
to be linked to center manifolds, and thus C0 is also called the center manifold
(at ε = 0). The basic result of singular perturbation theory is that for small ε the
critical manifold deforms smoothly into Cε; compare with figure 8.1. Thus Cε is
invariant under the solution flow to (8.13). Its linearization at (x, y) ∈ Cε has an
eigenvalue of O(1) with eigenvector tangential to Cε and an eigenvalue 1/ε with
eigenvector transverse to Cε. Thus for an initial condition slightly away from Cε

the solution very rapidly diverges to infinity. Since C0 is deformed by order ε, also
Cε is of the form {(x, hε(x))| x ∈ R}. According to (8.13) the base point evolves as

ẋ = f (x, hε(x)) . (8.16)

Since hε is smooth in ε, it can be Taylor-expanded as

hε(x) =
m∑

j=0

ε j h j (x) + O(εm+1) . (8.17)

By (8.13) and (8.16) we have the identity

ε ∂x hε(x) f (x, hε(x)) = hε(x) − h(x) . (8.18)
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Cε

runaway

x

y

Figure 8.1: Repulsive center manifold Cε. The motion on Cε is slow and the
motion away from Cε is fast.

Substituting into (8.17) and comparing powers of ε one can thus determine h j (x)

recursively. To lowest order we obtain

h0(x) = h(x) , h1(x) = h′(x) f (x, h(x)) (8.19)

and to order ε the base point is governed by

ẋ = f (x, h(x)) + ε ∂y f (x, h(x)) h′(x) f (x, h(x)) . (8.20)

Given the geometric picture of the center manifold, the stable (i.e. not runaway)
solutions to (8.13) can be determined to any required precision.

8.2 The critical manifold

Our task is to cast (8.1) into the canonical form used in singular perturbation the-
ory. We set (x1, x2) = x = (q,v) ∈ R

3 × V, y = v̇ ∈ R
3,

f (x, y) = (x2, y) ∈ V × R
3 (8.21)

and

g(x, y, ε) = γ −2κ(x2)
−1 (

(6π/e2)
[
m(x2)y − Fex(x)

]
−ε

[
3γ 6(x2 · y)2 x2 + 3γ 4 (x2 · y)y

])
, (8.22)

where γ = (1 − x2
2)

−1/2 as before, Fex(x) = e(Eex(x1) + x2 × Bex(x1)), and
κ(v) is the 3 × 3 matrix κ(v) = 1l + γ 2 v⊗ v with inverse matrix κ(v)−1 =
1l − v⊗ v. With this notation Eq. (8.1) reads

ẋ = f (x, y) , ε ẏ = g(x, y, ε) . (8.23)
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We set h(x) = m(x2)
−1 Fex(x). Then for ε = 0 the critical manifold, C0, is

given by

C0 = {(x, h(x))| x ∈ R
3 × V} = {(q,v, v̇)| m(v)v̇ = Fex(q,v)} , (8.24)

which means that, for ε = 0, it is spanned by the solutions of the leading
Hamiltonian part of Eq. (8.1). Linearizing at C0 the repelling eigenvalue is domi-
nated by γ −2κ(x2)

−1 m(x2) which tends to zero as |x2| → 1. Therefore C0 is not
uniformly hyperbolic, which is one of the standard assumptions of singular pertur-
bation theory.

To overcome this difficulty we modify g to gδ, δ small, which agrees with g
on R

3 × {v| |v| ≤ 1 − δ} × R
3 and which is constantly extended to values |v| ≥

1 − δ. Thus for |x2(t)| ≤ 1 − δ the solution to ẋ = f , ε ẏ = gδ agrees with the
solution to ẋ = f , ε ẏ = g. For sufficiently small ε the modified equation then
has a critical manifold Cε with the properties discussed in the example of section
8.1. We only have to make sure that the modification is never seen by the solution.
Thus, for the initial condition |v(0)| ≤ v̄, we have to find a δ = δ(v̄) such that
|v(t)| ≤ 1 − δ for all times. To do so, one needs the energy balance (8.7).

We consider the modified evolution with vector field ( f , gδ) and choose the
initial velocity such that |v(0)| ≤ v̄ < 1. For ε small enough this dynamics has a
critical manifold of the form v̇ = hε(q,v) and |hε(q,v)| ≤ c1 = c1(δ). We start
the dynamics on Cε. According to (8.8), for all t ≥ 0,

Gε (q(t),v(t), hε(t)) ≤ Gε(0) = H(q(0),v(0)) − ε(e2/6π)(v(0) · hε(0))

≤ Es(v̄) + eφex (q(0)) + εc1 . (8.25)

We now choose δ such that v̄ ≤ 1 − 2δ. Since the initial conditions are on Cε,
the solution will stay for a while on Cε until the first time, τ , when |v(τ )| = 1 − δ

occurs. After that time the modification becomes visible. At time τ we have, using
the lower bound on the energy and (8.25),

Es(v(τ )) + eφ̄ ≤ H(q(τ ),v(τ )) = Gε(τ ) + ε(e2/6π) γ 4 (v(τ ) · hε(τ ))

≤ Es(v̄) + eφex (q(0)) + 2εc1 (8.26)

and therefore

Es(1 − δ) ≤ Es(1 − 2δ) + e (φex (q(0)) − φ̄) + 2εc1 . (8.27)

Es(1 − δ) ∼= 1/
√

δ for small δ, which implies

1√
δ

≤ c2 + 4 εc1 (8.28)
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with c2 = 2e (φex(q(0)) − φ̄). We now choose δ so small that 1/
√

δ > c2 + 1 and
then ε so small that 4εc1 < 1. Then (8.28) is a contradiction to the assumption that
|v(τ )| = 1 − δ. We thus conclude that τ = ∞ and the solution trajectory stays on
Cε for all times.

Equipped with this information we have for small ε the critical manifold

v̇ = hε (q,v) . (8.29)

On the critical manifold the Schott energy is bounded and from the argument lead-
ing to (8.10) we conclude that Dirac’s asymptotic condition holds on Cε. On the
other hand, slightly off Cε the solution diverges with a rate of order 1/ε. Therefore
the asymptotic condition singles out, for given q(0),v(0), the unique v̇(0) on Cε.

The motion on the critical manifold is governed by an effective equation which
can be determined approximately following the scheme of section 8.1. We define

h(q,v) = m(v)−1 e
(
Eex(q) + v× Bex(q)

)
. (8.30)

Then, up to errors of order ε2,

m(v)v̇ = e
(
Eex(q) + v× Bex(q)

)
(8.31)

+ ε (e2/6π)
[
γ 2κ(v)

(
(v · ∇q)h + (h · ∇v)h + 3γ 2(v · h)h

)]
.

The physical solutions of (8.1), in the sense of satisfying the asymptotic condition,
are governed by Eq. (8.31). Thus it, and not Eq. (8.1), must be regarded as the
correct comparison dynamics to the true microscopic evolution equations (6.11).
Note that the error accumulated in going from (8.1) to (8.31) is of the same order
as the error made in the derivation of Eq. (8.1).

Because of the special structure of (8.1), on a formal level the final result (8.31)
can be deduced without the help of geometric perturbation theory. We regard
m(v)v̇ = e (Eex(q) + v× Bex(q)) as the “unperturbed” equation and substitute
for the terms inside the square bracket, which means replacing v̇ by h and v̈ by
ḣ = (v · ∇q)h + (h · ∇v)h. While yielding the correct answer, one misses the geo-
metrical picture of the critical manifold and the associated motion in phase space.

8.3 Tracking of the true solution

From (6.11) we have the true solution qε(t),vε(t) with initial conditions q0,v0 and
correspondingly adapted field data. We face the problem of how well this solution
is tracked by the comparison dynamics (8.1) on its critical manifold. Let us first
disregard the radiation reaction. From our a priori estimates we know that

q̇ε = vε, m(vε)v̇ε = e
(
Eex(qε) + vε × Bex(qε)

) + O(ε) (8.32)
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which should be compared to

ṙ = u , m(u)u̇ = e
(
Eex(r) + u × Bex(u)

)
. (8.33)

We switched to the variables r , u instead of q,v so as to distinguish more clearly
between the true and comparison dynamics.

Theorem 8.1 (Adiabatic limit, conservative tracking dynamics). For the Abra-
ham model satisfying the conditions (C), (P), and (I ) let |e| ≤ ē and ε ≤ ε0 be
sufficiently small. Let r(t), u(t) be the solution to the comparison dynamics (8.33)
with initial conditions r(0) = q0, u(0) = v0. Then for every τ > 0 there exist con-
stants c(τ ) such that

|qε(t) − r(t)| ≤ c(τ )ε , |vε(t) − u(t)| ≤ c(τ )ε (8.34)

for 0 ≤ t ≤ τ .

Proof: Let δ(t) = |qε(t) − r(t)| + |vε(t) − u(t)|. Converting the differential equa-
tions (8.32), (8.33) into their integral form, one obtains

δ(t) ≤ δ(0) + C

t∫
0

dsδ(s) + ε

t∫
0

dsC
(
1 + ε(ε + s)−2)

≤ δ(0) + εC(t + 1) + C

t∫
0

dsδ(s) . (8.35)

Since δ(0) = 0 by assumption, Gronwall’s lemma yields the bound δ(t) ≤
εCeCt . �

Theorem 8.1 states that, up to an error of order ε, the true solution is well approx-
imated by the Hamiltonian dynamics (8.33).

In the next order the comparison dynamics reads

ṙ = u ,

m(u)u̇ = e
(
Eex(r) + u × Bex(r)

)
+ ε(e2/6π)

[
γ 4 (u · ü)u + 3γ 6(u · u̇)2 u + 3γ 4(u · u̇)u̇ + γ 2ü

]
(8.36)

restricted to its critical manifold Cε. Since the radiation reaction is proportional to
ε, the solution r(t), u(t) depends now on ε, a dependence which is suppressed in
our notation. Naively one would expect that improving the equation by a term of
order ε increases the precision to order ε2, i.e.

|qε(t) − r(t)| + |vε(t) − u(t)| = O(ε2) . (8.37)
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An alternative option to keeping track of the ε-correction is to consider longer
times, of the order ε−1τ on the macroscopic time scale. Then the radiative effects
add up to deviations of order one from the Hamiltonian trajectory. Thus

|qε(t) − r(t)| = O(ε) for 0 ≤ t ≤ ε−1 τ . (8.38)

One should be somewhat careful here. In a scattering situation the charged par-
ticle reaches the force-free region after a finite macroscopic time. According to
(8.37) the error in the velocity is then O(ε2), which builds up an error in the po-
sition of order ε over a time span ε−1 τ . Thus we cannot hope to do better than
(8.38). On the other hand, when the motion remains bounded, as e.g. in a uniform
external magnetic field, the charge comes to rest at some point q∗ in the long-time
limit and the rest point q∗ is the same for the true and the comparison dynamics. At
least, for an external electrostatic potential with a discrete set of critical points we
have already established such behavior and presumably it holds in general. Thus
for small ε we have qε(ε−1τ) ∼= q∗ and also rε(ε−1τ) ∼= q∗. Therefore, in the case
of bounded motion, we conjecture that (8.38) holds for all times.

Conjecture 8.2 (Adiabatic limit including friction). For the Abraham model sat-
isfying (C), (P), and (I ) let q(t) be bounded, i.e. |q(t)| ≤ C for all t ≥ 0, and
ε ≤ ε0. Then there exists (r(0) , u(0), u̇(0)) ∈ Cε such that

sup
t≥0

|qε(t) − r(t)| = O(ε) , (8.39)

where r(t) is the solution to (8.36) with the initial conditions given before.

In a more descriptive mode, the true solution qε(t) is ε-shadowed for all times
by one solution (and thus by many solutions) of the comparison dynamics.

At present we are far from such strong results. The problem is that an error of
order ε2 in (8.36) is generically amplified as ε2et/ε. Although such an increase
violates the a priori bounds, it renders a proof of (8.39) difficult. We seem to be
back to (8.34) which carries no information on the radiation reaction. Luckily the
radiation correction in (8.36) can be seen in the energy balance.

Theorem 8.3 (Adiabatic limit including friction). Under the assumptions of The-
orem 8.1 one has∣∣[Es(v

ε(t)) + e φex(qε(t))] − [Es(u(t)) + eφex(r(t))]
∣∣ ≤ Cc(τ )ε2 (8.40)

for tε ≤ t ≤ τ . Here (r(t), u(t)) is the solution to (8.36) with initial data r(tε) =
qε(tε), u(tε) = vε(tε), u̇ε(tε) = hε(qε(tε),vε(tε)) and tε = ε1/3.

To achieve a precision of order ε2, the initial slip in (7.15) does not allow one to
match the true and comparison dynamics at t = 0. One needs |....q ε(t)| uniformly
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bounded, which is ensured only for t ≥ Cε1/3, i.e. t ≥ tε with the arbitrary choice
C = 1.

Proof: Let us use the estimate (7.22) on the self-force and denote the error term
by f ε(t). Then | f ε(t)| ≤ Cε2 for tε ≤ t . As in (8.7),

d

dt
Gε (qε,vε, v̇ε) = f ε(t) · vε − ε (e2/6π)

[
γ 4(v̇ε)2 + γ 6(vε · v̇ε)2] (8.41)

and therefore

|H(qε,vε) − H(r , u)| ≤ ε (e2/6π)|γ (vε)4(vε · v̇ε) − γ (u)4(u · u̇)| (8.42)

+
t∫

tε

ds
(| f ε · vε| + ε(e2/6π)|γ (vε)4(v̇ε)2

+ γ (vε)6(vε · v̇ε)2 − γ (u)4(u̇)2 − γ (u)6(u · u̇)2|) .

Since |vε|, |u| remain bounded away from 1, the γ -factors are uniformly
bounded, and it suffices to estimate the difference on the Hamiltonian level
of precision. From Theorem 8.1 one has the bound |vε(t) − u(t)| ≤ c(τ )ε.
Inserting (8.34) into (8.32) and (8.33), we obtain the same bound for the first
derivative, |v̇ε(t) − u̇(t)| ≤ c(τ )ε. Moreover

∫ t
tε

ds | f ε(s)| ≤ Ctε2. Working out
the differences in (8.42), one concludes

|H(qε(t),vε(t)) − H(r(t), u(t))| ≤ C(t + c(t))ε2 , (8.43)

as claimed. �

8.4 Electromagnetic fields in the adiabatic limit

So far we have concentrated on the Lorentz force with retarded fields and have
obtained approximate evolution equations for the charged particle. Such an ap-
proximate solution can be reinserted into the inhomogeneous Maxwell–Lorentz
equations in order to obtain the electromagnetic fields in the adiabatic limit.

As before, let (qε(t),vε(t)), t ≥ 0, be the true solution. We extend it to qε(t) =
q0 + v0t, vε(t) = v0 for t ≤ 0. According to (4.31), (4.32) and using the scaled
fields as in (6.8), one has

1√
ε

E(t) = −
t∫

−∞
ds

(∇Gt−s ∗ ρε(s) + ∂t Gt−s ∗ jε(s)
)

(8.44)
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with ρε(x, t) = eϕε(x − qε(t)), jε(x, t) = eϕε(x − qε(t))vε(t). Inserting from
(2.15) and by partial integration,

1√
ε

E(x, t) = −
t∫

−∞
ds

∫
d3y

1

4π(t − s)
δ(|x − y| − (t − s))∇ρε(y, s)

−
t∫

−∞
ds

∫
d3y

1

4π(t − s)2
δ(|x − y| − (t − s))

× [(y − x) · ∇ jε(y, s) + jε(y, s)]

= − e
∫

d3y
( 1

4π |x − y|∇ϕε(y − qε(t − |x − y|))vε(t − |x − y|)

+ 1

4π |x − y|2v
ε(t − |x − y|)(1 + (y − x) · ∇)

ϕε(y − qε(t − |x − y|))
)

. (8.45)

In the same fashion

1√
ε

B(x, t) = −e
∫

d3y
1

4π |x − y|v
ε(t − |x − y|) × ∇ϕε(y − qε(t − |x − y|)) .

(8.46)

In the limit ε → 0 one has ϕε(x) → δ(x) and, by Theorem 8.1, qε(t) → r(t),
vε(t) → u(t), where r(t) = q0 + v0t , u(t) = v0 for t ≤ 0. We substitute y′ = y −
qε(t − |x − y|) with volume element det(dy/dy′) = [1 − vε(t − |x − y|) · (x −
y)/|x − y|]−1. Then δ(y′) leads to the constraint 0 = y − r(t − |x − y|) which
has the unique solution y = r(tret); compare with (2.22). In particular the volume
element det(dy/dy′) becomes [1 − n̂ · u(tret)]−1 in the limit, with n̂ = n̂(x, t) =
(x − r(tret))/|x − r(tret)|.

We conclude that

lim
ε→0

1√
ε

E(x, t) = Ē(x, t) , lim
ε→0

1√
ε

B(x, t) = B̄(x, t) , (8.47)

where Ē, B̄ are the Liénard–Wiechert fields (2.24), (2.25) generated by a point
charge moving along the trajectory t �→ r(t). The convergence in (8.47) is point-
wise, except for the Coulomb singularity at x = r(t).

8.5 Larmor’s formula

We want to determine the energy per unit time radiated to infinity and consider, for
this purpose, a ball of radius R centered at qε(t). At time t + R the energy in this
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ball is

ER,qε(t) (t + R) = E(0) − 1

2

∫
{|x−qε(t)|≥R}

d3x
(
E(x, t + R)2 + B(x, t + R)2)

(8.48)

using conservation of total energy. The radiation emitted from the charge at time t
reaches the surface of the ball at time t + R, and the energy loss per unit time is
given by

IR,ε(t) = d

dt
ER,qε(t)

=
∫

d3x δ(|x − qε(t)| − R)
(1

2
(n(x) · vε(t))

(
E(x, t + R)2

+ B(x, t + R)2) + E(x, t + R) · (
n(x) × B(x, t + R)

))
= 1

2
R2

∫
d2ω

(
(ω̂ · vε(t))

(
E(qε(t) + Rω̂, t + R)2

+ B(qε(t) + Rω̂, t + R)2) + 2E(qε(t) + Rω̂, t + R)

· (ω̂ × B(qε(t) + Rω̂, t + R)
))

, (8.49)

where n(x) is the outer normal of the ball and |ω̂| = 1, with d2ω the integra-
tion over the unit sphere. Equation (8.49) holds for sufficiently large R, since we
used {x| |x − qε(t)| ≥ R} ∩ {x| |x − qε(t + R)| ≤ εRϕ} = ∅, which is the case
for (1 − v̄)R ≥ εRϕ .

Equation (8.49) still contains the reversible energy transport between the con-
sidered ball and its complement. To isolate that part of the energy which is irre-
versibly lost one has to take the limit R → ∞. For this purpose we first partially
integrate in (8.45), (8.46) by using the identity

∇ϕ = ∇yϕ − y − x
|y − x|

(
1 + (y − x) · vε

|y − x|
)−1

(vε · ∇y)ϕ (8.50)

at the argument y − qε(t − |y − x|). For large R the fields in (8.49) then become

RE(qε(t) + Rω̂, t + R) ∼= √
ε

∫
d3y

e

4π
ϕε(y − qε)

[ − (1 − ω̂ · vε)−1v̇ε

− (1 − ω̂ · vε)−2(ω̂ · v̇ε)(vε − ω̂)
]∣∣

t+ω̂·(y−qε(t)) ,

(8.51)
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R B(qε(t) + Rω̂, t + R) ∼= √
ε

∫
d3y

e

4π
ϕε(y − qε)

[ − (1 − ω̂ · vε)−1(ω̂ × v̇ε)

−(1 − ω̂ · vε)−2(ω̂ · v̇ε)(ω̂ × vε)
]∣∣

t+ω̂·(y−qε(t))

= ω̂ × RE(qε(t) + Rω̂, t + R) , (8.52)

where we used the property that t + R − |qε(t) + Rω̂ − y| = t + ω̂ ·
(y − qε(t)) + O(1/R) for large R. Inserting in (8.49) yields

lim
R→∞

IR,ε(t) = Iε(t)

= − lim
R→∞

∫
d2ω(1 − ω̂ · vε(t))

(
RE(qε(t) + Rω̂, t + R)

)2 (8.53)

= −ε

∫
d2ω(1 − ω̂ · vε(t))

×
([ e

4π

∫
d3yϕε(y − qε)(1 − ω̂ · vε)−2(ω̂ · v̇ε)

]2

−
[ e

4π

∫
d3yϕε(y − qε)(1 − ω̂ · vε)−1v̇ε

+ (1 − ω̂ · vε)−2(ω̂ · v̇ε)vε
]2)∣∣∣

t+ω̂·(y−qε(t))
. (8.54)

Iε(t) is the energy radiated per unit time at ε fixed. As argued before, it is indeed
of order ε. From the expression (8.53) it can be seen that Iε(t) ≤ 0.

Equation (8.54) is not yet Larmor’s formula. To obtain it we have to go to
the adiabatic limit ε → 0. Then qε(t) → r(t). Since ϕε(x) → δ(x), we have
y ∼= qε(t) ∼= r(t) in (8.54). From the d3y volume element we get an additional
factor of (1 − ω̂ · vε)−1. Thus

lim
ε→0

ε−1 Iε(t) = I (t) = −e2
∫

d2ω(1 − ω̂ · u(t))
(
4π(1 − ω̂ · u(t))−3)2

× (
(ω̂ · u̇(t))2 − [(1 − ω̂ · u(t))u̇(t) + (ω̂ · u̇(t))u(t)]2)

= −(e2/6π)
[
γ 4u̇(t)2 + γ 6(u(t) · u̇(t))2]

= −(e2/6π)γ 6[u̇(t)2 − (u(t) × u̇(t))2] , (8.55)

which is the standard textbook formula of Larmor. Note that the same energy loss
per unit time was obtained already in (8.6) using only the energy balance for the
comparison dynamics.
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Starting from (8.49) one could alternatively first take the limit ε−1 IR,ε(t) →
IR,0(t), which is the change of energy in a ball of radius R centered at the particle’s
position r(t) in the adiabatic limit. As before the irreversible energy loss is isolated
through

lim
R→∞

IR,0(t) = I (t) . (8.56)

The energy loss does not depend on the order of limits, as it should be.
We recall that in Larmor’s treatment the trajectory of the charge, taken as a

point charge, is prescribed. In our case the charged particle is guided by external
fields and interacts with its own Maxwell field, which is physically somewhat more
realistic. Since the charge distribution is extended, by necessity, Larmor’s formula
holds only in the adiabatic approximation.

Notes and references

Section 8

The radiation damped harmonic oscillator is discussed in Jackson (1999) with a
variety of physical applications. The asymptotic condition was first stated in Dirac
(1938). It has been reemphasized by Haag (1955) in analogy to a similar condition
in quantum field theory.

Section 8.1

Singular, or geometric, perturbation theory is a standard tool in the theory of dy-
namical systems. Sakamoto (1990) presents the theory at the level of generality
needed here. We refer to Jones (1995) for a review with many applications. In the
context of synergetics (Haken 1983) one talks of slow and fast variables and the
slaving principle, which means that fast variables are enslaved by the slow ones.
Within our context this would correspond to an attractive critical manifold. The
renormalization group flows in critical phenomena have a structure similar to that
discovered here: the critical surface corresponds to critical couplings which then
flow to some fixed point governing the universal critical behavior. The critical sur-
face is repelling, and slightly away from that surface the trajectory moves towards
either the high- or low-temperature fixed points.

Section 8.2

Particular cases have been studied before, most extensively the one-dimensional
potential step of finite width and with linear interpolation (Haag 1955; Baylis and
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Huschilt 1976; Carati and Galgani 1993; Carati et al. 1995; Blanco 1995; Ruf and
Srikanth 2000), head-on collision in the two-body problem (Huschilt and Baylis
1976), the motion in a uniform magnetic field (Endres 1993), and motion in an
attractive Coulomb potential (Marino 2003). These authors emphasize that there
can be several solutions to the asymptotic condition. From the point of view of
singular perturbation theory such behavior is generic. If ε is increased, then the
critical manifold is strongly deformed and is no longer given as a graph of a func-
tion. For specified q(0),v(0) there are then several v̇(0) on Cε, which means that
the solution to the asymptotic condition is not unique. However, these authors fail
to emphasize that the nonuniqueness in the examples occurs only at such high
field strengths that a classical theory has long lost its empirical validity. At mod-
erate field strengths the worked-out examples confirm our findings. The general
applicability of singular perturbation theory was first recognized in Spohn (1998).

Sections 8.3, 8.4, and 8.5

The discussion is adapted from Kunze and Spohn (2000a, 2000b).



9

The Lorentz–Dirac equation

We return to the Lorentz model and add slowly varying external potentials. On a
formal level one can carry out the expansion in ε just as for the Abraham model.
The net result is that the rotational degrees of freedom decouple from the transla-
tional degrees of freedom, and the latter are governed by

m0u̇ = (e/c)F · u + (e2/6πc3)(ü − c−2(u̇ · u̇)u), (9.1)

which includes radiation reaction. Equation (9.1) is the Lorentz–Dirac equation,
written in microscopic units. m0 is the experimental rest mass of the particle. We
reintroduced the speed of light, c. F is the electromagnetic field tensor of the ex-
ternal fields, where for better readability we omit the subscript “ex” in this sec-
tion. The scaling parameter ε has been reabsorbed into the definition of F, which
amounts to setting ε = 1. It should be kept in mind that the radiation reaction is a
small correction to the Hamiltonian part.

If one fixes an inertial frame of reference and goes over to three-vectors, then
the time component of the Lorentz–Dirac equation reads

d

dt

(
m0c2 γ (v) + eφ(q) − (e2/6πc3) γ 4(v · v̇)) = −(e2/6πc3) γ 4(v̇ · κ(v)v̇),

(9.2)

and the space part becomes

m0γ κ(v)v̇ = e(E(q) + c−1v× B(q))

+ (e2/6πc3) γ 2κ(v) [v̈+ 3γ 2 c−2 (v · v̇) v̇], (9.3)

where as before κ(v) = 1l + c−2 γ 2 v⊗ v. Equation (9.3) differs from its semirel-
ativistic sister (8.1) only through the proper relativistic kinetic energy. Equation
(9.2) is identical to the energy balance (8.6), again with proper adjustment of the
kinetic energy. Thus we can follow the blueprint of section 8.2 to establish the
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existence of the critical manifold and to derive an effective second-order equation
for the motion on the critical manifold.

The Lorentz–Dirac equation makes definite predictions about the orbit of a
charged particle, including the effects of radiation losses, and one would expect
that these predictions can be verified experimentally. Of course, if radiation damp-
ing is neglected, there is a multitude of laboratory set-ups. The real challenge is to
observe quantitatively the minute changes in the Hamiltonian orbit due to radiation
losses. We will discuss two proposals in section 9.3. The first one is the motion of
an electron in a Penning trap. In the quadratic approximation for the quadrupole
field, this problem can still be handled analytically, which is done in section 9.2
along with a few other examples of independent interest. The second proposal is
the motion of an electron when hit by an ultrastrong laser pulse. In this case the ex-
ternal potentials are time dependent and one has to rely on a numerical integration
of the effective second-order equation.

9.1 Critical manifold, the Landau–Lifshitz equation

We write (9.3) in the standard form of singular perturbation theory; compare with
section 8.2. Then

ẋ = f (x, y), ε ẏ = g(x, y, ε) (9.4)

with

f (x, y) = (x2, y), (9.5)

g(x, y, ε) = (6πc3/e2)
(
m0 γ −1y − e γ −2κ(x2)

−1(E(x1) + c−1x2 × B(x1))
)

− 3εγ 2c−2(x2 · y)y. (9.6)

To conform with (8.1) we reintroduced the small parameter ε. At ze-
roth order the critical manifold is {(x, h(x))|x ∈ R

3 × V} with h(q,v) =
(e/m0)γ

−1 κ(v)−1
(
E(q) + c−1v× B(q)

)
. Linearizing (9.5), (9.6) at y = h(x)

the repelling eigenvalue is (6πc3/e2) m0γ
−1 + O(ε), which vanishes as |v|/c →

1. Thus we have to rely on the construction of section 8.2, which ensures that
for given maximal velocity v̄ one can choose ε small enough such that the orbit
remains on the critical manifold for all times.

To order ε the effective second-order equation is given by (8.31), except that
now m(v) = m0 γ κ(v). We work out the various terms and switch back to mi-
croscopic units. Then the motion on the critical manifold of the Lorentz–Dirac
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equation is governed by

q̇ = v,

m0γ κ(v)v̇ = e(E + c−1v× B) + e2

6πc3

[ e

m0
γ (v · ∇)(E + c−1v× B)

+ ( e

m0

)2
c−1

(
(E × B) + c−1(v · E)E + c−1(v · B)B

+ ( − E2 − B2 + c−2(v · E)2 + c−2(v · B)2

+ 2c−1v · (E × B)
)
γ 2c−1v

)]
. (9.7)

While singular perturbation theory provides a systematic method, Eq. (9.7)
can also be derived formally. In (9.3) we regard m0γ κ(v)v̇ = e (E + c−1v× B)

as the unperturbed equation, differentiate it once, and substitute v̈ inside the
square brackets of (9.3). Resubstituting v̇ from the unperturbed equation results
in Eq. (9.7). This argument is carried out more easily and in greater general-
ity, because it allows for time-dependent potentials, in the covariant form of the
Lorentz–Dirac equation. The unperturbed equation is

m0u̇ = (e/c)F(q) · u. (9.8)

One differentiates with respect to the eigentime,

(m0c/e)ü = (u · ∇g)F(q) · u + F(q) · u̇. (9.9)

Substituting (9.9) in (9.1) and resubstituting (9.8) yields

m0u̇ = (e/c)F · u + e2

6πc3

[
(e/m0c)(u · ∇g)F · u + (e/m0c)2F · F · u

−(e/m0c2)2(F · u) · (F · u)u
]
. (9.10)

In three-vector notation the space part of Eq. (9.10) coincides with (9.7), except
for the additional term (e/m0)γ (∂t E + c−1v× ∂t B) because of the time depen-
dence of the fields. As usual, the time component of (9.10) provides the energy
balance.

Equation (9.10) and its formal derivation appeared for the first time in the sec-
ond volume of the Course in Theoretical Physics by Landau and Lifshitz. Hence
it seems to be appropriate to call Eq. (9.10) the Landau–Lifshitz equation. The er-
ror in going from (9.1) to (9.10) is of the same order as that in the derivation of
the Lorentz–Dirac equation itself. Thus we regard the Landau–Lifshitz equation as
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the effective equation governing the motion of a charged particle in the adiabatic
limit.

9.2 Some applications

(i) Zero magnetic field, one-dimensional motion. We assume B = 0 and φex

to vary only along the 1-axis. Setting v = (v, 0, 0), q = (x, 0, 0), and E =
(−φ′, 0, 0), the Landau–Lifshitz equation becomes

m0 γ 3 v̇ = −eφ′(x) − e2

6πc3

e

m0
γ φ′′(x)v. (9.11)

The radiation reaction is proportional to −φ′′(x)v, which can be regarded as
a spatially varying friction coefficient. For a convex potential, φ′′ > 0, such as
an oscillator potential, this friction coefficient is strictly positive and the result-
ing motion is damped until the minimum of φ is reached. In general, how-
ever, φ′′ will not have a definite sign, like in the case of the double well
potential φ(x) � (x2 − 1)2 or the washboard potential φ(x) � − cos x . At lo-
cations where φ′′(x) < 0 one has antifriction and the mechanical energy in-
creases. This gain is always dominated by losses as can be seen from the energy
balance

d

dt

[
m0 γ + eφ + e2

6πc3

e

m0
γ φ′v

]

= − e2

6πc3

( e

m0

)2
φ′ 2 − 1

m0

( e2

6πc3

e

m0

)2
γ φ′φ′′v . (9.12)

The last term in (9.12) does not have a definite sign. But its prefactor is down by
the factor e2/m0c3 and therefore it is outweighed by −φ′ 2.

Equation (9.11) has one peculiar feature. If φ(x) = −Ex, E > 0, over some
interval [a−, a+], then φ′′ = 0 over that interval and the friction term vanishes.
The particle entering at a− is uniformly accelerated to the right until it reaches
a+. From Larmor’s formula we know that the energy radiated per unit time equals
(e2/6πc3)(e/m0)

2 E2. Since the mechanical energy is conserved, the radiated en-
ergy must come entirely from the Schott energy stored in the near field. The
same behavior is found for the Lorentz–Dirac equation. If, locally, E = const. and
B = 0, then the Hamiltonian part is solved by hyperbolic motion, i.e. a constantly
accelerated relativistic particle. For this solution the radiation reaction vanishes
which means that locally the critical manifold happens to be independent of ε. The
radiated energy originates exclusively from the Schott energy.
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(ii) Zero magnetic field, central potential. For zero magnetic field the Landau–
Lifshitz equation simplifies to

m0 γ κ(v)v̇ = e E + e2

6πc3

[ e

m0
γ (v · ∇)E

+
( e

m0c

)2(
(v · E)E − γ 2 E2v+ γ 2c−2(v · E)2v

)]
. (9.13)

We take E = −∇φex and assume that φex is central. Let us set q = r , |r | =
r, r̂ = r/|r |, φex(q) = φ(r) which implies E = −φ′r̂ . Then (9.13) becomes

m0 γ κ(v)v̇ = −e φ′r̂ + e2

6πc3

[ e

m0
γ

(
− (v · r̂)φ′′r̂ − 1

r
(v− (v · r̂)r̂)φ′

)

+
( e

m0c

)2
φ′ 2

(
(v · r̂)r̂ − γ 2 v+ γ 2 c−2(v · r̂)2 v

)]
. (9.14)

The angular momentum L = r × m0γv satisfies

L̇ = e2

6πc3

[
− e

m0

1

r
φ′ −

( e

m0c

)2
γ 2 (

1 − c−2(v · r̂)2)φ′ 2
]

L. (9.15)

Thus the orientation of L is conserved and the motion lies in the plane perpendic-
ular to L. No further reduction seems to be possible and one would have to rely
on numerical integration. Only for the harmonic oscillator, φ(r) = 1

2 m0ω
2
0r2, can

a closed form solution be achieved.
(iii) Zero electrostatic field and constant magnetic field. We set B = (0, 0, B)

with constant B. Then (9.7) simplifies to

m0 γ κ(v)v̇= e

c
(v× B) + e2

6πc3

( e

m0c

)2 [
(v · B)B − γ 2 B2v+ γ 2 c−2(v · B)2v

]
.

(9.16)

We multiply by κ(v)−1 to obtain

m0 γ v̇ = e

c
(v× B) + e2

6πc3

( e

m0c

)2 [
(v · B)B − B2v

]
. (9.17)

The motion parallel to B decouples with v̇3 = 0. We set v3 = 0 and v =
(u, 0), u⊥ = (−u2, u1). Then the motion in the plane orthogonal to B is governed
by

γ u̇ = ωc(u⊥ − βωcu), (9.18)

with the cyclotron frequency ωc = eB/m0c and β = e2/6πc3m0. Equation (9.18)
holds over the entire velocity range. For an electron βωc = 8.8 × 10−18 B [gauss].
Thus even for very strong fields the friction is small compared to the inertial terms.
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Equation (9.18) can be integrated as

d

dt
γ = −βω2

c (γ 2 − 1) (9.19)

with solution

γ (t) = [
γ0 + 1 + (γ0 − 1)e−2βω2

c t][γ0 + 1 − (γ0 − 1)e−2βω2
c t]−1

, (9.20)

which tells us how u(t)2 shrinks to zero. To determine the angular dependence we
introduce polar coordinates as u = u(cos ϕ, sin ϕ). Then

du

dϕ
= −βωcu,

dϕ

dt
= γ −1ω. (9.21)

Thus u(ϕ) shrinks exponentially,

u(ϕ) = u(0) e−βωcϕ. (9.22)

Since βωc = 8.8 × 10−18 B [gauss] for an electron, even for strong fields the
change of u over one revolution is tiny.

To obtain the evolution of the position q = (r , 0), |r | = r , we use the fact that
for zero radiation reaction, β = 0,

r = u

ωc
γ . (9.23)

By (9.22) this relation remains approximately valid for non-zero β. Inserting u(t)
from (9.20) one obtains

r(t) = r0 e−βω2
c t[1 + ((γ0 − 1)/2)(1 − e−2βω2

c t )
]−1 (9.24)

with r0 the initial radius and u(0)/c = (γ0 − 1)1/2/γ0 the initial speed which are
related through (9.23). In the ultrarelativistic regime, γ0 � 1, and for times such
that βω2

c t 	 1, (9.24) simplifies to

r(t) = r0
1

1 + γ0βω2
c t

(9.25)

and the initial decay is according to the power law t−1 rather than exponential.
For an electron βω2

c = 1.6 × 10−6(B [gauss])2 s−1. Therefore if one chooses
a field strength B = 103 gauss and an initial radius of r0 = 10 cm, which corre-
sponds to the ultrarelativistic case of γ = 6 × 104, then the radius shrinks within
0.9 s to r(t) = 1 µm by which time the electron has made 2 × 1014 revolutions.

(iv) The Penning trap. An electron can be trapped for a very long time in the
combination of a homogeneous magnetic field and an electrostatic quadrupole po-
tential, which has come to be known as a Penning trap. Its design has been opti-
mized towards high-precision measurements of the gyromagnetic g-factor of the
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electron. Our interest here is that the motion in the plane orthogonal to the mag-
netic field consists of two coupled modes, which means that the damping cannot be
guessed by pure energy considerations using Larmor’s formula. One really needs
the full power of the Landau–Lifshitz equation.

An ideal Penning trap has the electrostatic quadrupole potential

eφ(x) = 1

2
mω2

z

(
− 1

2
x2

1 − 1

2
x2

2 + x2
3

)
, (9.26)

which satisfies 
φ = 0, superimposed with the uniform magnetic field

B = (0, 0, B). (9.27)

The quadrupole field provides an axial restoring force whereas the magnetic field
is responsible for the radial restoring force, which however could be outweighed
by the inverted part of the harmonic electrostatic potential.

We insert E = −∇φ and B in the Landau–Lifshitz equation. The terms propor-
tional to (v · ∇)E, E × B, (v · B)B, and B2v are linear in v, respectively q. The
remaining terms are either cubic or quintic and will be neglected. This is justified
provided

|v|
c

	 1 (9.28)

and

(m0ω
2
z /e) rmax 	 B, i.e. rmax 	 c(ωc/ω

2
z), (9.29)

if rmax denotes the maximal distance from the trap center. With these assumptions
the Landau–Lifshitz equation decouples into an in-plane motion and an axial mo-
tion governed by

u̇ = 1

2
ω2

z r + ωcu⊥ − β
[(

ω2
c − 1

2
ω2

z

)
u + 1

2
ωcω

2
z r⊥

]
, (9.30)

z̈ = −ω2
z z − βω2

z ż. (9.31)

Here q = (r , z), v = (u, ż), (x1, x2)
⊥ = (−x2, x1).

The axial motion is just a damped harmonic oscillation with frequency ωz and
friction coefficient

γz = βω2
z . (9.32)

The in-plane motion can be written in matrix form as

d

dt
ψ = (A + βV )ψ (9.33)
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magnetroncyclotron

Figure 9.1: Orbit of an electron in a Penning trap seen from above.

with ψ = (r , u) and A11 = 0, A12 = 1l, A21 = ω2
z 1l, A22 = iωzσy, V11 = 0,

V12 = 0, V21 = iωcω
2
z σy, V22 = (ω2

z − ω2
c)1l, where σy is the Pauli spin matrix

with eigenvectors χ±, σyχ± = ±χ±. The unperturbed motion is governed by the
4 × 4 matrix A. It has the eigenvectors ψ+,± = (±i(1/ω+)χ∓, χ∓) with eigenval-
ues ±iω+ and ψ−,± = (±i(1/ω−)χ∓, χ∓) with eigenvalues ±iω−, where

ω± = 1

2

(
ωc ±

√
ω2

c − 2ω2
z

)
. (9.34)

The mode with frequency ω+ is called the cyclotron mode and that with ω− is
called the magnetron mode. Experimentally ωc � ωz and therefore ω+ 	 ω−.
The orbit is then an epicycle with rapid cyclotron and slow magnetron motion,
as shown in figure 9.1. The adjoint matrix A∗ has eigenvectors orthogonal to the
ψ’s. They are given by ϕ+,± = (∓i(ω2

z /ω+)χ∓, χ∓) with eigenvalues ±iω+ and
ϕ−,± = (−(ω2

z /ω−)χ∓, χ∓) with eigenvalues ∓iω−.
Since β is small, the eigenfrequencies of A + βV can be computed in first-order

perturbation. The cyclotron mode attains a negative real part corresponding to the
friction coefficient

γ+ = e2

6πc3m0

ω3+
ω+ − ω−

(9.35)

and the magnetron mode attains a positive real part corresponding to the antifric-
tion coefficient

γ− = e2

6πc3m0

ω3−
ω− − ω+

. (9.36)

As the electron radiates, it lowers its potential energy by increasing the magnetron
radius.
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Experimentally B = 6 × 104 gauss and the voltage drop across the trap is 10 V.
This corresponds to ωz = 4 × 108 Hz, ω+ = 1.1 × 1012 Hz, ω− = 7.4 × 104 Hz.
The conditions (9.28), (9.29) are easily satisfied. For the lifetimes (1/γz) = 5 ×
108 s, (1/γ+) = 8 × 10−2 s, and (1/γ−) = −2 × 1023 s are obtained. Thus the
magnetron motion is stable, as observed through keeping a single electron trapped
over weeks. The cyclotron motion decays within fractions of a second. The axial
motion is in fact damped by coupling to the external circuit and decays also within
a second.

The variation with the magnetic field can be more clearly discussed in terms of
the dimensionless ratio (ωc/ωz) = λ. Then

ω± = ωz
1

2

(
λ ±

√
λ2 − 2

)
, γ± = ±βω2

z

(
λ ±

√
λ2 − 2

)3
/8

√
λ2 − 2.

(9.37)

For large λ, ω+ ∼= λ, ω− ∼= λ−1, while γ+ ∼= λ2, γ− ∼= λ−4. As λ → √
2, we

have ω+ = ω− = ωz/
√

2. However, the friction coefficients diverge as (λ −√
2)−1/2. Let us call Bc the critical field at which the mechanical motion becomes

unstable. For B > Bc, one still has periodic motion with frequency ωz/
√

2, but
the onsetting instability is revealed through the vanishing lifetime. In the men-
tioned experiment λ = 2.7 × 103 and for fixed ωz the critical field strength is
Bc = 30 gauss.

9.3 Experimental status of the Lorentz–Dirac equation

Energy loss through radiation is a well-established phenomenon. Indeed, in syn-
chrotron sources electrons slow down because of radiation losses, and energy has
to be supplied to maintain a steady electron current. The supplied power is com-
puted on the basis of Larmor’s formula, and synchrotron sources are one promi-
nent example to confirm its validity. On the other hand, the Lorentz–Dirac equation
goes way beyond mere energy balancing and claims to predict the orbit of an elec-
tron. Here synchrotron sources provide no test, since the modification of the orbit
due to radiation damping is lost in the noise of experimental uncertainties. As a
fair summary, thus we can say that while qualitative aspects of radiation damping
are well tested, there is no single experiment which probes quantitatively the pre-
dictions of the electron motion by the Lorentz–Dirac equation. We propose and
discuss here two experiments which are within the reach of present-day techni-
ques.

To cope with the smallness of the radiation reaction, in essence, only two
approaches seem feasible. The first one is to wait long enough until the effects
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accumulate to something which may be detected, a route followed in the Penning-
trap experiment. The other option is to use ultrastrong fields. In either case, there
is no way to monitor directly the electron orbit and one has to rely on indirect
evidence, like lifetimes or emission spectra.

(i) Penning trap. In the previous section we discussed the electron orbits for the
Penning trap with the quadrupole potential in the quadratic approximation. The
Lorentz–Dirac equation predicts, in particular, the lifetime of the cyclotron mode.
For the field strengths used in the high-precision measurement of the g-factor, this
lifetime is measured to 0.8 s in good agreement with the theoretical result. To
have a more stringent test what would be needed is a systematic determination
of how the lifetime depends on the magnetic field strength. Another option of
interest is to turn the B-field out off the symmetry axis. For this case we have not
computed the cyclotron lifetime, but could have done so by the scheme explained,
with the welcome complication that all three modes couple. The dependence of
the cyclotron lifetime on the orientation of the B-field would be a valuable test of
the validity of the Lorentz–Dirac equation.

(ii) Ultrastrong laser pulse. A strong laser pulse hits a bound electron. Since the
atom ionizes instantaneously, the electron is subject only to the time-dependent
laser field. Thus we set q0 = 0,v0 = 0, and for the external fields

E(x, t) = h(ωt − k · x)E0 cos(ωt − k · x),

B(x, t) = h(ωt − k · x)B0 cos(ωt − k · x),

|E0| = |B0| , E0 · k = 0 = B0 · k, E0 · B0 = 0. (9.38)

h is a shape function. The motion of the electron is governed by the Landau–
Lifshitz equation (9.7) augmented by the term

e2

6πc3

e

m0
γ

∂

∂t
(E + c−1v× B) (9.39)

because of the time dependence of the external fields. Our dynamical problem is
in fact two dimensional with the motion of the electron lying in the plane spanned
by E0 and k. Nevertheless one has to rely on numerical integration, and we discuss
the example from Keitel et al. (1998).

The ultra-intense laser field has an intensity of 1022 W cm−2. The frequency is
chosen to be ω = 3.54 × 1015 s−1, which is in the near-infrared regime. We fol-
low the motion of the electron up to 3000 laser cycles, i.e. up to the final time
t = 3000(2π/3.54 × 1015) s = 0.53 × 10−11 s. Over that time span the shape
function is assumed to interpolate linearly between zero and the full field strength.
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k

E0

Figure 9.2: Orbit of an electron when hit by an ultrastrong laser pulse.

The electron motion is highly relativistic, as can be seen from the strong redshift
corresponding to only the seven electron cycles displayed in figure 9.2. The elec-
tron is displaced by 0.1586 cm in the propagation direction and has a maximal
amplitude of 0.795 × 10−3 cm in the electric field direction.

The effects of radiation damping are minute. In the propagation direction the
distance is increased by the fraction 7 × 10−7 and in the electric field direction it
is decreased by the fraction 10−2. Thus a direct verification of the radiation re-
action is out of reach. However, in the emission spectrum the radiation damping
results in a roughly 1% change as compared to the frictionless solution with the
Lorentz force from the external fields of (9.38). In an experiment the radiation
spectrum has to be measured with such precision that, after the theoretical spec-
trum, computed without radiation reaction, has been subtracted, there is still a sig-
nificant background which allows for a quantitative comparison with the emission
spectrum predicted by the Lorentz–Dirac equation.

Notes and references

Section 9

The name Lorentz–Dirac is standard but historically inaccurate. Some authors,
e.g. Rohrlich (1997), therefore propose Abraham–Lorentz–Dirac instead. The
radiation reaction term was originally derived in Abraham (1905); compare with
chapters 7 and 8. Von Laue (1909) realized its covariant form. In the Pauli
(1921) encyclopaedia article on relativity the equation is stated as in (9.1). Dirac’s
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contribution is explained in section 3.3. Plass (1961) is a summary of exact solu-
tions of the Lorentz–Dirac equation.

Section 9.1

Detailed case studies of the Lorentz–Dirac equation, including its center manifold,
are listed in the Notes to section 8.2. Baylis and Huschilt (2002) critically explore
the relation to the Landau–Lifshitz equation. The substitution trick seems to have
been common knowledge. For example, without further comment it is used by
Pauli (1929) and Heitler (1936) in the particular case of a harmonic oscillator. In
its full generality the Landau–Lifshitz equation (9.10) appears already in the first
edition of Volume II: The Classical Theory of Fields of the Landau–Lifshitz Course
in Theoretical Physics. At no point is the reader given a hint on the geometrical pic-
ture of the solution flow and on the errors involved in the approximation. To me it
is rather surprising that the contribution of Landau and Lifshitz is ignored in essen-
tially all discussions of radiation reaction, one notable exception being Teitelbom
et al. (1980). Spohn (1998, 2000a) uses singular perturbation theory to rederive the
Landau–Lifshitz equation. The appearance of singular perturbation theory is diffi-
cult to track. For a particular application it is clearly stated by Burke (1970). There
have been attempts to replace the Lorentz–Dirac equation by a second-order equa-
tion (Mo and Papas 1971; Shen 1972b; Bonnor 1974; Parrot 1987; Valentini 1988;
Ford and O’Connell 1991, 1993). Based on Ford and O’Connell (1991), Jackson
(1999) uses the substitution trick for a radiation damped harmonic oscillator and
discusses several applications. In the case of arbitrary time-dependent potentials,
only Landau and Lifshitz provide the correct center manifold equation. The struc-
ture discussed here reappears whenever a low-dimensional system is coupled to a
wave equation; for an application in acoustics see Templin (1999).

Section 9.2

Uniform acceleration is discussed in Fulton and Rohrlich (1960) and Rohrlich
(1990). A constant magnetic field is of importance for synchrotron sources. Since
the electron is maintained on a circular orbit, Larmor’s formula is precise enough.
Landau and Lifshitz (1959) give a brief discussion. The power law for the ultra-
relativistic case is noted in Spohn (1998). Shen (1972a, 1978) discusses at which
field strengths quantum corrections will become important. His results are only
partially reliable, since his starting point is not the Landau–Lifshitz equation. The
Penning trap is reviewed by Brown and Gabrielse (1986), which includes a discus-
sion of the classical orbits and their lifetimes. They state the results (9.35), (9.36)
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as based on a quantum resonance computation. Since the final answer does not
contain �, it must follow from the Landau–Lifshitz equation (Spohn 2000a). In
the classical framework, general trap potentials can be handled through numerical
integration routines for ordinary differential equations. The self-force in the case
of synchroton radiation is studied by Burko (2000).

Section 9.3

The Penning-trap experiment is proposed in Spohn (2000a). The numerical results
on ultrastrong laser pulses are taken from Keitel et al. (1998). Another proposal,
which apparently never received the proper funding, is to measure the mega-gauss
magnetic bremsstrahlung for ultrarelativistic electrons (Erber 1971; Shen 1970).
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Spinning charges

The Lorentz model includes by necessity the inner rotation of charges and, beyond
the translational degrees of freedom, one has to determine its effective dynamics.
This will lead to a derivation of the Bargmann–Michel–Telegdi (BMT) equation
from a microscopic basis including an expression for the gyromagnetic ratio. We
will also discuss the Abraham model with spin, a little-explored territory, since it
is more easily controlled mathematically and it teaches us how the BMT equation
is modified when Lorentz invariance is no longer available.

10.1 Effective spin dynamics of the Lorentz model

Let us recall the equations of motion for an extended charge, where for the moment
the interaction with the self-field is ignored,

ṗ = f, ṡ + ΩFW · s = t . (10.1)

Here the external force f , respectively the external torque t , are defined through
(2.92), respectively (2.95). Equation (10.1) must be supplemented by

p = mgu, s = Ibw, (10.2)

which define the bare gyrational mass mg and the bare moment of inertia Ib. Both
depend on |w|.

We assume now that the external field tensor is slowly varying, by replacing
F(q) by the scaled field tensor εF(εq) in (2.92), (2.95). Note that this prescription
automatically includes slow variation in time. f and t simplify in the limit of small
ε and, on the macroscopic scale, (10.1) becomes

ṗ = eF · u, ṡ + ΩFW · s = µ(F · w)⊥ (10.3)

119
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with the magnetic moment

µ = 1

3
e
∫

d3xϕ(x)x2 (10.4)

and a⊥ = (g + u ⊗ u) · a. Since |w| is conserved, the translational motion is au-
tonomous, whereas the spin follows the local fields as they are encountered.

As a next step we have to include the coupling to the self-field. In principle the
scheme of chapter 7 has to be repeated, but we prefer to take the static short-cut.
The energy–momentum relation for the Lorentz model was computed in chapter 4.
Thus we stipulate that the bare gyrational mass mg is renormalized to mg + mf and
the bare moment of inertia to Ib + If; see (4.43), (4.45), respectively (4.49), (4.51).
This means that instead of (10.2) we have

p = (mg + mf)u, s = (Ib + If)w . (10.5)

Equation (10.3) together with (10.5) is the effective dynamics in the adiabatic limit
on the Hamiltonian level neglecting radiation damping.

We want to compare our spin dynamics with the BMT equation which reads

ẇ + ΩFW · w = g

2

e

m
(F · w)⊥ , (10.6)

where m is the experimental mass and g the gyromagnetic ratio, which like the
charge is an intrinsic property of the particle. Using the fact that ΩFW is determined
by Newton’s translational equations of motion one arrives at the perhaps more
familiar three-vector form for the angular velocity,

ω̇ = e

mc
ω ×

[(g

2
− 1 + 1

γ

)
Bex −

(g

2
− 1

) γ

1 + γ
c−2(v · Bex)v

−
(g

2
− γ

1 + γ

)
c−1v× Eex

]
. (10.7)

Here v, Eex, Bex are to be evaluated along the given orbit. To compare (10.6) with
(10.3) one uses (10.6) and notes that, since |w | is a constant of motion,

ẇ + ΩFW · w = µ

Ib + If
(F · w)⊥ . (10.8)

Therefore the gyromagnetic ratio of the Lorentz model is given by

g = 2µ

e

mg + mf

Ib + If
. (10.9)

The magnetic moment µ depends on the charge distribution, all other terms in
(10.9) on the mass distribution. Through their variation any value of g can be real-
ized, unless the charge and mass form factors are equal to each other, as assumed
already. In the case of a uniformly charged sphere [ball] of radius R the integrals
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in (10.9) can be evaluated with the result (the first term refers to a sphere and
[ . . . ] to a ball)

µ = 1

3
eR2 ,

[
= 1

5
eR2

]
, (10.10)

mg = mb
1

ωR
arctanhωR ,

[
= mb

3

2(ωR)3

(
ωR − (1 − (ωR)2)arctanhωR

)]
,

(10.11)

mf = 1

2

e2

4π R

(
1 + 2

9
(ωR)2

)
,

[
= 1

2

e2

4π R

(6

5
+ 4

35
(ωR)2

)]
, (10.12)

Ib = mb
1

2ω2

(
− 1 + 1 + (ωR)2

ωR
arctanhωR

)
,

[
= mb

1

2ω2

3

4(ωR)3

(
3ωR − (ωR)3 + (−3 + 2(ωR)2+(ωR)4)arctanhωR

)]
,

(10.13)

If = 2

9

e2

4π R
,

[
= 4

35

e2

4π R

]
. (10.14)

In the limit e → 0, gsphere decreases from 1 to 2/3 and gball from 1 to 2/5 as ωR
increases from 0 to 1. In the opposite limit mb → 0, one obtains

gsphere = 3

2
+ 1

3
(ωR)2 , gball = 21

10
+ 1

5
(ωR)2 . (10.15)

10.2 The Abraham model with spin

Abraham models the charge as a nonrelativistic rigid body with mass distribution
mbϕ and charge distribution eϕ, which for notational simplicity we take to be
proportional to each other. A complete mechanical description must specify both
the center of mass, q(t), and the angular velocity, ω(t) ∈ R

3, relative to the center.
The spinning charge generates the current

j(x, t) = (
v(t) + ω(t) × (x − q(t))

)
eϕ(x − q(t)) , (10.16)

which satisfies charge conservation, since ϕ is radial. Therefore the Maxwell equa-
tions have a modified source term and read

∂t B(x, t) = −∇ × E(x, t) ,

∂t E(x, t) = ∇ × B(x, t) − (
v(t) + ω(t) × (x − q(t))

)
eϕ(x − q(t)) ,

∇ · E(x, t) = eϕ(x − q(t)), ∇ · B(x, t) = 0. (10.17)
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The momentum of the center of mass is mbv(t) and the angular momentum
relative to q(t) is

s = Ibω with Ib = 2

3
mb

∫
d3xϕ(x)x2 . (10.18)

Therefore Newton’s equations of motion for the translational degrees of freedom
become

d

dt
mbv(t) =

∫
d3xeϕ(x − q(t))

[
E(x, t) + (

v(t) + ω(t) × (x − q(t))
) × B(x, t)

]
(10.19)

and for the rotational degrees of freedom

d

dt
Ib ω(t) =

∫
d3xeϕ(x − q(t))(x − q(t))

× [
E(x, t) + (

v(t) + ω(t) × (x − q(t))
) × B(x, t)

]
. (10.20)

If in addition there are external forces acting on the charge, then E and B in
(10.19), (10.20) would have to be replaced by E + Eex and B + Bex, respectively.

The Abraham model of section 2.4 is obtained by formally setting ω(t) = 0.
Note that this is not consistent with Newton’s torque equation (10.20), since
ω̇(t) �= 0, in general, even for ω(t) = 0.

The Abraham model with spin conserves the energy

E = 1

2
mbv

2 + 1

2
Ibω

2 + 1

2

∫
d3x(E2 + B2) , (10.21)

the linear momentum

P = mbv+
∫

d3x E × B , (10.22)

and in addition the total angular momentum

J = q × mbv+ Ibω +
∫

d3xx × (E × B) . (10.23)

Of course, also the spinless Abraham model is invariant under rotations and there
must exist a correspondingly conserved quantity, only it does not have the standard
form of a total angular momentum, which from a somewhat different perspective
indicates that inner rotations must be included.

In the by now established tradition, we assume that the external forces are
slowly varying and want to derive in this adiabatic limit an effective equation of
motion for the particle including its spin. As a first step of this program we have
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to determine the charge solitons. We set

q(t) = vt, ω(t) = ω, E(x, t) = E(x − vt), B(x, t) = B(x − vt) (10.24)

and have to determine the solutions of

−v · ∇ B = −∇ × E, − v · ∇E = ∇ × B − (v+ ω × x)eϕ ,

∇ · E = eϕ, ∇ · B = 0 , (10.25)

0 =
∫

d3xeϕ(x)
[
E(x) + (v+ ω × x) × B(x)

]
, (10.26)

0 =
∫

d3xeϕ(x)x × [
E(x) + (v+ ω × x) × B(x)

]
, (10.27)

for which we turn to Fourier space. The inhomogeneous Maxwell equations
(10.25) are then solved by

Ê = Ê1 + Ê2, B̂ = B̂1 + B̂2 (10.28)

with

Ê1(k) = −i
[
k2 − (k · v)2]−1

(k − (k · v)v)eϕ̂(k) , (10.29)

Ê2(k) = −[
k2 − (k · v)2]−1

(ω × k)(v · ∇k)eϕ̂(k) , (10.30)

and

B̂1(k) = i
[
k2 − (k · v)2]−1

(k × v)eϕ̂(k) , (10.31)

B̂2(k) = −[
k2 − (k · v)2]−1

(k × (ω × ∇k))eϕ̂(k) . (10.32)

Note that Ê1, B̂1 are odd, and Ê2, B̂2 are even in k.
Since the integral over an odd term vanishes, a zero Lorentz force results in the

condition

−
∫

d3kϕ̂∗[k2 − (v · k)2]−1
(ω × k)(v · ∇k)ϕ̂

−
∫

d3kϕ̂∗[k2 − (v · k)2]−1
v× (k × (ω × ∇k))ϕ̂

+
∫

d3k
[
k2 − (v · k)2]−1

((ω × ∇k)ϕ̂
∗) × (k × v)ϕ̂

= −
∫

d3kϕ̂∗[k2 − (v · k)2]−1|k|−1ϕ̂′
r

× (
(ω × k)(v · k) + v× (k × (ω × k)) − ((ω × k) · v)k) = 0

(10.33)

for every v and ω, using the fact that ϕ̂ is radial.
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The Lorentz torque requires more work. Using again the fact that the integral
over an odd term vanishes, we have

i
∫

d3keϕ̂∗(∇k × Ê1 + ∇k × (v× B̂1) + ∇k × ((ω × i∇k) × B̂2)
)

(10.34)

= −e2
∫

d3k|k|−1ϕ̂∗′
r

[
k2 − (k · v)2]−1

ϕ̂
(
k × (k − (k · v)v)

− k × (v× (k × v))
) + e

∫
d3k|k|−1ϕ̂∗′

r k × (
(ω × ∇k) × B̂2

)
= e

∫
d3k|k|−1ϕ̂∗′

r k × (∇k(ω · B̂2) − ω∇k · B̂2)

= −e
∫

d3k|k|−1ϕ̂∗′
r × (k × ω)∇k · B̂2 .

For the divergence of B̂2 we obtain

∇k · B̂2 = 2
[
k2 − (k · v)2]−2k2(ω · ∇k − (v · ω)(v · ∇k))eϕ̂ (10.35)

and therefore zero Lorentz torque results in the condition∫
d3k|∇kϕ̂|22

[
k2 − (k · v)2]−2

(k × ω)(ω · k − (v · ω)(v · k)) = 0 . (10.36)

Taking into account that ϕ̂ is radial, the torque vanishes only if either ω ‖ v or
ω⊥v. If v = 0, the torque always vanishes. For ω oblique to v Eqs. (10.17)–
(10.20) have no soliton-like solution.

Physically the charge distribution is rigid, but the electromagnetic fields are
Lorentz contracted along v. This mismatch yields a nonvanishing torque unless
ω ‖ v, respectively ω⊥v. Clearly, the mismatch is an artifact of the semirelativis-
tic Abraham model. As discussed in the previous section, for a relativistic ex-
tended charge distribution there is a charged soliton for every v and ω. Because in
the Abraham model some charge solitons are “missing”, an analysis of the adia-
batic limit is hampered at an early stage and we do not really know what happens.
Through radiation damping the spin could be forced to remain parallel to v(t).
There could be an effective dynamics separately for the parallel and perpendicular
components of ω(t). Only one particular case lends itself to a more detailed analy-
sis. We simply make sure that q(t) = 0 for all t , e.g. by taking Eex = 0, Bex = εB
with B a spatially constant, possibly time-dependent vector, and suitable initial
conditions for the Maxwell field. Then the Abraham model without external forces
has a stationary solution for every ω and the adiabatic limit is meaningful and of
interest. We take up this problem in the following section.

In the quantized version of the Abraham model, the Pauli–Fierz Hamiltonian to
be discussed in chapter 13, the spin couples differently and the Lorentz torque is
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not the quantization of the right-hand side of (10.20). The Pauli–Fierz model has
a two-fold degenerate ground state for every fixed total momentum (smaller than
some critical value pc). Associated to this subspace there is an adiabatic evolution
which admits an arbitrary spin orientation. Thus through quantization one regains
some features of the relativistic model.

10.3 Adiabatic limit and the gyromagnetic ratio

We consider a spinning charge sitting forever at the origin and hence choose
Eex = 0, Bex = εB0 with a constant B0, the initial E field odd, and the initial
B field even in x. Then the equations of motion simplify. We recall them for com-
pleteness,

∂t B(x, t) = −∇ × E(x, t), ∂t E(x, t) = ∇ × B(x, t) − (ω(t) × x)eϕ(x) ,

(10.37)

∇ · E(x, t) = eϕ(x), ∇ · B(x, t) = 0 , (10.38)

together with Newton’s rotational equations of motion

Ib
d

dt
ω = e

∫
d3xϕ(x)x × (

E(x, t) + (ω(t) × x) × (εB0 + B(x, t))
)
. (10.39)

To obtain the effective dynamics let us first argue statically. The angular mo-
mentum, s, of the charge soliton is the sum s = sb + sf with sb = Ibω and

sf =
∫

d3xx × (E × B) (10.40)

for E, B the charge soliton field at v = 0 and ω. Inserting from (10.28)–(10.32)
we obtain

sf = Ifω with If = 2

3
e2

∫
d3k|∇kϕ̂|2|k|−2 . (10.41)

Therefore

s = (Ib + If)ω . (10.42)

The external torque is µ × Bex with the magnetic moment

µ = µω , µ = 1

3
e
∫

d3xϕ(x)x2 , (10.43)

and thus the spin precession reads

d

dt
s = µ × Bex , (Ib + If)

d

dt
ω = µω × Bex . (10.44)
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The conventional definition of the gyromagnetic ratio g is through

d

dt
ω = g

e

2m
ω × Bex , (10.45)

where m is the mass of the particle; compare with the BMT equation (10.7) for
small velocities. Equating (10.44) and (10.45) we deduce the effective g-factor of
the Abraham model as

g = (µ/e)2m

Ib + If
= 1 + 2

3(e2/mb)
∫

d3k|ϕ̂|2|k|−2

1 + (e2/mb)
∫

d3k|∇kϕ̂|2|k|−2/
∫

d3k|∇kϕ̂|2 . (10.46)

For e → 0 we obtain g = 1, as it has to be. In the opposite limit, mb → 0, only
the second summands survive. We did not discover any simple bounds, but for a
uniformly charged sphere and ball the integrals have already been computed at the
end of section 10.1. One obtains with R = Rϕ the radius of the sphere, respectively
ball,

gsphere = 1 + (e2/4π Rmb)(2/3)

1 + (e2/4π Rmb)(1/3)
, gball = 1 + (e2/4π Rmb)(4/5)

1 + (e2/4π Rmb)(2/7)
. (10.47)

Thus gsphere → 2, respectively gball → 14/5, for Rmb → 0. For g = 2 the spin
and orbital precession are exactly in phase, whereas for g = 1 the spin turns once
during two cyclotron revolutions.

To provide dynamical support we follow the scheme of chapter 7. One integrates
(10.37), (10.38) and inserts in the Lorentz torque taking into account that the initial
fields decay quickly. Then

Ib
d

dt
ω(t) = εµω(t) × B0 + Nself(t) , (10.48)

where, after some rearrangement, the retarded torque simplifies to

Nself(t) =
∫ t

0
ds

2

3
e2

∫
d3k|∇kϕ̂|2

×
(

− (cos |k|(t − s))ω(s) + 1

|k|(sin |k|(t − s))ω(t) × ω(s)
)

.

(10.49)
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Let us denote the solution to (10.48) by ωε(t) = ω(εt). We insert this ansatz in
(10.49) and Taylor-expand. Then

Nε
self(ε

−1t) =
∫ ε−1t

0
ds

2

3
e2

∫
d3k|∇kϕ̂|2

(
− (cos |k|(ε−1t − s))ω(εs)

+ 1

|k|(sin |k|(ε−1t − s))ω(εt) × ω(εs)
)

∼=
∫ ε−1t

0
ds

2

3
e2

∫
d3k|∇kϕ̂|2

(
− (cos |k|s)(ω(t) − εsω̇(t)

+ 1

2
ε2s2ω̈(t)

) + 1

|k|(sin |k|s)ω(t)
(
ω(t)

−εsω̇(t) + 1

2
ε2s2ω̈(t)

))
. (10.50)

Let

Ip =
∫ ∞

0
dt t p

∫
d3k|∇kϕ̂|2 1

|k| sin |k|t , Jp =
∫ ∞

0
dt t p

∫
d3k|∇kϕ̂|2 cos |k|t .

(10.51)

Then, using the fact that ϕ̂ is radial,

I0 =
∫

d3k|∇kϕ̂|2|k|−2 , I1 = 0 ,

I2 = 1

4π

∫
d3x

∫
d3x ′ϕ(x)ϕ(x′)x · x′|x − x′| = − 1

2π

∫
d3k|∇kϕ̂|2|k|−4 ,

(10.52)

and

J0 = 0, Jp = −pIp−1, p = 1, 2, . . . . (10.53)

Therefore to order ε2

Nε
self(t) = −ε

2

3
e2 I0ω̇(t) + ε2 1

3
e2 I2ω(t) × ω̈(t) , (10.54)

and inserted in (10.48)

Ibεω̇(t) = εµω(t) × B0 − ε Ifω̇(t) + ε2 1

3
e2 I2ω(t) × ω̈(t) , (10.55)

where If = 2e2 I0/3 in agreement with the static result (10.41).
Beyond the renormalization of Ib we have also obtained the radiation reaction

ω(t) × ω̈(t). As for the translational degrees of freedom only the solution on the
center manifold is of physical relevance. To compute the effective dynamics we
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regard (10.44) as the unperturbed dynamics and reinsert in (10.55). To be some-
what more general let us take B0 to be time dependent and varying on the slow
time scale. One obtains

(Ib + If)ω̇ = µω × B0 + εe2(µI2/3(Ib + If)
)(
ω̇(ω · B0) + (ω × (Ḃ0 × ω))

)
.

(10.56)

Since ω2 is conserved under (10.56), the radiation reaction only modifies the fre-
quency of gyration to order ε. A second-order term like ω̈ would lead to friction in
the effective equation. As can be seen from (10.53), its prefactor J2 vanishes and
radiation damping appears only at order ε4 through I4

....
ω .

Notes and references

Section 10.1

BMT is an acronym for Bargmann, Michel and Telegdi (1959). The BMT equa-
tion is explained in Jackson (1999). Bailey and Picasso (1970) is an informative
article on how the BMT equation is used in the analysis of the high-precision mea-
surements of the electron and muon g-factor. The BMT equation with g = 2 is
the semiclassical limit of the Dirac equation (Rubinow and Keller 1963; Bolte
and Keppeler 1999; Spohn 2000b; Panati et al. 2002a). Appel and Kiessling
(2001) compute the effective parameters for a charge distribution concentrated on
a sphere.

Just as for translational degrees of freedom, one way to guess the effective spin
dynamics is to impose Lorentz invariance. In addition, one could require that the
equations of motion come from a Lagrangian action. In full generality, including
an electric dipole moment, this program is carried out by Bhabha (1939), Bhabha
and Corben (1941) with earlier work by Frenkel (1926). Alternative approaches
are compared in Corben (1961) and Nyborg (1962). Concise summaries are Barut
(1964), who discusses also how the BMT equation fits into the general scheme,
Teitelbom et al. (1980), and Rohrlich (1990). A more microscopic approach would
be to carry out the adiabatic limit for the Lorentz model of section 2.5. In Nodvik’s
version of the model such an expansion is pushed to the order where translational
and rotational degrees of freedom couple (Nodvik 1964).

The Lorentz model simplifies if initial data are assumed such that the particle
moves at constant velocity. Then translational and rotational degrees of freedom
decouple. Appel and Kiessling (2002) study the existence of solutions and their
long-time limit. In the adiabatic limit, compare with section 10.3, the angular mo-
mentum responds to an external torque through the effective gyromagnetic ratio
of (10.9).
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Section 10.2

The nonrelativistic model of a rotating charge is introduced by Abraham (1903)
and studied by Herglotz (1903), Schwarzschild (1903), and Thomas (1927).
Schwarzschild (1903) notes that a stationary solution exists only if ω is either
parallel or orthogonal to v. Kiessling (1999) remarks that the standard form of
the total angular momentum is conserved only if the inner rotation of the charged
particle is included.

Section 10.3

Grandy and Aghazadeh (1982) compute the gyromagnetic ratio to order e2. The
validity of the equations of motion (10.56) is proved in Imaikin et al. (2004).
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Many charges

There is little effort in extending the Abraham model to several particles. We label
their positions and velocities as q j (t),v j (t), j = 1, . . . , N . The j-th particle has
bare mass mb j and charge e j , where for simplicity the form factor ϕ̂ is assumed
to be the same for all particles. The motion of each particle is governed by the
Lorentz force as before, and the current in the Maxwell equations now becomes
the sum over the single-particle currents. Therefore the equations of motion read

c−1∂t B(x, t) = −∇ × E(x, t) ,

c−1∂t E(x, t) = ∇ × B(x, t) −
N∑

j=1

e jϕ(x − q j (t))c
−1v j (t) ,

∇ · E(x, t) =
N∑

j=1

e jϕ(x − q j (t)) , ∇ · B(x, t) = 0 , (11.1)

d

dt

(
mbi γivi (t)

) = ei
(
Eϕ(q i (t), t) + c−1vi (t) × Bϕ(q i (t), t)

)
, (11.2)

where i = 1, . . . , N with γi = (1 − (vi/c)2)−1/2.
There are no external forces. The force acting on a given particle is due to the

other particles, as mediated through the Maxwell field, and to the self-force, which
we have discussed already at length. If two particles are at a distance of only a few
times Rϕ , then they interact strongly with forces which depend on the details of
the phenomenological and unknown charge distribution. Thus physically we trust
our model only if particles are far apart on the scale set by Rϕ .

11.1 Retarded interaction

Let us take as a starting point the condition that initially particles are far
apart, thus |q0

i − q0
j | = O(ε−1 Rϕ). The velocities are less than c, not necessarily

130
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small, and the initial fields are the linear superposition of N charge soliton
fields corresponding to the initial conditions q0

i ,v
0
i , i = 1, . . . , N . To under-

stand the scales involved it is convenient to switch to macroscopic coordinates,
which simply amounts to replacing in (11.1), (11.2) e j by

√
εe j and ϕ by ϕε

with ϕε(x) = ε−3ϕ(ε−1x); compare with the second half of section 6.1. Then
|q0

i − q0
j | = O(1).

We insert the solution of the inhomogeneous Maxwell–Lorentz equations (11.1)
into the Lorentz force of (11.2). The forces are additive and the force on particle
i naturally splits into a self-force (i = j) and a mutual force (i �= j). For the self-
force one uses the Taylor expansion of chapter 7. Thereby the mass is renormalized
and the next order is the radiation reaction. For the mutual force we recall that
in section 7.2 it was shown already that, to leading order, the field generated by
charge j is the Liénard–Wiechert field. Thus, one obtains as retarded equations of
motion

mi (vi )v̇i =
N∑

j=1
j �=i

εei
(
Eret j (q i , t) + vi × Bret j (q i , t)

)

+ ε(e2
i /6π)

[
γ 4

i (vi · v̈i )vi +3γ 6
i (vi · v̇i )

2vi +3γ 4
i (vi · v̇i )v̇i +γ 2v̈i

]
,

(11.3)

t ≥ 0, which accounts for the effective mass mi and the radiation reaction of the
i-th particle; compare with Eq. (8.1). Eret j (x, t) equals (2.24) with e replaced
by e j , q replaced by q j , and tret replaced by tret j which is implicitly defined
through

tret j = t − |x − q j (tret j )| . (11.4)

For x = q i the retarded time is of order 1. Similarly Bret j (x, t) equals (2.25) with
q replaced by q j and tret replaced by tret j . The strength ε results from the charge,√

εei , and the scale factor
√

ε in (8.47). Viewed differently, on the microscopic
scale the force is of order (distance)−2 = ε2 and thus of order ε when accumulated
over a time span ε−1. To solve (11.3) one needs the trajectories for the whole past.
Our assumption of no initial slip is equivalent to

q i (t) + q0
i + tv0

i , i = 1, . . . , N , t ≤ 0 , (11.5)

which must be added to (11.3).
Using (11.3) one can estimate the size of the various contributions. The near

fields of Eret j and Bret j are of order 1. Therefore the acceleration is of order ε,
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which implies that the far field of Eret j and Bret j is O(ε2). The radiation reaction
term involves v̈i and is therefore O(ε3).

We see that the various contributions are well ordered in powers of ε. The
forces are weak, however, and therefore over longer times the particles will move
apart, which is of somewhat reduced interest. There are two limiting situations of
physical relevance, which will be discussed in the following sections. One pos-
sibility is to take the initial velocity |vi/c| � 1. Then to lowest order the
particles interact through the static Coulomb potential and post-Coulombic
corrections can be studied meaningfully. The other option is to let N → ∞,
which yields a kinetic description for charge densities as commonly used in
plasma physics.

11.2 Limit of small velocities

We impose the condition that initially |v j/c| � 1. Then retardation effects should
be negligible and the particles interact through the static Coulomb potential. Ac-
cording to the standard textbook recipe, |v j/c| � 1 is to be interpreted as c → ∞.
Indeed, from (11.1) one concludes B = 0 and

∇ × E(x, t) = 0 , ∇ · E(x, t) =
N∑

j=1

e jϕ(x − q j (t)) , (11.6)

which together with Newton’s equations of motion yields the desired result. Un-
fortunately, our argument fails on two counts. First, the interaction is obtained as
the smeared Coulomb potential. More severely, in Newton’s equations of motion
only the bare mass of charge i appears, whereas physically it should respond to
forces with its renormalized mass. Of course, the reason is that c → ∞ does not
ensure charges to be far apart on the scale of Rϕ .

To improve we require, as in the previous section, that the initial positions sat-
isfy

|q0
i − q0

j | = O(ε−1 Rϕ) , i �= j . (11.7)

Then the force is of order ε2. Under rescaling the dynamical variables should be
of order 1 as ε → 0. If in addition we demand the relation q̇ = v to be preserved,
the only choice remaining is

|v j | = O(
√

εc) and t = ε−3/2 Rϕ/c . (11.8)



11.2 Limit of small velocities 133

Indeed, the accumulated force is of order
√

ε, which means that the magnitude of
the velocity is preserved. We have arrived at the following scale transformation

t = ε−3/2t ′ , q j = ε−1q ′
j , v j = √

εv′
j ,

x = ε−1x′ , E = ε3/2 E′ , B = ε3/2 B′ , (11.9)

where the primed quantities are considered to be of O(1). The field amplitudes are
scaled by ε3/2 so as to preserve the field energy. There is little risk in omitting the
primes below. We set

qε
j (t) = εq j

(
ε−3/2t

)
, vε

j (t) = ε−1/2v j (ε
−3/2t) . (11.10)

Then the rescaled Maxwell’s and Newton’s equations of motion are

√
ε ∂t B(x, t) = −∇ × E(x, t) ,

√
ε ∂t E(x, t) = ∇ × B(x, t) −

N∑
j=1

√
εe jϕε(x − qε

j (t))
√

εvε
j (t) ,

∇ · E(x, t) =
N∑

j=1

√
εe jϕε(x − qε

j (t)) , ∇ · B(x, t) = 0 , (11.11)

ε
d

dt

(
mbi (1 − εvε

i (t)
2)−1/2vε

i (t)
) = √

εei
(
Eϕε (q

ε
i (t), t)

+ √
εvε

i (t) × Bϕε (q
ε
i (t), t)

)
. (11.12)

On the new scale the velocity of light tends to infinity as c/
√

ε and the charge
distribution has total charge

√
εe j , finite electrostatic energy mf, and shrinks to a

δ-function as ϕε. Recall that the scale parameter ε is just a convenient way to order
the magnitudes of the various contributions.

Before entering into more specific computations, it is useful first to sort out
what should be expected. We follow our practice from before and denote positions
and velocities of the comparison dynamics by r j , u j , j = 1, . . . , N , i.e. qε

j (t)
∼=

r j (t), vε
j (t)

∼= u j (t). Since the velocities are small, the kinetic energy takes its
nonrelativistic limit

T0(u j ) = 1

2

(
mb j + 4

3
mf j

)
u2

j , (11.13)

up to a constant; compare with (4.24). Note that the mass of the particle is renor-
malized through the interaction with the field. For small velocities, magnetic fields
are small and retardation effects can be neglected. Thus the potential energy of the
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effective dynamics should be purely Coulombic and be given by

Vcoul(r1, . . . , r N ) = 1

2

N∑
i �= j=1

ei e j

4π |r i − r j | . (11.14)

To obtain post-Coulombic corrections, one has to expand properly the self- and
retarded forces, which we will carry to order ε5/2 where the radiation reaction
appears first. Since, as can be seen from (11.1), (11.2), the forces are additive, it
suffices to consider two particles only. For initial conditions we choose the linear
superposition of the two charge solitons corresponding to the initial data q0

i ,v
0
i ,

i = 1, 2. One solves the Maxwell equations and inserts them in the Lorentz force.
As already explained, in the self-interaction the contribution from the initial fields
vanishes for t ≥ εt̄ϕ . In the mutual interaction the initial fields take a time of order√

ε to reach the other particle and their contribution vanishes for t ≥ √
ε|q0

1 − q0
2|.

Thus for larger times one is allowed to insert in (11.2) the retarded fields only,
which yields

ε
d

dt

(
mb1 γ1v

ε
1(t)

) = Fret,11(t) + Fret,12(t) , (11.15)

ε
d

dt

(
mb2 γ2v

ε
2(t)

) = Fret,21(t) + Fret,22(t) , (11.16)

where

Fret,i j (t) = ei e j

t∫
0

ds
∫

d3k|ϕ̂(εk)|2eik·(qε
i (t)−qε

j (s))

×
(

− ε1/2(|k|−1 sin(|k|(t − s)/
√

ε))ik − ε(cos(|k|(t − s)/
√

ε))vε
j (s)

+ ε3/2(|k|−1 sin(|k|(t − s)/
√

ε))vε
i (t) × (ik × vε

j (s))
)

, (11.17)

i, j = 1, 2.
For the self-interaction we set εk = k′ , ε−3/2t = t ′. Then

Fret,11(t) = ε−3/2(e1)
2

∞∫
0

dτ

∫
d3k|ϕ̂(k)|2eik·(qε

1(t)−qε
1(t−ε3/2τ))/ε

×
(

− ε1/2(|k|−1 sin |k|τ)ik − ε(cos |k|τ)vε
1(t − ε3/2τ)

+ ε3/2(|k|−1 sin |k|τ)vε
1(t) × (

ik × vε
1(t − ε3/2τ)

))
. (11.18)
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One Taylor-expands as

ε−1(qε
1(t) − qε

1(t − ε3/2τ)
) = ε1/2τv− 1

2
ε2τ 2v̇+ 1

6
ε7/2τ 3v̈ ,

vε
1(t − ε3/2τ) = v− ε3/2τ v̇+ 1

2
ε3τ 2v̈ . (11.19)

Then, up to errors of order ε3,

Fret,11(t) = (e1)
2

∞∫
0

dτ

∫
d3k|ϕ̂(k)|2(ε[ − (|k|−1 sin |k|τ)

1

2
τ 2(k · v̇)k

+ (cos |k|τ)τ v̇
] + ε2[( − (|k|−1 sin |k|τ)

1

2
τ 2(k · v̇)k

+ (cos |k|τ)τ v̇
)( − 1

2
τ 2(k · v)2

)
− (cos |k|τ)

1

2
τ 3(k · v̇)(k · v)v

+ (|k|−1 sin |k|τ)
(
τ 2(k · v)v× (k × v̇) + 1

2
τ 2(k · v̇)(v× (k × v))

)]
+ ε5/2[(|k|−1 sin |k|τ)

1

6
τ 3(k · v̈)k − (cos |k|τ)

1

2
τ 2v̈

])
. (11.20)

For the mutual interaction we leave the k-integration and set ε1/2t = t ′.
Then

Fret,12(t) = √
εe1e2

∞∫
0

dτ

∫
d3k|ϕ̂(εk)|2eik·(qε

1(t)−qε
2(t−

√
ετ))

×
(

− ε1/2(|k|−1 sin |k|τ)ik − ε(cos |k|τ)vε
2(t − √

ετ)

+ ε3/2(|k|−1 sin |k|τ)vε
1(t) × (ik × vε

2(t − √
ετ))

)
. (11.21)

One Taylor-expands as

qε
1(t) − qε

2(t − √
ετ) = r + ε1/2τv2 − 1

2
ετ 2v̇2 + 1

6
ε3/2τ 3v̈2 ,

vε
1(t) = v1 , vε

2(t − √
ετ) = v2 − ε1/2τ v̇2 + 1

2
ετ 2v̈2 (11.22)
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with r = qε
1(t) − qε

2(t). Then, up to errors of order ε3,

Fret,12 = e1e2

∞∫
0

dτ

∫
d3k|ϕ̂(εk)|2eik·r

(
− ε(|k|−1 sin |k|τ) ik + ε2[(|k|−1 sin |k|τ)

× ( − 1

2
τ 2(k · v̇2)k + 1

2
τ 2(k · v2)

2ik + v1 × (ik × v2)
)

+ (cos |k|τ)(τ v̇2 − iτ(k · v2)v2)
]

+ ε5/2[(|k|−1 sin |k|τ)
(1

6
τ 3(k · v̈2)k − 1

2
τ 3(k · v2)(k · v̇2)ik

− 1

6
τ 3(k · v2)

3k
) − (cos |k|τ)

1

2
τ 2v̈

])

= (e1e2/4π)
(

− ε∇r |r |−1 + ε2[(1

2
∇r (v̇2 · ∇r ) − 1

2
∇r (v2 · ∇r )

2)|r |

− (v̇2 − v2(v2 · ∇r ))|r |−1 + (v1 × (∇r × v2))|r |−1]
+ 2

3

1

4π
ε5/2e1e2v̈2

)
. (11.23)

We discuss each order separately, where we recall that in (11.15), (11.16) the
acceleration is multiplied by ε. As anticipated, to order 1 one obtains the Coulomb
dynamics with renormalized mass from F j j (t). Let us define the Coulomb La-
grangian

Lcoul =
N∑

j=1

1

2

(
mb j + 4

3
mf j

)
u2

j − 1

2

N∑
i �= j=1

ei e j

4π |r i − r j | . (11.24)

Then the comparison dynamics is

d

dt

(∇u j Lcoul
) − ∇r j Lcoul = 0 , j = 1, . . . , N , (11.25)

with the error bounds

|qε
j (t) − r j (t)| = O(ε) , |vε

j (t) − u j (t)| = O(ε) . (11.26)

The first-order correction is O(ε). More conventionally the error is counted in
powers of |v/c| relative to the zeroth-order Coulomb dynamics. To convert, one
only has to set ε = 1. The first correction is then of order |v/c|2 (= O(ε), compare
with (11.8)), and the next-order corrections |v/c|3. The order ε2 terms in (11.20),
(11.23) combine in a simple fashion and yield the Darwin correction. Let us define
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the Darwin Lagrangian

Ldarw =
N∑

j=1

((
mb j + 4

3
mf j

)1

2
u2

j + ε
(1

8
mb j + 2

15
mf j

)
c−2u4

j

)

−1

2

N∑
i �= j=1

ei e j

4π |r i − r j |
[
1 − ε

1

2c2

(
ui · u j + (ui · r̂ i j )(u j · r̂ i j )

)]
(11.27)

with r̂ i j = (r i − r j )/|r i − r j |. In the first sum one recognizes the correction to
the kinetic energy, while in the second-term corrections due to retardation and
the magnetic field combine into a velocity-dependent potential. The comparison
dynamics is governed by the improved Lagrangian,

d

dt

(∇u j Ldarw
) − ∇r j Ldarw = 0 , j = 1, . . . , N , (11.28)

with the error bounds

|qε
j (t) − r j (t)| = O(ε3/2) , |vε

j (t) − u j (t)| = O(ε3/2) . (11.29)

At order |v/c|3 one picks up terms proportional to v̈ j . Remarkably, the prefac-
tors in Fret j j and Fret j i are identical, and one obtains the comparison dynamics

d

dt

(∇u j Ldarw
) − ∇r j Ldarw = ε3/2 e j

6πc3

N∑
i=1

ei üi , j = 1, . . . , N . (11.30)

The physical solutions have to be on the center manifold of (11.30). At the present
level of precision it suffices to substitute the Lagrangian dynamics to lowest order,
which yields

d

dt

(∇u j Ldarw
) − ∇r j Ldarw = ε3/2 e j

6πc3

1

2

N∑
i,i ′=1
i �=i ′

( ei

mi
− ei ′

mi ′

) ei ei ′

4π |r i − r i ′ |3

×(
(ui − ui ′) − 3(̂r i i ′ · (ui − ui ′))̂r i i ′

)
. (11.31)

If the charge–mass ratio e j/m j does not depend on j , the damping term
is suppressed. The collection of charges has vanishing dipole moment. This
can be seen also directly by considering the dipole moment d = ∑N

j=1 e j q j =∑N
j=1(e j/m j )m j q j . If (e j/m j ) = const., then d equals the center of mass and

d̈ = 0. Thus there is no dipole radiation. Only quadrupole radiation is allowed and
radiation damping would appear at the scale |v/c|5.

We briefly return to the limit c → ∞ from the beginning of this subsection.
In fact, the expansion for computing the effective dynamics turns out to be not
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so drastically different as one might have anticipated. To lowest order the kinetic
energy is mb j u2

j/2 and is modified to (mb j + (4mf j/3c2))u2
j/2 at the Darwin order

|v/c|2. The correction to the quadratic behavior is visible only at order |v/c|4. The
friction term is identical to that of (11.30). Only in (11.27) must the Coulomb
potential be smeared by the charge distribution ϕ.

11.3 The Vlasov–Maxwell equations

If N is large, it is impractical to follow the trajectory of individual particles and, as
widely used for example in plasma physics, a kinetic description is more appropri-
ate. The basic object describing matter is now the distribution function fα(x,v, t).
For each component α it is a function on the one-particle phase space and defined
through

fα(x,v, t)d3xd3v = 1
N

(
number of particles with charge eα in the volume element

d3xd3v at time t
)

.

The charge density of the α-th component is then

ρα(x, t) = eα

∫
d3v fα(x,v, t) (11.32)

and the total charge density

ρ(x, t) =
∑
α

ρα(x, t) . (11.33)

Similarly, the current density is

jα(x, t) = eα

∫
d3vv fα(x,v, t), j(x, t) =

∑
α

jα(x, t) . (11.34)

The Maxwell field is governed by (2.2), (2.3) with ρ from (11.33) and j from
(11.34) as source terms. As densities on the one-particle phase space the distribu-
tion functions evolve according to

∂t fα(x,v, t) + ∇x · (
v fα(x,v, t)

) + ∇v · (mαγ )−1

× (Fα − (v · Fα)v) fα(x,v, t)
) = 0 (11.35)

with the Lorentz force

Fα = eα

(
E(x, t) + v× B(x, t)

)
. (11.36)

The system of equations (2.2), (2.3), and (11.32)–(11.36) are called the Vlasov–
Maxwell system. They were written down first by Vlasov in 1938 in the more
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conventional form where the velocity v is replaced by the kinetic momentum
u = mαv/

√
1 − v2. Then in (11.35), (11.36) v is to be replaced by u/

√
m2

α + u2

and the Vlasov equation for the distribution function fα(x, u, t)d3xd3u reads

∂t fα(x, u, t) + (m2
α + u2)−1/2u · ∇x fα(x, u, t) + Fα · ∇u fα(x, u, t) = 0 .

(11.37)

The static limit of the Vlasov–Maxwell system, namely c → ∞ yielding B = 0,
∇ × E = 0, ∇ · E = ρ, is the Vlasov equation.

To establish the link to the Abraham model with N charges it is convenient to
start on the macroscopic scale, for simplicity for a single component, where

∂t B(x, t) = −∇ × E(x, t) ,

∂t E(x, t) = ∇ × B(x, t) − ε

N∑
j=1

eϕε(x − q j (t))v j (t) ,

∇ · E(x, t) = ε

N∑
j=1

eϕε(x − q j (t)) , ∇ · B(x, t) = 0 , (11.38)

d

dt

(
mbγivi (t)

) = e
(
Eϕε (q i (t), t) + vi (t) × Bϕε (q i (t), t)

)
. (11.39)

We used here the freedom in the scale factor for the amplitude of the electromag-
netic fields which accounts for an extra

√
ε as compared to (6.11). On a formal

level, the step to the Vlasov–Maxwell equation is immediate. We set N = ε−1.
The typical distance between particles is then ε1/3 Rϕ while the charge diameter is
εRϕ � ε1/3 Rϕ . Thus particles are still very far apart. If we assume that at time t
the particle configuration is well approximated by a distribution function, then the
source term of the Maxwell equations is of the form claimed in (11.33), (11.34).
For (11.39) we have again to split into the self- and mutual parts. The self-part
renormalizes the mass to m(v) from (8.2) and the mutual part yields the force
of (11.36) for the considered component. Put differently, in (11.39) the Maxwell
fields E, B, smeared by ϕε and evaluated at q i (t), have a singular part which renor-
malizes the mass and a smooth part from all the other charges which is governed
by (11.38). To carry out this program and to thereby derive the Vlasov–Maxwell
equations along the lines indicated remains as a task for the future.

11.4 Statistical mechanics

For a system of many particles the first impetus is to investigate its equilibrium
statistical mechanics. Although this means venturing into the domain of nonzero
temperatures, let us see how much will be captured by our oversimplified model
of matter. Statistical mechanics starts with a Hamiltonian defined on phase space.
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Since this is also the starting point for canonical quantization, in Chapter 13, our
discussion of the Pauli–Fierz model necessarily deals with the Lagrangian and
Hamiltonian structure of the Abraham model. We preview the result (13.24) for a
system of N particles. The canonical coordinates for the particles are (q j , p j ), j =
1, . . . , N . For the Maxwell field we adopt the Coulomb gauge, ∇ · A = 0. The
canonical field variables are then (A(x), −E⊥(x)), x ∈ R

3. Both fields are purely
transverse, ∇ · A = 0 = ∇ · E⊥. In terms of these variables the Hamiltonian for
the Abraham model reads

H =
N∑

j=1

1

2mb j

(
p j − e j Aϕ(q j )

)2 + 1

2

∫
d3x

(
E⊥(x)2 + (∇ × A(x))2)

+ 1

2

N∑
i, j=1

ei e j Vϕcoul(q i − q j ) . (11.40)

For simplicity we adopt the nonrelativistic kinetic energy, p2/2m. The potential
Vϕcoul originates from the longitudinal part of E and is defined through

Vϕcoul(q) =
∫

d3k|ϕ̂(k)|2|k|−2eik·q . (11.41)

Vϕcoul is the Coulomb potential smeared by the charge distribution ϕ, which ap-
pears twice, since both the i-th and the j-th particles carry a charge distribu-
tion.

The particles are confined to the box 
 ⊂ R
3. We should also restrict the fields

to the box 
, but it will be somewhat simpler to regard them as filling all space.
Then, formally, the equilibrium distribution at inverse temperature β = 1/kBT is
given by

1

Z
e−β H

N∏
j=1

χ
(q j )d
3q j d

3 p j

∏
x∈R3

d2 A(x)d2 E⊥(x) , (11.42)

where Z is the normalizing partition function and χ
 is the indicator function for
the box 
. Since the field energy is quadratic in E⊥ and A, combined with the a
priori measure and the normalization, it follows that E⊥(x) and A(x) are Gaussian
fields. We will only need A(x). It has mean zero and covariance

〈A(x)A(x′)〉0 = 1

β

∫
d3k|k|−2(1l − k̂ ⊗ k̂)eik·(x−x′) . (11.43)

From the experience with black-body radiation we have little trust in the statis-
tics of the Maxwell field at large wave numbers and therefore concentrate on the
particle degrees of freedom, only.
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According to (11.40), (11.42) for fixed positions q j , j = 1, . . . , N , the mo-
menta are Gaussian distributed with mean zero and covariance

〈pi p j 〉(q1,... ,q N ) = 〈(pi + ei Aϕ(q i ))(p j + e j Aϕ(q j ))〉
= 〈pi p j 〉 + ei e j 〈Aϕ(q i )Aϕ(q j )〉
= 1

β

(
mbiδi j 1l + ei e j

∫
d3k|ϕ̂(k)|2|k|−2(1l − k̂ ⊗ k̂)eik·(q i −q j )

)
.

(11.44)

Here in the first equality we shifted p j by e j Aϕ(q j ) which transforms 〈·〉 to a
Gaussian averaging factorized with respect to the p’s and A’s. For i = j we re-
cover the renormalized mass mbi + mfi . For i �= j , there are momentum correla-
tions which decay as |q i − q j |−1 in the distance of the two particles.

For the distribution of the positions, we integrate first over p and then over A
with the result

1

Z
e−βV

N∏
j=1

χ
(q j )d
3q j , V = 1

2

N∑
i, j=1

ei e j Vϕcoul(q i − q j ) , (11.45)

which is the standard Gibbs distribution for a Coulombic system of charges. The
equilibrium statistics decouples into a positional part and, when conditioned on the
positions, a Gaussian velocity part.

The equilibrium properties of Coulomb systems have been studied very exten-
sively. To be specific, let us consider a two-component charge-symmetric plasma,
which is neutral in the sense that both components have the same chemical poten-
tial. Since the system is very large, the natural quantities are the free energy and
the correlation functions in the limit where the volume tends to infinity, 
 ↑ R

3.
Indeed this limit has been established together with one major qualitative result,
namely the validity of the Debye–Hückel theory at sufficiently low density. One
inserts an extra charge at the origin into the system at thermal equilibrium. Then
the charges of opposite sign screen in a statistical sense and the average charge
density decays on the scale of the Debye length lD = (4πe2βρ)−1/2.

While we cannot enter into details, it might be useful to understand how the
smearing of the charge distribution is needed even on the level of equilibrium
statistical mechanics. Let us assume that the two components have equal charge of
opposite sign, which means either e j = e or e j = −e. Since Vϕcoul is of positive
type (the Fourier transform of a positive measure), one has

1

2

N∑
i �= j=1

ei e j Vϕcoul(q i − q j ) ≥ −1

2

N∑
j=1

e2
j Vϕcoul(0)

= −
(1

2
e2

∫
d3k|ϕ̂(k)|2|k|−2

)
N . (11.46)
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The energy is bounded from below by a constant proportional to N , which means
that Vϕcoul defines a thermodynamically stable interaction. To control the behavior
for large 
 one uses again the positive definiteness of Vϕcoul and introduces the
auxiliary Gaussian field φ(x), x ∈ R

3, with mean zero and covariance

〈φ(x)φ(y)〉G = Vϕcoul(x − y) , (11.47)

which is well defined since V̂ϕcoul(k) ≥ 0. Then

e−βV (q1,... ,q N ) = 〈
exp

[
i
√

β

N∑
j=1

e jφ(q j )
]〉

G (11.48)

and the grand canonical partition function becomes

Z
 =
∞∑

N=0

zN

N !

∑
σ1,... ,σN =±1

∫



d3q1 . . .

∫



d3qN

× exp
[ − βe2 1

2

N∑
i, j=1

σiσ j Vϕcoul(q i − q j )
]

=
∞∑

N=0

zN

N !

〈( ∫



d3q
∑

σ=±1

exp
[
i
√

βeσφ(q)
])N 〉

G

= 〈
exp

[
2z

∫



d3q cos(
√

βeφ(q))
]〉

G . (11.49)

Thus our system of charges has been converted into a field theory. The a priori
measure 〈·〉G is known as the Gaussian massless free field. In (11.49) it is per-
turbed by the interaction

∫



d3q cos(
√

βeφ(q)), which is clearly proportional to
|
|. Thus we conclude that the pressure is extensive,

log Z

∼= |
| . (11.50)

Despite the long-range forces, a neutral Coulomb system has extensive (volume-
proportional) thermodynamics, provided the charges are somewhat smeared.

Notes and references

Section 11.1

On the quantized level the retarded interaction between neutral atoms shows as
an attractive R−7 decay of the interaction potential in contrast to the nonretarded,
attractive van der Waals R−6 law.
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Section 11.2

The Darwin Lagrangian is discussed in Jackson (1999). In Kunze and Spohn
(2000c) the errors in (11.29) are estimated. Kunze and Spohn (2001) extend their
analysis to include radiation reaction. The major novel difficulty is to properly
match the initial conditions of the comparison dynamics (11.31). The next post-
Coulombic correction, of order |v/c|4, is computed formally by Landau and Lif-
shitz (1959), Barker and O’Connell (1980a, 1980b), and Damour and Schäfer
(1991). It contains quadrupole corrections to the Coulomb interaction and terms
proportional to

...
v. It would be of interest to compare these results with the system-

atic expansion presented here.
A qualitatively rather similar problem arises in general relativity. The object

of interest is a binary pulsar, like the famous Hulse–Taylor pulsar PSR 1913 +
16. It consists of two neutron stars, each with a mass of roughly 1.4 solar mass
and a diameter of 10 km. They rotate around their common center of mass with
a period of 7 h 45 min. The neutron stars move slowly with |v/c| ∼= 10−3. Since
one of the neutron stars is rotating, it emits radio waves through which the orbit
can be tracked with very high precision, in fact so precise that damping through
the emission of gravitational waves can be verified quantitatively. I refer to Hulse
(1994) and Taylor (1994). As in the case of charges, the theoretical challenge is to
obtain the orbits of the two neutron stars in an expansion in |v/c|. For gravitation
there is no dipole radiation and damping appears only at order |v/c|5, with |v/c|0
being the Newtonian orbit. Since experimental accuracy is expected to increase
further (Will 1999) various groups have taken up the challenge with the present
order at |v/c|7 (Jaranowski and Schäfer 1998).

Section 11.3

The relativistic Vlasov–Maxwell equations already appear in the original 1938
paper of Vlasov, see Vlasov (1961). The existence of solutions is studied at in-
creasing level of generality in Glassey and Schaeffer (1991, 1997, 2000). In the
nonretarded Vlasov–Poisson approximation the existence of solutions is now well
understood (Pfaffelmoser 1992; Schaeffer 1991) and the link to the N -particle sys-
tem has been established for a mollified potential (Neunzert 1975; Braun and Hepp
1977), a review being Spohn (1991). Physically the natural requirement is to have
the charge diameter much smaller than the interparticle distance. Since this case is
somewhat singular, a satisfactory derivation of the Vlasov–Poisson approximation
is open, with a partial step towards its solution in Batt (2001).

As in the case of N charges, the solution to the Vlasov–Maxwell system can
be expanded in powers of 1/c. The leading order is then Vlasov–Poisson, as
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established by Schaeffer (1986), which is corrected à la Darwin at order c−2,
as proved by Bauer and Kunze (2003). A one-component system can dissipate
energy only through quadrupole radiation, which first appears at order c−5. A
two-component system emits dipole radiation at order c−3. Properties of the for-
mally derived Vlasov equation including radiative friction are studied by Kunze
and Rendall (2001).

Section 11.4

The statistical mechanics of charges plus Maxwell field is usually treated only
on the level of thermodynamics (Alastuey and Appel 2000). Lebowitz and Lieb
(1969) and Lieb and Lebowitz (1972) prove the existence of the, in fact shape-
dependent, thermodynamic limit for Coulomb systems. A very readable review
is Lieb and Lebowitz (1973). The existence of the infinite-volume limit of the
correlation functions in the case of charge-symmetric systems is proved by
Fröhlich and Park (1978). For the Debye–Hückel theory I recommend the excellent
survey by Brydges and Martin (1999).
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Summary and preamble to the quantum theory

Within the framework of specific models for the coupling between charges and the
electromagnetic field we have presented a fair amount of rather detailed arguments
and computations. Thus before embarking on the quantized theory, it might be
useful to summarize our main findings.

• Extended charge. To have a well-defined dynamics, a smeared charge distri-
bution has to be used. This can be done either on the semirelativistic level
of the Abraham model or in the form of a relativistically covariant theory,
i.e. the Lorentz model. In the latter case internal rotation must be included by
necessity.

• Adiabatic regime. Situations for which the classical electron theory can be exper-
imentally tested fall in the adiabatic regime with a remarkable level of accuracy.
Quantum mechanics must be used way before one leaves the domain of validity
of the adiabatic approximation. A good example is the hydrogen atom in a bound
state. Sufficiently far from the nucleus, which is certainly satisfied when at least
a Bohr radius away from it, the assumptions for the adiabatic approximation are
fulfilled and the dynamics of the electron is well governed by Eq. (9.14). On
the other hand, it is known that the fluorescent spectrum of the hydrogen atom
is accounted for only by quantum mechanics. To test the classical electron the-
ory on the basis of this system is simply not feasible. Thus, in the range where
the classical electron theory is applicable by necessity one is inside its adiabatic
regime. In this regime the particle becomes point-like and is characterized by a
charge, an effective mass, and, in the case of internal rotation, by an effective
magnetic moment; compare with sections 4.2 and 10.1. From the full charge and
mass distribution, which in principle constitute an infinite number of free param-
eters, only a few of their low-order moments are retained. They then enter in the
Landau–Lifshitz equation (9.10), which governs the motion of the charge with
great precision and properly accounts for friction through radiation. In addition,
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the electromagnetic fields are determined from the Liénard–Wiechert potentials
as generated by the motion of a point charge.

• Point-charge limit. As judged from the context of chapter 28 of the Feynman
Lectures, “consistency” in the 1963 opinion of R. Feynman, compare with the
citation at the end of section 3.3, refers to the point-charge limit Rϕ → 0. I agree,
but as argued at length there is no need ever to take this limit. Letting the size
Rϕ of the extended charge distribution shrink to zero yields objects of infinite
mass. While the mere mathematical operation is admissible, it would result in
a theory with very little physical content. The attempt to compensate through a
proper adjustment of the bare mass fails, since the electromagnetic mass merely
adds to the bare mass. Thus, the bare mass necessarily becomes negative which
results in an unstable Hamiltonian.

The transition to the quantum theory of photons, electrons, and nuclei could
hardly be less spectacular. I find it truly amazing that the simple rules of canonical
quantization work so well for the Abraham model and thus open the gateway to
a theory describing a vast territory of physical experience. Of course, just as the
Abraham model, the theory is semirelativistic, and is thus also known as nonrela-
tivistic quantum electrodynamics. No quantization of the Lorentz model seems to
be available. In the relativistic domain one has to rely on conventional quantum
electrodynamics.

We continue to adhere to the principle of restricting our attention to dynamical
problems, for which the interaction between the charged particles and the photon
field must be included. In particular, the emission and absorption of light by atoms
and the scattering of photons from charges will play an important role. Adiabatic-
type limits will be studied again. They show up in the limit of slow motion, where
the photon field is approximated by the static Coulomb interaction, and in the
derivation of the effective mass and the effective magnetic moment. To keep the
topics within manageable size, many things had to be left out. In terms of applica-
tions the most serious omission is macroscopic electrodynamics, where the photon
field is treated in the classical limit and matter is taken into account in a continuum
description in terms of suitable electric and magnetic susceptibilities. Needless to
say, they must be based on an atomistic quantum model of matter.
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Quantizing the Abraham model

Classical theories must emerge from quantum mechanics and there is no reason to
expect a simple recipe which would yield the physically correct quantum theory
from the classical input. On the other hand, at least in the nonrelativistic domain,
the rules of canonical quantization have served well and it is natural to apply them
to the Abraham model. There is one immediate difficulty. Canonical quantization
starts from identifying the canonical variables of the classical theory. Thus we first
have to rewrite the equations of motion for the Abraham model in Hamiltonian
form. For this purpose we adopt the Coulomb gauge, as usual, so as to eliminate
the constraints. In the quantized version we thereby obtain the Pauli–Fierz Hamil-
tonian which has an obvious extension to include spin.

We have to ensure that the Pauli–Fierz Hamiltonian generates a unitary time
evolution on the appropriate Hilbert space of physical states. Mathematically this
means that we have to specify conditions under which the Pauli–Fierz Hamiltonian
is a self-adjoint operator, an issue which can be satisfactorily resolved. Still, the
true physical situation is more subtle and in fact not so well understood. It is related
to the abundance of very low-energy photons, i.e the infrared problem, and to the
arbitrariness of the cutoff at high energies, i.e. the ultraviolet problem. There are
many items of interest before these, and it will take us a while to start discussing
these subtleties.

Some words on our notation: In the beginning we keep c, �, and later set them
equal to one, mostly without notice. The vector notation, like x, tends to be a little
heavy, in particular since some of the objects become either operators or random
variables. Therefore we stick with x , whose vector character has to be inferred
from the context.
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13.1 Lagrangian and Hamiltonian rewriting of the Abraham model

We consider N charges coupled to the Maxwell field. Their motion is governed by
(11.1), (11.2), which we repeat with the only difference that the relativistic kinetic
energy is replaced by its Galilean cousin.

(Inhomogeneous Maxwell–Lorentz equations)

c−1∂t B = −∇ × E , c−1∂t E = ∇ × B − c−1 j , (13.1)

∇ · E = ρ , ∇ · B = 0 , (13.2)

where the charge and current density are given by

ρ(x, t) =
N∑

j=1

e jϕ(x − q j (t)) , j (x, t) =
N∑

j=1

e jϕ(x − q j (t))v j (t) (13.3)

satisfying charge conservation by fiat.

(Newton’s equations of motion)

m j
d

dt
v j (t) = e j

(
Eϕ(q j (t), t) + c−1v j (t) × Bϕ(q j (t), t)

)
, (13.4)

j = 1, . . . , N . ϕ is the charge distribution. It satisfies Condition (C), Eq. (2.38).

The Lagrangian for a charge subject to external potentials is discussed in every
text on classical mechanics. The Lagrangian of the coupled system, charges plus
Maxwell field, can almost be guessed on that basis. We introduce the electromag-
netic potentials through

E = −c−1∂t A − ∇φ , B = ∇ × A , (13.5)

hence guaranteeing ∇ · B = 0 and the first half of (13.1), and regard as position-
like variables {q j , j = 1, . . . , N , φ(x), A(x), x ∈ R

3}. Let us define the Lagrange
density

L0(x) = 1

2

(
E(x)2 − B(x)2) + c−1 j (x) · A(x) − ρ(x)φ(x) , (13.6)

where, according to (13.3), ρ, j depend on the positions and velocities of the
charges. The Lagrangian of the Abraham model is then

L =
N∑

j=1

1

2
m j q̇

2
j +

∫
d3xL0(x) . (13.7)
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We only have to verify that the Euler–Lagrange equations for the action obtained
from L yield (13.1), (13.2), and (13.4). Indeed

d

dt

∂L

∂q̇ j
− ∂L

∂q j
= 0 (13.8)

are Newton’s equations of motion. Using ‘ ˙ ’ for ∂t as concise notation, variation
with respect to φ yields

d

dt

δL

δφ̇
− δL

δφ
= 0 , (13.9)

which is equivalent to

−∇ · (c−1 Ȧ + ∇φ) = ρ (13.10)

and which we recognize as the first half of (13.2). Finally

d

dt

δL

δ Ȧ
− δL

δA
= 0 (13.11)

amounts to

c−1(c−1 Ä + ∇φ̇) = −∇ × (∇ × A) + c−1 j , (13.12)

which is nothing but the second half of (13.1).
Since (13.9) represents only a constraint and is not an equation of motion,

clearly we are using a redundant set of dynamical variables. Let us do the counting.
We split the electromagnetic fields into longitudinal and transverse components,

E = E‖ + E⊥ , B = B‖ + B⊥ . (13.13)

Since ∇ · B = 0, we have B‖ = 0. From ∇ · E = ρ we conclude

Ê‖ = −iρ̂k/k2 . (13.14)

E⊥ and B⊥ satisfy a first-order evolution equation. Thus, in the sense of
Lagrangian mechanics, there are two independent field degrees of freedom at every
space point, while in (13.6) we employed four degrees of freedom.

We first eliminate φ through (13.10), i.e.

φ̂ = 1

k2

(
ik · c−1 ˙̂A‖ + ρ̂

)
. (13.15)
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Then, using Fourier transforms and Parseval’s identity, (13.7) transforms to

L =
N∑

j=1

1

2
m j q̇

2
j + 1

2

∫
d3k

[
c−2 ˙̂A

∗
⊥ · ˙̂A⊥ + k−2ρ̂ ∗ρ̂ − (k × Â∗

⊥) · (k × Â⊥)
]

+ 1

2

∫
d3k

[
c−1 ĵ ∗ · Â + c−1 ĵ · Â∗ − 2k−2ρ̂ ∗ρ̂

− ic−1k−2(ρ̂ ∗k · ˙̂A‖ − ρ̂k · ˙̂A∗
‖
)]

. (13.16)

The term ρ̂∗ρ̂ depends only on the q j ’s and is recognized as the Coulomb potential,

1

2

∫
d3kk−2ρ̂ ∗ρ̂ = 1

2

N∑
i, j=1

ei e j

∫
d3yd3y′ϕ(y)(4π |qi − q j − y + y′|)−1ϕ(y′)

= Vϕcoul(q1, . . . , qN ) . (13.17)

The Coulomb potential is smeared by ϕ, which as before is indicated by the sub-
script. ϕ appears twice, since both the i-th and the j-th particle carry a charge
distribution. To simplify the last term of (13.16) we use the conservation law
˙̂ρ + ik · ĵ = 0. Then

L =
N∑

j=1

1

2
m j q̇

2
j − Vϕcoul + 1

2

∫
d3k

[
c−2 ˙̂A

∗
⊥ · ˙̂A⊥ − k2 Â∗

⊥ · Â⊥
]

+ 1

2

∫
d3k

[
c−1 ĵ ∗ · Â⊥ + c−1 ĵ · Â∗

⊥
]

+ c−1 d

dt

(1

2

∫
d3k|k|−1i

[
ρ̂ Â∗

‖ − ρ̂ ∗ Â‖
])

. (13.18)

Since A‖ appears only inside a total time derivative, we have identified A‖ as the
second redundant field. To drop the redundant degrees of freedom, the simplest
choice is to set A‖ = 0 by exploiting the gauge freedom, which means selecting
the Coulomb gauge defined by

∇ · A = 0 . (13.19)

The vector potential is purely transverse and we henceforth drop the subscript ⊥.
Transforming back to real space, the Lagrangian of the Abraham model reads

L =
N∑

j=1

1

2
m j q̇

2
j − Vϕcoul +

∫
d3xL(x) (13.20)

with the Lagrange density

L = 1

2

[
(c−1 Ȧ)2 − (∇ × A)2] + c−1 j · A . (13.21)
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The transverse vector field A(x), x ∈ R
3, should be regarded as position-like vari-

ables.
The step from Lagrange to Hamilton is standard. One introduces the momentum

p j canonically conjugate to q j by

p j = m j q̇ j + c−1e j Aϕ(q j ) . (13.22)

For the momentum field canonically conjugate to A we obtain

δL

δ Ȧ
= c−2 Ȧ = −c−1 E⊥ . (13.23)

Then the Hamiltonian corresponding to L reads

H =
N∑

j=1

1

2m j

(
p j − c−1e j Aϕ(q j )

)2 + Vϕcoul

+ 1

2

∫
d3x

[
E⊥(x)2 + (∇ × A(x))2] (13.24)

with the canonically conjugate pairs q j , p j and A(x), −c−1 E⊥(x).

13.2 The Pauli–Fierz Hamiltonian

In the form (13.24) we are ready to apply the rules of canonical quantization. The
position and momentum of the j-th particle are elevated to algebraic objects (linear
operators) which satisfy the commutation relations

[qiα, p jβ] = i�δαβδi j , (13.25)

α, β = 1, 2, 3, i, j = 1, . . . ,N . In the Schrödinger representation, which will be
used throughout, the Hilbert space of wave functions is

Hp = L2(R3N ) , (13.26)

restricted to either the symmetric or antisymmetric subspace depending on whether
the particles are bosons or fermions. Positions and momenta become

q j = x j , p j = −i�∇x j (13.27)

as linear operators on Hp, i.e. if ψ(x1, . . . ,xN ) ∈ L2(R3N ) is the wave function
for the particles, then q jψ(x1, . . . ,xN ) = x jψ(x1, . . . , xN ), p jψ(x1, . . . , xN ) =
−i�∇x j ψ(x1, . . . , xN ).

For the fields A(x), −c−1 E⊥(x) one is tempted to postulate commutation rela-
tions analogous to (13.25). The difficulty is that the quantization has to satisfy the
transversality constraint (13.19) which is nonlocal. Fortunately it is linear and it
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becomes local in Fourier space as k · Â = 0. We thus introduce at each k ∈ R
3 the

standard dreibein

k̂ = k/|k| , e1(k) , e2(k) , (13.28)

which satisfies k̂ · ei (k) = 0, i = 1, 2, e1(k) · e2(k) = 0. There is some freedom
of how to choose e1, e2, but the transverse projection Q⊥(k) = 1 − k̂ ⊗ k̂ = 1 −
|k|−2|k〉〈k| is unique. The two transverse components e1(k) · Â(k), e2(k) · Â(k)

are regarded as independent variables, correspondingly for −c−1 Ê⊥. Since A is
real, we have Â(k)∗ = Â(−k). Therefore one has to restrict k to a half-space and
take the real and imaginary parts of Â(k) as independent variables which are sub-
ject to the rules of canonical quantization. To achieve this goal it is helpful to
introduce two standard Bose fields with creation and annihilation operators

a∗(k, λ) , a(k, λ) , k ∈ R
3, λ = 1, 2 , (13.29)

satisfying the canonical commutation relations

[a(k, λ), a∗(k′, λ′)] = δλλ′δ(k − k′) ,

[a(k, λ), a(k′, λ′)] = 0 , [a∗(k, λ), a∗(k′, λ′)] = 0 . (13.30)

� For a linear operator A, the adjoint operator is denoted by A∗. �

In terms of these Bose fields we set

Â(k) =
∑

λ=1,2

c
√

�/2ω
(
eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
, (13.31)

Ê⊥(k) =
∑

λ=1,2

√
�ω/2

(
ieλ(k)a(k, λ) − ieλ(−k)a∗(−k, λ)

)
(13.32)

with

ω(k) = c|k| . (13.33)

Then indeed Â, Ê⊥ are transverse, Â(k)∗ = Â(−k), Ê(k)∗ = Ê(−k), and

[eλ(k) · Â(k), −c−1eλ′(k′) · Ê⊥(k′)∗] = i�δλλ′δ(k − k′) (13.34)

which should be understood in analogy to (13.25).
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In physical space (13.31), (13.32) become

A(x) =
∑

λ=1,2

∫
d3kc

√
�/2ω eλ(k)(2π)−3/2(eik·x a(k, λ) + e−ik·xa∗(k, λ)

)
,

(13.35)

E⊥(x) =
∑

λ=1,2

∫
d3k

√
�ω/2 eλ(k)(2π)−3/2i

(
eik·x a(k, λ) − e−ik·x a∗(k, λ)

)
.

(13.36)

Clearly A∗(x) = A(x), E∗
⊥(x) = E⊥(x). The commutator (13.34) translates into

[Aα(x), −c−1 E⊥β(x ′)] = i�δ⊥
αβ(x − x ′) (13.37)

with the transverse delta function

δ⊥
αβ(x)=(2π)−3

∫
d3keik·x (δαβ − k̂α k̂β) = 2

3
δαβδ(x) − 1

4π |x |3 (δαβ − 3x̂α x̂β) ,

(13.38)

where x̂α = xα/|x |.
At this point we have left the classical world. A(x), E⊥(x) and their Fourier

transforms Â(k), Ê⊥(k) will now always stand for operator-valued fields. In the
atomic and solid state physics literature by tradition one uses a† as the boson
creation operator adjoint to the annihilation operator a. We try to avoid such a
profileration of symbols.

Next on the agenda should be the Fock representation of the Bose fields a(k, λ)

and the definition of A(x), E⊥(x) as operator-valued fields acting on Fock space.
But let us keep this for the beginning of the next section and proceed immedi-
ately to our goal, namely the Hamiltonian of the quantized Abraham model. All
we have to do is to insert (13.35), (13.36) into the classical Hamiltonian. This re-
sults, after omitting the zero-point energy of photons, in the (spinless) Pauli–Fierz
Hamiltonian

H =
N∑

j=1

1

2m j

(
p j − c−1e j Aϕ(q j )

)2 + Vϕcoul + Hf (13.39)

with the field Hamiltonian

Hf =
∑

λ=1,2

∫
d3k�ω(k)a∗(k, λ)a(k, λ) . (13.40)

There is no ambiguity in the operator ordering, since p j · Aϕ(q j ) = Aϕ(q j ) · p j

by the transversality condition (13.19). We recall that the spherically symmetric
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form factor ϕ̂ cuts couplings to the field, more explicitly

Aϕ(q) =
∑

λ=1,2

∫
d3kc

√
�/2ω eλ(k)

(
ϕ̂(k)eik·qa(k, λ) + ϕ̂∗(k)e−ik·qa∗(k, λ)

)
.

(13.41)

To simplify notation, ϕ̂ will be assumed to be real, which can always be achieved
through a suitable canonical transformation of the form a(k, λ) → eiθ(k)a(k, λ).

Two immediate generalizations are noted. First of all it is convenient to add
external potentials φex, Aex, where the abbreviation eφex(x) = V (x) will be em-
ployed frequently. This should be thought of as a limiting case of (13.39): we
imagine that some charges are nailed down by letting their masses m → ∞; then
their kinetic term in (13.39) disappears and Vϕcoul splits into an external potential
plus an interaction potential for the movable charges. Similarly one can produce
an external current which then generates Aex. Thus the external potentials are not
quantized and are added into the Hamiltonian as in the classical theory which
yields

H =
N∑

j=1

1

2m j

(
p j − c−1e j Aϕ(q j ) − c−1e j Aex(q j )

)2

+ Vϕcoul +
N∑

j=1

e jφex(q j ) + Hf . (13.42)

Secondly, particles have spin. Of course, an electron has spin 1
2 . In our approxima-

tion nuclei are modeled as structureless particles carrying a nuclear spin, ranging
from 0 to 9/2 according to experimental evidence. The classical theory is now of
little help. The natural guess is to include spin as in the nonrelativistic one-particle
Schrödinger theory. For a single electron in infinite space, no external potentials,
the Hamiltonian then becomes

H = 1

2m

(
σ · (p − c−1e j Aϕ(q))

)2 + Hf , (13.43)

where σ = (σ1, σ2, σ3) is the vector of Pauli spin-1
2 matrices. If necessary, one

could include higher terms in (13.43) as they emerge from the Foldy–Wouthuysen
expansion of the Dirac equation.

Having introduced the Pauli–Fierz Hamiltonian as the major player of the quan-
tum part of the treatise, we pause for a while with a few general remarks.

Zero-point energy. In the Pauli–Fierz Hamiltonian we have omitted the zero-point
energy

∫
d3k�ω, which is infinite. The Heisenberg equations of motion remain un-

altered by this reset in the zero of energy. However, one has to be careful. If one
wants to compute the change in energy of the quantized Maxwell field through the
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insertion of a pair of perfectly conducting plates, then in this energy difference the
zero-point energy has to be properly handled; compare with section 13.6. A further
change in the zero of the energy scale comes from the Coulomb self-interaction,
namely the diagonal part

1

2

N∑
j=1

e2
j

∫
d3k|ϕ̂(k)|2k−2 (13.44)

in the sum (13.17), which is finite only because the form factor cuts off the high-
frequency modes.
Range of validity, limiting cases. The claimed range of validity of the Pauli–Fierz
Hamiltonian is flabbergasting. To be sure, on the high-energy side, nuclear physics
and high-energy physics are omitted. On the long-distance side, we could phe-
nomenologically include gravity on the Newtonian level, but anything beyond that
is ignored. As the bold claim goes, any physical phenomenon in between, includ-
ing life on Earth, is accurately described through the Pauli–Fierz Hamiltonian
(13.39) (and a suitably chosen initial wave function). There have been specula-
tions that quantum mechanics is modified roughly at the 10−5 m scale. But so far
there seems to be no evidence in this direction. On the contrary, whenever a de-
tailed comparison with the theory can be made, it reassuringly seems to work well.
Of course, our trust is not based on strict mathematical deductions from the Pauli–
Fierz Hamiltonian. This is too difficult a program. Our confidence comes from
well-studied limit cases. In the static limit we imagine turning off the interaction
to the quantized part of the Maxwell field. This clearly results in Schrödinger parti-
cles interacting through a purely Coulombic potential, for which many predictions
are accessible to experimental verification. But beware, even there apparently sim-
ple questions remain to be better understood. For example, the size of atoms as
we see them in nature remains mysterious if only the Coulomb interaction and the
Pauli exclusion principle are allowed. Another limiting case is a region completely
free of charges. At standard field strengths there are sufficiently many photons per
unit volume for the predictions from the quantized Maxwell field to match with
the ones of the classical Maxwell field. As will be discussed, radiation phenomena
are well grasped by the Pauli–Fierz Hamiltonian. These and many other limiting
cases are the reason for regarding (13.39) as an accurate description of low-energy
phenomena.
Model parameters, renormalization. If we focus our attention on (13.43), there are
four model parameters: the mass m, the charge e, the gyromagnetic ratio g = 2,
and the form factor ϕ̂. c and �, which also appear, are constants of nature. As dis-
cussed at length for the classical theory, what is observed experimentally is always
the compound object consisting of the particle and its photon cloud. Thus m, e, g
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have to be regarded as bare parameters and their observed value must be computed
from the theory. The bare values are renormalized through the interaction with the
Maxwell field. As will be shown below, the charge e is not renormalized, since
there is no vacuum polarization. One way to argue is to imagine two charged par-
ticles with a very large mass separated by a distance R. According to (13.39) their
mutual force is then e1e2/4π R2 with the bare charges e1, e2. Further support is the
response of a particle to slowly varying external potentials. In this adiabatic limit,
e enters in the effective equation with its bare value while m and g are renormal-
ized. The Pauli–Fierz model is not in a position to predict the experimental value
of the mass, since the bare mass is unaccessible, in principle. The renormalized
(effective) mass has to be given as an empirical input, to which the bare mass is
correspondingly adjusted. On the other hand, the dimensionless gyromagnetic ra-
tio g is a definite (though empirically slightly inaccurate) prediction of the theory;
compare with sections 16.6 and 19.3.5. Perhaps the most unwanted feature of the
Pauli–Fierz Hamiltonian is the form factor ϕ̂. The pragmatic attitude is to choose
ϕ with some taste. On the classical level we concluded that the form factor cannot
be removed. In the limit ϕ(x) → δ(x) the particle-like objects become infinitely
heavy. The simple structure of the energy–momentum relation (4.11) does not al-
low for compensation, since in a stable theory the bare mass has to be positive.
The quantum theory has a richer structure and it seems that one can carry out the
limit ϕ(x) → δ(x) and at the same time take m → 0 such that the observed mass
remains fixed. We will come back to this point in due course.

The quest for a closed physical theory. We have commented on this point already.
But let us expand on it in the present context. The static limit of the Pauli–Fierz
Hamiltonian, i.e. Schrödinger particles interacting through the static Coulomb po-
tential, is a closed theory for electrons and nuclei. The Hamiltonian is a self-adjoint
linear operator and generates a unitary time evolution. This is also the case for the
quantized Maxwell field without charges. Of course, this does not mean that we
have solved any physical problem. It just assures us of a definite mathematical
framework within which consequences can be explored. One would hope to have
such a secure foundation also for the Pauli–Fierz model and it remains to be seen
how much of this program can be realized.

We still have to complete the story of the Pauli–Fierz model. One defines the
time-evolved linear operator A(t) through

A(t) = eiHt/� Ae−iHt/� (13.45)

in the Heisenberg picture. Then

d

dt
A(t) = i

�
[H, eiHt/� Ae−iHt/�] = i

�
[H, A](t) . (13.46)
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On this level, so to speak, as a control of the quantization prescription, we use
the commutation relations (13.25) and (13.37) to verify that the operator-valued
fields indeed satisfy the Maxwell equations and that the particles satisfy Newton’s
equations of motion. Computing the commutators as in (13.46) one obtains

c−1∂t B = −∇ × E , c−1∂t E = ∇ × B − c−1 j ,

∇ · E = ρ , ∇ · B = 0 , (13.47)

where now

ρ(x, t) =
N∑

j=1

e jϕ(x − q j (t)) ,

j (x, t) =
N∑

j=1

1

2
e j

(
v j (t)ϕ(x − q j (t)) + ϕ(x − q j (t))v j (t)

)
(13.48)

with the velocity operator

v j = (
p j − c−1e j Aϕ(q j )

)
/m j . (13.49)

Similarly, one obtains the symmetrized Lorentz force as

m j v̇ j (t) = e j
(
Eϕ(q j (t), t) + 1

2c

(
v j (t) × Bϕ(q j (t), t) − Bϕ(q j (t), t) × v j (t)

))
.

(13.50)

If there are external fields, Eϕ, Bϕ is to be replaced by Eϕ + Eex, Bϕ + Bex. In
(13.47)–(13.49), q j (t), p j (t), respectively A(t), −c−1 E⊥(t), are operators satis-
fying the commutation relations (13.25), respectively (13.37), at all times.

Also of interest is to record the Heisenberg equations of motion for the Pauli–
Fierz Hamiltonian (13.43) including spin. The Maxwell equations are as before.
However, in the case of a single charged particle, the current density is now

j (x) = 1

2
e
(
vϕ(x − q) + ϕ(x − q)v

) + e�

2m
σ × ∇qϕ(x − q) (13.51)

with the velocity operator v = (p − c−1eAϕ(q))/m. The Schrödinger equation
reads

mq̈ = e
(
Eϕ(q, t) + 1

2c

(
v × Bϕ(q, t) − Bϕ(q, t) × v

)) + e�

2mc
σ · ∇q Bϕ(q, t) ,

(13.52)
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consistent with the general rule that the magnetic force equals c−1
∫

d3x j (x) ×
B(x), and the Pauli equation for the spin reads

σ̇ = − e

mc
Bϕ(q, t) × σ . (13.53)

If one compares (13.52), (13.53) with the classical equations of motion of a
spinning charge, cf. section 10.2, then one observes that in quantum mechanics
the spin degrees of freedom couple somewhat differently to the Maxwell field than
the classical internal angular momentum. Since ϕ is radial, in fact ∇xϕr(|x |) =
ϕ′

r(|x |)̂x and the spin part of the current (13.51) has the effective charge distribution
ϕ′

r(|x |)/|x |. However, the evolution equation for σ has only superficial similarity
with Eq. (10.20) for ω.

13.3 Fock space, self-adjointness

To define the Pauli–Fierz Hamiltonian as a linear operator, one has to introduce a
suitable Hilbert space of wave functions. Provisionally we assume that the number
of photons, either virtual or real in the usual parlance, is finite, though necessar-
ily arbitrary, since H does not conserve the number of photons. This means that
we will have to work in the Fock representation of the Bose fields a(k, λ). We
introduce the one-particle Hilbert space

h = L2(R3) ⊗ C
2 . (13.54)

h consists of wave functions ψ(k, λ), with the photon wave number
k ∈ R

3 and the helicity λ = 1, 2. The inner product in h is 〈ϕ, ψ〉h =∑
λ=1,2

∫
d3kϕ∗(k, λ)ψ(k, λ). Out of h we construct the Fock space F in the usual

way

F =
∞⊕

n=0

(
h

⊗n)
sym , (13.55)

where h⊗n denotes the n-fold tensor product and where “sym” means that we re-
strict to the subspace of wave functions symmetric under interchange of labels, i.e.

ψn(k1, λ1, . . . , kn, λn) = ψn(kπ(1), λπ(1), . . . , kπ(n), λπ(n)) (13.56)

for an arbitrary permutation π . By definition an element ψ ∈ F is of the form
(ψ0, ψ1, . . . ) and

〈ϕ, ψ〉F =
∞∑

n=0

〈ϕn, ψn〉h⊗n . (13.57)

The Fock vacuum, ψ0, will be denoted by �.
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� As the reader will have noticed, for the inner product in a Hilbert space we
use the notation 〈ϕ, ψ〉, which is linear in the second and antilinear in the first
argument. The standard physics notation would be the Dirac bracket 〈ϕ|ψ〉, which
is also linear in the second argument. (A further widespread convention is a scalar
product linear in the first argument.) The subscript in 〈ϕ, ψ〉F is used to indicate
the Hilbert space under consideration: it will be omitted if it is obvious from the
context. The length of a vector is ‖ψ‖ = 〈ψ, ψ〉1/2. �

For f ∈ h one defines the smeared creation and annihilation operators

a( f ) =
∑

λ=1,2

∫
d3k f ∗(k, λ)a(k, λ) , a∗( f ) =

∑
λ=1,2

∫
d3k f (k, λ)a∗(k, λ) .

(13.58)

As operators in F they act through

(a( f )ψ)n(k1, λ1, . . . , kn, λn) = √
n + 1

∑
λ=1,2

∫
d3k f ∗(k, λ)

× ψn+1(k1, λ1, . . . , kn, λn, k, λ) , (13.59)

(a∗( f )ψ)n(k1, λ1, . . . , kn, λn) = 1√
n

n∑
j=1

f (k j , λ j )

× ψn−1(k1, λ1, . . . , k̃ j , λ̃ j , . . . , kn, λn) , (13.60)

where ˜ means that this variable is to be omitted. The field Hamiltonian

Hf =
∑

λ=1,2

∫
d3k�ω(k)a∗(k, λ)a(k, λ) (13.61)

acts as multiplication by
∑n

j=1 �ω(k j ) on the n-particle subspace h⊗n . With all
these definitions we see that the Pauli–Fierz Hamiltonian operates on the Hilbert
space

H = Hp ⊗ Hf (13.62)

with Hp = L2(R3N ) and Hf = F . Physically the particle Hilbert space Hp is too
large, since in nature only symmetric, respectively antisymmetric, wave functions
are realized. Still mathematically it is convenient to work with all of L2(R3N ).

In any dynamical theory, usually the first step is to establish the existence of
solutions of the evolution equations. In our case this means to prove that H is a
self-adjoint operator on a suitable domain of functions, where for concreteness we
consider the Pauli–Fierz operator of (13.43) for a single electron. If not even the
self-adjointness question can be resolved, there is little hope of rigorously handling
qualitative properties of interest.
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We observe that 〈ψ, Hψ〉H ≥ 0, clearly. This means that H has equal defect
indices and therefore at least one self-adjoint extension. Amongst those there is a
distinguished extension, called the Friedrichs extension, which is obtained through
the closure of the quadratic form 〈ψ, Hψ〉H with smooth wave functions of a finite
number of photons. The Friedrichs extension gives no information on the domain
of self-adjointness and, in principle, there could be other extensions. A more con-
crete approach is to prove that, for the purpose of the existence of dynamics, the
interaction can be regarded as small. We decompose H as

H = H0 + H1 (13.63)

= 1

2m
p2 + Hf − e

2mc

(
p · Aϕ(x) + Aϕ(x) · p

)
+ e2

2mc2
Aϕ(x)2 − e�

2mc
σ · Bϕ(x) ,

Bϕ(x) = ∇ × Aϕ(x), p1 = p for the momentum, and q1 = x for the position of
the particle, and want to prove that H1 is small compared to H0, H0 = (p2/2m) +
Hf.

Abstractly one uses the Kato–Rellich theorem. We consider the densely defined
linear operators A, B on a Hilbert space H with inner product 〈·, ·〉 and suppose
that
(i) for the domains D(B) ⊃ D(A),
(ii) for some constants a, b and all ψ ∈ D(A)

‖Bψ‖ ≤ a‖Aψ ‖ + b‖ψ‖ . (13.64)

Then B is said to be A-bounded. The smallest a is called the relative bound. Usu-
ally a can be made smaller at the expense of b.

Theorem 13.1 (Kato–Rellich theorem). Suppose A is self-adjoint, B is symmet-
ric, and B is A-bounded with relative bound a < 1. Then A + B is self-adjoint on
D(A) and essentially self-adjoint on any core of A.

For multiparticle Schrödinger operators of the form −1
2� + V the Kato–Rellich

theorem is a standard technique and yields the existence of dynamics for a very
large class of potentials V including the Coulomb potential. For the Pauli–Fierz
operator the form version of Theorem 13.1 is more convenient.

Theorem 13.2 (KLMN theorem). Let A be a positive self-adjoint operator. Let
β(ψ, ϕ) = 〈ψ, Bϕ〉 be a symmetric quadratic form defined for all ψ, ϕ ∈ D(A1/2)

such that for some constants a < 1, b < ∞
|〈ψ, Bψ〉| ≤ a〈ψ, Aψ〉 + b〈ψ, ψ〉 (13.65)

for all ψ ∈ D(A1/2). Then there exists a unique self-adjoint operator C with
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D(C) ⊂ D(A1/2) such that

〈ψ, Cψ〉 = 〈ψ, Aψ〉 + 〈ψ, Bψ〉. (13.66)

Moreover, C is bounded from below by −b.

Let us see how the KLMN theorem works in the case of the Pauli–Fierz
Hamiltonian H , which means that one has to establish

|〈ψ, H1ψ〉H| ≤ a〈ψ, H0ψ〉H + b〈ψ, ψ〉H (13.67)

with a < 1. We set � = c = m = 1 and, following the convention (13.58), put

Aϕ(x) = a( fx ) + a∗( fx ) (13.68)

with

fx (k, λ) = ϕ̂(k)
√

1/2ω eλ(k)e−ik·x . (13.69)

The creation and annihilation operators are bounded through (Hf)
1/2 as

‖a∗( f )ψ‖F ≤ ‖ f/
√

ω‖h‖(Hf)
1/2ψ‖F + ‖ f ‖h‖ψ‖F ,

‖a( f )ψ‖F ≤ ‖ f/
√

ω‖h‖(Hf)
1/2ψ‖F (13.70)

and by the Schwarz inequality

|〈ψ, (a( f ) + a∗( f ))2ψ〉F | ≤ 2〈ψ, a∗( f )a( f )ψ〉F + ‖ f ‖2
h‖ψ‖2

F
+ 2|〈ψ, a∗( f )a∗( f )ψ〉F |

≤ 5‖ f/
√

ω‖2
h〈ψ, Hfψ〉F + 3‖ f ‖2

h‖ψ‖2
F .

(13.71)

Therefore the A2
ϕ-term has a relative bound less than 1 only if e is sufficiently

small.
We do not attempt to optimize the constants and thus write

|〈ψ, p · Aϕ(x)ψ〉H| ≤ 1

2
〈ψ, p2ψ〉H + 1

2
〈ψ, Aϕ(x)2ψ〉H , (13.72)

|〈ψ, σ · Bϕ(x)ψ〉H| ≤ 1

2
〈ψ, Bϕ(x)2ψ〉H + 3

2
‖ψ‖2

H . (13.73)

Also, by using (13.69), (13.71),

〈ψ, Aϕ(x)2ψ〉H ≤ 5‖ϕ̂/ω‖2
h〈ψ, Hfψ〉H + 3‖ϕ̂/

√
ω‖2

h‖ψ‖2
H , (13.74)

〈ψ, Bϕ(x)2ψ〉H ≤ 5‖|k|ϕ̂/ω‖2
h 〈 ψ, Hfψ〉H + 3‖|k|ϕ̂/

√
ω‖2

h‖ψ‖2
H . (13.75)
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Thus if ∫
d3k|ϕ̂(k)|2(ω−2 + ω) < ∞ , (13.76)

one can find a constant e0 such that for |e| ≤ e0 the operator H1 is H0 form-
bounded with a bound less than 1. By a similar reasoning form-bounded can be
replaced by bounded. From Theorem 13.2 we conclude

Theorem 13.3 (Self-adjointness, Kato–Rellich). If |e| ≤ e0 with suitable e0 and
if the form factor ϕ̂ satisfies the condition (13.76), then the Pauli–Fierz operator
H of (13.63) is self-adjoint on the domain D( 1

2m p2 + Hf).

Since ϕ̂(0) = (2π)−3/2, the condition (13.76) is satisfied if, as assumed, ϕ̂ cuts off
ultraviolet wave numbers.

� We denote constants by c0, c1, . . . , e0, etc., depending on the context. The nu-
merical value of these constants may change from equation to equation. Since
we always work with computable bounds, in principle these constants can be ex-
pressed through the parameters of the Pauli–Fierz Hamiltonian. To do so actually
would overburden the notation. �

The restriction on e is intrinsic to the method, since only then is e2 Aϕ(x)2 small
compared to Hf. To go beyond one needs a completely different technique which
is based on functional integration, as will be explained in chapter 14.

Theorem 13.4 (Self-adjointness, functional integration). If (13.76) holds, then
the N-particle Pauli–Fierz Hamiltonian H of (13.39) is self-adjoint on the domain
D(

∑N
j=1(p2

j/2m j ) + Hf). Furthermore H is bounded from below.

Proof: Hiroshima (2002).

Theorem 13.4 remains valid under the inclusion of spin and the addition of external
potentials with very mild conditions on their regularity.

In summary, the Pauli–Fierz Hamiltonian uniquely generates the unitary time
evolution e−iHt/� on H provided the condition (13.76) holds. Under a suitable
ultraviolet cutoff the quantum dynamics of charges and photons is well defined.

13.4 Energy and length scales

The characteristic energy and length scales will depend on the physical situation.
In our context two distinct cases are of particular importance. For the point-charge
(= ultraviolet) limit relativistic units are used, which means that lengths are mea-
sured in units of the Compton wavelength

λc = �/mec (13.77)
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and energies in units of the rest energy mec2 of the electron. For applications in
atomic physics and quantum optics, atomic units are more appropriate, where the
size of an atom is set by the Bohr radius

rB = 4π�
2

mee2
= α−1 �

mec
(13.78)

and the energy scale is set by the ionization energy

e2

4πrB
= e4me

(4π)2�2
= α2(mec2) (13.79)

with

α = e2

4π�c
, (13.80)

the Sommerfeld fine-structure constant written in Heaviside–Lorentz units. The
ionization energy corresponds to the length α−1rB which approximately equals
the wavelength of the Lyman alpha line. The scales compare as

��

ionization rest

energy [mec2]α2 α 1

α−2 α−1 1

Lyman alpha Bohr radius Compton

length [�/mec]

Since α � 1/137 in nature, the scales are well separated.
These scales necessarily reappear in the Pauli–Fierz Hamiltonian with the cru-

cial difference that the physical mass me of the electron is replaced by its bare
mass m. To have a concrete example let us discuss the hydrogen atom as the sim-
plest two-particle case. We assume that the nucleus is infinitely heavy. Then the
Pauli–Fierz Hamiltonian reads

H = 1

2m

(
σ · (p + c−1eAϕ(x))

)2 + Hf − e2Vϕcoul(x) , (13.81)

where −e is the charge of the electron and for the purpose of this subsection only
we set

Vϕcoul(x) =
∫

d3k|ϕ̂(k)|2|k|−2e−ik·x . (13.82)
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We transform to dimensionless form, such that the energy unit is α2(mc2), the
length scale for the electron is rB = �/αmc, and that for the photons is α−1rB.
This is achieved through the canonical transformation U defined through

U∗a(k, λ)U = (α−2λc)
3/2a(α−2λck, λ) ,

U∗xU = α−1λcx , U∗ pU = αλ−1
c p , (13.83)

where now the Compton wavelength

λc = �/mc (13.84)

depends on the bare mass rather than the physical mass as in (13.77). Then

U∗HU = α2mc2
(1

2

(
σ · (−i∇x −

√
4πααAϕ̃(αx))

)2

+
∑

λ=1,2

∫
d3k|k|a∗(k, λ)a(k, λ) − 4πVϕαcoul(x)

)
(13.85)

with

Aϕ̃(x) =
∑

λ=1,2

∫
d3kϕ̂(α2λ−1

c k)
1√
2|k|eλ(k)

(
eik·x a(k, λ) + e−ik·x a∗(k, λ)

)
(13.86)

and ϕ̂α(k) = ϕ̂(αk/λc). We infer from (13.85) that the Maxwell field is weakly
coupled to the electron. Thus, cum grano salis, perturbation theory around α = 0
should provide a qualitatively correct picture. In particular, spectral lines should
be rather sharp. In addition, since Aϕ̃ varies only on the scale α−1rB, the dipole
approximation Aϕ̃(αx) ∼= Aϕ̃(0) will suffice as long as the electron remains bound
to the nucleus.

The dimensionless form (13.85) teaches us also how to choose the wave number
cutoff ϕ̂. Thus, if ϕ̂ = (2π)−3/2 for |k| < �, ϕ̂ = 0 for |k| ≥ �, then � � 1/rB

to have a negligible smearing of the Coulomb potential. On the other hand, at the
scale of the rest energy of the electron, the Pauli–Fierz model cannot be expected
to describe the physics correctly. Thus the cutoff should satisfy

1 � �rB � α−1 . (13.87)

It is instructive to compare the atomic units with relativistic units. In the latter
case the scale transformation U reads

U∗a(k, λ)U = λ
3/2
c a(λck, λ) , U∗xU = λcx , U∗ pU = λ−1

c p . (13.88)
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Then

U∗HU = mc2
(1

2

(
σ · (−i∇x −

√
4παAϕλc

(x))
)2

+
∑

λ=1,2

∫
d3k|k|a∗(k, λ)a(k, λ) − 4παVϕλc coul(x)

)
(13.89)

with the form factor in units of the Compton wavelength, ϕ̂λc = ϕ̂(k/λc). Note that
the cutoff depends through the Compton wavelength on the bare electron mass.

13.5 Conservation laws

The Pauli–Fierz Hamiltonian (13.42) is invariant under translations and rotations.
Therefore the total momentum and the total angular momentum will be conserved.
One only has to identify the generators of these symmetries. The generator for the
translations of the j-th particle is its momentum p j , which means

eia·p j /�q j e
−ia·p j /� = q j + a . (13.90)

Similarly the field translations are generated by the momentum of the Maxwell
field

Pf =
∑

λ=1,2

∫
d3k�ka∗(k, λ)a(k, λ) (13.91)

with the property that

eia·Pf/�a(k, λ)e−ia·Pf/� = e−ia·ka(k, λ) . (13.92)

Thus the total momentum

P =
N∑

j=1

p j + Pf (13.93)

must be conserved and indeed

[H, P] = 0 . (13.94)

Next we consider a rotation R by an angle θ relative to the axis of rotation n̂
through the origin. For position and momentum we have

eiθ n̂·(q j ×p j )/�q j e
−iθ n̂·(q j ×p j )/� = Rq j , eiθ n̂·(q j ×p j )/� p j e

−iθ n̂·(q j ×p j )/� = Rp j .

(13.95)

For the Maxwell field we define the angular momentum relative to the origin

Jf = −
∑

λ=1,2

∫
d3ka∗(k, λ)(k × i�∇k)a(k, λ) (13.96)
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and the helicity

Sf = c−1
∫

d3x E(x) × A(x) = i�
∫

d3kk̂
(
a∗(k, 2)a(k, 1) − a∗(k, 1)a(k, 2)

)
(13.97)

with k̂ = k/|k|. Their sum rotates the vector potential as

eiθ n̂·(Jf+Sf)/� A(x)e−iθ n̂·(Jf+Sf)/� = R A(R−1x) (13.98)

and correspondingly for the transverse electric field E⊥(x). We conclude that the
total angular momentum

J =
N∑

j=1

(q j × p j ) + Jf + Sf (13.99)

is conserved and indeed

[H, J ] = 0 . (13.100)

If the j-th particle carries spin σ j , then

J =
N∑

j=1

(q j × p j ) +
N∑

j=1

1

2
�σ j + Jf + Sf (13.101)

is the conserved total angular momentum.
The helicity Sf is diagonalized through transforming to circularly polarized pho-

tons. We define the left-circularly and right-circularly polarized annihilation oper-
ators

a+(k) = 1√
2

(
a(k, 1) − ia(k, 2)

)
, a−(k) = 1√

2

(
a(k, 1) + ia(k, 2)

)
. (13.102)

Then

Sf =
∫

d3kk̂
(
a∗
+(k)a+(k) − a∗

−(k)a−(k)
)
, (13.103)

which establishes that the photon has spin 1. However, only two helicity states
are admissible, +1 for left and −1 for right polarization. The corresponding one-
photon states are

e±(k)(2π)−3/2ei(k·x∓ωt), e±(k) = 1√
2

(
e1(k) ± ie2(k)

)
. (13.104)

For the + index the photon state represents a plane wave whose polarization vector
rotates in a right-handed sense about k and thus appears to an observer facing the
incoming wave as left polarized.
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13.6 Boundary conditions and the Casimir effect

So far we took for granted that the Maxwell field lives in infinite space. In many
applications one has a macroscopically finite geometry, like a cavity or a wave
guide, and it is necessary to include it as a boundary condition into the Hamilto-
nian. For concreteness, let us assume then some bounded region � whose surface
∂� is defined through a perfect, grounded conductor. Momentarily there are no
charges inside �. Then the Maxwell equations are

c−1∂t B = −∇ × E , c−1∂t E = ∇ × B , ∇ · E = 0 , ∇ · B = 0 . (13.105)

If n̂(x) denotes the outward normal at x ∈ ∂�, the boundary conditions for a per-
fect conductor are

n̂ · B(x) = 0 , n̂ × E(x) = 0 at x ∈ ∂� . (13.106)

The rules of canonical quantization apply as before, only the final expressions
are less explicit, since (13.105) together with the boundary conditions (13.106)
cannot be solved through simple Fourier transformation. Let L2(�, R

3) be the
space of (complex valued) vector fields on �. A ∈ L2 is divergence free if
∇ · A = 0 and we denote by Q⊥

� the projection onto all such fields. The quan-
tum mechanical Fock space is built up from Q⊥

�L2 as one-particle Hilbert space.
Notationally it is slightly more convenient to start from L2(�, R

3) and incorpo-
rate the projection into the definition of the quantized fields. We introduce then the
three-component Bose field a(x), a∗(x) satisfying

[aα(x), a∗
α′(x ′)] = δαα′δ(x − x ′) (13.107)

with all other commutators vanishing. The quantized Maxwell field will depend
only on Q⊥

�a and Q⊥
�a∗.

As before the vector potential A satisfies the Coulomb gauge, which implies

c−2∂2
t A = �A , ∇ · A = 0 (13.108)

with boundary conditions

n̂ · (∇ × A) = 0 , n̂ × A = 0 at x ∈ ∂� . (13.109)

Since E⊥ = −c−1∂t A, one can write the solution to (13.108), (13.109) on Q⊥
�L2

as in (13.108)(
A(t)

E⊥(t)

)
=

(
cos �t −c�−1 sin �t
c−1� sin �t cos �t

) (
A

E⊥

)
, (13.110)

where, as a linear operator, � = c(−� ⊗ 1l)1/2 restricted to Q⊥
�L2 and with

the mixed Dirichlet–Neumann boundary condition (13.109). � is a positive
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self-adjoint operator. In analogy to (13.35), (13.36) the canonically quantized
fields are obtained as

A(x) = c
√

�/2 �−1/2 Q⊥
�

(
a(x) + a∗(x)

)
, (13.111)

E⊥(x) =
√

�/2 �1/2 Q⊥
�i

(
a(x) − a∗(x)

)
. (13.112)

Clearly their commutation relations are

[Aα(x), −c−1 E⊥α′(x ′)] = i�(Q⊥
�)αα′(x, x ′) (13.113)

with the right-hand side denoting the integral kernel of Q⊥
� in L2(�, R

3). The field
energy is a sum over the energy in each mode, which in position space becomes

Hf = �

∫
�

d3xa∗(x) · �Q⊥
�a(x) . (13.114)

In case there are charges enclosed in the cavity, their mutual Coulomb interac-
tion has to respect the perfect conductor boundary condition (13.106). For exam-
ple, since E‖ is not quantized, for a single charge at q the potential φ� satisfies the
Poisson equation

�φ�(x) = eϕ(x − q) , φ�(x) = 0 for x ∈ ∂� (13.115)

and the potential acting on the particle is given by

eφ�ϕ(q) = e
∫

d3xϕ(q − x)φ�(x) . (13.116)

Close to the surface φ�(x) is determined by the image charge and looks like an
attractive Coulomb potential. Thus we have to add phenomenologically to the
Hamiltonian a surface potential Vsur which keeps the particle confined to the cavity
�. Altogether the Pauli–Fierz Hamiltonian for a single charge enclosed in a cavity
is

H = 1

2m

(
p − c−1eAϕ(q)

)2 + eφ�ϕ(q) + Vsur(q) + Hf . (13.117)

To return to the charge-free situation, according to (13.114) we calibrated the
ground state energy of the cavity at zero, which is an acceptable choice for a closed
cavity. If, however, the cavity is open, as for example two plane parallel, grounded
metal plates, then the natural zero of energy refers to the energy of the field vacuum
in infinite space. In the presence of the plates this vacuum energy is lowered by
an amount which depends on the separation of the plates. Therefore there is an
effective attractive force between the plates – the famous Casimir effect. Together
with the spectrum of the black-body radiation it provides the most direct evidence
for the quantum nature of the Maxwell field.
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If one adopts the boundary conditions as in (13.109), the energy difference –
with and without plates – diverges because of high-frequency modes, which re-
flects the fact that the metal plates cannot be perfect conductors up to arbitrarily
high frequencies. We therefore choose a cutoff function g with g(ω) = 1 for small
ω and rapidly decreasing at infinity. The plates are parallel to each other, have a
distance d , and an area �2 which is taken to be very large. Then the energy differ-
ence per unit area is given by

1

�2
�E(d) = π2

�c

4d3

(1

2
G(0) +

∞∑
n=1

G(n) −
∫ ∞

0
dκG(κ)

)
, (13.118)

where

G(κ) = 2
∫ ∞

κ

duu2g(πu/d) . (13.119)

For analytic g one can use in (13.118) the Euler–MacLaurin summation formula,

1

2
F(0) +

∞∑
n=1

F(n) −
∫ ∞

0
dκ F(κ) = − 1

12
F ′(0) + 1

720
F ′′′(0)

+ higher derivatives, (13.120)

and note that F ′(0) = 0, F ′′′(0) = −4, since g(0) = 1, whereas every extra deriva-
tive carries a factor 1/d. Thus to leading order

1

�2
�E(d) = − π2

�c

720d3
+ O(d−4) , (13.121)

independently of the choice of the cutoff function g, and the force per unit area
between the conducting plates is given by

1

�2
F(d) = − π2

�c

240d4
+ O(d−5) . (13.122)

13.7 Dipole and single-photon approximation

Even for a single charge the Pauli–Fierz Hamiltonian resists exact diagonalization
and one has to rely on approximations. As suggested by (13.85), since the coupling
to the photon field is weak, an obvious strategy is to expand in α. Such a perturba-
tive treatment is covered extensively in standard texts and there is no need to repeat
it here. Since one of our aims is to explain why perturbation theory works so well,
we will make contact with the conventional results later on. Another strategy is to
truncate the Hamiltonian to taste, so as not to throw out the physics. In essence
there are only two such schemes, the dipole approximation and the single-photon
approximation.
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(i) Dipole approximation

We consider a single charge confined by an external potential eφex, centered at the
origin. Since the potential inhibits large excursions, one loses little by evaluating
the vector potential at the origin instead of at q, the true position of the charged
particle. This leads to the dipole Hamiltonian

H = 1

2m

(
p − c−1eAϕ(0)

)2 + eφex(q) + Hf . (13.123)

The interaction p · Aϕ(0) couples p to the fluctuating vector potential at the origin.
We can transform it to a fluctuating electric field coupled to the position q through
the unitary operator

U = exp[ic−1eq · Aϕ(0)/�] . (13.124)

Then

U∗ pU = p + c−1eAϕ(0) , U∗qU = q ,

U∗a(k, λ)U = a(k, λ) + iq · eλ(k)eϕ̂(k)
√

1/2�ω , (13.125)

which imply

U∗HU = 1

2m
p2 + eφex(q) + Hf − eq · E⊥ϕ(0) + 1

2

(2

3

∫
d3ke2|ϕ̂(k)|2

)
q2 .

(13.126)

The extra harmonic potential balances q · E⊥ϕ so as to make the sum of the last
three terms positive.

Even in the form (13.123), respectively (13.126), H is not tractable and in a
second approximation one assumes the external potential to be harmonic. Then
the dipole Hamiltonian reads

H = 1

2m

(
p − c−1eAϕ(0)

)2 + 1

2
mω2

0q2 + Hf . (13.127)

Clearly, the Hamiltonian is quadratic in the dynamical variables and consequently
the Heisenberg equations of motion are linear,

q̇(t) = 1

m

(
p(t) − c−1eAϕ(0, t)

)
, ṗ(t) = −mω2

0q(t) ,

c−2∂2
t A(x, t) = �A(x, t) + (e/c)δ⊥

ϕ (x)q̇(t) (13.128)

with δ⊥ the transverse δ-function of (13.38). As before the index ϕ denotes con-
volution with the form factor ϕ. At this point (13.128) can be solved as classical
equations of motion. One obtains the exact line shape, the Lamb shift, and the
Rayleigh scattering of light from a bound charge. It should be noted that, since the



13.7 Dipole and single-photon approximation 173

energy levels of the harmonic oscillator are equidistant, several emitted photons
will interfere, which makes the emission spectrum distinct from, say, the hydrogen
atom; compare with section 17.4.

Even though the equations of motion (13.128) are linear, their solution is not
a back of the envelope computation and one often resorts to yet another approx-
imation, the rotating wave approximation. One starts from (13.126) with the har-
monic potential 1

2mω2
0q2, which already includes the last summand in (13.126),

and rewrites the harmonic oscillator in terms of its creation and annihilation oper-
ator b, b∗. Then

H = �ω0b∗b − i
√

�/2mω0(b − b∗) · eE⊥ϕ(0) + Hf . (13.129)

In the coupling, one ignores the counter-rotating terms ba and b∗a∗, which results
in

Hrw = (b, a) · h (b, a)t . (13.130)

Our notation emphasizes that the rotating wave Hamiltonian Hrw is quadratic in
(b, a) and should be regarded as the second quantization of the one-particle Hamil-
tonian h . The one-particle space is K = C

3 ⊕ (L2(R3) ⊗ C
2), the C

3 subspace
corresponding to b, b∗. A wave function in K is of the form (χ, ψ(k, λ)), χ the
one-particle amplitude for the oscillator and ψ(k, λ) the one-particle photon am-
plitude. h acting on a pair (χ, ψ) is defined by

h
(

χ

ψ(k, λ)

)
=

(
�ω0χ − 1

2

∑
λ=1,2

∫
d3keϕ̂∗

�
√

ω/mω0eλ(k)ψ(k, λ)

−1
2eϕ̂�

√
ω/mω0eλ(k) · χ + �ωψ(k, λ)

)
,

(13.131)

ϕ̂ = ϕ̂(k), ω = ω(k). h will reappear as the Friedrichs–Lee Hamiltonian. For
e = 0, the eigenvalue �ω0 is embedded in the continuous spectrum [0, ∞). The
coupling turns this eigenvalue into a resonance; compare with section 17.3.

A further popular variant is to set ω0 = 0 in (13.127) and to regard the Hamil-
tonian as describing a freely propagating charge. One finds that the mass of the
particle is increased due to the coupling with the field. However, quantitatively
such a result cannot be trusted, since the dipole approximation is based on the as-
sumption that the electron remains close to the origin. There is no such mechanism
for a free particle.

(ii) Single-photon approximation

We restrict the Fock space to C ⊕ h. Then the wave functions ψ are pairs
(ψ0(x), ψ1(x, k, λ)). ψ0(x) is the wave function for an electron and no photon
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present, while ψ1(x, k, λ) is the wave function for the electron plus one photon
with momentum �k and helicity λ. The correspondingly restricted Pauli–Fierz
Hamiltonian is denoted by H1. From (13.39), setting N = 1, � = 1 = c, one infers

(H1ψ)0(x) = 1

2m
p2ψ0(x) +

∑
λ=1,2

∫
d3keϕ̂

1√
2ω

eik·x 1

m
eλ · pψ1(x, k, λ) ,

(H1ψ)1(x, k, λ) =
( 1

2m
p2 + ω

)
ψ1(x, k, λ) + eϕ̂

1√
2ω

e−ik·x 1

m
eλ · pψ0(x) ,

(13.132)

where the A2
ϕ contribution has been neglected. H1 is a two-particle problem with a

translation-invariant interaction. The electron has kinetic energy 1
2m p2. The photon

can be either “dead” (ψ0) or “alive” (ψ1). The kinetic energy is zero in the dead
state and �ω in the alive state. Through the interaction a photon is either created or
annihilated, which corresponds to a transition between dead and alive. Because of
the 1/

√
ω-factor, this interaction has a long range and decays only as r−3/2 in the

relative distance between the electron and the photon.

Notes and references

Section 13.1

The Hamiltonian form of the Abraham model in the Coulomb gauge is standard
and explained in Cohen-Tannoudji et al. (1989) and Sakurai (1986), for example.

Section 13.2

The name “Pauli–Fierz” is not accurate historically. The Hamiltonian (13.42) ap-
pears at the beginning of paragraph two of Pauli and Fierz (1938) as a matter of
fact, without citation. Pauli and Fierz study the generation of infrared photons in
Compton scattering. Cohen-Tannoudij et al. (1989) call (13.42) “of basic impor-
tance” and Milonni (1994) refers to (13.42) simply as “the Hamiltonian”. Thus
despite its fundamental nature the Hamiltonian (13.42) carries no specific name in
the literature. Lately, “nonrelativistic quantum electrodynamics” and “Pauli–Fierz”
have become common usage in some quarters. We stick to the latter convention,
which is certainly better than to be speechless.

The quantization of the electromagnetic field as a system of harmonic oscilla-
tors was common knowledge right after the advent of quantum mechanics through
the work of Dirac (1927), Landau (1927), Jordan and Pauli (1928), Fermi (1930),
and Landau and Peierls (1930), and was immediately applied to atomic radiation
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by many quantum theorists. The systematic derivation of the Hamiltonian (13.42)
is not so well documented and was presumably regarded as more or less obvious,
although the advantage of the Coulomb gauge was only slowly realized. The re-
view articles by Breit (1932) and by Fermi (1932) and the research monograph by
Heitler (1936, 1958) explain the quantization in its modern form, in essence. Since
“one cannot comb the hair on a sphere”, the polarization vectors eλ(k) are necessar-
ily discontinuous in k, which causes poor decay in their Fourier transform. We refer
to Lieb and Loss (2004) for a formulation using only the transverse projection.

The size of atoms as based exclusively on the Coulomb Hamiltonian is a long-
standing open problem. We refer to Lieb (1990, 2001).

Textbooks on nonrelativistic quantum electrodynamics are listed in Notes and
References to section 3.2.

Section 13.3

Criteria for self-adjointness are given in Reed and Simon (1980, 1975). In our con-
text the Kato–Rellich theorem has been applied by Nelson (1964b) and Fröhlich
(1974), amongst others. Self-adjointness without restriction on the magnitude of
the charge is proved by Hiroshima (2000b, 2002). A review is Hiroshima (2001).

Section 13.5

A more detailed treatment of conservation laws is Huang (1998).

Section 13.6

Casimir (1948) discovered the attraction of two conducting plates through vacuum
fluctuations. Casimir and Polder (1948) compute the attractive force between two
atoms, the retarded van der Waals force, and the force between an atom and a wall.
The forces are minute and direct experimental evidence had to wait for a while. We
refer to Sparnaay (1958) and Lamoreaux (1997). On the theoretical side a complete
coverage is Milloni (1994), Huang (1998), with the finite-temperature corrections
discussed by Schwinger et al. (1978), Bordag et al. (2000), and Feinberg et al.
(2000).

Section 13.7

Apparently the first systematic study of the dipole approximation with a harmonic
external potential is Kramers (1948) and van Kampen (1951). Various aspects are
covered by Senitzky (1960), Schwabl and Thirring (1964), Ford, Kac and Mazur
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(1965), Ullersma (1966), Ford, Lewis and O’Connell (1988a, 1988b), Grabert,
Schramm and Ingold (1988), Unruh and Zurek (1989). A mathematical study is the
series by Arai (1981, 1983a, 1983b, 1990, 1991). Since the dipole approximation
provides a reasonable description of radiation processes, one might regard the har-
monic potential as the lowest-order approximation and expand in the anharmonic-
ity. This program has been carried through in Maassen (1984), Spohn (1997),
Maassen, Gută and Botvich (1999), and Fidaleo and Liverani (1999). If the an-
harmonicity is small, in fact so small that the external potential remains convex
and grows as 1

2mω2
0q2 for large q, then the convergence of the time-dependent

Dyson series can be controlled uniformly in t . With such a strong estimate one can
show that qualitatively the properties of the damped harmonic oscillator persist
into the nonlinear regime.

The dipole approximation is not restricted to a single particle. For example one
may consider two harmonically bound charges with their center of charge at r1 and
r2. Then the kinetic energies are approximated by (p j − c−1e j Aϕ(r j ))

2/2m j , j =
1, 2. Denoting R = |r1 − r2|, one is interested in the ground state energy, E(R),
as a function of the separation. Because of retardation E(R) ∼= −R−7 for large R
and E(R) ∼= −R−6 in an intermediate regime.

If φex = 0, then the Hamiltonian (13.123) can be unitarily transformed to H ′ =
(p2/2meff) + Hf. meff agrees with the effective mass of the Abraham model to
lowest order in |v|/c; compare with section 4.1.

The single-photon approximation was already used in disguise by Dirac (1927)
and Weisskopf and Wigner (1930). It is instructive to extend this approximation
by cutting Fock space at N photons (Hübner and Spohn, unpublished manuscript;
Skibsted 1998). If one artificially adds to the space of single-photon wave functions
a one-dimensional subspace for a “dead” photon, then the theory has a structure
very similar to an (N + 1)-particle Schrödinger equation. The photons interact
only indirectly through the atom. The cluster decomposition consists of n free
photons and N − n photons bound by the atom, n = 0, 1, . . . ,N .
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The statistical mechanics connection

Models from quantum mechanics can be converted into statistical mechanics
systems through the Wick rotation t � −it . Within quantum field theory this
technique has been very powerful, both in proving qualitative properties and as a
computational tool. Besides these more practical aspects, the statistical mechanics
formulation is an additional source of intuition which cannot so easily be extracted
from the Schrödinger differential equation. The price to pay is that, in essence only
ground state properties can be handled. Truly time-dependent problems must be
treated in physical time. For charges interacting with the Maxwell field the Wick
rotation is equally attractive. There is one additional bonus: since the field Hamil-
tonian is quadratic and since the coupling to the field is linear, as first observed by
Feynman, the Gaussian integration over the Maxwell field can be done explicitly.
This results in a fairly concise statistical-mechanical description for the particles.

In Euclidean language the possible paths of the charge and the fields become
fluctuating quantities. To distinguish in notation we use t �→ qt for a random path
of the charge and t �→ At (x) for a random history of the transverse vector field.
E(·) refers to expectation with respect to the measure of integration, either spec-
ified through the context or indicated by a subscript. Sometimes we also use the
statistical mechanics shorthand 〈·〉 for averages.

14.1 Functional integral representation

For a single particle, subject to the potential V (x), the imaginary time Schrödinger
equation is, setting � = 1 = m,

∂tψ = −Hpψ , Hp = −1

2
� + V (14.1)

and its solution for t ≥ 0 is constructed through the Trotter product formula as

(e−t Hpψ)(x) = lim
n→∞(et�/2ne−tV/n)nψ(x) . (14.2)

177
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We recognize exp[1
2 t�] as the transition probability for a Brownian motion, whose

paths will be denoted here by t �→ qt . Brownian motion is a Gaussian process and
therefore defined through the mean and covariance. Explicitly,

E(qt ) = 0 , E(qsαqtβ) = δαβ min(s, t) . (14.3)

If the Brownian motion starts at x , we indicate the start point as a subscript
in the expectation and have Ex (qt ) = x , Ex ((qs − x)α(qt − x)β) = δαβ min(s, t),
α, β = 1, 2, 3. In particular the transition probability is obtained as

Px ({qt ∈ d3y}) = (2π t)−3/2 exp[−(y − x)2/2t]d3y = (et�/2)(x, y)d3y .

(14.4)

Writing out (14.2) in position space representation, one infers the Feynman–Kac
formula

(e−t Hpψ)(x) = Ex

(
exp

[
−

∫ t

0
dsV (qs)

]
ψ(qt )

)
. (14.5)

The Brownian motion path has acquired a non-Gaussian weight, which is the ex-
ponential of the potential energy integrated along the path qt .

The statistical mechanics connection becomes more obvious upon discretizing
time in units of τ . We set φn = qnτ , φn ∈ R

3. Then, in approximation, (14.5) reads

1

Z

∫
d3φ0 . . . d3φN δ(φ0 − x) exp

[
− 1

2τ

N−1∑
j=0

(φ j+1 − φ j )
2
]

× exp
[

− τ

N∑
j=1

V (φ j )
]
ψ(φN ) , (14.6)

Nτ = t . The statistical mechanics model lives on a one-dimensional lattice and
has at each site a continuous “spin” with three components. The first exponen-
tial is a quadratic nearest-neighbor interaction and, except for the normalization,
represents a discrete-time Gaussian random walk in R

3. The potential can be com-
bined with the Lebesgue measure as exp[−τ V (φ j )]d3φ j and thus provides a non-
Gaussian single-site measure.

For (14.5) to make sense one needs some minimal conditions on V to en-
sure that the expectation is defined. An obvious sufficient condition is to have
V ≥ c0 > −∞. Equation (14.5) indicates that very roughly there are three families
of potentials: (i) Binding, V increases at infinity. Under the measure in (14.5) qt

has in essence bounded fluctuations. For t → ∞ the path measure for qt becomes
a stationary diffusion process. (ii) No binding, e.g. a repulsive potential decay-
ing to zero at infinity or a bounded periodic potential. A typical path qt fluctuates
and diffuses to infinity as a Brownian motion with some effective diffusion coeffi-
cient. (iii) Local binding, like an attractive square-well potential. For the purpose
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of discussion let us set the potential as λV with V attractive near the origin and
decaying to zero at infinity. For large λ the potential dominates and qt is con-
fined as a stationary diffusion process. As λ decreases, qt makes longer and longer
excursions until it unbinds at some critical λc. For λ < λc the Brownian motion
dominates. Since Brownian motion is recurrent in dimension d = 1, 2, one has
λc = 0, whereas for d = 3 generically λc > 0.

It is of use to translate the path properties of the particle to spectral properties
of the particle Hamiltonian Hp = −1

2� + V . We denote by � the continuum edge
of Hp and, if it exists, by ψ0 the unique ground state of Hp, i.e. Hpψ0 = E0ψ0. In
case (i) the spectrum of Hp is purely discrete, formally � = ∞. In the second case
Hp has a purely continuous spectrum and no eigenvalues. For a locally binding
potential which decays to zero at infinity, case (iii), the continuum edge is � = 0.
For sufficient attraction there are bound states with an energy below �, in particu-
lar E0 < 0. In dimension d = 1, 2 an arbitrarily weak attraction results in a bound
state, whereas for d ≥ 3 a minimal strength is required. As is well understood,
there is more complicated spectral behavior around with various borderline cases.
For our purposes the schematic classification above will suffice.

Our goal is to extend the Feynman–Kac formula (14.5) to e−t H with H the
Pauli–Fierz Hamiltonian. This will be done in two steps. Firstly we study a one-
particle Hamiltonian including an external vector potential, and secondly we write
e−t Hf in terms of a suitable Gaussian measure. Combining both elements yields
the desired generalization.

Let us assume then that the quantum particle is subject to a magnetic field and
denote the corresponding vector potential by a(x), to distinguish from the fluctu-
ating vector potential At used later on. The imaginary time Schrödinger equation
becomes

∂tψ = −Hpψ , Hp = 1

2
(−i∇ − a)2 + V . (14.7)

Then, as before, we represent e−t Hp through the Trotter product formula. The vec-
tor potential yields a term proportional to q̇, as can be guessed from the corre-
sponding classical action. More precisely one obtains

(e−t Hpψ)(x) = Ex
(
exp

[
− i

∫ t

0
dqs ·a(qs) − i

2

∫ t

0
ds∇·a(qs) −

∫ t

0
dsV (qs)

]
ψ(qt )

)
.

(14.8)

The stochastic integral appearing in (14.8) is defined as Ito integral, which means
that the discretization of a(x) is evaluated at the left end point,∫ t

0
dqs · a(qs) = lim

n→∞

nt∑
m=1

a(q(m−1)/n) · (qm/n − q(m−1)/n) . (14.9)
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This limit exists almost surely with respect to Brownian motion. Through the
Ito convention one picks up in (14.8) the additional term containing ∇ · a. It
disappears, if in (14.9) we were to use the, in our context perhaps more nat-
ural, Feynman–Stratonovich midpoint rule where a(q(m−1)/n) is replaced by
1
2(a(qm/n) + a(q(m−1)/n)). Note that in the Coulomb gauge the stochastic inte-
gral does not depend on the particular choice of the rule for the discretization,
since ∇ · a = 0.

On a purely formal level, following Feynman, the quantum propagator is written
as a sum over all paths from x ′ to x in the time span t “weighted” by the exponential
of the classical action,

(e−iHpt )(x, x ′) =
∫ ∏

0≤s≤t

d3qsδ(q0 − x ′)δ(qt − x) exp
[
i
∫ t

0
dsL(qs, q̇s)

]
(14.10)

with the classical Lagrangian L(q, q̇) = 1
2 q̇2 − V (q) + q̇ · a(q). Note that com-

pared to the right side of (14.8) the role of x and x ′ has been interchanged. Upon
Wick rotation t � −it and time reversal qs � qt−s (14.10) becomes

(e−t Hp)(x, x ′) =
∫ ∏

0≤s≤t

d3qsδ(q0 − x)δ(qt − x ′)

× exp
[

−
∫ t

0
ds

(1

2
q̇2

s + V (qs) + iq̇s · a(qs)
)]

. (14.11)

One recognizes the potential term and the stochastic integral −i
∫ t

0 dsq̇s · a(qs)

with the mid point rule. The exponential of the kinetic term combines with the
infinite-product Lebesgue measure to Brownian motion, denoted by Ex in (14.8),
which starts at x according to the factor δ(q0 − x).

We turn to the functional integral for the Maxwell field, which we can think
of as an infinite collection of harmonic oscillators. Let us first recall the single
harmonic oscillator with Hamiltonian

H = 1

2

( − ∂2
x + ω2x2 − ω

)
(14.12)

as a differential operator acting on L2(R, dx). It has the normalized eigenvectors
|n〉, n = 0, 1, . . . , i.e.

H |n〉 = εn|n〉 , εn = ωn . (14.13)

|0〉 is the ground state of H . In the position representation Hψ0 = 0 with
ψ0(x)2 = √

ω/πe−ωx2
. Thus, alternatively we can use the linear span of the

|n〉’s as the Hilbert space of states. This corresponds to the Fock space F over
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the one-particle space C, which means ψ ∈ F is of the form ψ = (ψ0, ψ1, . . . ),
ψ = ∑∞

n=0 ψn|n〉. A further, as it will turn out natural, choice is the Hilbert space
H0 = L2(R, ψ0(x)2dx) with weight given by the square of the ground state wave
function.

Of course, these Hilbert spaces are unitarily equivalent. Of interest is the uni-
tary map from F to H0 which is achieved through the Wick ordering of poly-
nomials. We regard x as a random variable on R equipped with the normalized
Gaussian measure ψ0(x)2dx . Then, denoting expectation by 〈·〉, the Wick order
of x is defined recursively through : x0: = 1, ∂x: xn: = n: xn−1:, and 〈: xn:〉 = 0,
n = 1, 2, . . . . Note that the Wick order depends both on the random variable and
on the underlying measure. Thus :1: = 1, : x: = x − 〈x〉 = x , : x2: = x2 − 2〈x〉x −
〈x2〉 + 2〈x〉2 = x2 − (1/2ω), etc., in our case. Let Pn denote the n-th Hermite
polynomial,

Pn(x) =
[n/2]∑
j=0

n!

(n − 2 j)! j!
(− 1

2)
j xn−2 j , (14.14)

with [n] the integer part. Then the Wick-ordered mononomial of order n is given
by

: xn: = (2ω)−n/2 Pn(
√

2ωx) . (14.15)

One has

〈: xn: : xm:〉 = 〈: xn: , : xm:〉H0 = (2ω)−nn!δmn . (14.16)

By linearity Wick order extends to all finite polynomials. Let us also introduce

a∗ = 1√
2ω

(ωx − ∂x ) , a = 1√
2ω

(ωx + ∂x ) (14.17)

as creation and annihilation operators of the harmonic oscillator. Their Wick or-
der means that all annihilation operators are moved to the right, e.g. :aa∗: = a∗a.
Then

:
( 1√

2ω
(a∗ + a)

)n
: |0〉 = (2ω)−n/2

√
n!|n〉 . (14.18)

Comparing with (14.16) the map U from F to H0 should be defined through

:
( 1√

2ω
(a∗ + a)

)n
: |0〉 �→ : xn: (14.19)
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and extended by linearity. By the very construction the closure of U as a linear
map F → H0 is then unitary. Note that e−t H is implemented as

Ue−t H U−1 : xn: = :(e−ωt x)n: = e−nωt: xn: . (14.20)

Through the Feynman–Kac formula (14.5) we boost (14.12) to a Gaussian
stochastic process denoted by xt . It takes real values, is stationary in time, has
mean zero, and covariance

E(xt xs) = 1

2ω
e−ω|t−s| . (14.21)

We recognize xt as the stationary Ornstein–Uhlenbeck process governed by the
stochastic differential equation

dxt = −ωxt dt + dbt , (14.22)

where bt is standard one-dimensional Brownian motion. Note that

E( f (xt )) = E( f (x0)) = 〈ψ0, f ψ0〉 = 〈1, f 〉H0 =
∫

dxψ0(x)2 f (x) ,

(14.23)

E( f (xt )g(xs)) = 〈ψ0, f e−|t−s|H gψ0〉 = 〈 f, e|t−s|L g〉H0 , (14.24)

where we used the similarity transformation

ψ−1
0 e−t Hψ0 = et L , t ≥ 0 , (14.25)

with L the generator of the Ornstein–Uhlenbeck process xt ,

L = −ωx∂x + 1
2∂

2
x . (14.26)

According to (14.23) the Ornstein–Uhlenbeck process xt has ψ0(x)2 as stationary
measure. With probability one t �→ xt is continuous and we may choose C(R, R),
the space of all continuous functions over R, as path space. In fact, xt has in
essence bounded fluctuations and increases at most logarithmically for large t .

The point of our exercise is that it carries over essentially verbatim to the
infinite-dimensional setting, except for the flat Hilbert space L2(R, dx). Hf plays
the role of the harmonic oscillator. The boson Fock space over the transverse
vector fields L2

⊥(R3, R
3) plays the role of the Fock space over C. The Ornstein–

Uhlenbeck process xt is replaced by the infinite-dimensional Ornstein–Uhlenbeck
process At (x). Let us start with the latter. At (x) is a Gaussian process with mean
zero and covariance

E
(

Atα(x)At ′α′(x ′)
) = (2π)−3

∫
d3keik·(x−x ′)Q⊥

αα′(k)
1

2ω
e−ω|t−t ′| , (14.27)
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α, α′ = 1, 2, 3. Because of the transverse projection Q⊥
αα′(k) = δαα′ − k̂α k̂α′ the

covariance (14.27) implies that

∇ · At = 0 (14.28)

almost surely. At (x) becomes a proper Gaussian random variable once it is inte-
grated over the real test function f ,

At ( f ) =
3∑

α=1

∫
d3x fα(x)Atα(x) . (14.29)

From (14.27) we conclude that

E
(

At ( f )2) =
∫

d3k(2ω)−1 f̂ ∗ · Q⊥ f̂ . (14.30)

Thus At ( f ) has a bounded variance provided ‖ f/
√

ω‖h < ∞.
In quantum field theory Lorentz invariance is of central importance; this be-

comes more evident by treating time and space on an equal footing. We thus
Fourier transform in (14.27) also with respect to t and obtain

E
(

Âα(k0, k)∗ Âα′(k′
0, k′)

) = δ(k − k′)δ(k0 − k′
0)Q⊥

αα′(k)(k2 + k2
0)−1 , (14.31)

which is more symmetric. However, fixing the Coulomb gauge spoils full rotation
invariance in R

4.
In our context time is singled out and we prefer to think of t �→ At as a stochas-

tic process with values in the transverse vector fields. Most conveniently, we regard
At as the element of a Hilbert space K′, which is chosen such that t �→ At is con-
tinuous in t . At (x) is somewhat singular in x , which has to be balanced by defining
the norm of the Hilbert space K′ through the inner product

〈 f, g〉K′ =
∑

λ=1,2

∫
d3k f̂ (k, λ)∗ω1/2(−�k + k2)−κω1/2ĝ(k, λ) (14.32)

with some κ ≥ 0. The predual Hilbert space is denoted by K. It has the inner
product

〈 f, g〉K =
∑

λ=1,2

∫
d3k f̂ (k, λ)∗ω−1/2(−�k + k2)κω−1/2ĝ(k, λ) . (14.33)

Lemma 14.1 (Regularity properties for sample paths of the Ornstein–Uhlenbeck
process). We regard the Ornstein–Uhlenbeck process At (x) with covariance
(14.27) as taking values in the Hilbert space K′ with κ > 7

2 . Then t �→ At ∈ K′
is almost surely (norm) continuous. The path space of the Ornstein–Uhlenbeck
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process can be taken as C(R,K′), the space of continuous functions with values
in K′.

Proof : The Ornstein–Uhlenbeck process At is Markov and time reversible. A gen-
eral estimate for such processes gives

E
(

sup
0≤t≤T

At ( f )2) ≤ 3E
(

A0( f )2) + 72TD
(

A0( f ), A0( f )
)
, (14.34)

where D is the Dirichlet form defined through

D
(

A0( f ), A0( f )
) = lim

t→0

1

t

(
E
(

At ( f )A0( f )
) − E

(
A0( f )2)) . (14.35)

Therefore

E
(

sup
0≤t≤T

At ( f )2) ≤ c0

∑
λ=1,2

∫
d3k| f̂ (k, λ)|2(1 + ω−1) . (14.36)

The eigenfunctions of (−�k + k2) are the Hermite functions hn , n ∈ N
3, with

eigenvalue λn = 1 + 2
∑3

α=1 nα . Therefore

E
(

sup
0≤t≤T

‖At‖2
K′

) = E
(

sup
0≤t≤T

∑
n∈N3

(λn)
−κ At (

√
ωhn)

2)

≤ c0

∑
n∈N3

(λn)
−κ

∫
d3k |̂hn(k)|2(1 + ω) . (14.37)

Using operator monotonicity as (k2)1/2 ≤ (−�k + k2)1/2 yields the bound

c0

∑
n∈N3

(λn)
−κ+ 1

2 , (14.38)

which is finite provided κ > 7
2 .

The inequality (14.37) establishes that At lies in K′ with probability one. Con-
tinuity is proved by a similar argument. The complete details can be found, e.g., in
Giacomin et al. (2001), Lemma 5.5. �

The path measure for At (x), as a probability measure on C(R,K′), is denoted
by dP. The time-zero field is A0(x). A0(x) has the distribution dP 0 as a proba-
bility measure on K′. According to (14.30) dP 0 is Gaussian with mean zero and
covariance

EdP 0

(
A0( f )A0(g)

) =
∫

d3k(2ω)−1 f̂ ∗ · Q⊥ĝ . (14.39)

As in the case of a single oscillator, there is a natural unitary map U from
Fock space F to L2(K′, dP0) which is achieved through Wick order. The Wick
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order for operators on F is defined by moving all creation operators to the left.
The Wick-ordered polynomials on K′ are defined through a multilinear exten-
sion of the orthogonalization scheme for a single oscillator. Let X1, . . . , Xk be
k random variables. Their Wick order, relative to 〈·〉, is defined recursively by
:(X1)

0 . . . (Xk)
0: = 1, 〈:(X1)

n1 . . . (Xk)
nk:〉 = 0, and ∂/∂ X j:(X1)

n1 . . . (Xk)
nk:=

n j :(X1)
n1 . . . (X j )

n j −1 . . . (Xk)
nk:. Clearly, for a single degree of freedom, i.e.

K′ = R, dP 0 = √
ω/πe−ω2x2

dx , the Wick order agrees with the construction in
(14.15). The unitary map U : F → L2(K′, dP 0) is then given by

U� = 1 , U:A( f1) . . . A( fn):� = :A0( f1) . . . A0( fn): . (14.40)

Here � denotes the Fock vacuum of F . A( f j ) is the quantized vector potential
(13.35) smeared by f j as A( f j ) = ∫

d3x f j (x) · A(x), whereas to the right stands
the Wick order of polynomials as functions on K′. We note that the dynamics is
implemented as

Ue−t HfU−1 :A0( f1) . . . A0( fn): = :A0(e
−ωt f1) . . . A0(e

−ωt fn): (14.41)

for t ≥ 0. U HfU−1, a linear operator acting on L2(K′, dP 0), is referred to as the
Schrödinger representation of Hf.

Next we couple the charge and the Maxwell field. According to (14.39) the
natural Hilbert space is

Hs = L2(R3, d3x) ⊗ L2(K′, dP 0) , (14.42)

the subscript ‘s’ standing for Schrödinger. The particle Hamiltonian reads
Hp = −1

2� + V , with the shorthand V (q) = eφex(q), and the field Hamiltonian
U HfU−1 is defined through (14.41). Let us denote by EdW×dP expectation with
respect to the path measure dW × dP, where dP is the path measure for the
Ornstein–Uhlenbeck process At (x) and dW the Wiener measure for qt , i.e. the
path measure of Brownian motion with starting distribution d3x . Let F, G ∈ Hs.
Then, combining (14.5) and the infinite-dimensional analog of (14.24), we con-
clude that for the uncoupled system

EdW×dP

(
F(q0, A0)

∗ exp
[

−
∫ t

0
dsV (qs)

]
G(qt , At )

)
= 〈1 ⊗ U−1 F, e−t (Hp⊗1+1⊗Hf)1 ⊗ U−1G〉Hs , (14.43)

t ≥ 0. In the following, the somewhat pedantic 1⊗ will be omitted, in particular U
acts on L2(R3, d3x) ⊗ F as 1 on the first and as (14.40) on the second factor.

The missing step is to include the minimal coupling to the field through the
vector potential. For this purpose we note that in the Hilbert space L2(K′, dP 0)

of the Schrödinger representation the transverse vector potential A(x) acts as a
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multiplication operator, compare with (14.40), and in the functional integral the
operator A(x) becomes a fluctuating vector potential At (x), which is to be inserted
in the minimal coupling as 1

2(p − eAtϕ(q))2. Thus one can use (14.7) and (14.8),
properly adapted to time-dependent vector potentials respecting the Coulomb
gauge ∇ · At = 0. For later convenience let us reintroduce the mass of the quantum
particle, which amounts to replacing (p − eAtϕ(q))2/2 by (p − eAtϕ(q))2/2m
and hence taking the Wiener process dW with diffusion coefficient 1/m instead
of 1, i.e. E0(qsαqtβ) = m−1δαβ min(s, t). As a result we obtain the functional in-
tegral representation for the semigroup e−t H , t ≥ 0, of the spinless Pauli–Fierz
Hamiltonian (13.39) for a single particle as

〈F, Ue−t H U−1G〉Hs

= EdW ×dP
(
F(q0, A0)

∗ exp
[

−
∫ t

0
dsV (qs) − ie

∫ t

0
dqs · Asϕ(qs)

]
G(qt , At )

)
.

(14.44)

Recall that Atϕ(q) = ∫
d3xϕ(q − x)At (x). Equation (14.44) is the basic result of

this section. It says that the measure on paths is weighted by the exponential of the
classical action. The quadratic terms yield dW × dP and constitute the Gaussian
a priori measure of the uncoupled system. The external potential and the minimal
coupling to the quantized transverse vector potential are displayed explicitly.

We still have to check that the random variable in the exponential of (14.44)
remains finite almost surely. The function q, s �→ Asϕ(q) is (almost surely) con-
tinuous in both variables, which makes the stochastic integral well defined. To
compute the variance, one notes

EdP

(( ∫ t

0
dqs · Asϕ(qs)

)2) =
∫ t

0

∫ t

0
dqs · W (qs − qs′, s − s′)dqs′ . (14.45)

W is the transverse photon propagator,

Wαβ(x, t) =
∫

d3k|ϕ̂(k)|2 Q⊥
αβ(k)

1

2ω
e−ω|t |eik·x , (14.46)

which is bounded by our assumption on ϕ̂. The average of (14.45) with respect to
Brownian motion yields

EdW×dP

(
δ(q0)

( ∫ t

0
dqs · Asϕ(qs)

)2) = t
2

3m

∫
d3k|ϕ̂|2/2ω , (14.47)

since one of the two stochastic differentials points in the future except at the diag-
onal where dqtαdqtβ = m−1δαβdt . Thus the action appearing in the exponential of
(14.44) has a bounded variance.
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14.2 Integrating out the Maxwell field

We return to the basic formula (14.44) and assume that F, G are of the special
form F(q, A) = G(q, A) = ψ(q) with ψ ≥ 0 and of rapid decrease. The Gaussian
integration over dP can then be carried out with the result

〈ψ ⊗ �, e−t Hψ ⊗ �〉H
= EdW

(
ψ(q0) exp

[
−
∫ t

0
dsV (qs) − 1

2
e2

∫ t

0

∫ t

0
dqs · W (qs − qs′, s − s′)dqs′

]
ψ(qt )

)
.

(14.48)

Since dqtαdqtβ = m−1δαβdt almost surely, we may remove the diagonal cut in the
double stochastic integral at the expense of the factor t (2/3m)

∫
d3k|ϕ̂|2/2ω. W is

the transverse photon propagator (14.46), written more traditionally

W (x, t) = 1

2π

∫
d3kdk0|ϕ̂(k)|2(k2 + k2

0)−1ei(k·x−k0t)Q⊥(k) (14.49)

as a 3 × 3 matrix. If one removes the ultraviolet cutoff by replacing ϕ̂(k) by
(2π)−3/2, then (14.49) can be computed explicitly. For our purpose it suffices that
qualitatively

W (x, t) ∼= (x2 + t2)−1 (14.50)

with some modifications due to the transverse projection. Reintroducing ϕ̂ smooths
this function at (x, t) = 0, but keeps the slow t−2 decay. For massive photons,
ω(k) = (k2 + m2

ph)
1/2, this decay would switch to an exponential.

Equation (14.48) looks like the partition function of an equilibrium statistical
mechanics system. We regard dW as the a priori measure on continuous paths in
three-dimensional space. The time interval [0, t] corresponds to the volume. From
the point of view of statistical mechanics it is more natural to place it symmetric
relative to the origin, i.e. as [−t, t]. Configurations are paths qs, |s| ≤ t . The fac-
tors ψ(q−t ), ψ(qt ) constrain their end points to be most likely close to the origin.
The paths have a Boltzmann weight consisting of two contributions, a single time
integral from the external potential and a double time integral induced through the
Maxwell field. Our observation suggests that the basic object must be the Gibbs
measure for paths qs , |s| ≤ t , as given through

Z(2t)−1ψ(q−t )ψ(qt )

× exp
[

−
∫ t

−t
dsV (qs) − 1

2
e2

∫ t

−t

∫ t

−t
dqs · W (qs − qs′, s − s′)dqs′

]
dW

(14.51)
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relative to the Wiener measure dW with Z(2t) the normalizing constant (14.48).
The average with respect to the probability measure (14.51) is denoted below by
〈·〉t and by 〈·〉0

t for e = 0.
The relationship to usual spin systems becomes even more evident upon dis-

cretizing time in steps of τ ; compare with (14.6). Then, setting qnτ = φn , φn ∈ R
3,

Nτ = t , (14.51) becomes

1

Z

N∏
n=−N

d3φnψ(φ−N )ψ(φN ) exp
[

− 1

2

m

τ

N−1∑
j=−N

(φ j+1 − φ j )
2 − τ

N∑
j=−N

V (φ j )

− 1

2
e2

N−1∑
i, j=−N

(φ j+1 − φ j ) · W (φi − φ j , i − j)(φi+1 − φi )
]
,

(14.52)

which is the Gibbs measure for a three-component continuous spin system with
external potential V , a quadratic nearest-neighbor interaction, and a long-range
interaction W . The spin configurations are over a one-dimensional lattice. Alter-
natively, we may interpret φ j as the position of the j-th monomer of an elastic
string (polymer) curling in three-dimensional space. The term (φ j+1 − φ j )

2 is the
usual nearest-neighbor elastic energy. Integrating over the Maxwell field results in
an additional long-range elastic interaction between the monomers.

In the picture of an elastic string, cf. figure 14.1, it is natural to distinguish
between the case V = 0 and a confining potential. Let us first discuss V = 0 and
for definiteness pin the polymer at both end points, i.e. q−t = 0 = qt . If e = 0,
then the mean square displacement at the midpoint, given by

〈(q0)
2〉0

t = 3t/2m , (14.53)

reflects the stiffness of the free string. We expect that the interaction renormalizes
the stiffness as

〈(q0)
2〉t

∼= 3t/2σ (14.54)

for large t , which defines the (effective) stiffness σ . The expectation in (14.54) is
with respect to the interacting measure (14.51). The long-range interaction should
make the polymer stiffer as compared to the free case e = 0, which means that the
effective stiffness should be increasing with increasing coupling e2.

To gain a crude idea whether such a picture is at least qualitatively correct we
replace W (q, t) by W (0, t) in (14.51). Going back to (14.44) this is equivalent
to replacing Asϕ(qs) by Asϕ(0) which is the dipole approximation. By rotation
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q(0)

q1

q2

Figure 14.1: Elastic string with end points pinned at the origin.

invariance

Wαβ(0, t) = δαβw(t) (14.55)

and we recall that w(t) ∼= 1/t2 for large t . In the dipole approximation the Gibbs
measure (14.51) is Gaussian and (14.54) can be computed explicitly. One obtains

1

σ
=

∫
〈dqt · dq0〉 , (14.56)

where 〈·〉 is the infinite-time limit in the dipole approximation, which is Gaussian
and has the covariance

〈dqt · dq0〉 = dt
1

2π

∫
dk0(m + e2ŵ(k0))

−1eik0t . (14.57)

Therefore,

σ = m + e2ŵ(0) = m + 2

3
e2

∫
d3k|ϕ̂|2 1

ω2
, (14.58)

which as anticipated is increasing, in fact linearly in e2. We remark that if w(t)
decays like 1/t or even slower, the interaction is so strong that the stiffness is
infinite, in the sense that the typical fluctuations of q0 are no longer of the order√

t but grow more slowly with t .
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If one pins only the left end point, q−t = 0, one may think of qt as a random
walk with mean square displacement 〈q2

t 〉 = 3D(2t) for large t . D is the diffusion
coefficient and D = σ−1 in our units. Thus (14.56), written as

D =
∫

dt〈q̇t · q̇0〉 , (14.59)

is the standard Green–Kubo formula, which expresses D as a time integral over
the velocity autocorrelation function. From (14.57) one concludes

〈q̇t · q̇0〉 = 1

m
δ(t) − 1

2π

∫
dk0e2ŵ(k0)

(
m(m + e2ŵ(k0))

)−1eik0t , (14.60)

which is regular except for the δ-function at t = 0. The structure (14.60) turns out
to be general. For the full Pauli–Fierz Hamiltonian one obtains

〈q̇t · q̇0〉 = 1

m
δ(t) − 〈ψ0 ,

1

m
(Pf + eAϕ) · e−|t |(H0−E(0)) 1

m
(Pf + eAϕ)ψ0〉F

(14.61)

with a notation which will be explained in section 15.2. Here we just state that
with the Definition 15.3 of the effective mass one has the identity

1

meff
=

∫
dt〈q̇t · q̇0〉 = D = 1

σ
. (14.62)

Thus the stiffness of the polymer in the Euclidean framework equals the effective
mass of the charge coupled to the Maxwell field. Note that the regular part of
(14.61) is negative, which means that the stiffness is increased as compared to
the bare value m. With this background the result (14.58) looks familiar. It is the
effective mass of the Abraham model in the nonrelativistic limit; compare with
(4.24). The true effective mass of the Pauli–Fierz model has a more complicated
dependence on the bare parameters e and m, however.

The second case of interest is a confining potential. For large t the partition
function is dominated by the ground state of H , provided it exists at all. In fact, as
we will see, ground state expectations can be computed through the limit t → ∞.
Thus, as for thermodynamic systems, the infinite-volume limit is of direct physical
interest. If the ground state exists, it should be unique and independent of the
particular limit procedure. Translated to (14.51) uniqueness means that the limit
t → ∞ exists and is independent of the boundary conditions q−t and qt , at least
if they are not allowed to increase too fast. Since t is one-dimensional, such a
property will hold, if the energy across the origin is bounded uniformly in the
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volume, i.e. if ∫ 0

−∞

∫ ∞

0
dqs · W (qs − qs′, s − s′)dqs′ ≤ c0 . (14.63)

Because of the stochastic integration, (14.63) cannot be true literally, but only in
the sense that there is a small probability for the interaction across the origin to
take large values. Stochastic integrals like (14.63) are not easily estimated, but if
we set qs − qs′ = 0, which is reasonable since V is supposed to be confining, then
the interaction energy is∫ 0

−∞
ds

∫ ∞

0
ds′(qs · qs′)2w′′(s − s′) . (14.64)

Note that from the stochastic integration we obtain two extra derivatives, which
means that w′′(t) ∼= t−4 for large t . If the path qs does not make too wild ex-
cursions, the interaction energy in (14.63) is essentially bounded, which implies
uniqueness of the Gibbs measure in (14.51). To have a phase transition for a Gibbs
measure in one dimension the interaction has to decay as t−2 or slower, which is
avoided by two powers in our context.

The statistical mechanics intuition applied to (14.51) suggests that if Hp has a
ground state ψ0(x), i.e. if the ground state for the uncoupled system is ψ0 ⊗ �,
then, as the coupling is turned on, the ground state will persist and remain unique
at any coupling strength. For large e2 fluctuations are suppressed and the ground
state must be essentially classical.

14.3 Some applications

(i) Positivity improvement

Let us consider a general measure space (M, µ) and the corresponding Hilbert
space L2(M, µ) of square integrable functions on M. In addition, we have
the semigroup e−t H , t ≥ 0, acting on L2(M, µ) with (e−t H )∗ = e−t H and
inf σ(H) = 0 , i.e. ‖e−t H‖ = 1 for t ≥ 0. We say that e−t H is positivity preserving,
if for f ≥ 0 we have e−t H f ≥ 0. e−t H is positivity improving if f ≥ 0 implies
e−t H f > 0 for t > 0. We remark that positivity is not a Hilbert space notion, it
depends on the choice of M. Positivity means that, up to normalization, e−t H is
a Markov semigroup and some sort of stochastic model is lurking behind. Our
interest in the notion of positivity improvement comes from the fact that it im-
plies uniqueness of the ground state. In essence, positivity improvement is the
only general criterion available. The reason for uniqueness is simple. Let ψ be an
eigenfunction of H with eigenvalue 0. Then by positivity |e−t Hψ | ≤ e−t H |ψ | and



192 The statistical mechanics connection

thus

〈|ψ |, e−t H |ψ |〉 ≥ 〈|ψ |, |e−t Hψ |〉 ≥ 〈ψ, e−t Hψ〉 = 〈ψ, ψ〉 . (14.65)

As a consequence, since e−t H is a contraction, one has e−t H |ψ | = |ψ | and, since
e−t H is positivity improving, e−t H |ψ | = |ψ | > 0. But then also e−t H (|ψ | − ψ) =
|ψ | − ψ . Either |ψ | − ψ = 0 in which case ψ > 0 or else |ψ | − ψ > 0 in which
case ψ < 0. We conclude that a second eigenvector with eigenvalue zero could not
be orthogonal to ψ .

In view of this technique, it is desirable to prove that Ue−t H U−1, where H is the
spinless Pauli–Fierz Hamiltonian (13.39) with Aex = 0, is positivity improving on
R

3 × K′ with measure d3x × dP 0. A look at (14.44) makes positivity an unlikely
fact because of the fluctuating phase. The trick to achieve the desired property is
to interchange the role of A and E⊥ through the unitary transformation e−iπ Nf/2

with

Nf =
∑

λ=1,2

∫
d3ka∗(k, λ)a(k, λ) (14.66)

the total number of photons.

Theorem 14.2 (Positivity improving). Let H = 1
2(p − eAϕ(x))2 + Hf + V (x)

be the spinless Pauli–Fierz Hamiltonian with external potential V . Then the semi-
group Ueiπ Nf/2e−t H e−iπ Nf/2U−1 is positivity improving on R

3 × K′ with measure
d3x × dP 0.

Proof: Hiroshima (2000a).

Corollary 14.3 (Uniqueness of the ground state). If the spinless Pauli–Fierz
Hamiltonian has a ground state, then the ground state is necessarily unique.

The actual proof of Theorem 14.2 is somewhat technical. But there is a simple
heuristic reason to see that it should be correct. We have

eiπ Nf/2 He−iπ Nf/2 = 1

2
(p − eE⊥ϕ̃(x))2 + Hf + V (x) , (14.67)

where the smoothing function ϕ is replaced by ϕ̃ with ̂̃ϕ = ϕ̂/ω. We formally
discretize the Maxwell field in (14.67) as

1

2

(
p − e

∑
j

ϕ̃( j − x)p j

)2

+ 1

2

∑
j

p2
j + 1

2

∑
|i− j |=1

(qi − q j )
2 + V (x) (14.68)

up to a constant. Here (q j , p j ) are a canonical pair of position and momentum
operators and the sum is over a discrete lattice in position space. We employ the
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usual Feynman–Kac formula. The first two terms define a multidimensional Brow-
nian motion. It has a position-dependent diffusion matrix, which by inspection is
strictly positive. Thus the “free” measure is positivity improving, a property which
is preserved when adding the potential.

(ii) Diamagnetic inequality

In (14.44) the fluctuating magnetic field appears as a phase, which leads immedi-
ately to the diamagnetic inequality

|〈F, Ue−t H U−1G〉Hs | ≤ 〈|F |, Ue−t (Hp+Hf)U−1|G|〉Hs . (14.69)

As one application we derive a bound on the electronic charge density in the
ground state. We assume the existence of a ground state, Hψg = Egψg, with
ground state energy Eg. Then the electronic charge density is

ρg(x) = ‖ψg(x, ·)‖2
F =

∞∑
n=0

∑
λ

∫
d3nk|ψgn(x, k1, λ1, . . . , kn, λn)|2 . (14.70)

We choose F = f (x)Uψg, f ≥ 0 and bounded, G = Uψg. Since e−t Hψg =
e−t Egψg and since e−t Hf is a contraction, one concludes from the diamagnetic
inequality that

e−(t+τ)Eg

∫
d3x f (x)ρg(x) ≤ 〈 fρ1/2

g , e−(t+τ)Hpρ
1/2
g 〉L2

= 〈e−t Hp fρ1/2
g , e−τ Hpρ

1/2
g 〉L2 . (14.71)

From the Feynman–Kac formula (14.5) it follows that (e−τ Hpρ
1/2
g )(x) ≤ c1. Using

this bound in (14.71) and letting f shrink to a δ-function at x we obtain

ρg(x) ≤ [c1et Eg(e−t Hp1)(x)]2 (14.72)

with 1 the constant function. Inequality (14.72) is the desired bound on the elec-
tronic charge density.

To make this bound explicit we rewrite

(e−t Hp1)(x) = Ex
(
e− ∫ t

0 dsV (qs)
)

(14.73)

according to (14.5) for the particular choice ψ(x) = 1. If the potential has a lower
bound as V (x) ≥ c0 + c1|x |γ , c1 > 0, γ > 1, then for fixed t the weight in (14.73)
is dominated by the potential and one has ρg(x) ≤ ce−V (x). On the other hand if
V (x) → 0 as |x | → ∞, then the expression in (14.73) tends to 1 as x → ∞. Thus
we should optimize in t for fixed x . Very crudely this means minimizing the action∫ t

0 ds
(1

2 q̇2
s + V (qs)

)
for a fixed initial condition q0 = x and then to optimize in t .

In this variation one has to include the contribution from the exponentially growing
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factor eEgt . To have a bound state at all, Vmin = minx V (x) < 0. For sufficiently
small e also Vmin − Eg < 0 and the variational bound decays exponentially in x ,
i.e. ρg(x) ≤ ce−γ |x |. For larger e one can no longer balance Eg and the bound
(14.72) becomes vacuous.

The diamagnetic inequality suggests that the decay of the electronic charge den-
sity in the ground state does not worsen by the coupling to the Maxwell field. If one
imagines, rather crudely, the effective mass of the electron to be increased through
the interaction with the field, then the electron density should become even better
localized for larger e and point-like as e → ∞.

(iii) Photon expectations

We discovered in section 14.2 that, through integrating over the Maxwell field,
one obtains a path integral (functional measure) for the electron paths which has
the structure of an equilibrium measure relative to an a priori weight given by the
Wiener measure. Here we expand on this observation by computing averages for
the photon field in the ground state. Let ψ0 be the ground state of Hp and let us
introduce the approximate ground state

ψT = e−T Hψ0 ⊗ �/‖e−T Hψ0 ⊗ �‖ (14.74)

of H , which is normalized to one and, if the limit does not vanish, converges as
T → ∞ to the unique ground state ψg of H . For observables of the form f (x) the
same argument as for (14.48) leads to

〈ψT , f (x)ψT 〉H (14.75)

= 〈ψ0 ⊗ �, e−2T Hψ0 ⊗ �〉−1
H 〈ψ0 ⊗ �, e−T H f (x)e−T Hψ0 ⊗ �〉H

= E
G
[−T,T ]

(
f (q0)

)
.

The “volume” [−T, T ] is arranged symmetrically relative to the origin. E
G
[−T,T ]

refers to the normalized expectation

E
G
[−T,T ]

( ◦ ) = Z(2T )−1
EdW

(
ψ0(q−T )ψ0(qT )e− ∫ T

−T dtV (qt )e−S[−T,T ] ◦ )
(14.76)

with the normalizing partition function

Z(2T ) = EdW

(
ψ0(q−T )ψ0(qT ) exp

[
−

∫ T

−T
dtV (qt ) − S[−T,T ]

])
(14.77)

and with the effective action

S[−T,T ] = 1

2
e2

∫ T

−T

∫ T

−T
dqt · W (qt − qs, t − s)dqs . (14.78)
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Clearly, in the infinite-volume limit

lim
T →∞

〈ψT , f (x)ψT 〉H = 〈ψg, f (x)ψg〉H =
∫

d3x f (x)ρg(x) = 〈 f (q0)〉 .

(14.79)

Thus the electronic charge density is the distribution of q0, the position of the
path at time t = 0, under the infinite-volume Gibbs measure 〈·〉, i.e. under the
probability measure obtained in the limit T → ∞ in (14.76) which we denote by
〈·〉.

With (14.79) we have opened the first page in the dictionary for the translation
from Fock space expectations to Gibbs averages. We plan to expand the dictionary
by considering a bounded operator 1 ⊗ B referring only to the photons and want
to compute the expectation

〈ψT , 1 ⊗ BψT 〉H , (14.80)

which for large T goes over to the ground state expectation 〈ψg, 1 ⊗ Bψg〉H.
Using the basic identity (14.44) one can write

(Ue−T Hψ0 ⊗ �)(q, A)

= EqEA
(
ψ0(qt ) exp

[
−

∫ T

0
dtV (qt ) − ie

∫ T

0
dqt · Atϕ(qt )

])
, (14.81)

where EA refers to the Ornstein–Uhlenbeck process At (x) with fixed initial field
A0 = A. The Gaussian expectation EA can be carried out with the result

EA
(
e−ie

∫ T
0 dqt ·Atϕ(qt )

) = e−ieA( f+) exp
[

− 1

2
e2

∫ T

0

∫ T

0

∫
d3k|ϕ̂(k)|2

× dqt · Q⊥(k)dqseik·(qt−qs)
1

2ω

(
e−ω|t−s| − e−ωt e−ωs)] , (14.82)

where

f̂+(k) =
∫ T

0
dqt ϕ̂e−ik·qt e−ωt , (14.83)

which depends on the path qt , 0 ≤ t ≤ T .
We have to take the expectation of 1 ⊗ B with respect to the wave function

(14.81), for which it is convenient to regard the adjoint wave function as coming
from an integration relative to a Brownian motion running from 0 to −T . For
this purpose one time-reverses the Brownian motion, which starts then at q−T and
ends at q . Upon integrating over dq0 one obtains the Wiener measure for Brownian
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paths t �→ qt , |t | ≤ T . The expectation EA for the adjoint wave function yields an
expression as in (14.82) where f+ is replaced by f− and

f̂−(k) = −
∫ 0

−T
dqt ϕ̂e−ik·qt e−ω|t | (14.84)

with a minus sign, since dqt is odd under time-reversal. The expectation for B is
most easily written in Fock space. Then

〈ψ0 ⊗ �, e−T H (1 ⊗ B)e−T Hψ0 ⊗ �〉H

= EdW

(
ψ0(q−T )ψ0(qT )e− ∫ T

−T V (qt )dt 〈�, eieA( f−)Be−ieA( f+)�〉F

× exp
[

− 1

2
e2

( ∫ 0

−T

∫ 0

−T
+

∫ T

0

∫ T

0

) ∫
d3k|ϕ̂|2dqt · Q⊥dqseik·(qt−qs)

× 1

2ω

(
e−ω|t−s| − e−ω|t |e−ω|s|)]) . (14.85)

To make further progress we have to choose particular observables. One exam-
ple is the generating function for the photon number density in momentum space,
i.e.

B = exp
[

−
∑

λ=1,2

∫
d3kµ(k)a∗(k, λ)a(k, λ)

]
(14.86)

with µ ≥ 0. Then

〈�, eieA( f−)Be−ieA( f+)�〉F = exp
[

− 1

4
〈 f̂−, ω−1/2 Q⊥ω−1/2 f̂−〉h

− 1

4
〈 f̂+, ω−1/2 Q⊥ω−1/2 f̂+〉h − 1

2
〈 f̂−, ω−1/2 Q⊥e−µω−1/2 f̂+〉h

]
.

(14.87)

Collecting all terms yields

〈ψT , exp
[

−
∑

λ=1,2

∫
d3kµ(k)a∗(k, λ)a(k, λ)

]
ψT 〉H

= E
G
[−T,T ]

(
exp

[
− e2

∫ 0

−T

∫ T

0

∫
d3k|ϕ̂|2dqt · Q⊥dqseik·(qt−qs)

× 1

2ω
e−ω|t |e−ω|s|(e−µ − 1

)])
. (14.88)
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We differentiate with respect to µ(k) and obtain the ground state photon number
density in momentum space,∑

λ=1,2

〈ψg, a∗(k, λ)a(k, λ)ψg〉H

= −e2 1

2ω
|ϕ̂|2

∫ 0

−∞

∫ ∞

0
〈dqt · Q⊥dqse−ω|t |e−ω|s|eik·(qt−qs)〉 , (14.89)

the average with respect to the infinite-volume Gibbs measure. In particular one
has the remarkable identity that 〈ψg, Nfψg〉H equals the average interaction energy
between the right and left half-line in the statistical mechanics system. By the same
technique, the photon density in physical space is given by∑

λ=1,2

〈ψg, a∗(x, λ)a(x, λ)ψg〉H

= −e2
∑

λ=1,2

∫ ∞

0

∫ 0

−∞
〈dqt · fλ(x − qt , t)dqs · fλ(x − qs, s)〉 , (14.90)

where

f̂λ(k, t) = ϕ̂
1√
2ω

e−ω|t |eλ(k) . (14.91)

Equations (14.89) and (14.90) are only partially useful, since there is too lit-
tle information on the dqt · Q⊥dqs correlations, except for the soft photon bound
(15.9), (15.14) from which one concludes that

−c0(1 + |k|3) ≤
∫ 0

−∞

∫ ∞

0
〈dqt · Q⊥dqse−ω|t |e−ω|s|eik·(qt−qs)〉 ≤ 0 (14.92)

with some positive constant c0. The interaction energy between right and left is
bounded and negative on the average. One would expect also its exponential mo-
ments to be bounded. If so, 〈ψg, e−λNfψg〉H < ∞ for all λ by (14.88), which im-
plies that in the ground state the number of photons has a super-exponential decay.

Our method may be applied to other observables of interest. For example the
ground state expectation and variance of the vector potential is given by

〈ψg, A(x)ψg〉H = 0 , (14.93)

〈ψg, A(x)2ψg〉H = 〈�, A(x)2�〉F −
∑

λ=1,2

〈( ∫ ∞

−∞
dqt · fAλ(x − qt , t)

)2〉
,

(14.94)
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where

f̂Aλ = eλϕ̂
1

2ω
e−ω|t | . (14.95)

Similarly for the transverse electric field one has

〈ψg, E⊥(x)ψg〉H = 0 , (14.96)

〈ψg, E⊥(x)2ψg〉H = 〈�, E⊥(x)2�〉F +
∑

λ=1,2

〈( ∫ ∞

−∞
dqt · fEλ(x − qt , t)

)2〉
(14.97)

with f̂Eλ = ∂t f̂Aλ. In fact, the vacuum variances are infinite but become finite
when the fields are slightly smeared out. Through the presence of a bound electron
the electric field fluctuations are increased whereas the vector field fluctuations are
suppressed. Their product remains constant, as required by the uncertainty rela-
tion.

We recall that 〈E〉 = 〈E‖〉 + 〈E⊥〉, the second term being zero by (14.96). From
the equations of motion, ∇ · 〈ψg, E(x)ψg〉H = e〈ϕ(x − q0)〉 = eϕ ∗ ρg(x), ρg be-
ing the electron ground state density of (14.70). Thus, at large distances the average
electric field generated by a charge bound in the ground state is the Coulomb field
with a strength determined through the bare charge e, from which we conclude
that in the Pauli–Fierz model there is no charge renormalization.

Notes and references

Section 14.1

Gentle introductions to path integrals are Schulman (1981) and Kleinert (1995)
emphasizing statistical mechanics aspects. Roepstorff (1994) treats in detail the
quantized Maxwell field. Path integrals with a focus on relativistic quantum field
theory are explained in the advanced textbook of Huang (1998). Simon (1979) is
a beautiful discussion on the connection between functional integration and the
Schrödinger equation. In particular, he explains the Feynman–Kac–Ito formula
used in (14.8). Gaussian processes, Wick ordering, and the Schrödinger represen-
tation are exhaustively covered in Simon (1974) and Glimm and Jaffe (1987). The
functional measure for the Pauli–Fierz Hamiltonian is discussed by Hiroshima
(1997b). A standard reference on infinite-dimensional Ornstein–Uhlenbeck pro-
cesses is Holley and Stroock (1978). In Giacomin et al. (2001) martingale-type
estimates are explained.

Functional integration has two historical roots which developed apparently
completely independently. Feynman (1948), cf. also the textbook by Feynman and
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Hibbs (1965), uses space-time histories to visualize quantum processes. This led
to quantum propagators as a “sum over histories”. On the other hand, Wiener,
Levy, and many other probabilists developed the theory of probability measures
on function space (= the space of trajectories) to have a mathematical framework
for Brownian motion and diffusion processes. Kac (1950) realized that the two
approaches are related through the Wick rotation. The extension to models of
quantum fields is achieved by Nelson (1966, 1973). With his insights functional
integration became the “secret weapon” and is at the heart of the technical devel-
opment in constructive quantum field theory through the hands of Glimm, Jaffe,
Spencer, Simon, and many, many others. I refer to Glimm and Jaffe (1987).

Section 14.2

The integration over field degrees of freedom is discussed in Feynman and Hibbs
(1965) and in Feynman (1948). He tackled a variety of physical problems with
this technique. The most widely known is the ground state energy of the polaron
(Feynman 1955) for which the analog of (14.48) is estimated through a variational
method with a result which covered both the intermediate and strong coupling
regime for the first time. To view the effective mass as the stiffness of a polymer
is proposed in Spohn (1987). If the Maxwell field is replaced by a scalar field, cf.
section 19.2, the double stochastic integral becomes a double Riemann integral,
which is much easier to handle. In particular, one obtains reasonable bounds on the
effective stiffness with a technique borrowed from Brascamp, Lieb and Lebowitz
(1976). To view the path measure (14.51) as a Gibbs measure relative to Brownian
motion is stressed in Lőrinczi and Minlos (2001), Betz et al. (2002), and Lőrinczi
et al. (2002a, 2002b).

Section 14.3

Positivity-improving semigroups are treated in Reed and Simon (1978), Chapter
XIII.12. For the existence of the ground state we refer to section 15.1. Whenever
magnetic fields are involved, the diamagnetic inequality is very helpful; compare
for example with Cycon, Froese, Kirsch and Simon (1987). Carmona (1978) uses
Brownian motion to estimate ground state properties of −� + V . His techniques
extend to a charge coupled to a scalar field as discussed in Betz et al. (2002). There
is also a functional analytic proof of exponential localization, which is patterned
after Agmon (1982) in the case of the Schrödinger equation, see Theorem 20.1.
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States of lowest energy: statics

Quantizing the Abraham model results in the Pauli–Fierz Hamiltonian which is a
self-adjoint operator under rather general conditions. Thus the dynamics is well
defined and we can start to investigate some of its properties. The most basic item
is the states of lowest energy. They really come in two varieties: (i) If the electron
is bound by a strong external electrostatic potential, like the Coulomb potential of
a nailed-down nucleus, then the lowest energy state is the ground state, where the
electron is at rest modulo quantum fluctuations. (ii) If there are no external poten-
tials, then the total momentum is conserved and the state of lowest energy must be
determined for every fixed total momentum, which then describes the electron to-
gether with its surrounding photon cloud traveling at constant velocity. Physically
the most important information is the energy–momentum relation which gives the
lowest energy E at given total momentum P . Both item (i) and item (ii) are dis-
cussed in this chapter. In case (i) one expects to have always a ground state pro-
vided the external potential is binding. In case (ii) the infrared divergence of the
Pauli–Fierz model becomes visible. As will be explained in more detail in section
19.1, for total momentum P �= 0 the state of lowest energy is not in Fock space.
An electron traveling at nonzero velocity binds an infinite number of photons. To
avoid such a subtlety, for item (ii) we proceed as if the photon had a tiny mass.

The external fields manufactured with macroscopic devices under laboratory
conditions are weak and have a slow variation when measured in units of the effec-
tive size of the charge, roughly given through the inverse size of the form factor ϕ̂.
Such external fields thus constitute a small perturbation in item (ii) and, as for the
Abraham model, an important dynamical issue is to understand the motion of the
charge in terms of an effective one-particle Hamiltonian. The energy–momentum
relation must play an important role, but there will be additional pieces accounting
for the spin precession. Our discussion of this topic is postponed to section 16, to
keep the lengths of the chapters in reasonable proportion.

200
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15.1 Bound charge

The hydrogen atom has a stable ground state and thus makes the size of atoms of
the order of a few ångströms. The problem under discussion is whether this ground
state persists as the quantized transverse modes of the Maxwell field are taken
into consideration. Since the electron now has the opportunity to bind photons,
one would expect it to have effectively a larger mass. This intuition is confirmed
through the path integral of chapter 14, which suggests that the fluctuations in the
stochastic trajectories are reduced due to the additional interaction energy W from
the integration over the Maxwell field. Thus the coupling to the photons should
enhance binding.

To put such reasoning on more solid grounds, we recall that for a Schrödinger
operator HS = −(1/2m)� + V with a Coulomb-like potential, i.e. a potential V
such that lim|x |→∞ V (x) = 0, it is rather straightforward to ensure a stable ground
state. Let us assume that V is infinitesimally bounded with respect to −�. Then
the bottom of the continuous spectrum, denoted by Ec, satisfies Ec = 0 and one
only has to make sure that the energy is lowered when the electron is moved from
infinity to the potential region. This means that one has to find a trial wave function
such that 〈ψ , HSψ〉 < 0. By the Kato–Rellich theorem HS is bounded from below.
Thus HS must have an eigenvalue at the bottom of its spectrum. The ground state
wave function ψg is nodeless, since e−t HS is positivity improving; compare with
section 14.3(i). Hence the ground state is unique. To adapt such reasoning to the
Pauli–Fierz Hamiltonian

H = 1

2m
(p − eAϕ(x))2 + Hf + V (x) = H0 + V, (15.1)

one faces the difficulty that there are photon excitations of arbitrarily small ener-
gies. Thus H has no spectral gap and a variational bound will not do. The
convential approach is to first assume an infrared cutoff in the form factor ϕ̂ by
setting ϕ̂(k) = 0 for |k| ≤ σ and to adopt the construction explained in property
(vi) of section 15.2.1. This yields the existence of a ground state ψg,σ for the cutoff
Hamiltonian Hσ . One is then left to show that as σ → 0 the sequence of ground
states ψg,σ has a limit ψg which is the desired ground state for H . The difficulty is
that as σ → 0 the number of bound photons could increase without limit resulting
in the physical ground state lying outside of Fock space. This is one aspect of the
infrared problem to be discussed in more detail in section 19.1. Thus one has to es-
tablish a bound on the number of low-energy (soft) photons in the ground state. We
explain some parts of the argument which allow us to illustrate the pull-through
formula that will also be handy later on.
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Theorem 15.1 (Soft photon bound). Let ψg be a ground state of the Pauli–Fierz
Hamiltonian H of (15.1), Hψg = Eψg. Then the average number of photons is
bounded as

〈ψg, Nfψg〉 ≤ c0〈ψg, x2ψg〉. (15.2)

Proof: Clearly

〈ψg, Nfψg〉 =
∑

λ=1,2

∫
d3k‖a(k, λ)ψg‖2. (15.3)

Through a virial-type argument we plan to make use of the fact that ψg is an
eigenfunction, and start with the pull-through formula

[H, a(k, λ)] = −ω(k)a(k, λ) + eϕ̂
1√
2ω

e−ik·x 1

m
eλ(k) · (p − eAϕ(x)). (15.4)

Note that

1

m
(p − eAϕ(x)) = i[H, x]. (15.5)

Therefore

(H + ω)a(k, λ) − a(k, λ)H = eϕ̂
1√
2ω

(
i[H, e−ik·x eλ(k) · x]

−i[H, e−ik·x ]eλ(k) · x
)
. (15.6)

The commutator with e−ik·x is

[H, e−ik·x ] = − 1

m
k · (p − eAϕ(x))e−ik·x − 1

2m
k2e−ik·x (15.7)

and applied to ψg,

a(k, λ)ψg = ieϕ̂
1√
2ω

(H − E + ω)−1

(
(H − E) + 1

2m
k2 + 1

m
k · (p − eAϕ(x))

)
e−ik·x eλ(k) · xψg

= ieϕ̂
1√
2ω

(φ1 + φ2 + φ3). (15.8)

Thus, choosing e > 0 for notational convenience,

‖a(k, λ)ψg‖ ≤ e|ϕ̂| 1√
2ω

(‖φ1‖ + ‖φ2‖ + ‖φ3‖) (15.9)
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and

‖φ1‖ ≤ ‖xψg‖ , ‖φ2‖ ≤ 1

2m
k2 1

ω
‖xψg‖,

‖φ3 ‖ ≤ |k|‖(H − E + ω)−1 1

m
k̂ · (p − eAϕ(x))e−ik·x eλ(k) · xψg‖.

(15.10)

To estimate the norm of φ3 we use

‖(H − E + ω)−1 k̂ · (p − eAϕ(x))‖ = ‖̂k · (p − eAϕ(x))(H − E + ω)−1‖
(15.11)

and

〈ψ, (H − E + ω)−1(̂k · (p − eAϕ(x)))2(H − E + ω)−1ψ〉
≤ 〈ψ, (H − E + ω)−1(p − eAϕ(x))2(H − E + ω)−1ψ〉
≤ 〈ψ, (H − E + ω)−1(c1 H + c2)(H − E + ω)−1ψ〉
≤ 〈ψ, ψ〉

[
sup
λ≥0

(
c1(λ + E) + c2

)
(λ + ω)−2

]
, (15.12)

provided V− is H bounded. Inserting in (15.10)

‖φ3‖ ≤ |k|
(

c1
1

ω
+ c2

√
ω

)
‖xψg‖ (15.13)

is obtained. With these estimates we return to (15.3) to get

〈ψg, Nfψg〉 ≤ c0

∫
d3k|ϕ̂(k)|2 1

ω
(1 + ω−2k4 + ω−2k2 + ωk2)‖xψg‖2, (15.14)

which proves (15.2). �

Bounds on ‖xψg‖ are available from the diamagnetic inequality combined with
functional integration, see section 14.3(i), and from yet another pull-through-type
argument, see section 20.1.

Note that in (15.14) we can still afford the two extra powers ω−2 close to k = 0.
This is consistent with a decay as |t |−4 in the effective action given at the end of
section 14.2.

The modern variant for the existence of a ground state relies on having an energy
gain when the electron is moved from infinity to the potential region. Thereby, as
discussed at length in section 20.1, the existence of a ground state for atoms and
molecules is also ensured. To be complete we now state

Theorem 15.2 (Unique ground state). Let V = V+ − V− be the decomposition
of the external potential V into positive and negative parts. It is assumed that V− is
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infinitesimally bounded relative to p2, i.e. |〈ψ, V−ψ〉| ≤ ε〈ψ, p2ψ〉 + b(ε)〈ψ, ψ〉
for every ε > 0, and that 1

2m p2 + V has a ground state with isolated ground state
energy. Then the Hamiltonian H of (15.1) has a unique ground state ψg ∈ H, i.e.
Hψg = Eψg and E is the lowest energy.

Proof: The existence is proved by Griesemer, Lieb and Loss (2001). The unique-
ness relies on the fact that the semigroup e−t H is positivity improving in a suitable
basis, see Hiroshima (2000a) and section 14.3. �

Note that in Theorem 15.2 there is no restriction on the magnitude of the charge.

15.2 Energy–momentum relation, effective mass

For the Abraham model the motion of the charge subject to slowly varying ex-
ternal potentials is determined by the energy–momentum relation E(P). There is
good reason to expect the same scenario quantum mechanically, which poses two
problems. First of all one has to study E(P), which makes a two-line computation
classically but turns out to be much harder in quantum theory. Secondly, given
E(P), we have to explain how it governs the effective one-particle theory. This
topic is deferred to chapter 16.

Since there are no external forces acting on the electron, the Pauli–Fierz Hamil-
tonian reads

H = 1

2m
(p − eAϕ(x))2 + Hf. (15.15)

As shown already, the total momentum

P = p +
∑

λ=1,2

∫
d3kka∗(k, λ)a(k, λ) = p + Pf (15.16)

is conserved, [H, P] = 0. Therefore H can be decomposed according to the sub-
spaces of constant P . This is achieved through the unitary transformation

U = eix ·Pf, (15.17)

which more explicitly is given by

(Uψ)n(k, k1, λ1, . . . , kn, λn) = ψn(k −
n∑

j=1

k j , k1, λ1, . . . , kn, λn), (15.18)

using the momentum representation p = k, x = i∇k . Then

U HU−1 = 1

2m
(P − Pf − eAϕ)2 + Hf (15.19)
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with the shorthand

Aϕ = Aϕ(0). (15.20)

Not to overload notation we return to p instead of P , remembering that p is still
canonically conjugate to x but now stands for the total momentum. The Hamilto-
nian under study is then

Hp = 1

2m
(p − Pf − eAϕ)2 + Hf. (15.21)

For each fixed p, Hp acts on Fock space F . Thus we may think of the uni-
tary U as a map from L2(R3) ⊗ F to the direct integral

∫ ⊕ d3 pFp such that
U HU−1 = ∫ ⊕ d3 pHp. For the remainder of this section we will regard p sim-
ply as a parameter. The scalar product 〈·, ·〉 is in Fock space throughout.

Definition 15.3 The energy–momentum relation, E(p), of the Pauli–Fierz
Hamiltonian is given by

E(p) = inf
ψ,||ψ ||=1

〈ψ, Hpψ〉. (15.22)

The effective mass meff is the inverse curvature of E(p) at p = 0. Since E(p) is
rotation-invariant,

(meff)
−1δαβ = ∂pα∂pβ E(p)|p=0. (15.23)

There is no simple scheme to compute E(p) and meff, but we will establish
some qualitative properties of E(p) which point in the right direction. In order not
to lose sight of the goal we state

Claim 15.4 (Energy–momentum relation). Let ω(k) =
√

m2
ph + k2 with mph >

0. There exists a threshold value, pc, of the total momentum such that for all |p| <

pc, Hp has a unique ground state ψp ∈ F ,

Hpψp = E(p)ψp. (15.24)

E(p) is separated by a gap from the continuous spectrum, i.e. if Ec(p) denotes the
bottom of the continuous spectrum, then

Ec(p) − E(p) = �(p) > 0. (15.25)

In Claim 15.4 we assumed a small photon mass mph. Thus at p = 0 excitations
require at least an energy mph. For physical photons mph = 0, however. Arbitrarily
small-energy excitations are possible and the spectral gap closes, which is one
part of the infrared behavior of the Pauli–Fierz model. The assumption mph > 0
introduces a spectral gap, so to speak, by hand. An alternative scheme to separate
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the ground state band from the continuum is to decouple all modes with |k| ≤ σ

by replacing the true ϕ̂ by ϕ̂σ , where ϕ̂σ = ϕ̂ for |k| ≥ σ and ϕ̂σ = 0 for |k| < σ .
We made the proviso that the ground state band ceases to exist beyond the

threshold pc, where we allow for pc = ∞. If pc < ∞, then the electron cannot
be accelerated beyond the maximal momentum pc. For |p| > pc, Hp has no
ground state. States with |p| > pc decay into lower-momentum states through the
emission of Čerenkov radiation. In fact the same phenomenon occurs classically
if in the given medium the speed of light propagation is less than the maximal
speed of the charge.

To investigate E(p), let us first have a look at the uncoupled system,
e = 0. Then the eigenstate in (15.24) is the Fock vacuum 
 with eigenvalue
p2/2m. The energies in the one-photon subspace are ω(k) + (p − k)2/2m,
which is already part of the continuous spectrum. The energy in the n-photon
subspace is (2m)−1(p − ∑n

j=1 k j )
2 + ∑n

j=1 ω(k j ) ≥ (2m)−1(p − ∑n
j=1 k j )

2 +
ω(

∑n
j=1 k j ) and for low energies it suffices to take the one-photon part of the con-

tinuous spectrum into account. If p is small, |p| < m (= mc), the lowest energy
is p2/2m separated by a gap of order ω(0) = mph from the continuum. On the
other hand, for |p| > m, the eigenvalue p2/2m is embedded in the continuum and
expected to turn into a resonance, once e is different from zero. In some model
systems it is found that pc < ∞ for e = 0, but pc = ∞ at any e �= 0. Whether
pc = ∞ depends also on the form of the kinetic energy of the electron. If instead
of 1

2m p2 as kinetic energy one repeats the argument just given for the relativis-

tic cousin
√

p2 + m2, then pc = ∞ at e = 0 and it remains so for e > 0. For the
Pauli–Fierz model (in three dimensions) the accepted opinion is that the electron
cannot be accelerated beyond pc ∼= O(mc).

Perturbation theory assures us that the isolated ground state energy band for
|p| < pc at e = 0 will persist for small nonzero e. The range of validity of per-
turbation theory is set by ω(0) = mph and is therefore very narrow. To improve
and to be able to let mph → 0 we have to employ nonperturbative techniques, for
which we follow Fröhlich (1974). Only the core of each argument is explained; the
shorter ones are given immediately in the text and the longer ones are shifted to an
appendix. Here is our list.

Property (i): E(p) is rotation invariant.

According to section 13.5 there is a unitary operator UR such that U∗
R HpUR =

HRp with R an arbitrary rotation. Therefore E(p) = E(Rp).

Property (ii): The bound

E(0) ≤ E(p) (15.26)

holds.
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From the functional integral representation, compare with chapter 14 and the fur-
ther explanations in the appendix, it will become clear that

|〈F, Ueiπ Nf/2e−t Hp e−iπ Nf/2U−1 F〉| ≤ 〈|F |, Ue−t H0U−1|F |〉 (15.27)

for t ≥ 0. We choose e−iπ Nf/2U−1 F = ψp, or else an approximate ground state
if ψp does not exist. Let µ(dλ) be the spectral measure for U−1|F | under H0 and
λmin be the left edge of its support. Taking the limit t → ∞ in (15.27), we obtain

E(p) ≥ λmin ≥ E(0). (15.28)

One would expect E(p) to be increasing in |p|, but no conclusive argument seems
to be available.

Property (iii): As a bound we have

E(p) − E(0) ≤ 1

2m
p2. (15.29)

The inequality (15.29) follows from a variational argument. One has

E(p) ≤ 〈ψ0, Hpψ0〉 = 〈ψ0,
( 1

2m
p2 + H0 − 1

m
p · (Pf + eAϕ)

)
ψ0〉

= E(0) + 1

2m
p2 − 1

m
p · 〈ψ0, (Pf + eAϕ)ψ0〉

= E(0) + 1

2m
p2, (15.30)

since H0ψ0 = E(0)ψ0 and 1
m 〈ψ0, (Pf + eAϕ)ψ0〉 = ∇E(0) = 0 by rotation in-

variance.

Property (iv): As a bound we have

E(p) ≤ E(p − k) + ω(k). (15.31)

In particular, E(p) − E(0) ≤ ω(p).

The proof is given in the appendix. There is also a corresponding lower bound.

Property (v): There are constants c1 > 0, c2 such that E(p) ≥ c1|p| + c2.
The proof is given in the appendix.

The next property expresses the stability against one-photon excitations. Define

�(p) = inf
k

{E(p − k) − E(p) + ω(k)}. (15.32)

Then by property (iv) �(p) ≥ 0.
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Property (vi): For the bottom of the continuous spectrum we have

Ec(p) = E(p) + �(p). (15.33)

If �(p) > 0, then Hp has a ground state at E(p).

The proof is given in the appendix. We want to infer from the bounds on E(p)

that �(p) > 0, at least for small |p|. As a substitute for the missing proof of the
monotonicity of E(p), note that from second-order perturbation in p

∂pα∂pβ E(p) = 1

m
δαβ − 2〈ψp,

(
m−1(p − Pf − eAϕ) − ∇E(p)

)
α
(Hp − E(p))−1

× (
m−1(p − Pf − eAϕ) − ∇E(p)

)
β
ψp〉. (15.34)

This leads to

Property (vii): E(p) = 1
2m p2 + t (p). t is convex down.

From property (ii) we conclude that t (p) − t (0) ≥ − 1
2m p2, which means that

t (p) − t (0) cannot bend down too fast. This allows us to establish

Property (viii): If |p| ≤ (
√

3 − 1)m, then �(p) > 0 and Hp has a ground state
separated by the gap �(p) from the continuum.

Finally, the uniqueness follows from the overlap with the Fock vacuum.

Property (ix): If |p| < pc and if

2e2

m

∫
d3k|ϕ̂|2ω−1 E(p)(E(p − k) − E(p) + ω)−2 <

1

2
, (15.35)

then Hp has a unique ground state.

Again the proof is given in the appendix. If |p| < (
√

3 − 1)m ≤ pc and (15.35)
holds, then E(p, e) is analytic jointly in p and e as a standard consequence of
perturbation theory.

In summary, properties (i)–(ix) lend support to the qualitative behavior of the
energy–momentum relation as schematically presented in figure 15.1. The bold
line indicates the ground state. E(0) increases with the coupling. The gap of size
mph is not shown. As mph → 0 the gap closes. To understand what really happens
in this limit, one has to study the infrared scaling of the Pauli–Fierz Hamiltonian
with care. Explicit expressions for E(p) do not seem to be available. Computa-
tionally only perturbation in e is accessible. To second order one obtains

E(p) = e2

2m

2

3

∫
d3k|ϕ̂|2(2ω)−1

+ 1

2m
p2

(
1 − e2

m

1

3

∫
d3k|ϕ̂|2

(
2ω(ω + 1

2m
k2)

)−1) + O(e4), (15.36)

which can be trusted only for sufficiently small p. E(0) increases in e and in the
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E

Eself

ppc

Figure 15.1: The energy–momentum relation for the Pauli–Fierz Hamiltonian.

ultraviolet cutoff, as does meff. Equation (15.36) confirms the physical intuition
that the coupling to the Maxwell field effectively increases the mass of the electron.
Note that already to order e2 the effective mass differs from that obtained in the
dipole approximation, compare with (14.58), and thus from the effective mass of
the classical cousin, the Abraham model.

The nature of the excited states, even close to the ground state band, is left un-
touched by the present considerations. Physically one expects, as we have indeed
established for the Abraham model, a dynamically transient stage when by radi-
ating photons the electron adjusts to the long-time freely propagating state of the
form e−it E(p) f (p)ψg(p). Here the amplitudes f (p) vanish for |p| > pc and are
determined through the initial conditions. In spectral terms, this implies that Hp

has a purely absolutely continuous spectrum except for the possible eigenvalue at
E(p). The only powerful technique available for establishing such a property is
the method of positive commutators and, as its sisters, Mourre estimates and com-
plex dilations, cf. chapter 17. Let us see how this method applies to the Pauli–Fierz
Hamiltonian Hp.

In the abstract setting one starts from a self-adjoint operator H on some Hilbert
space H and searches for another self-adjoint operator, the conjugate operator D,
such that

[H, iD] ≥ c0 > 0. (15.37)

Then H has a purely absolutely continuous spectrum. The example to keep in
mind here is H = x and iD = −∂x . In our context, clearly, (15.37) is too strong.
The appropriate modification reads

[H, iD] ≥ c0 − R (15.38)
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with R a positive trace class operator. This form allows one to count eigenvalues.
If Hψn = Enψn , ‖ψn‖ = 1, then 〈ψn, [H, iD]ψn〉H = 0 ≥ c0 − 〈ψn, Rψn〉 and,
by summing over n, trPpp ≤ c−1

0 trR, where Ppp is the projection onto the linear
span of all eigenfunctions. The Mourre estimate (15.38) ensures that H restricted
to (1 − Ppp)H has a purely absolutely continuous spectrum. Inequality (15.38)
could be still too strong and is weakened by projecting onto an appropriate energy
interval � as

E�[H, iD]E� ≥ c0 E� − E� RE�, (15.39)

where E� is the spectral projection of H for the interval � ⊂ R.
For the Pauli–Fierz operator the natural candidate for the conjugate operator is

the generator D1 of dilations in photon space, i.e. (e−iD1t f )(k) = t3/2 f (tk). Then

iD1 = −1

2

(
k̂ · ∂k + ∂k · k̂

)
(15.40)

as operator on L2(R3, d3k). We denote the second quantization of D1 by

D =
∑

λ=1,2

∫
d3ka∗(k, λ)D1a(k, λ). (15.41)

With these preparations

[Hp, iD] = Nf − 1

m
d�(̂k) · (p − Pf − eAϕ) + 1

m
eAϕ1 · (p − Pf − eAϕ),

(15.42)

where d�(̂k) = ∑
λ=1,2

∫
d3kk̂a∗(k, λ)a(k, λ) and ϕ̂1 = √

ωiD1
1√
ω
ϕ̂.

Let us abbreviate B = p − Pf − eAϕ . By the Kato–Rellich theorem

e

m
(Aϕ1 · B) ≤ e

2m

(
(Aϕ1)

2 + B2)
≤ e

2m
(c1 Hp + c2) + eHp ≤ e(c1 Hp + c2) (15.43)

with coefficients c1, c2 independent of p and e and whose value may change from
line to line. Similarly, using the fact that [Nf, B] is Hp-bounded and O(e),

1

m
d�(̂k) · B = 1

m
B N 1/2

f · N−1/2
f d�(̂k)

≤ 1

m

1

2m

(
B N 1/2

f

)2 + 1

2
Nf

≤ 1

m
N 1/2

f Hp N 1/2
f + 1

2
Nf + e(c1 Hp + c2). (15.44)
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Let E� be the spectral projection of Hp onto the interval (−∞, �]. Combining
(15.42), (15.43), and (15.44) and using the property that Nf ≥ 1 − P
, the final
result reads

E�[Hp, iD]E� ≥ E�(1 − P
)E�

(1

2
− 1

m
�

)
− e(c1� + c2)E�. (15.45)

Inequality (15.45) has the structure anticipated in (15.39) with � = (−∞, �]
and R the one-dimensional projection P
. Thus we count the number of eigenval-
ues in (−∞, �] as

tr[Ppp E�] ≤
(

1 − e(c1� + c2)
(1

2
− 1

m
�

)−1)−1
(15.46)

which can be made strictly less than 2 by adjusting e. We have not tried to optimize
the constants. But the net result is that, upon fixing e0, pc sufficiently small and
� = p2

c/4m, say, in the interval (−∞, �] the operator Hp has a purely absolutely
continuous spectrum and a single, nondegenerate eigenvalue located at E(p),
provided |e| < e0 and |p| ≤ pc. To study the high-energy/high-momentum part
of the spectrum other methods will have to be developed.

15.2.1 Appendix: Properties of E(p)

We prove properties (iv), (v), (vi), (viii), and (ix).

Property (vi): Fix p and choose the momentum lattice (δZ)3 with lattice spacing
δ > 0. The 3-axis of the lattice is parallel to p. Correspondingly, R

3 is partitioned
into cubes Cδ(n) = {k|(nα − 1

2)δ ≤ kα < (nα + 1
2)δ, α = 1, 2, 3} with integer nα .

The one-particle space L2(R3) ⊗ C
2 = h is decomposed into a discrete and a fluc-

tuating part,

h = hd ⊕ hf. (15.47)

ψ ∈ hd is constant over each cube and ψ ∈ hf satisfies
∫
Cδ(n)

d3kψ(k, λ) = 0 for

all n ∈ Z
3. Such an orthogonal decomposition of the one-particle space factorizes

the Fock space as

F = Fd ⊗ Ff. (15.48)

If 
f is the Fock vacuum of Ff, we set Fδ = Fd ⊗ 
f and F = Fδ ⊕ F⊥
δ .

We want Hp to respect the factorization (15.48). This is achieved by replacing
k, ϕ̂/

√
2ω, and ω by their lattice approximation kδ , (ϕ̂/

√
2ω)δ , and ωδ , where

we set fδ(k) = δ−3
∫
Cδ(n)

d3k f (k) for k ∈ Cδ(n). Then Hp is approximated



212 States of lowest energy: statics

by Hp(δ) = 1
2m (p − Pf(δ) − eAϕ(δ))2 + Hf(δ), which factorizes according to

(15.48) as

Hp(δ) = 1

2m

(
p − Pf,d ⊗ 1 − 1 ⊗ Pf,f − eAϕ,d ⊗ 1

)2 + Hf,d ⊗ 1 + 1 ⊗ Hf,f.

(15.49)

The fluctuating part of Aϕ(δ) vanishes, since
∫

d3k(ϕ̂/
√

2ω)δψ = 0 for each
ψ ∈ hf. Note that [Hp(δ), 1 ⊗ P
f ] = 0, with P
f the projection onto 
f, and
therefore Hp(δ) is reduced by the subspaces Fδ,F⊥

δ . The bottom of the spectrum
of Hp(δ) is denoted by E(p, δ).

We want to establish a lower bound on Hp(δ) � F⊥
δ . We choose ψ ∈ Fd and θ ∈

Ff with fixed n, i.e. θ(k, λ) = θ(k1, λ1, . . . , kn, λn), n ≥ 1. Then, with ϕ=ψ⊗θ ,

〈ϕ, Hp(δ)ϕ〉F = 〈ψ ⊗ θ, Hp(δ)ψ ⊗ θ〉F
=

∑
λ

∫
d3nk|θ(k, λ)|2〈ψ,

1

2m

(
p − Pf,d −

n∑
j=1

k jδ−eAϕ,d

)2
ψ〉Fd

+ 〈ψ, Hf,dψ〉Fd〈θ, θ〉Ff + 〈ψ, ψ〉Fd〈θ, Hf,fθ〉Ff

=
∑
λ

∫
d3nk|θ(k, λ)|2〈ψ, Hp−∑n

j=1 k jδ,dψ〉Fd

+ 〈ψ, ψ〉Fd〈θ, Hf,fθ〉Ff

≥ inf
k

{E(p −
n∑

j=1

k jδ, δ) +
n∑

j=1

ωδ(k j )}〈ψ, ψ〉Fd〈θ, θ〉Ff

≥ inf
k

{E(p − k, δ) + ωδ(k)}〈ϕ, ϕ〉F . (15.50)

By finite linear combinations this bound extends to a dense set: if ϕ = ψ1 ⊗ θ1 +
ψ2 ⊗ θ2 with both θ1 and θ2 in the n-photon subspace, one only has to repeat the
computation in (15.50). If they belong to different photon numbers, we use θ1⊥θ2.
If E⊥(p, δ) denotes the bottom of the spectrum of Hp(δ) � F⊥

δ , we conclude that

E⊥(p, δ) ≥ inf
k

{E(p − k, δ) + ωδ(k)}. (15.51)

Hp(δ) � Fδ consists of a large, but finite number of oscillators with strictly pos-
itive frequencies. Therefore Hp(δ) � Fδ has a discrete spectrum. Let

�(p, δ) = inf
k

{E(p − k, δ) − E(p, δ) + ωδ(k)}. (15.52)

If �(p, δ) ≥ �0 > 0 independently of δ, then E⊥(p, δ) − E(p, δ) ≥ �(p, δ) ≥
�0 by (15.51) and the ground state of Hp(δ) is in Fδ . The spectral projection
χ[E(p,δ),E(p,δ)+�0](Hp(δ)) is a nonzero compact operator.
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The next step is to show that Hp(δ) converges to Hp as δ → 0. Technically one
proves that for the difference of resolvents the limit

lim
δ→0

‖(Hp(δ) − z)−1 − (Hp − z)−1‖ = 0 (15.53)

holds provided z is sufficiently negative. The argument uses the first-order ex-
pansion for the resolvent and Kato–Rellich bounds of the type used in the
proof of Theorem 13.3. The norm resolvent convergence (15.53) ensures that
χ[E(p,δ),E(p,δ)+�0](Hp(δ)) converges in norm to χ[E(p),E(p)+�0](Hp) and that this
operator is compact as a norm limit of compact operators. Since the limit operator
is nonzero by construction, Hp has a ground state at E(p).

To confirm that Ec(p) = E(p) + �(p) with �(p) = infk{E(p − k) − E(p) +
ω(k)} the first part of (15.50) is repeated with a one-photon wave function
θ(k1, λ1) well concentrated at k0 with k0 such that �(p) = E(p − k0) − E(p) +
ω(k0). There is an infinite number of orthogonal states, which by construction have
an energy arbitrarily close to E(p) + �(p). This proves (vi).

Property (iv): From the pull-through formula for a∗ we obtain

Hpa∗(k, λ) = a∗(k, λ)(Hp−k + ω(k)) − e

m
√

2ω(k)
ϕ̂(k)eλ · (p − Pf − eAϕ).

(15.54)

Let ψp−k,δ be an approximate ground state for Hp−k with energies in the inter-
val [E(p − k), E(p − k) + δ] (or let ψp−k be equal to the ground state if it exists),
and let us consider the one-photon excitation ϕδ = a∗( fδ)ψp−k,δ with fδ sharply
centered at k. From (15.54) one infers

E(p)〈ϕδ, ϕδ〉 ≤ 〈ϕδ, Hpϕδ〉
= 〈ϕδ, Hpa∗( fδ)ψp−k,δ〉
= ω(k)〈ϕδ, ϕδ〉 + 〈ϕδ, a∗( fδ)Hp−kψp−k,δ〉

−
∑
λ′

∫
d3k′ e

m
√

2ω(k′)
ϕ̂(k′) fδ(k

′, λ′)

× 〈ϕδ, eλ′(k′) · (p − Pf − eAϕ)ψp−k,δ〉
≤ 〈ϕδ, ϕδ〉

(
ω(k) + E(p − k) + O(δ)

)
+ 1√

m
〈 fδ,

1√
ω

ϕ̂〉h〈ϕδ, ϕδ〉1/2〈ψp−k,δ, Hpψp−k,δ〉1/2. (15.55)

We can now choose fδ such that the last term multiplied by 〈ϕδ, ϕδ〉−1 vanishes in
the limit δ → 0. Thereby the bound of property (iv) results.
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Property (v): We have for 0 < a1 < 1, a2 > 0, (1 − a1)(1 + a2) = 1,

2m〈ψ, Hpψ〉 ≥ a1〈ψ, (p − Pf)
2ψ〉 − a2〈ψ, e2 A2

ϕψ〉 + 2m〈ψ, Hfψ〉
≥ a1〈ψ, (p − Pf)

2ψ〉 + (2m − a2a)〈ψ, Hfψ〉 − a2b〈ψ, ψ〉,
(15.56)

where the relative bound 〈ψ, e2 A2
ϕψ〉 ≤ a〈ψ, Hfψ〉 + b〈ψ, ψ〉 is used. We choose

a2 such that 2m − a2a > 0. Since for α > 0

1

2
α(p − Pf)

2 + Hf ≥ |p| − 1

2
α−1, (15.57)

the constants in (15.57) and (15.56) can be adjusted so as to give the desired
bound.

Property (viii): By rotational invariance it suffices to consider (15.32) along a line
passing through the origin. We will denote these functions by the same symbol as
before. Using properties (ii) and (iv) we obtain

E(p − k) − E(p) + ω(k) = E(p − k) − E(0) − E(p) + E(0) + ω(k)

≥ −ω(p) + ω(k) (15.58)

and it suffices to take the minimum over the interval |k| ≤ |p|. By reflection sym-
metry, one may pick p ≥ 0. We use the decomposition of E from property (vii)
and will show that

�(p) = min
|k|≤p

{ 1

2m
(p − k)2 − 1

2m
p2 + t (p − k) − t (p) + ω(k)

}
> 0 (15.59)

provided p < m/2. This will come about by

Lemma: Let f : R → R be convex, even, with f (0) = 0 and f (x) ≤ 1
2m x2. Then

the bounds

−1 + 1

m
x ≤ f ′(x) ≤ 1 + 1

m
x (15.60)

hold for |x | ≤ m.

Proof: If (15.60) holds for x ≥ 0, by reflection symmetry it also holds for x ≤ 0.
So let us take x ≥ 0. f ′(0) = 0 and f ′ is increasing. Therefore we only have to
check the upper bound. Let x0 be the smallest x such that f ′(x0) = 1 + 1

m x0. Then,
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since f ′ is increasing,

0 ≤ − f (x) + 1

2m
x2

= 1

2m
x2

0 − f (x0) −
∫ x

x0

dy
(

f ′(y) − 1

m
y
)

≤ 1

2m
x2

0 −
∫ x

x0

dy
(

f ′(x0) − 1

m
y
)

= 1

2m
x2 +

(
1 + 1

m
x0

)
(x0 − x) (15.61)

for all x ≥ x0, which can be satisfied only if x0 ≥ m. �

The lemma is used in (15.59) with f (k) = −t (k) + t (0), which by properties
(ii) and (vii) satisfies the assumptions, and we set

t (p − k) − t (p) =
∫ p−k

p
dxt ′(x). (15.62)

If k > 0, the lower bound in (15.60) is applicable provided p < m, 0 ≤ k ≤ 2p.
If k < 0, the upper bound in (15.60) is applicable provided p − k ≤ m and thus
p ≤ m/2. The bounds put together yield

1

2m
(p − k)2 − 1

2m
p2 + t (p − k) − t (p) + ω(k) ≥ −|k| + ω(k) > 0 (15.63)

for p ≤ m/2 and |k| ≤ p. Refining the last step of the argument the bound can be
improved to p ≤ (

√
3 − 1)m, which implies pc ≥ (

√
3 − 1)m.

Property (ix): As in the second part of the proof of Theorem 15.5 below, one
estimates the overlap of the ground state vector with 
 by using the analog of
the pull-through formula (15.76). (15.69) is replaced then by (15.35).

Finally we have to show (15.27), for which purpose we Trotterize Hp as
the sum of 1

2m (p − Pf − eAϕ)2 and Hf in the function space representation.
We have

|Ueiπ Nf/2e−t Hfe−iπ Nf/2U−1 F | ≤ Ueiπ Nf/2e−t Hfe−iπ Nf/2U−1|F | , (15.64)

since [Hf, Nf] = 0 and e−t Hf has a positive kernel in function space. Recall the
transformation (14.67). Linearizing the square with the Gaussian measure µG of
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mean zero and variance t/m, one obtains

(Ueiπ Nf/2e−t (p−Pf−eAϕ)2/2me−iπ Nf/2U−1 F)(A(·))
= (Ue−t (p−Pf−eE⊥ϕ̃ )2/2mU−1 F)(A(·))
=

∫
µG(dλ)eiλ·pUe−iλ·(Pf+eE⊥ϕ̃ )U−1 F(A(·))

=
∫

µG(dλ)eiλ·p F(A(· + λ) + λeϕ̃(·)), (15.65)

since Pf shifts and E⊥ϕ̃ translates the field. In fact the components of (p − Pf −
eE⊥ϕ̃) do not commute and in (15.65) there are errors of order t2 which vanish as
the Trotter spacing tends to zero. Taking absolute values on both sides of (15.65)
yields

| · | ≤
∫

µG(dλ)|F(A(x + λ) + λeϕ̃(x))| (15.66)

and similarly for functionals of a finite number of fields. Therefore

|Ueiπ Nf/2e−t (p−Pf−eAϕ)2/2me−iπ Nf/2U−1 F |
≤ Ueiπ Nf/2e−t (Pf+eAϕ)2/2me−iπ Nf/2U−1|F |. (15.67)

Iterating the bounds (15.64) and (15.67) results in (15.27).

15.3 Two-fold degeneracy in the case of spin

For the effective spin dynamics a crucial input is the two-fold degeneracy of the
ground state of the Pauli–Fierz operator with spin, which will be established here
for sufficiently small e. The restriction on e is presumably an artifact of the method.

The Hamiltonian under consideration is

Hp = 1

2m
(p − Pf − eAϕ)2 − e

2m
σ · Bϕ + Hf (15.68)

acting on C
2 ⊗ F , where Aϕ = Aϕ(0), Bϕ = Bϕ(0); compare with Eq. (15.21).

We require mph > 0. Let Pg be the projection onto the ground state subspace and
P0 be the projection onto the subspace spanned by χ ⊗ 
, χ ∈ C

2, trP0 = 2. We
assume |p| < pc. Then trPg ≥ 1 by the arguments for the proof of property (vi).

Theorem 15.5 (Two-fold degeneracy of the ground state band). If �(p) > 0 and
whenever

2e2

m

∫
d3k|ϕ̂|2ω−1

(
E(p) + 1

2m
k2

)(
E(p − k) − E(p) + ω

)−2
<

1

3
, (15.69)

then trPg = 2.
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For the Pauli–Fierz model with spin a proof of property (ii) is missing. If, very
reasonably, it is assumed, then �(p) > 0 for |p| ≤ (

√
3 − 1)m.

Proof: We assume ϕ̂ to be real which can always be achieved through a suitable
canonical transformation.

Let z be real and sufficiently negative. We claim that

P0(z − Hp)
−1 P0 = a(z)P0 (15.70)

with real coefficient a(z).
In (15.68) we set H0 = 1

2m (p − Pf)
2 + Hf and Hp = H0 + H1. H0 does not

depend on spin and when restricted to the n-photon subspace it is multiplication
by a real function. By the Kato–Rellich theorem the resolvent expansion

〈χ ⊗ 
, (z − Hp)
−1χ ⊗ 
〉 =

∞∑
n=0

〈χ ⊗ 
, (z − H0)
−1(H1(z − H0)

−1)n
χ ⊗ 
〉

(15.71)

is convergent. Expanding the product yields as generic term

m∏
j=1

(a j + ib j · σ) (15.72)

with real coefficients a j , b j , depending on k1, λ1, . . . , km, λm . Using the equality

(a1 + ib1 · σ)(a2 + ib2 · σ) = a1a2 − b1 · b2 + iσ · (a1b2 + a2b1 − b1 × b2)

(15.73)

it follows that

〈χ ⊗ 
, (z − Hp)
−1χ ⊗ 
〉 = a(z)〈χ, χ〉 + ib(z) · 〈χ, σχ〉 (15.74)

with real coefficients a(z), b(z). Since the left-hand side is real, b(z) = 0 which
proves (15.70).

Equation (15.70) holds on the negative real axis and therefore extends by ana-
lyticity to the full resolvent set. In particular, one can integrate (15.70) over a small
contour encircling E(p), the ground state energy of Hp. Then

P0 Pg P0 = c1 P0. (15.75)

By the pull-through argument

[a(k, λ), Hp] = (Hp−k − Hp + ω(k))a(k, λ)

− e

m

ϕ̂√
2ω

(
eλ · (p − Pf − eAϕ) − 1

2
(eλ × ik) · σ

)
. (15.76)



218 States of lowest energy: statics

Let now ψ ∈ PgH. Then

〈ψ, Nfψ〉 =
∑

λ=1,2

∫
d3k‖a(k, λ)ψ‖2

≤ 2e2

m

∫
d3k|ϕ̂|2ω−1

(
E(p) + 1

2m
k2

)
× (

E(p − k) − E(p) + ω
)−2 = c0. (15.77)

Since tr[Pg(1 − P0)] ≤ tr[Pg Nf] ≤ c0trPg, one concludes

(1 − c0)trPg ≤ tr[Pg P0] ≤ 2. (15.78)

If c0 < 1, then c1 > 0, with c1 the constant in (15.75). Suppose trPg = 1. Then
Pg projects along ψ and P0 Pg P0 along P0ψ which contradicts (15.75). Thus
trPg ≥ 2. On the other hand if c0 < 1

3 , then trPg < 3. In conjunction, trPg = 2 as
was to be shown. �

An alternative approach would be to use the positive commutator technique as
explained at the end of section 15.2. It says that, provided |e| < e0, |p| < pc, the
ground state of Hp is exactly two-fold degenerate and that in a band above the
ground state energy there is only an absolutely continuous spectrum.

Notes and references

Section 15.1

Our discussion of the soft photon bound is taken from Bach (private lecture notes)
and Bach, Fröhlich and Sigal (1998a). If the potential V is attractive, but so weak
that Hat has no ground state, then a sufficiently strong coupling to the radiation
field will generate a ground state, since the mass of the particle is effectively in-
creased (Hiroshima and Spohn 2001; Hainzl 2002; Hainzl et al. 2003; Chen et al.
2003). The property of e−t H to be positivity improving is not known to hold un-
der additional terms, for instance including an external vector potential or spin. As
explained to us by V. Bach, a soft photon bound as in Theorem 15.1 automatically
estimates the overlap with the Fock vacuum. If |e| is sufficiently small, this overlap
is larger than 1/2 and uniqueness is guaranteed.

With the Maxwell field replaced by a scalar field, compare with section 19.2,
ground state properties are investigated in Gérard (2000) and Betz et al. (2002),
where references to earlier work are given.



Notes and references 219

Section 15.2

The key properties of the energy–momentum relation are established in Fröhlich
(1974), where also the missing points of rigor are supplied. In fact Fröhlich dis-
cusses Nelson’s model of a particle coupled to a scalar field, compare with sec-
tion 19.2. In that case, as for example explained in Spohn (1988), e−t H(p), t > 0,
is positivity improving in Fock space, within an exponentially small error e−t .
From this property uniqueness of the ground state ψp is deduced by the argu-
ment explained in section 14.3. The overlap argument of property (ix) is a sub-
stitute which works only for small e. In his recent PhD thesis Chen (2001) es-
tablishes that E(p) has a limit as mph → 0. The limit function E(p) is twice
continuously differentiable for |p| sufficiently small. Thus the effective mass of
the electron remains well defined even in the physical case mph = 0, under the
restriction of small e and, of course, an ultraviolet cutoff. An example where
pc = 1 for e = 0 and pc = ∞ for e > 0 is the Fröhlich polaron in two dimensions
(Spohn 1988). Positive commutator methods at fixed total momentum are devel-
oped in the highly recommended paper by Fröhlich, Griesemer and Schlein (2003),
where the complete proof for the Nelson model, see section 19.2 for its definition,
can be found. Positive-commutator methods and the related Mourre estimates are
most useful also in cases where the electron is confined by an external potential.
We refer to Skibsted (1998), Bach, Fröhlich and Sigal (1998b), Dereziński and
Gérard (1999), Bach, Fröhlich, Sigal and Soffer (1999), and Georgescu, Gérard
and Møller (2004). A precusor is Hübner and Spohn (1995b).

Section 15.3

The material is taken from Hiroshima and Spohn (2002).
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States of lowest energy: dynamics

As for classical dynamics, in many applications the external potentials have a slow
variation in space-time. The standard procedure is then to ignore the quantized
Maxwell field and to proceed with an effective one-particle Hamiltonian. This is
justified since the photons very rapidly adjust to the motion of the electron. To put
it differently, if a classical trajectory of the electron is prescribed, then the photons
are governed by a Hamiltonian of slow time-dependence and essentially remain
in their momentarily lowest state of energy. We propose first to study slow time
variation, which abstractly falls under the auspices of the time-adiabatic theorem.
However, the real issue is how, from the slow variation in space, to extract, rather
than assume, the slow variation in time. It seems appropriate to call such a situation
space-adiabatic.

We will work for a start with time-dependent perturbation theory using the in-
sights gained from the time-adiabatic theorem. It turns out that these methods lead
us astray in the case of slowly varying external vector potentials. Thus we are
forced to develop more powerful techniques. They come from the area of pseudo-
differential operators. In fact this theory provides a much sharper picture of adia-
batic decoupling and a systematic scheme for computing effective Hamiltonians.
To avoid technical complications we restrict ourselves to matrix-valued symbols.
Transcribing these results formally to the Pauli–Fierz Hamiltonian we will com-
pute the effective Hamiltonian governing the motion of the electron in the band of
lowest energy, including spin precession. The effective Hamiltonian can be anal-
ysed through semiclassical methods which eventually leads to the nonperturbative
definition of the gyromagnetic ratio.

There are other properties of the Pauli–Fierz Hamiltonian which can be han-
dled semiclassically. Most notably we may consider a physical situation, where
classical currents are prescribed. Then the Pauli–Fierz operator reduces to a time-
dependent operator on Fock space quadratic in the bosonic annihilation/creation
operators. Such quasi-free theories can be studied in great detail. In particular,

220
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coherent states of the photon field evolve in time according to the classical inhomo-
geneous Maxwell equations. Under standard macroscopic conditions field fluctua-
tions are small and the classical Maxwell theory can be used safely. For example,
a city radio station with a power of 100 kW at a wavelength of 100 m emits 1030

photons per second, and at a distance of 100 km a flux of 1015 photons s−1 cm−2

is still observed. On the other hand, experimentally even the smallest field intensi-
ties can be controlled and quantum features are of importance, as for example in
photon counting statistics. For the Maxwell field an amazingly wide span of scales
can be probed, from the classical deterministic behavior down to single-photon
randomness.

16.1 The time-adiabatic theorem

In the case where no external forces are present, the total momentum is conserved;
compare with sections 13.5 and 15.2. Thus under slowly varying external poten-
tials the total momentum can be expected to change slowly, and the appropriate
starting point is the Pauli–Fierz Hamiltonian in the representation diagonal with
respect to the total momentum, i.e.

H = 1

2m

(
σ · (p − Pf − eAϕ − eAex(εx))

)2 + eφex(εx) + Hf. (16.1)

Here p refers to the total momentum and ε is a dimensionless parameter regulating
the variation of the external potentials φex, Aex. Let us assume for the moment
that a classical trajectory of the electron is given. Because of the slow variation
of φex, Aex it has to be of the form (qεt , pεt ), 0 ≤ t ≤ ε−1τ with (εqεt , pεt ) of
order 1. Inserting in (16.1), the time-dependent Hamiltonian can be written as

H(εt) = 1

2m

(
pεt − Pf − eAϕ − eAex(εqεt )

)2 − e

2m
σ · (Bϕ + εBex(εqεt ))

+ eφex(εqεt ), (16.2)

which governs the motion of photons and acts on F . t is measured in atomic units.
Bϕ = Bϕ(0) is the quantized magnetic field. We have already studied the spectrum
of H(t) for fixed t . The term proportional to Bex is of order ε and can be neglected.
Provided |pt | < pc, H(t) has a two-fold degenerate ground state with energy

E(t) = E(pt − eAex(εqt )) + eφex(εqt ). (16.3)

Physically it is expected that through radiation the photons approach very rapidly a
state of lowest energy. Subsequently only very few photons escape, since the time
variation is slow and E(t) is separated by a gap from the continuous spectrum.
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The time-adiabatic theorem of quantum mechanics makes an abstraction of the
particular situation and simply postulates the time-dependent Hamiltonian H(t) as
given and acting on the Hilbert space H. The role of the ground state subspace is
played by a physically distinguished, “relevant” subspace with corresponding in-
stantaneous spectral projection P(t) and energy E(t), i.e. H(t)P(t) = E(t)P(t).
It is assumed that for every t the energy E(t) is isolated by a finite gap from the rest
of the spectrum of H(t). The slow variation in time is introduced through H(εt)
with ε � 1 as a dimensionless adiabaticity parameter and one is interested in the
solution of the Schrödinger equation

i∂tψ(t) = H(εt)ψ(t), (16.4)

where the initial wave function ψ(0) is assumed to lie already in the relevant sub-
space, P(0)ψ(0) = ψ(0). t is chosen to be so long that P(t) rotates by some finite
amount, implying that

0 ≤ t ≤ ε−1τ, τ = O(1). (16.5)

Sometimes it is convenient to switch to the slow time scale

t ′ = εt. (16.6)

Then our problem becomes

iε∂t ′ψ(t ′) = H(t ′)ψ(t ′), P(0)ψ(0) = ψ(0), 0 ≤ t ′ ≤ τ. (16.7)

To stress the similarity with the space-adiabatic situation, however, we stick to the
fast time scale of (16.4).

As one of the basic results it is established that the subspace P(εt) is adiabati-
cally protected in the sense that

‖(1 − P(εt))ψ(t)‖ ≤ c0ε for 0 ≤ t ≤ ε−1τ (16.8)

with some suitable constant c0. Up to an error of order ε the solution to the
Schrödinger equation (16.4) clings to the relevant subspace P(εt)H.

It is of interest briefly to recall the proof of (16.8), since some central elements
will reappear later. We denote the unitary propagator for (16.4) by U ε(t, s). The
idea is to define a “diagonal” propagator U ε

dg(t, s) such that it preserves P(t) ex-
actly, i.e.

P(εt)U ε
dg(t, s) = U ε

dg(t, s)P(εs). (16.9)

The unitary propagator U ε
dg(t, s) is generated by the Hamiltonian Hdg(εt). From

(16.9) it follows that

[Hdg(εt), P(εt)] = iε Ṗ(εt). (16.10)
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We look for a solution which is ε-close to H(εt). Using the identities
P(t)Ṗ(t)P(t) = 0, (1 − P(t))Ṗ(t)(1 − P(t)) = 0, we obtain

Hdg(εt) = H(εt) + iε[Ṗ(εt), P(εt)]. (16.11)

To prove (16.8) one thus has to estimate the difference

U ε(t, 0) − U ε
dg(t, 0) = −ε

∫ t

0
dsU ε(t, s)[Ṗ(εs), P(εs)]U ε

dg(s, 0). (16.12)

While H(εt) − Hdg(εt) is of order ε, this is not good enough, since errors might
add up over the long times ε−1τ . To make progress we note that P[Ṗ, P]P =
0 = (1 − P)[Ṗ, P](1 − P), whereas P[Ṗ, P](1 − P) �= 0. Thus to improve on
(16.12) one has to exploit the time averaging, which is most easily achieved by
writing [Ṗ, P] as a time derivative. Let us assume for a moment that the commu-
tator equation

[H(t), X (t)] = [Ṗ(t), P(t)] (16.13)

has a bounded solution X (t). Then, using again (16.11),

U ε(ε−1τ, 0) − U ε
dg(ε

−1τ, 0) (16.14)

= − ε

∫ ε−1τ

0
dsU ε(ε−1τ, s)

(
H(εs)X (εs) − X (εs)Hdg(εs)

)
U ε

dg(s, 0) + O(ε)

= iε
∫ ε−1τ

0
ds

( d

ds
U ε(ε−1τ, s)X (εs)U ε

dg(s, 0) − U ε(ε−1τ, s)X (εs)
d

ds
U ε

dg(s, 0)
)

+O(ε)

= iε
∫ ε−1τ

0
ds

( d

ds

(
U ε(ε−1τ, s)X (εs)U ε

dg(s, 0)
) − U ε(ε−1τ, 0)ε Ẋ(εs)U ε

dg(s, 0)
)

+O(ε),

which implies

‖U ε(ε−1τ, 0) − U ε
dg(ε

−1τ, 0)‖ ≤ c0(1 + τ)ε. (16.15)

The adiabatic theorem (16.8) follows from

‖(1 − P(τ ))U ε(ε−1τ, 0)P(0)ψ‖ = ‖(1 − P(τ ))U ε
dg(ε

−1τ, 0)P(0)ψ‖ + O(ε)

= ‖(1 − P(τ ))P(τ )U ε
dg(ε

−1τ, 0)ψ‖ + O(ε)

= O(ε), (16.16)

where (16.9) has been used.
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It remains to see whether the commutator equation (16.13) has a solution. Be-
cause of the spectral gap we may set

X = P Ṗ(1 − P)(H − E)−1 + (H − E)−1(1 − P)Ṗ P (16.17)

and verify (16.13) directly. In particular, ‖X (t)‖ ≤ g−1‖Ṗ(t)‖, with g the width
of the gap and ‖Ẋ(t)‖ ≤ 3g−2‖Ḣ(t)‖‖Ṗ(t)‖.

While undoubtedly correct the estimate (16.8) does not specify the origin of the
error. As we will explain below the order ε is not due to dispersion into all of H.
Rather the true solution ψ(t) is slightly tilted out of the subspace P(εt)H. If this
effect is properly taken into account, the error in (16.8) can be made smaller than
any given power εn at the expense of adjusting the projection P(t) to the slightly
tilted projection Pε(t). The second missing aspect is more of a computational na-
ture. Since (1 − Pε(t))H is in essence decoupled from the relevant subspace, one
would like to have an, in our case time-dependent, effective Hamiltonian govern-
ing the solution in the subspace Pε(t)H, at least approximately. We will return to
this point below.

16.2 The space-adiabatic limit

With these preparations done we return to the Pauli–Fierz model with the slowly
varying electrostatic potential V (εx) = eφex(εx),

H = 1

2m
(p − Pf − eAϕ)2 + Hf + V (εx) = H0 + V (εx). (16.18)

The case of a slowly varying vector potential will be discussed in section 16.6. Spin
is omitted only for notational simplicity. H acts on L2(R3, d3x) ⊗ F . For the wave
functions it is convenient to use the momentum representation ψ(k, k), also for
the electron, with the shorthand k = (k1, λ1, . . . , kn, λn), n arbitrary, ψ(k, ∅) =
ψ(k) ⊗ 	. H0 then has the direct integral decomposition

H0 =
∫ ⊕

d3k H0(k). (16.19)

We assume a small photon mass and the validity of claim 15.4. Then, for every
k, |k| < pc, H0(k) has a unique ground state ψg, H0(k)ψg(k, k) = E(k)ψg(k, k).
Since in the momentum representation H0(k) is a real operator, the phase of
ψg(k) can be chosen such that the wave function is real. In particular, using
〈ψg(k), ψg(k)〉F = 1, this implies 〈ψg(k), ∇kψg(k)〉F = 0. E(k) is separated by
a finite gap from the continuum edge Ec(k). Since our aim is to demonstrate the
basic principle, we deliberately ignore the fact that the ground state band exists
only up to pc and continue as if pc = ∞. At the cost of a suitable restriction on
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the initial state, the assumption pc = ∞ can be avoided. We refer to the Notes at
the end of the chapter for further explanations.

The ground state band is the subspace of wave functions of the form
f̂ (k)ψg(k, k), and the corresponding projection is denoted by Pg. PgH is invariant
under e−iH0t , [H0, Pg] = 0, and

(e−iH0t f̂ ψg)(k, k) = (
e−iE(k)t f̂ (k)

)
ψg(k, k). (16.20)

Thus wave functions in the ground state band propagate according to a free quan-
tum evolution with the effective energy–momentum relation E(k).

If the slowly varying potential is turned on, the subspace PgH is no longer
invariant. The in-band dynamics is modified and there are transitions to excited
states. For times which are not too long their effect remains negligible and one
expects that

(e−iHt f̂ ψg)(k, k) = (
e−iHefft f̂ (k)

)
ψg(k, k) + O(ε), 0 ≤ t ≤ ε−1τ, (16.21)

where, as for the time-adiabatic theorem, the time scale is determined by the con-
dition that the electron should feel the presence of the potential V . The effective
one-particle Hamiltonian, Heff, is defined through the Peierls substitution

Heff = E(p) + V (εx). (16.22)

Coupling to the Maxwell field renormalizes the kinetic energy of the quantum
particle. In particular, for small velocities we have

Heff = 1

2meff
p2 + V (εx). (16.23)

The mass is renormalized, but the coupling to the electrostatic potential is still
given by the bare charge e.

Let us now argue with some care that the Peierls substitution gives the correct
time evolution in the ground state band. The Hamiltonian is the one specified in
(16.18) and the relevant subspace is the ground state band PgH. In particular, ini-
tially Pgψ(0) = ψ(0). By construction, [H0, Pg] = 0 and one has to understand
the transitions between PgH and (1 − Pg)H = QgH induced by V (εx). For this
purpose we decompose into a diagonal and an off-diagonal piece as

V = Vdg + Vod,

Vdg = PgV Pg + QgV Qg , Vod = PgV Qg + QgV Pg. (16.24)

It should be recalled that the time evolution must be controlled over the time span
ε−1τ , τ = O(1). Thus only terms of order ε2 can be ignored safely.
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We consider first PgV Pg, which in the ground state band acts as

(PgV Pgψ)(k, k) =
∫

d3k′V̂ (k′) f̂ (k − εk′)〈ψg(k), ψg(k − εk′)〉Fψg(k, k)

(16.25)

with f̂ (k) = 〈ψg(k), ψ(k)〉F . The Peierls substitution amounts to V (εPgx Pg),
since

Pgx Pgψ(k, k) = i∇k f̂ (k)ψg(k, k) + i f̂ (k)〈ψg(k), ∇kψg(k)〉Fψg(k, k) (16.26)

with the second term vanishing by the argument given above. The difference is
estimated as(

PgV (εx)Pg − V (εPgx Pg)
)
ψ(k, k)

=
∫

d3k′V̂ (k′) f̂ (k − εk′)
(〈ψg(k), ψg(k − εk′)〉F − 1

)
ψg(k, k). (16.27)

In the Taylor expansion, the first order vanishes, since 〈ψg(k), ∇kψg(k)〉F = 0 as
before, and the error is O(ε2). Thus we are left with showing that Vod acts as a
small perturbation only.

Since H0(k) = 1
2m (k − Pf − eAϕ)2 + Hf, one has ∇k H0(k) = 1

m (k − Pf −
eAϕ) and, with P(k) denoting the projection onto ψg(k), then Pg = ∫ ⊕ d3k P(k),
Q(k) = 1 − P(k), and Qg = 1 − Pg. If clear from the context, the variable “k”
will be dropped. With these conventions

V (εx)Pgψ(k) =
∫

d3k′V̂ (k′)P(k − εk′)ψ(k − εk′)

=
∫

d3k′V̂ (k′)P(k)ψ(k − εk′)

− ε

∫
d3k′V̂ (k′)k′ · ∇k P(k)ψ(k − εk′) + O(ε2). (16.28)

By first-order perturbation theory

∇k P(k) = −Q(k)(H0(k) − E(k))−1∇k H0(k)P(k) + h.c., (16.29)

h.c. denoting the Hermitian conjugate. Therefore

QgV (εx)Pg = −iεQg∇ Pg · F(εx) + O(ε2) (16.30)

with the shorthand ∇ Pg = ∫ ⊕ d3k∇k P(k) and the force F(x) = −∇V (x).
The approximate time evolution is generated by

Hdg = H0 + Vdg, Udg(t) = e−iHdgt , (16.31)
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and our goal is to compare it with the full time evolution e−iHt = U (t) over times
of order ε−1, i.e. to estimate the difference

U (ε−1t) − Udg(ε
−1t) = −i

∫ t/ε

0
dsU (ε−1t − s)VodUdg(s) (16.32)

with t = O(1).
At this point we have arrived at a structure very similar to the time-adiabatic dif-

ference (16.14). Vod = O(ε) and time averaging must be used. As before, the trick
is to write Vod as a time derivate, i.e. as a commutator with H0, up to unavoidable
errors of order ε2. We set

B(k) = −Q(k)(H0(k) − E(k))−2∇k H0(k)P(k). (16.33)

Then

Q(k)∇k P(k) = −[H0(k), B(k)]. (16.34)

With the shorthand B = ∫ ⊕ d3k B(k) one has

Qg∇ Pg · F = [H0, B] · F = [H0, B · F] − B · [H0, F] = [H0, B · F] + O(ε),

(16.35)

since [H0, F] = 1
m (p − Pf − eAϕ) · [p, F] + h.c. and [p, F] = −iε∇x F(εx). It

remains to substitute Hdg for H0. One has [Vdg, B] = Qg[V, B]Pg. Since B =∫ ⊕ d3k B(k) and V = V (iε∇k), the commutator is of order ε, hence

Qg∇ Pg · F = [Hdg, B · F] + O(ε). (16.36)

On inserting in (16.32), we get

U (ε−1t) − Udg(ε
−1t) = −ε

∫ t/ε

0
dsU (ε−1t − s)[Hdg, B · F + F · B∗]Udg(s)

+O(ε)

= −ε

∫ t/ε

0
dsU (ε−1t − s)Udg(s)Udg(−s)[Hdg, B · F + F · B∗]Udg(s) + O(ε)

= iε
∫ t/ε

0
dsU (ε−1t − s)Udg(s)

d

ds
(B · F + F · B∗)(s) + O(ε)

= iε(B · F + F · B∗)Udg(ε
−1t) − iεU (ε−1t)(B · F + F · B∗)

− iε
∫ t/ε

0
ds

( d

ds
U (ε−1t − s)Udg(s)

)
(B · F + F · B∗)(s) + O(ε)

= O(ε), (16.37)
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since d
ds U (−s)Udg(s) = iU (−s)VodUdg(s) = O(ε) by (16.30). As in the time-

adiabatic setting the leakage out of the ground state subspace PgH is O(ε) for
times of order ε−1. In addition we have identified the effective Hamiltonian (16.22)
which approximately governs the time evolution inside PgH.

16.3 Matrix-valued symbols

If in (16.18) a slowly varying vector potential is added through minimal coupling,
then even on a formal level the argument of the previous section breaks down.
The reason is that the ground state subspace PgH is no longer even approximately
invariant under the time evolution. There is another subspace to take its role, but it
has to be computed rather than guessed. We immediately consider the general case
(16.1) and switch to the macroscopic space scale through the substitution x for εx .
Then the Hamiltonian under study is

H = 1

2m

( − iε∇x − Pf − eAϕ − eAex(x)
)2 − e

2m
σ · (Bϕ + εBex(x))

+ eφex(x) + Hf. (16.38)

As before, −i∇x refers to the total momentum, Aϕ = Aϕ(0), Bϕ = Bϕ(0).
The first step is to mold (16.38) into the canonical space-adiabatic form. For this

purpose we have to distinguish between the classical phase space variable (q, p)

and the corresponding operators, which exclusively for the purpose of sections
16.3–16.5 are denoted by q̂ = x , p̂ = −iε∇x . To the Hamiltonian (16.38) in the
obvious way we associate the operator-valued function (= symbol)

H(q, p) = H0(q, p) + εH1(q, p),

H0(q, p) = 1

2m

(
p − Pf − eAϕ − eAex(q)

)2 − e

2m
σ · Bϕ + eφex(q) + Hf,

H1(q, p) = − e

2m
σ · Bex(q). (16.39)

For fixed (q, p), H(q, p) acts as an operator on C
2 ⊗ F , C

2 standing for the spin
degrees of freedom. H0 is called the leading symbol and H1 the subleading symbol
for H because of the extra prefactor of ε in the first line of (16.39). To a symbol
one associates an operator through the Weyl quantization, which can be thought of
as a specific prescription for ordering x and −iε∇x . To be general, let A(q, p) be
an operator-valued function with Fourier transform Ã(η, ξ),

A(q, p) = (2π)−3
∫

d3ηd3ξ Ã(η, ξ)ei(η·q+ξ ·p). (16.40)
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The Weyl quantization of A is then simply

Wε(A) = (2π)−3
∫

d3ηd3ξ Ã(η, ξ)ei(η·̂q+ξ · p̂). (16.41)

A(q, p) is an operator-valued function and Wε(A) is an operator on the large
Hilbert space H = L2(R3) ⊗ C

2 ⊗ F . We will also use the notation

Wε(A) = A(̂q, p̂) = Â (16.42)

as a shorthand. Using the inverse Fourier transform in (16.40), Wε(A) can be writ-
ten in the form of an integral operator as

Wε(A)ψ(x) = (2π)−3
∫

d3ξd3y A(1
2(x + y), εξ)eiξ ·(x−y)ψ(y). (16.43)

Here A acts on ψ(x) which is a C
2 ⊗ F-valued wave function, ψ ∈ L2(R3, C

2 ⊗
F) = L2(R3) ⊗ (C2 ⊗ F) = H, and Wε(A) is an operator acting on H. Note
that f (̂q) = f (x), f ( p̂) = f (−iε∇x ) as operators. Also Wε(A) being Hermitian
is equivalent to A(q, p) = A(q, p)∗ for all (q, p). For the Weyl quantization of
H(q, p) from (16.39) one obtains simply

H (̂q, p̂) = H, (16.44)

as it should be. Thus the adiabatic evolution problem associated with (16.38) can
be written as

iε
∂

∂t
ψ(x, t) = H(x, −iε∇x )ψ(x, t) (16.45)

with the Weyl rule for the ordering of operators. Consistent with the macroscopic
space scale we switched also to macroscopic times through the substitution of t
for εt . Equation (16.45) looks like a standard Schrödinger equation, apart from
the fact that ψ(x, t) takes values in C

2 ⊗ F and H(q, p) acts as an operator on
C

2 ⊗ F .
H0(q, p) has a subspace of lowest energy with the corresponding projection

denoted by P(q, p). Deliberately ignoring pc < ∞, from section 15.3 we know
already that tr[P(q, p)] = 2 and

H0(q, p)P(q, p) = E(q, p)P(q, p) (16.46)

with the eigenvalue

E(q, p) = E(p − eAex(q)) + eφex(q). (16.47)

One would expect that the Peierls substitution E (̂q, p̂) somehow plays the role of
the effective one-particle Hamiltonian. Note that this would leave spin precession
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still hidden and, in fact, it will appear as the ε-order correction to the Peierls sub-
stitution E (̂q, p̂).

At this stage, as for the time-adiabatic theorem, it is convenient to abstract
from the specific origin of the space-adiabatic evolution (16.45). Thereby the
general structure of space-adiabatic problems becomes visible with the bonus
of wide applicability. For simplicity C

2 ⊗ F is replaced by C
n with n arbitrary.

In fact, a finite-dimensional internal Hilbert space is not essential and only al-
lows us to remain in familiar territory. We record that the Hamiltonian H(q, p) =
H0(q, p) + εH1(q, p) is a matrix-valued function, assumed to be smooth in q, p.
There is a relevant subspace of physical interest with energy band E(q, p) of con-
stant multiplicity 
. This means that H0(q, p) has the eigenprojection P(q, p),

[H0(q, p), P(q, p)] = 0, with tr[P(q, p)] = 
, 1 ≤ 
 < n, such that

H0(q, p)P(q, p) = E(q, p)P(q, p). (16.48)

Most importantly, H0 is assumed to have a spectral gap in the sense that

|E(q, p) − E j (q, p)| ≥ g > 0 (16.49)

for all (q, p) and all other eigenvalues E j (q, p) of H0(q, p). As before, the space-
adiabatic evolution is governed by

iε
∂

∂t
ψ(x, t) = H (̂q, p̂)ψ(x, t) (16.50)

with ψ(x, t) an n-spinor, i.e. the Hilbert space for the Schrödinger equation (16.50)
is L2(R3) ⊗ C

n = H. Note that, if in (16.50) H (̂q, p̂) is replaced by H(t), then
(16.50) turns into its time-adiabatic cousin (16.7) where the role of the relevant
projection P(q, p) is taken over by P(t).

The analysis of (16.50) will be carried out in such a way as to make use only of
(16.48) and (16.49) with no further assumptions at all on the spectrum of H0(q, p)

in the subspace orthogonal to P(q, p)Cn . For this reason we are confident that the
final result will apply also to the Pauli–Fierz Hamiltonian.

With the more general perspective gained, one can understand why the case
Aex = 0 can be handled by more elementary means. In that case H0(q, p) =
1

2m (p − Pf − eAϕ)2 + eφex(q). Thus P(q, p) depends only on p and P (̂q, p̂) =
Pg, the projection onto the ground state subspace. This suggests that also in the
general case P (̂q, p̂)H is the adiabatically decoupled subspace. Unfortunately
P (̂q, p̂)2 �= P (̂q, p̂), in general, although P(q, p)2 = P(q, p). On the other hand,
as will be shown, P (̂q, p̂)(1 − P (̂q, p̂)) = O(ε). Since P (̂q, p̂) is Hermitian, its
spectrum is of order ε concentrated near 0 and 1. Thus, at the expense of an error
of order ε, we can associate to P (̂q, p̂) a true projection operator P̃ (̂q, p̂), and
P̃ (̂q, p̂)H is the adiabatically protected subspace in lowest-order approximation.
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From the example of P (̂q, p̂) just discussed, it is clear that for a study of the
Schrödinger equation (16.50) in the limit of small ε one has to understand the re-
lationship between the multiplication of symbols and the multiplication of their
Weyl quantization, which is taken up next. Let A, B be two matrix-valued func-
tions. One defines their Moyal product A#B implicitly through the condition

Wε(A)Wε(B) = Wε(A#B). (16.51)

The Moyal product is best grasped in the case where the symbols are given as
formal power series,

A(q, p) =
∑
j≥0

ε j A j (q, p), B(q, p) =
∑
j≥0

ε j B j (q, p), (16.52)

where the expansion coefficients A j , B j do not depend on ε. The equality is un-
derstood as |A − ∑n−1

j≥0 ε j A j | ≤ cnε
n with constants cn possibly growing so fast

in n that the partial sums in (16.52) do not converge. Then A#B also has a formal
power series, which is written as

A#B =
∑
j≥0

ε j (A#B) j . (16.53)

Equating power by power in (16.51) one finds

(A#B) j (q, p) =
∑

|α|+|β|+l+m= j

(2i)−(|α|+|β|) (−1)|β|

|α|!|β|!∂
α
q ∂β

p Al(q, p)∂α
p∂β

q Bm(q, p),

(16.54)

where it is understood that j, l, m ∈ N and α, β are multi-indices, α, β ∈ N
3. To

lowest order

(A#B)0 = A0 B0, (A#B)1 = A0 B1 + A1 B0 − i

2
{A0, B0}. (16.55)

We introduced here the Poisson bracket {·, ·} for matrix-valued functions. It is
defined by

{A, B} = ∇p A · ∇q B − ∇q A · ∇p B, (16.56)

the dot referring to the scalar product of the two gradients. Thus even if the formal
power series for A, B consists only of the leading term, A = A0, B = B0, as is the
case for P(q, p), their Moyal product is a formal power series starting with

A#B = AB − ε
i

2
{A, B} + O(ε2) (16.57)
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and, by definition, the lowest-order product becomes

Wε(A)Wε(B) = Wε(AB − ε
i

2
{A, B}) + O(ε2). (16.58)

Note that in (16.56) the order of matrices must be respected. In general, it is not
true that {A, A} = 0, or {A, B} = −{B, A}, as one is used to from the standard
calculus of Poisson brackets.

In the sequel, very roughly the idea is to use (16.51) as a link between functions
of operators, like the time-evolved position operator q̂(t) = eiHt/εq̂e−iHt/ε, and
matrix-valued symbols. In particular, one can regard the matrix-valued function
P(q, p) as the lowest-order symbol for the true Hilbert space projection onto the
adiabatically decoupled relevant subspace.

16.4 Adiabatic decoupling, effective Hamiltonians

As noticed already, in general P (̂q, p̂) is not a projection, due to errors of order ε.
This suggests to successively correct P(q, p) with the goal in Weyl quantization
to get a projection up to precision εn , n arbitrary, a situation denoted by the symbol
O(ε∞). We make the ansatz

π(q, p) =
∑
j≥0

ε jπ j (q, p), π0(q, p) = P(q, p) (16.59)

and recall that in general

H(q, p) =
∑
j≥0

ε j H j (q, p), (16.60)

where in our specific application Hj = 0 for j ≥ 2. The Weyl quantization for π

should be a projection and commute with H (̂q, p̂) up to errors O(ε∞). π has then
to satisfy the conditions

π∗ = π, π#π = π, π#H = H#π. (16.61)

Through an iterative procedure it can be shown that the symbol π is in fact
uniquely determined by (16.61). By construction Wε(π)2 = Wε(π) + O(ε∞) and
there is a projection operator � on H naturally associated to Wε(π). If we assume
the initial wave function ψ to lie in �H, �ψ = ψ , then for the true solution
ψ(t) = e−iHt/εψ one has

(1 − �)ψ(t) = O(ε∞). (16.62)

For this reason �H is called an almost invariant subspace, associated to the
relevant projection P(q, q). On the adiabatic scale transitions out of �H are
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exponentially suppressed as e−(1/ε) and the dynamics on �H is governed by the
diagonal Hamiltonian Hdg = �Ĥ�.

Equation (16.62) solves the adiabatic problem only in principle. To have a work-
able scheme it is required to have a basis in �H which is in some sense naturally
adapted to the slow degrees of freedom and in which Hdg can be computed per-
turbatively. Of course, the hope is that low-order perturbation will suffice. For this
purpose we pick a fixed (q, p)-independent basis |χα〉, α = 1, . . . , n, in C

n and
define the 
-dimensional reference projection

πr =

∑

α=1

|χα〉〈χα|. (16.63)

Since |χα〉 does not depend on (q, p), 1 ⊗ πr = π̂r = Wε(πr) is a projection
and its range defines the reference Hilbert space L2(R3) ⊗ πrC

n = Hr as a sub-
space of H. Of course, at this stage the reference subspace is fairly arbitrary
and a convenient choice must be made in concrete applications. The projection
P(q, p) is spanned by the eigenvectors ψα(q, p), α = 1, . . . , 
, of H0(q, p),
〈ψα(q, p), ψβ(q, p)〉Cn = δαβ . The unitary map from P(q, p)Cn to the reference
subspace is then

u0(q, p) =

∑

α=1

|χα〉〈ψα(q, p)|. (16.64)

If u0 were completed to a unitary operator ũ0 on C
n , then for every q, p the n × n

matrix ũ0 H0ũ∗
0 is block diagonal, with block sizes 
 and n − 
, and has in the 
 × 


left upper block only the diagonal entries E(q, p).
As in the case of the projection P(q, p), Wε(u0) is in general not unitary with

an error of order ε. Thus we iteratively correct so as to obtain a proper unitary
operator from �H to the reference subspace Hr. The ansatz is

u(q, p) =
∑
j≥0

ε j u j (q, p), (16.65)

with u0 as in (16.64). Unitarity and transformation of π to πr translates into

u∗#u = 1, u#u∗ = 1, u#π#u∗ = πr. (16.66)

One can show that such a symbol u exists. Since u0 is already not unique, neither
is u. As with π(q, p), one associates with u a unitary operator U : �H → Hr. On
Hr the motion is governed by U�Ĥ�U∗ and it agrees with the true solution up
to O(ε∞). U�Ĥ�U∗ has a symbol determined through

h = u#H#u∗. (16.67)
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We call h the effective Hamiltonian, associated to the almost invariant subspace
�H. The crux of the construction is that h can be represented by a formal power
series,

h =
∑
j≥0

ε j h j (16.68)

and the effective Hamiltonian is successively approximated through the Weyl
quantization

Wε(h) = Wε(πrh0πr) + εWε(πrh1πr) + · · · . (16.69)

Let us work out the two lowest orders. Clearly

πrh0πr = πru
∗
0 H0u0πr = E(q, p)πr. (16.70)

Its Weyl quantization is E (̂q, p̂)πr which is the anticipated Peierls substitution. In
spinor space E(q, p)πr is diagonal, see (16.63), and there is no internal motion
at this order yet. For h1 it is easier to rewrite (16.67) as H#u = u#h and there-
fore (H0 + εH1)#(u0 + εu1) = (u0 + εu1)#(h0 + εh1). Using (16.57) one thus
obtains

h1 =
(

u1 H0 + u0 H1 − h0u1 − i

2
{u0, H0} + i

2
{h0, u0}

)
u∗

0. (16.71)

Projecting onto πr, the terms H0u1 and u1h0 cancel and h1 simplifies to

πrh1πr = πr

(
u0 H1u∗

0 − i

2
{u0, H0}u∗

0 + i

2
{E, u0}u∗

0

)
πr. (16.72)

u0 is inserted from Eq. (16.64). In the basis of the reference Hilbert space one then
obtains to first order

〈χα, (h0 + εh1)χβ〉Cn = Eδαβ + ε〈ψα, H1ψβ〉Cn − ε
i

2
〈ψα, {H0 + E, ψβ}〉Cn

+O(ε2), (16.73)

where α, β = 1, . . . , 
, and where the Poisson bracket is understood as

{H0, ψα} = ∇p H0 · ∇qψα − ∇q H0 · ∇pψα (16.74)

with H0 acting on ψα as a matrix. The Weyl quantization of h0 + εh1 is the effec-
tive Hamiltonian in L2(R3) ⊗ C


 to that order.
In principle, our scheme can be pushed up to arbitrary order. Formulas for h2

are available, but they are already so involved that h3 is out of reach. Physically
the dominant effects are in h0, h1, and to some extent in h2. Further terms will add
only a minute correction. Of course, the adiabatic decoupling relies on the gap
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assumption (16.49). In the case where the energy bands of H0(q, p) cross, or
almost cross, transition between bands become possible and the qualitative picture
developed so far breaks down. Away from crossings the description through the
effective Hamiltonian is still accurate, but close to nearly avoided crossings new
techniques come into play.

The formula (16.73) looks unfamiliar. To get acquainted, a simple but instruc-
tive way is to return to the time-adiabatic setting of section 16.1, where H(t) is a
time-dependent n × n matrix and the relevant subspace has a constant multiplicity

. It is spanned by the instantaneous eigenvectors ϕα(t), H(t)ϕα(t) = E(t)ϕα(t),
α = 1, . . . , 
, and the projection onto the relevant subspace is given by P(t) =∑


α=1 |ϕα(t)〉〈ϕα(t)|. As before, one needs a reference subspace of dimension 


with time-independent basis |χα〉, α = 1, . . . , 
. We do not spell out the details
of the computation, but state the final result. Including order ε, the unitary U ε(t)∗
from the reference space C


 into C
n = Hf is given by

U ε(t)∗ =

∑

α=1

(|ϕα(t)〉 + |iε(H(t) − E(t))−1(1 − P(t))ϕ̇α(t)〉)〈χα| + O(ε2).

(16.75)

U ε(t)∗ should be thought of as a kinematical component. It says, for each t , how
the adiabatically protected subspace lies in C

n . To order 1 the subspace is just
P(t)Cn and (16.75) provides the first-order correction. The dynamical piece pro-
vides the information of how the solution vector rotates inside the almost invariant
subspace. It is governed by the effective Hamiltonian acting in C


, which to order
ε2 has the form

hαβ(t) = δαβ E(t) − iε〈ϕα(t), ϕ̇β(t)〉Cn

+ 1

2
ε2〈ϕ̇α(t), (H(t) − E(t))−1(1 − P(t))ϕ̇β(t)〉Cn + O(ε3), (16.76)

α, β = 1, . . . , 
. The second term of h(t) is the Berry phase. The approximate so-
lution to (16.7) is obtained by first solving the time-dependent Schrödinger equa-
tion with heff(t) in the reference subspace C


 and then mapping into H through
the unitary (16.75). Thereby the error in (16.8) is improved to order ε2. In addition
we know how the vector ψ(t) rotates inside the relevant subspace. With some
effort the precision could be improved to O(ε3). Abstractly, an error O(ε∞) is
guaranteed.

Matrix-valued symbols are a very powerful tool in the analysis of the space-
adiabatic limit. But, in the end, one would like to have a result on the Schrödinger
equation (16.45). This is always possible because the two frames of description
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are linked through Weyl quantization. To order ε the result is

e−iH (̂q, p̂)t/εψ = u0(̂q, p̂)∗e−i(h0 (̂q, p̂)+εh1 (̂q, p̂))t/εu0(̂q, p̂)ψ + (1 + |t |)O(ε)

(16.77)

provided the initial wave function lies in the relevant subspace, i.e. π0(̂q, p̂)ψ =
ψ . On the right, one has the effective dynamics in the reference subspace L2(R3) ⊗
C


 as generated by Wε(h0 + εh1). Then Wε(u0) which, up to error ε, is uni-
tary turns the effective evolution into the physical Hilbert space L2(R3) ⊗ C

n .
The error (1 + |t |)O(ε) comes from the correction of π0 to π0 + επ1, of u0

to u0 + εu1, and from the correction of h0 + εh1 to h0 + εh1 + ε2h2. Equation
(16.77) agrees with our findings for the particular case studied in section 16.2.
There h0(q, p) = E(p) + V (q) and h1(p) = −i〈ψg(p), ∇pψg(p)〉F = 0 by our
choice of the phase for ψg(p). Once the spin is included, h1 no longer vanishes,
see section 16.6.

At the risk of repeating the obvious: expectations of physical observables have
the form 〈ψt , Aψt 〉. Thus if ψt is unitarily transformed so must be the observable
A. When using the effective Hamiltonian of (16.67) one has to properly transform
the observables of physical interest. To lowest order x and −i∇x transform into
themselves. But, in general, to first order there will be corrections. Also, the basis
ψα(q, p), α = 1, . . . , 
, of the relevant subspace must be selected judiciously such
that in the |χα〉-basis observables of interest have a simple representation. We will
come back to this point in the context of the Pauli–Fierz operator; see section 16.6
below. The Weyl quantization of the effective Hamiltonian (16.67) still carries the
small parameter ε which suggests using semiclassical methods, a subject to be
taken up in the following section. For general E(q, p), the semiclassical regime is
limited by the Ehrenfest time which in our units is of order log ε−1. We stress that
the adiabatic limit has no such restrictions, as can be seen from (16.77): if one had
included the term h2, the approximation with the given precision would be valid
for macroscopic times of order ε−1.

16.5 Semiclassical limit

According to Eq. (16.73) the effective Hamiltonian has the form

H = H (̂q, p̂ ) = E (̂q, p̂)1l + εHsp(̂q, p̂) (16.78)

acting on L2(R3) ⊗ C

, where for clarity 1l denotes the 
 × 
 unit matrix. The last

two terms in (16.73) have been renamed as Hsp anticipating that they are respon-
sible for the precession of the 
-spinor.
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The semiclassical limit can be guessed most directly by considering the Heisen-
berg evolution of the semiclassical observable â = a(̂q, p̂) as

â(t) = eiHt/εâe−iHt/ε. (16.79)

â(t) has a semiclassical representation through a(q, p, t) = ∑
j≥0 ε j a j (q, p, t).

From the equations of motion

ε
d

dt
â(t) = i[H, â(t)], (16.80)

using [E1l, a j (t)] = 0, one finds to lowest order

d

dt
a0(t) = {E, a0(t)} + i[Hsp, a0(t)] + O(ε) (16.81)

with initial conditions a0(0) = a.
Ignoring the error O(ε), the solution to (16.81) is easily constructed. First one

defines the classical flow Φt on phase space through

q̇t = ∇p E(qt , pt ), ṗt = −∇q E(qt , pt ). (16.82)

Secondly, given the initial condition (q, p) with corresponding trajectory (qt , pt )

one obtains the time-dependent spin Hamiltonian Hsp(t) = Hsp(qt , pt ). It deter-
mines the spinor evolution as

i
d

dt
χ(t) = Hsp(t)χ(t), χ(t) ∈ C


. (16.83)

The unitary propagator for (16.83) from s to t is denoted by U (t, s|q, p), recalling
that it depends on the trajectory through its initial conditions. Then

a0(q, p, t) = U (t, 0|q, p)∗a(�t (q, p))U (t, 0|q, p), (16.84)

as can be verified by inserting in (16.81).
In the semiclassical limit there is no back-reaction of the spin on the orbit. Such

an effect could be seen in corrections to the semiclassical limit and in the next-
order correction, h2, to the effective Hamiltonian.

The predictions of the semiclassical limit move more sharply into focus through
considering the dual Schrödinger picture. One picks a possibly ε-dependent initial
wave function such that for expectations of semiclassical observables the limit

lim
ε→0

〈ψε, a(̂q, p̂)ψε〉 =
∫

tr[ρcl(d
3qd3 p)a(q, p)] (16.85)

holds, examples being listed below. Here tr is over C

. ρcl(d3qd3 p) is a matrix-

valued classical probability measure on phase space, ρcl(d3qd3 p) ≥ 0 as a matrix
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and
∫

tr[ρcl(d3qd3 p)] = 1. Then at later times, from (16.82) and (16.84),

lim
ε→0

〈e−iHt/εψε, âe−iHt/εψε〉 = lim
ε→0

〈ψε, â(t)ψε〉

=
∫

tr[ρcl(d
3qd3 p)U (t, 0|q, p)∗a(�t (q, p))U (t, 0|q, p)]

=
∫

tr[U (t, 0|q, p)ρcl ◦ �−t (d
3qd3 p)U (t, 0|q, p)∗a(q, p)]. (16.86)

The classical part of the measure is transported through the classical flow, while
the spinor part evolves through the spin Hamiltonian Hsp(qt , pt ). In this sense the
quantum expectation on the left of (16.86) is approximated by the classical aver-
age on the right, keeping in mind that the internal spinor motion remains of full
quantum nature.

We list a few conventional choices, where the position variable refers to the
macroscopic scale. In wave packet dynamics one assumes a sharp concentration
as ρcl(d3qd3 p) = |χ〉〈χ |δ(q − q0)δ(p − p0)d3qd3 p. Then at later times the wave
packet is concentrated at (qt , pt ) and the spin χt precesses according to (16.83). A
particular choice would be an initially Gaussian wave packet, which depends on ε

such that 〈x〉ε = q0, 〈−iε∇x 〉 = p0, 〈(x − q0)
2〉ε → 0, and 〈(−iε∇x − p0)

2〉ε →
0 as ε → 0. Note that to achieve the concentration in momentum the position is
necessarily broadly distributed on the atomic scale. A WKB wave function is of
the form ψε(x) = χ(x)eiS(x)/ε. In the limit ε → 0 it defines the initial distribu-
tion ρcl(d3qd3 p) = |χ(q)〉〈χ(q)|δ(p − ∇S(q))d3qd3 p. As a measure on the six-
dimensional phase space it is concentrated on a three-dimensional hypersurface,
a property which is retained by the flow �t . Since this surface may in general
fold up in the course of time, it cannot be represented as the graph of a func-
tion. For fixed q there could be several values of p. The wave function U ε(t)ψε

has the standard WKB form only locally in phase space. A further choice is
a microscopic wave packet which in our units reads as ψε(x) = χε−3/2ψ(x/ε)

with some given wave function ψ on the microscopic scale. Then ρcl(d3qd3 p) =
|χ〉〈χ |δ(q)|ψ̂(p)|2d3qd3 p. The wave packet is spatially localized, necessarily
with a spread in momentum. ρcl is concentrated on the three-dimensional surface
{(q, p)|q = 0} in phase space. Thus at a later time it will be of WKB form locally.

If we look back at our starting point, an electron subject to slowly varying exter-
nal potentials governed by the Hamiltonian (16.1), it may appear that we have lost
sight of our goal. To improve, we summarize our main findings on a qualitative
level. First, slow variation is satisfied for all laboratory fields including those em-
ployed in the big accelerator machines. The translational degrees of freedom of the
electron are thus governed in an excellent approximation by an effective Hamil-
tonian obtained from the Peierls substitution, Heff = E( p̂ − eAex(̂q)) + eφex(̂q).
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In particular for small velocities, relying on the results from chapter 15,

Heff = 1

2meff
( p̂ − eAex(̂q))2 + eφex(̂q). (16.87)

To understand the spin precession, one has to compute the first-order correction h1

to the effective Hamiltonian, which is the topic of the section to follow.

16.6 Spin precession and the gyromagnetic ratio

The time of pleasant harvest has come. The Hamiltonian is (16.38) with principal
symbol

H0(q, p) = H(p − eAex(q)) + eφex(q); (16.88)

compare with (16.39). H(p) acts on C
2 ⊗ F and is defined in (15.68), where for

notational convenience we use H(p) instead of Hp. From section 15.3 we know
that H(p) has a two-fold degenerate ground state with energy E(p) and projec-
tor P(p), tr[P(p)] = 2 provided |p| ≤ pc (∼= m). Therefore P(q, p) = P(p −
eAex(q)) as a projection operator on C

2 ⊗ F defines the relevant subspace for
H0(q, p) with corresponding eigenvalue E(q, p) = E(p − eAex(q)) + eφex(q).
To lowest order the symbol of the effective Hamiltonian is then

h0(q, p) = E(q, p)11 = (
E(p − eAex(q)) + eφex(q)

)
1l, (16.89)

with 1l the 2 × 2 unit matrix, and the orbital motion is approximately governed by

h0(̂q, p̂) = (
E(−iε∇x − eAex(x)) + eφex(x)

)
1l. (16.90)

The spin precession requires more attention. First of all one has to specify
a basis in P(p)C2 ⊗ F . The singled-out choice is the eigenvectors of the to-
tal angular momentum component parallel to p, which we denote by ψg±(p, k),
〈ψg−(p), ψg+(p)〉C2⊗F = 0. To define them properly, we follow section 13.5 and
introduce the total angular momentum

J = 1

2
σ + Jf + Sf, (16.91)

see (13.96), (13.97). If R is a rotation by angle θ relative to the axis of rotation n̂
through the origin, then

eiθ n̂·J eλ(k)a(k, λ)e−iθ n̂·J = Reλ(R−1k)a(R−1k, λ) (16.92)

and therefore

eiθ n̂·J Aϕe−iθ n̂·J = R Aϕ, eiθ n̂·J Bϕe−iθ n̂·J = R Bϕ, eiθ n̂·J σe−iθ n̂·J = Rσ.

(16.93)
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If n̂ is parallel to p, n̂ = p/|p|, these relations imply that the component of J
along p is conserved,

[H(p), p · J ] = 0. (16.94)

|p|−1 p · J has the eigenvalues ±1
2 , ±3

2 , . . . . For e = 0, |p|−1 p · J has eigenval-
ues ±1

2 in the ground state subspace of H(p). By continuity, for e �= 0, the eigen-
value equations H(p)ψg±(p) = E(p)ψg±(p), |p|−1 p · Jψg±(p) = ±1

2ψg±(p)

uniquely determine the basis vectors ψg±(p), up to phase factors e−iθ±(p). We
interpret these states as having spin pointing parallel, eigenvalue 1

2 , and anti-
parallel, eigenvalue −1

2 , to p. On the other hand, except for p = 0, one has
[H(p), p′ · J ] �= 0 unless |p|−1 p = ±|p′|−1 p′.

The effective spin Hamiltonian in the p · J -basis is derived with the help
of (16.73), recalling the subprincipal symbol H1(q, p) from (16.39). Setting
ψg±(q, p) = ψg±(p − eAex(q)) one obtains

〈α|Hsp(q, p)|β〉 = − e

2m
Bex(q) · 〈ψgα(q, p), σψgβ(q, p)〉C2⊗F

− i

2
〈ψgα(q, p), {H0(q, p) + E(q, p), ψgβ(q, p)}〉C2⊗F ,

(16.95)

α, β = ±. Working out the Poisson bracket yields

〈α|Hsp(q, p)|β〉 = − Bex(q) ·
( e

2m
〈ψgα( p̃), σψgβ( p̃)〉C2⊗F

− i

2
e〈∇pψgα( p̃), ×(H( p̃) − E( p̃))∇pψgβ( p̃)〉C2⊗F

)
+ e

( − ∇qφex(q) + v × Bex(q)
) · 〈ψgα( p̃), i∇pψgβ( p̃)〉C2⊗F

(16.96)

with the velocity v = ∇p E( p̃) and p̃ = p − eAex(q). The spin Hamiltonian has
a simple interpretation: through the coupling to the field the electron acquires the
effective magnetic moment

〈α|Mm( p̃)|β〉 = e

2m
〈ψgα( p̃), σψgβ( p̃)〉C2⊗F

− i

2
e〈∇pψgα( p̃), ×(H( p̃) − E( p̃))∇pψgβ( p̃)〉C2⊗F (16.97)

and the effective electric moment

〈α|Me( p̃)|β〉 = −e〈ψgα( p̃), i∇pψgβ( p̃)〉C2⊗F . (16.98)
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They are operators on spin space depending on the kinetic momentum p̃. The spin
Hamiltonian then reads

Hsp = −Bex · Mm − FL · Me (16.99)

with the Lorentz force FL = −∇qφex(q) + v × Bex(q). Note that on top of the ob-
vious magnetic splitting, the effective moments are determined through geometric
phases.

The semiclassical analysis of (16.90) together with (16.96) was discussed in the
previous section. Of particular interest is the case of a small uniform magnetic field
B, i.e. φex = 0, Aex(q) = 1

2 B × q. For small velocities the orbital motion is then
governed by

meff
d

dt
vt = evt × B; (16.100)

see (15.23) for the definition of the effective mass, which yields the cyclotron
frequency

ωc = e|B|/meff. (16.101)

Since p̃ = 0, we may pick arbitrarily the J3-basis with eigenvectors ψg± =
ψg±(0) determined through H(0)ψg± = E(0)ψg±, J3ψg± = ±1

2ψg±. Using first-
order perturbation theory for ∇pψg±(0), the spin Hamiltonian simplifies to

〈α|Hsp|β〉 = − e

2m
B · 〈ψgα, σψgβ〉C2⊗F

+ i

2
eB · 〈ψgα,

1

m
(Pf + eAϕ)

1

H(0) − E(0)

1

m
(Pf + eAϕ)ψgβ〉C2⊗F .

(16.102)

H(0) is rotation invariant; see the discussion leading to (16.94). Therefore Hsp is
necessarily of the form

Hsp = − e

2m

g̃

2
B · σ, (16.103)

which yields g̃ as

1

2
g̃ = 〈ψg+, σ3ψg+〉C2⊗F

− 2

m
Im〈ψg+, (Pf + eAϕ)2

1

H(0) − E(0)
(Pf + eAϕ)1ψg+〉C2⊗F .

(16.104)
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Note that Hsp does not depend on the choice of the phase e−iθ+(p) for ψg+(p). In
our approximation, the spin motion is governed by

d

dt
σ(t) = − e

2m
g̃B × σ(t), (16.105)

from which the frequency of spin precession

ωs = e|B |̃g/2m (16.106)

follows.
The conventional definition of the gyromagnetic factor is

g = 2ωs/ωc. (16.107)

Comparing (16.100) and (16.105) yields

g = meff

m
g̃. (16.108)

We stress that Eq. (16.108) is nonperturbative in the sense that it is valid for any
coupling strength e. In the derivation it is assumed that the external magnetic field
is weak, an assumption which certainly holds, since experimentally the radius of
gyration is of the order of meters. Equation (16.108) is the g-factor at p = 0. At
p �= 0, since the Pauli–Fierz model is nonrelativistic, there is a p-dependent g-
factor with components parallel and transverse to p.

Under our standard assumptions, g depends analytically on the coupling
strength e and it is of interest to obtain the order e2 correction to g = 2 at e = 0.
For this purpose it is convenient to switch to the dimensionless units of section
19.3. The effective mass is defined through (15.23). Compared to (15.36) there is
an extra contribution from the fluctuating magnetic field and one obtains

meff

m
= 1 + 2

3
e2

∫
d3k|ϕ̂(k/λc)|2

[
k2

(
1 + 1

2
|k|

)]−1

+ 1

6
e2

∫
d3k|ϕ̂(k/λc)|2

[(
1 + 1

2
|k|

)3]−1 + O(e4). (16.109)

Next we have to determine g̃, which is the sum g̃1 + g̃2. H(0) is written as H(0) =
H0 + eH1 + 1

2e2 H2. At e = 0, ψg+ = χ+ ⊗ 	, σ3χ+ = χ+, and g̃1 = 2, g̃2 = 0.

Expanding ψg+ to first order in e as ψg+ = χ+ ⊗ 	 + (e/2)H−1
0 σ · Bϕχ+ ⊗ 	 +

O(e2), we insert in (16.104). For g̃1 there is a contribution from the normaliza-
tion of ψg+ and one contribution involving (e2/4)〈χ+ ⊗ 	, σ · Bϕ H−1

0 σ3 H−1
0 σ ·
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Bϕχ+ ⊗ 	〉C2⊗F . The net result is

1

2
g̃1 = 1 − 1

4
e2

∫
d3k|ϕ̂(k/λc)|2

[
|k|

(
1 + 1

2
|k|

)2]−1

− 1

12
e2

∫
d3k|ϕ̂(k/λc)|2

[
|k|

(
1 + 1

2
|k|

)2]−1 + O(e4). (16.110)

For g̃2 only one of the two ground states is expanded to order e. Hence
one has a contribution proportional to 〈χ+ ⊗ 	, (Aϕ2 H−1

0 Pf1 H−1
0 σ · Bϕ − σ ·

Bϕ H−1
0 Pf2 H−1

0 Aϕ1)χ+ ⊗ 	〉C2⊗F . The net result is

1

2
g̃2 = −1

3
e2

∫
d3k|ϕ̂(k/λc)|2

[
|k|

(
1 + 1

2
|k|

)2]−1
. (16.111)

Adding up (16.109), (16.110), and (16.111), the g-factor to order e2 is given by

g = 2
(

1 + 2

3
e2

∫
d3k|ϕ̂(k/λc)|2

[
k2

(
1 + 1

2
|k|

)3]−1) + O(e4). (16.112)

In Heaviside–Lorentz units e2 = 4πα. We also set the sharp cutoff ϕ̂(k) =
(2π)−3/2 for |k| ≤ �, ϕ̂(k) = 0 for |k| > �. Then

g = 2
(

1 + 8

3

( α

2π

)
(1 − (1 + (�/2λc))

−2) + O(α2)
)
. (16.113)

Clearly g > 2, as observed experimentally. It is remarkable that g stays bounded
in the limit � → ∞ and

g∞ = 2
(

1 + 8

3

( α

2π

) )
+ O(α2), (16.114)

which is to be compared with 2
(
1 + (α/2π)

) + O(α2) from fully relativistic QED.
Evidently the nonrelativistic Pauli–Fierz model overestimates the contribution
from large wave numbers by a factor 8/3. The result (16.114) is satisfactory, since
it nourishes the hope that the Pauli–Fierz model makes reasonable predictions even
when the ultraviolet cutoff � is removed.

Notes and references

Section 16.1

In the old quantum theory classical adiabatic invariants were associated with
good quantum numbers (Ehrenfest 1916). Thus the time-adiabatic theorem was an
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important consistency check of the Heisenberg–Schrödinger quantum mechanics
(Born 1926; Born and Fock 1928). Kato (1958) proves the adiabatic theorem under
the condition that the relevant subspace has finite dimension and is separated by a
spectral gap. In fact, the theorem holds in much greater generality than explained
in the text. Only a corridor separating the relevant energy band from the rest is
needed. The spectrum inside the band can be arbitrary. The error in (16.8) may be
improved to any order at the expense of a slight tilt of the subspace P(εt)H, as first
recognized by Lenard (1959) and further refined by Garrido (1965), Berry (1990),
Joye et al. (1991), Nenciu (1993), and Joye and Pfister (1994). We refer also to the
interesting collection of articles by Shapere and Wilczek (1989). Sjöstrand (1993)
discusses the higher-order corrections from the point of view of pseudodifferential
operators; compare with section 16.4 and Panati et al. (2003a). If H(t) depends
analytically on t , the error becomes e−1/ε, which complements the Landau–Zener
formula for almost crossing of eigenvalues (Joye and Pfister 1993). If there is no
gap, but a smooth t-dependence as before, the adiabatic theorem still holds (Avron
and Elgart 1999; Bornemann 1998; Teufel 2001). The error depends on the con-
text. It can be as small as in (16.8), but in general it will be larger.

Section 16.2

Our discussion of the space-adiabatic limit ignores technical details on purpose.
They are supplied in Teufel and Spohn (2002), Spohn and Teufel (2001), and
Teufel (2003). Most importantly, since pc < ∞, one needs a local version of
the result explained in the text in the following sense. In the limit ε → 0 the
initial state defines a classical probability measure ρcl(d3qd3 p) on phase space
R

6; compare with section 16.5. ρcl is transported by the classical flow �t with
Hamiltonian (16.22) as ρcl ◦ �−t . If ρcl is supported in R

3 × {p| |p| < pc}, then
there is a first time thit at which the support of ρcl ◦ �−t hits the boundary
R

3 × {p| |p| = pc}. The approximation through an effective Hamiltonian is valid
for times 0 ≤ t < ε−1thit.

Section 16.3

Weyl quantization, the Moyal product, and matrix-valued symbols are discussed in
Robert (1987, 1998), Dimassi and Sjöstrand (1999), Martinez (2002), and Panati
et al. (2003a). The Moyal product is introduced in Moyal (1949).

Section 16.4

The methods explained in this section have a rich history with motivations ranging
from singular partial differential equations and Fourier integral operators to the
motion of electrons in solids subject to a small magnetic field. Blount (1962a, b, c)
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develops a similar scheme for computing effective Hamiltonians and applies it to
Bloch electrons and to the Dirac equation. In particular, he computes the second-
order symbol h2. In the solid state physics literature his work is a standard ref-
erence, but his method is hardly applied to concrete problems. We refer to the
discussion in Panati et al. (2003b) for an example in the case of magnetic Bloch
bands. Starting from coupled wave equations Littlejohn and Flynn (1991) and Lit-
tlejohn and Weigert (1993) develop the technique of unitary operators close to the
identity on the level of symbols in the case where the principal symbol is a nonde-
generate matrix. They apply their scheme to Born–Oppenheimer-type problems,
where H0(q, p) = p21l + V (q) with V (q) an n × n matrix. On an abstract level
the Born–Oppenheimer approximation is similar to the Pauli–Fierz model with a
slowly varying external electrostatic potential only. The role of the invariant sub-
space is emphasized by Nenciu (1993). The formal power series for the projector
π(q, p) is constructed by Brummelhuis and Nourrigat (1999) for the Dirac equa-
tion, by Martinez and Sordoni (2002) for Born–Oppenheimer-type Hamiltonians
and in the general matrix-valued case by Nenciu and Sordoni (2001). Our discus-
sion is based on Panati et al. (2003a). The lecture notes by Teufel (2003) give de-
tailed coverage with many examples, including the case of Bloch electrons (Panati
et al. 2003b). There also a more complete listing of the literature can be found.

Section 16.5

There is a vast literature on semiclassical methods, both on the theoretical physics
and on the mathematical side; to mention only a few representatives: Maslov
and Fedoriuk (1981), Gutzwiller (1990), and Robert (1987, 1998). These works
are mostly concerned with the scalar case. An alternative technique is to employ
matrix-valued Wigner functions (Gérard et al. 1997; Spohn 2000b). In this
approach the adiabatic and semiclassical limits are fused, which is conceptually
misleading. Also higher-order corrections are not accessible. An important
example is the Dirac equation which has matrix dimension n = 4 and degeneracy

 = 2 of, for example, the electron subspace. The adiabatic limit yields the BMT
equation of chapter 10, as discussed in Panati et al. (2003a). Blount (1962c)
computes the next-order correction. It seems to be of interest in accelerator
physics (Heinemann and Barber 1999), despite its fairly complicated structure.
Yajima (1992) studies the derivation of the BMT equation using WKB methods,
which are rather difficult to handle because of the necessity to switch coordinate
systems on the Lagrangian manifold.

The classical limit of the free Maxwell field with classical sources is regarded as
sort of obvious. An instructive discussion is Thirring (1958) and Sakurai (1986).
Photon counting statistics is covered by Carmichael (1999).
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Section 16.6

The gyromagnetic ratio of the electron is the most famous and precise predic-
tion of QED with the current value gtheor/2 = 1.001 159 652 459 (135) as based
on an eight-loop computation, see Kinoshita and Sapirstein (1984) for a review.
This result compares extraordinarily well with the experimental value gexp/2 =
1.001 159 652 193 (4) of van Dyck, Schwinberg and Dehmelt (1986) based on
measurements on a single electron in a Penning trap, see also Brown and Gabrielse
(1986), and Dehmelt (1990). The nonrelativistic theory yields gnon/2 = 1.0031,
with no cutoffs. The nonperturbative formula (16.108) seems to be novel and is
described in Panati et al. (2002b). A rough approximation is provided by Welton
(1948). Grotch and Kazes (1977) discuss the g-factor for the Pauli–Fierz model
and obtain the second-order result (16.113) through computing energy shifts; com-
pare with section 19.3.5. Surprisingly, they do not stress the obvious point: the
g-factor is not too far off the truth even in the limit � → ∞. After all, the mis-
trust in QED up to the early 1940s was based mainly on the results being cutoff-
dependent and diverging as � → ∞; see Schweber (1994).



17

Radiation

The theoretical understanding of the emission of light from atoms is inseparably
linked with the development of quantum mechanics – the first glimpse of the full
answer unraveled by P. A. M. Dirac in February 1927. A minimal model for radi-
ation has to consist of at least one atom and the photons. Thus we fix an infinitely
heavy nucleus at the origin, say, and describe the motion of a single electron by
the spinless Pauli–Fierz Hamiltonian

H = 1

2m
(p − eAϕ(x))2 + Vϕcoul(x) + Hf (17.1)

with Vϕcoul(x) = −e2
∫

d3x1d3x2ϕ(x1)ϕ(x2)(4π |x + x1 − x2|)−1, the smeared
Coulomb potential. Besides radiation, (17.1) describes a multitude of physical pro-
cesses of interest. If the electron is free, i.e. far away from the nucleus, photons
scatter off the electron (Compton effect). As the electron approaches the nucleus it
will be scattered under the emission of bremsstrahlung (Rutherford scattering). In
contrast, in this chapter we are interested in processes where the electron remains
tightly bound to the nucleus. Of course, these two worlds are not strictly separated.
The electron might be captured by the nucleus at the expense of radiated energy.
Conversely, the atom may become ionized by hitting it with sufficiently energetic
radiation (photoelectric effect). Even in the realm of a bound electron, several
processes should be distinguished. The most basic one is spontaneous emission,
through which the atom in an excited state loses energy and ends up in the radi-
ationless ground state. A photon may be scattered by the atom leaving the atom
behind in either its ground state (elastic Rayleigh scattering) or in an excited state
(inelastic Rayleigh scattering) which is then followed by spontaneous emission.
Both processes will be discussed in separate sections.

Under usual circumstances the wavelength of emitted light is much larger than
the size of an atom. In this case one can ignore the variation of the vector poten-
tial in (17.1) and replace Aϕ(x) by Aϕ(0), the so-called dipole approximation. In
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addition we want to restrict the electron Hilbert space to bound states only. Tak-
ing into account the first N of them results in an N -level system coupled to the
radiation field. We point out that an enormous effort has been invested precisely
to avoid such a mutilation of the Pauli–Fierz Hamiltonian (17.1). Still, in the first
round a simplified version will suffice.

Radiation as discussed here has no classical counterpart. Of course, as ex-
plained, in the context of the Abraham model a charge loses energy through radia-
tion. Its analog would be an extension of the results given in the previous chapter.
There one has to give up mph > 0. Then the spectral gap closes and the strict adia-
batic protection is lost. For example, (16.105) would have a dissipative correction
at the next order associated with a gradual emission of photons. In contrast, for
the radiation processes studied here the emission of photons occurs on the atomic
scale.

17.1 N-level system in the dipole approximation

The dipole approximation reads

H = 1

2m
(p − eAϕ(0))2 + V (x) + Hf. (17.2)

If in addition we were to choose V to be harmonic, V (x) = 1
2mω2

0x2, then
(17.2) is a quadratic Hamiltonian, as can be seen, if on top of the Bose fields
a(k, λ), a∗(k, λ) one introduces the annihilation and creation operators b, b∗ for
the particle; compare with section 13.7(i). The analysis of this model can be
reduced to a Hamiltonian on the one-particle space C

3 ⊕ (L2(R3) ⊗ C
2), where

C
3 corresponds to the b, b∗ degrees of freedom. While such an analysis is very

instructive, we stick here to the more realistic Coulomb-type potential. We rewrite
(17.2) as

H = 1

2m
p2 + V (x) + Hf − e

m
p · Aϕ(0) + e2

2m
Aϕ(0)2, (17.3)

drop the Aϕ(0)2 term, and expand in the eigenbasis of 1
2m p2 + V (x) up to the

N -th eigenvalue, including multiplicity. This results in

Hλ = Hat ⊗ 1 + 1 ⊗ Hf + λQ̃ · Aϕ(0). (17.4)

Here Hat and Q̃ = (Q̃1, Q̃2, Q̃3) are symmetric N × N matrices. In our repre-
sentation Hat is diagonal with nondegenerate smallest eigenvalue ε1 and Q̃ is
proportional to the dipole moments

Q̃i j = 〈ψi , pψ j 〉 = im(εi − ε j )〈ψi , xψ j 〉, (17.5)

i, j = 1, . . . , N , where we used the facts that i[ 1
2m p2 + V (x), x] = 1

m p and
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( 1
2m p2 + V (x))ψ j = ε jψ j counting eigenvalues and eigenfunctions including

their multiplicity. We also introduced explicitly the dimensionless small coupling
parameter λ. If one follows the conventions of section 13.4, then λ = α3/2.

Note that in the functional integral representation of e−t Hλ , Hλ of (17.4), the
effective action is quadratic with the interaction potential

Wdip(t) = λ2
∫

d3k|ϕ̂|2 1

2ω
e−ω|t |, (17.6)

which decays as t−2 for large t . Thus (17.4) is marginally infrared divergent.
Generically Hλ will lose its ground state at strong enough coupling, in contrast
to the full Pauli–Fierz model, and (17.4) can be trusted only at small coupling.

An alternative route to the N -level approximation is first to transform to the
x · Eϕ(0) coupling through the unitary transformation

U = eiex ·Aϕ(0). (17.7)

Then

U∗ pU = p + eAϕ(0) , U∗xU = x ,

U∗a(k, λ)U = a(k, λ) + i(eλ(k) · x)eϕ̂(k)/
√

2ω(k) (17.8)

and therefore

U∗HU = 1

2m
p2 + V (x) +

(2

3
e2

∫
d3k|ϕ̂|2

)
x2 + Hf − ex · Eϕ(0). (17.9)

As before, we expand in the eigenbasis of 1
2m p2 + V (x) up to the N -th eigenvalue.

This results in the Hamiltonian

Hλ = Hat + Hf + λQ · Eϕ (17.10)

with the matrix of dipole moments Qi j = 〈ψi , xψ j 〉, Eϕ = Eϕ(0), and λ = −e.
Since now the coupling is to Eϕ(0), the effective action (17.6) gains an extra factor
of ω2 and therefore has a decay as t−4 in accordance with the full model.

For the remainder of the chapter, we take (17.10) as the starting point. The par-
ticular origin of Hat and Q is of no importance. We only record that they satisfy
H∗

at = Hat, Q∗ = Q. Hat has the spectrum σ(Hat) ⊂ R. It consists of the eigen-
values labeled without multiplicity as ε1 < ε2 < · · · < εN̄ , N̄ ≤ N . The corre-
sponding spectral projections are denoted by P1, . . . , PN̄ . Their degeneracies are

tr[Pj ] = m j with m1 = 1 and
∑N̄

j=1 m j = N . In particular one has the spectral
representation

Hat =
N̄∑

j=1

ε j Pj . (17.11)
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17.2 The weak coupling theory

We plan to study the emission of light from atoms. The atom is assumed to have
already been prepared in an excited state and thus the initial state of the coupled
system is of the form ψ ⊗ 	 with the atomic wave function ψ ∈ C

N . To deter-
mine the radiated field one has to understand the long-time asymptotics of the
solution e−iHtψ ⊗ 	 of the time-dependent Schrödinger equation. For small cou-
pling, which is well satisfied physically, the dynamics approximately decouples:
the atom is governed by an autonomous reduced dynamics and the field evolves
with the decaying atom as a source term. In this section we will first study the
reduced dynamics of the atom in the weak coupling regime with our results to be
supported through a nonperturbative resonance theory in section 17.3. In a follow-
up we discuss the spectral characteristics of the emitted light.

By definition, the reduced dynamics refers to the reduced state of the atom,
which allows one to determine atomic observables such as the probability of being
in the n-th level at time t . Although by assumption the initial state of the atom is
pure, it will not remain so because of the interaction with the radiation field. Thus
it will be more natural to work directly in the set of all density matrices. The initial
state is then of the form ρ ⊗ P	 with ρ the atomic density matrix, and P	 the
projection onto Fock vacuum. The time evolution is given through

e−iHλtρ ⊗ P	eiHλt = e−iLλtρ ⊗ P	. (17.12)

Here LλW = [Hλ, W ] is the Liouvillean as acting on T1(C
N ⊗ F), the trace class

over C
N ⊗ F . To distinguish typographically, Lλ is written as a slanted symbol,

like other operators, sometimes called superoperators, which act either on T1 or on
B(CN ⊗ F), the space of bounded operators on C

N ⊗ F . Clearly, states evolve
into states, i.e. if W ∈ T1 is positive and normalized, so is e−iLλt W . Sometimes, it
is convenient to think of (17.12) as a Schrödinger evolution in a Hilbert space. This
can be done by adopting the space T2(C

N ⊗ F) of Hilbert–Schmidt operators with
inner product 〈A|B〉 = tr[A∗B]. In this space the Liouvillean Lλ is a self-adjoint
operator, which explains our sign convention in front of the commutator. A fur-
ther choice comes from regarding B(CN ⊗ F) as the space dual to T1(C

N ⊗ F)

through the duality relation W 	→ tr[AW ], W ∈ T1(C
N ⊗ F), A ∈ B(CN ⊗ F).

Then the dual of Lλ is −[Hλ, ·], which generates the Heisenberg evolution of op-
erators.

The reduced dynamics is defined through

T λ
t ρ = ρλ(t) = trF [e−iLλtρ ⊗ P	], (17.13)

where trF [·] denotes the partial trace over Fock space. T λ
t acts on B(CN ). It is

linear, preserves positivity and normalization. In fact, since it originates from a
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Hamiltonian dynamics, the even stronger property of complete positivity is satis-
fied. In such generality, T λ

t is intractable. But scales become separated for small
λ into atomic oscillations of the uncoupled dynamics e−iHatt and the weak radia-
tive damping of order λ2 (= α3 = 1/1373). When viewed on the dissipative scale
the atomic oscillations are very rapid and effectively time-averaged. For small λ

memory effects are negligible and T λ
t becomes a dissipative semigroup, which is

the autonomous dynamics we are looking for.
To write a formal evolution equation for ρλ(t) one employs the Nakajima–

Zwanzig projection operator method. We define the Liouvilleans Lat = [Hat, · ]
as acting on B(CN ) = T1(C

N ), Lf = [Hf, · ] as acting on T1(F), and Lint = [Q ·
Eϕ, ·] as acting on T1(C

N ⊗ F). For an arbitrary density matrix W on C
N ⊗ F

the Nakajima–Zwanzig projection is

PW = (trFW ) ⊗ P	. (17.14)

Clearly P 2 = P and

Pe−iLλtρ ⊗ P	 = ρλ(t) ⊗ P	 . (17.15)

Let W (t) = e−iLλtρ ⊗ P	. Then

i
d

dt
PW (t) = PLλW (t) = PLλ PW (t) + PLλ(1 − P )W (t), (17.16)

i
d

dt
(1 − P )W (t) = (1 − P )LλW (t) = (1 − P )Lλ PW (t)

+ (1 − P )Lλ(1 − P )W (t). (17.17)

Substituting (17.17) back in (17.16) and using PLintP = 0, we obtain

d

dt
ρλ(t) = −iLatρ

λ(t)

−λ2
∫ t

0
ds trF [Lint(1 − P )e−i(1−P)Lλ(1−P)(t−s)(1 − P )Lint P	]ρλ(s),

(17.18)

which is an exact memory-type equation.
As argued traditionally, the memory decays rapidly on the time scale of the

variation of ρλ(t). For small λ one may ignore the interaction and replace Lλ by
Lat + Lf in the exponential. In this approximation for small λ

d

dt
ρ(t) = (−iLat + λ2K0)ρ(t) (17.19)
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is obtained as reduced dynamics with

K0ρ = −
∫ ∞

0
dt trF [Linte

−i(Lat+Lf)tLintP	]ρ. (17.20)

This argument misses the point that both ρλ(t) and the memory kernel have
oscillatory contributions from e−iHatt . In general, their products cannot be approx-
imated as in (17.19), (17.20). To subtract the oscillations from the memory kernel
we rewrite (17.18) as an integral equation,

ρλ(t) = e−iLattρ − λ2
∫ t

0
dse−iLat(t−s)

×
∫ s

0
du trF [Lint(1 − P )e−i(1−P )Lλ(1−P )(s−u)(1 − P )Lint P	]ρλ(u).

(17.21)

After the change of variables v = s − u, one has

ρλ(t) = e−iLattρ − λ2
∫ t

0
du e−iLat(t−u)

×
{ ∫ t−u

0
dv eiLatvtrF [Lint(1−P ])e−i(1−P )Lλ(1−P )v(1−P )Lint P	]

}
ρλ(u).

(17.22)

Now in the memory kernel the fast oscillations are properly counterbalanced and
to a good approximation ρλ(t) is governed by

d

dt
ρ(t) = (−iLat + λ2K )ρ(t), (17.23)

where

Kρ = −
∫ ∞

0
dt eiLatt trF [Linte

−i(Lat+Lf)tLint P	]ρ. (17.24)

We state our result as

Theorem 17.1 (Weak coupling quantum master equation). Let

e2〈	, Eϕαe−iHft Eϕβ	〉F = hαβ(t) = δαβh(t), (17.25)

h(t) = e2

3

∫
d3k|ϕ̂|2ω(k)e−iω(k)t , (17.26)

α, β = 1, 2, 3. If ∫ ∞

0
dt |h(t)|(1 + t)δ < ∞ (17.27)
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for some δ > 0, then

lim
λ→0

sup
0≤t≤λ−2τ

‖T λ
t ρ − e(−iLat+λ2K )tρ‖ = 0. (17.28)

τ is on the dissipative time scale. Thus in (17.28) a, possibly long, time interval
on the dissipative time scale is fixed. Over that time span the true reduced dy-
namics is well approximated by a Markovian dynamics consisting of fast atomic
oscillations, −iLat, and slow dissipation, K.

The integrability condition (17.27) is seen to hold by transforming back to po-
sition space. Then∫

d3k|ϕ̂|2ωe−iωt =
∫

d3k|ϕ̂|2ω(cos ωt − i sin ωt)

= −∂3
t

∫
d3xd3x ′d3yϕ(x ′)|x − x ′|−24π

1

t
δ(|x − y| − t)ϕ(y)

+ i∂2
t

∫
d3xd3yϕ(x)

1

4π t
δ(|x − y| − t)ϕ(y), (17.29)

which decays as fast as t−4, since ϕ is localized.
We still have to carry through properly the time-averaging, accounting for the

fast oscillations of e−iLatt . We claim that, without further error, K can be replaced
by its time average

K �ρ = lim
T →∞

1

2T

∫ T

−T
dt eiLattKe−iLatt , (17.30)

as can be seen from going to the slow time scale and considering the interaction
representation

eiλ−2Latτ e(−iλ−2Lat+K )τ ρ = ρ +
∫ τ

0
du

{
eiλ−2LatuKe−iλ−2Latu

}
× eiλ−2Latue(−iλ−2Lat+K )uρ. (17.31)

The term inside { } is rapidly oscillating and we are allowed to replace it by K �.
Theorem 17.1 remains valid when K is replaced by K �.

In conclusion, we have arrived at the approximate reduced dynamics of the
atom:

d

dt
ρ(t) = −i[Hat, ρ(t)] + λ2K �ρ(t). (17.32)

To understand the properties of this dynamics, the dissipative generator K � must
be worked out more concretely. It is time-averaged with respect to the Liouvil-
lean Lat = [Hat, ·] and thus depends on the spectrum of Lat, which is given by
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{εi − ε j | i, j = 1, . . . , N̄ } = σ(Lat). Accordingly we define

Q(ω) =
N̄∑

i, j=1, εi −ε j =ω∈σ(Lat)

Pj Q Pi . (17.33)

The degeneracy of Hat enters through the projections Pj whereas the degeneracy
of the Liouvillean is reflected by the sum in (17.33). For instance, a harmonic os-
cillator has a nondegenerate Hamiltonian but a highly degenerate Liouvillean. The
strength of the various transitions is determined by the one-sided Fourier transform
of the field correlation (17.25). We decompose it into real and imaginary parts
as ∫ ∞

0
dt e−iωt h(t) = 1

2
�(ω) − i�(ω), (17.34)

which gives

1

2
�(ω) = e2

3

∫
d3k|ϕ̂(k)|2ω(k)πδ(ω(k) + ω), (17.35)

�(ω) = e2

3
PV

∫
d3k|ϕ̂(k)|2ω(k)

1

ω(k) + ω
, (17.36)

PV denoting the principal value of the integral. Using this notation, after working
out the oscillatory integrals in (17.30), one obtains

K �ρ =
3∑

α=1

∑
ω∈σ(Lat)

{ − i�(ω)[Qα(ω)Q∗
α(ω), ρ]

+1

2
�(ω)

(
[Q∗

α(ω)ρ, Qα(ω)] + [Q∗
α(ω), ρQα(ω)]

)}
, (17.37)

where the ω-sum runs over all eigenvalues of the Liouvillean Lat.
The first term in (17.37) merely adds an extra term of order λ2 to the atomic

Hamiltonian Hat. Thereby the eigenvalues ε j are shifted and their degeneracy is
possibly lifted. The second term represents the radiation damping. It is of Lind-
blad form which ensures that Tt = exp[(−i[Hat, ·] + λ2K �)t] is completely pos-
itive and in particular preserves positivity. For the nonaveraged variant K such a
property is in general not valid.

The details of the damping mechanism depend on Hat, Q, and ĥ. Since �(ω) =
0 for ω ≥ 0, only transitions to energetically lower levels are possible. Thus gener-
ically we expect that in the long-time limit the atom reaches its ground state,

lim
t→∞ Ttρ = P1 (17.38)



17.2 The weak coupling theory 255

independently of the initial state. Basically, there are two obstructions to (17.38).
The analog of the classical Wiener condition (5.4) could be violated in the sense
that �(εi − ε j ) = 0 for some εi < ε j . Even if we assume �(ω) > 0 for ω < 0,
Hat and Q could be too commutative. For instance, in the extreme case [Hat, Q] =
0, the damping vanishes and K �ρ = −i�(0)[Q2, ρ]. Under the Wiener condition
a sufficient criterion for (17.38) to hold is {Hat, Qα, α = 1, 2, 3}′ = C1, i.e. the
commutant of {Hat, Qα, α = 1, 2, 3} (all operators which commute with Hat and
Q) consists only of multiples of the unit matrix.

If the spectrum of Hat is nondegenerate, then the set of density matrices com-
muting with Hat is left invariant by Tt . We set Ttρ = ∑N

n=1 ρn(t)Pn , tr[Pn] = 1.
The probabilities ρn(t) are governed by the Pauli master equation

d

dt
ρn(t) =

N∑
m=1

(
wmnρm(t) − wnmρn(t)

)
, (17.39)

where

wmn =
3∑

α=1

�(εn − εm)tr[Pm Qα Pn Qα] (17.40)

is the transition rate from level m to level n. Thus the coupling to the radiation field
induces a Markov jump process on diagonal density matrices with transition rates
given through Fermi’s golden rule. The ground state is an absorbing state of the
Markov chain. If every other state can be linked to the ground state by a sequence
of jumps with nonzero rates, then limt→∞ ρ1(t) = 1 and limt→∞ ρn(t) = 0 for
n ≥ 2 exponentially fast.

A much-studied variation is to immerse the atom in a black-body cavity at some
temperature T . Based on rather general principles of statistical mechanics, Einstein
came up with a phenomenological description of the atomic transitions in terms
of his A, B-coefficients. Thereby he completely circumvented the yet nonexistent
quantum statistical mechanics. Given such historical importance, we violate for a
moment our principle of “zero temperature only”, to provide a more fully fledged
theory in chapter 18. Since we have already used density matrices, in the defi-
nition of the reduced dynamics we only have to replace P	 by the thermal state
Z−1e−Hf/kBT . The physically correct procedure is to first enclose the radiation
field in the cavity [−�, �]3, i.e. the k-integration is to be replaced by a k-sum over
the momentum lattice ((π/�)Z)3, followed by the infinite-volume limit � → ∞.
In the weak coupling approximation, as the only difference to the zero-temperature
case, the time-correlation hαβ(t) for the field is to be computed from the thermal
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average. Explicitly, with 〈·〉kBT denoting thermal average,

hαβ(t) = e2〈eiHft Eϕαe−iHft Eϕβ〉kBT

= e2
2∑

λ=1

∫
d3kϕ̂

√
ω/2 eλα(k)

2∑
λ′=1

∫
d3k′ϕ̂

√
ω/2eλ′β(k′)

i2〈(e−iω(k)t a(k, λ) − eiω(k)t a∗(k, λ)
)(

a(k′, λ′) − a∗(k′, λ′)
)〉kBT

= δαβh(t), (17.41)

h(t) = e2

3

∫
d3k|ϕ̂|2ω(k)

(
e−iω(k)t

+ (eω(k)/kBT − 1)−1(e−iω(k)t + eiω(k)t )
)
. (17.42)

The friction coefficient, �kBT , and the level shifts are still defined through (17.34).
�kBT satisfies the condition of detailed balance as

�kBT (ω) = �kBT (−ω)e−ω/kBT . (17.43)

At nonzero temperatures �kBT (ω) > 0 for all ω, except for accidental zeros, and
the energy can flow either way between atom and thermal bath. If the atom
is well coupled to the black-body radiation, in the sense that �kBT (ω) > 0 and
{Hat, Qα, α = 1, 2, 3}′ = C1, then the N -level system relaxes to the thermal state
Z−1e−Hat/kBT in the long-time limit. This is most easily seen in case all ε j are
nondegenerate. Then the off-diagonal elements of Ttρ decay exponentially while
the diagonal elements are still governed by the Pauli master equation (17.39), in
which the transition rates now satisfy

wmn = wnme−(εn−εm)/kBT (17.44)

as a result of the detailed balance (17.43). Under “good coupling” (17.44) ensures
that the thermal state is the only invariant state for (17.39) and therefore

lim
t→∞ Ttρ = Z−1e−Hat/kBT . (17.45)

As will be explained in chapter 18 the relaxation to thermal equilibrium can be
established also for small, but fixed coupling strength and in fact should hold at
arbitrary λ.

We note that in (17.41) there are two terms inside the big round bracket with the
first one being temperature independent. This is the Einstein A-coefficient which
regulates the spontaneous emission of a photon. The second term in (17.41) is
the B-coefficient of stimulated emission and adsorption of a photon. It dominates
for �|εi − ε j | � kBT . From the point of view of the atom, there is no way to
distinguish the two emission processes.
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17.3 Resonances

The virtue of the weak coupling theory consists in yielding a concise dynami-
cal scenario with level shifts and lifetimes computed in terms of the microscopic
Hamiltonian. High-precision experiments, e.g. of the Lamb shift in the hydrogen
atom, show small deviations from the prediction of the theory, which however
should not be regarded as a failure of the weak coupling theory. Rather, it is a fail-
ure of the Pauli–Fierz model at relativistic energies. Barring such fine details the
weak coupling theory is the standard tool in atomic physics and there seems to be
little incentive to go beyond. Still, we have not yet developed a firm link with the
Hamiltonian. Are there corrections to the predicted exponential decay? Can one,
at least in principle, obtain systematic corrections of higher order in λ? What is
the long-time limit for small, but fixed λ? To answer such questions one has to
go beyond perturbation theory and simple resummations. At present there is only
one sufficiently powerful technique available, which is complex dilation. We ex-
plain this method first for the standard example of the Friedrichs–Lee model. The
extension to the Pauli–Fierz model requires rather complex technical machinery,
certainly beyond the present scope. We will, however, use complex dilations to
study the return to equilibrium at nonzero temperatures in chapter 18, which turns
out to be much simpler since the spectrum is the full real line and is translated
rather than rotated.

We imagine a single energy level ε > 0, coupled to the continuum, which is
labeled by x ≥ 0, and should be thought of as energy. The Hilbert space of wave
functions is then C ⊕ L2(R+, dx) and the Hamiltonian reads

Hλ = H0 + λHint =
(

ε 0
0 x

)
+ λ

(
0 〈ϕ|

|ϕ〉 0

)
(17.46)

in Dirac notation. Hλ is known as the Friedrichs–Lee model. For some time we
choose to denote by Hλ the Hamiltonian of (17.46) and will give a warning to the
reader when we return to the Hamiltonian (17.10). One needs ϕ ∈ L2 to have Hλ

well defined and 〈ϕ, x−1ϕ〉 < ∞ for λHint to be form-bounded with respect to H0.
With no loss one can choose ϕ to be real. For λ = 0 the eigenvalue ε is embedded
in the continuum and we want to understand its fate for small λ.

From scattering theory and the stability of the essential spectrum under rank-
one perturbations it can be seen that the absolutely continuous spectrum of Hλ

is [0, ∞) for all λ. In addition, there exists a critical λc such that for |λ| < λc

there is no further spectrum, whereas for |λ| > λc the eigenvalue ε(λ) < 0 gets
expelled from the continuum. We are interested here in small λ only, i.e. |λ| � λc,
but, beyond mere spectral information, we want to know the decay of the survival
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amplitude

G(t) = 〈ψ0, e−iHλtψ0〉 (17.47)

of the unperturbed eigenstate ψ0 = (1
0

)
.

G(t) has the spectral decomposition

G(t) =
∫

dωg(ω)e−iωt , (17.48)

g(ω) ≥ 0 for ω ≥ 0, g(ω) = 0 for ω < 0, and
∫

dωg(ω) = 1. Thus, |G(t)|2 ∼=
1 − t2 for small t and G(t) → 0 as t → ∞ by the Riemann–Lebesgue lemma.
On the other hand, G(t) cannot decay exponentially, for this would imply g(ω)

to be analytic in a strip around the real axis and thus g ≡ 0, by the reasoning of
Paley and Wiener. Since Hint is a one-dimensional projection, g(ω) is in fact easily
computed. First, the resolvent is determined as

Ĝ(z) = 〈ψ0, (z − Hλ)
−1ψ0〉 =

[
z − ε − λ2〈ϕ,

1

z − x
ϕ〉

]−1
, (17.49)

z ∈ C \ R+. Then

g(ω) = (2π i)−1 lim
η→0+

[Ĝ(ω + iη) − Ĝ(ω − iη)]. (17.50)

Since

lim
η→0+

〈ϕ, (ω ± iη − x)−1ϕ〉 = �(ω) ∓ i�(ω)/2 (17.51)

with

�(ω)/2 = π |ϕ(ω)|2 , �(ω) = PV
∫ ∞

0
dx |ϕ(x)|2(x − ω)−1, (17.52)

one has

g(ω) = 1

2π

λ2�(ω)

(ω − ε − λ2�(ω))2 + (λ2�(ω)/2)2
(17.53)

for ω ≥ 0, and g(ω) = 0 for ω < 0. For small λ, g(ω) has a huge bump located
near ω = ε. In the weak coupling theory, one ignores the variation of � and � and
approximates g(ω) for all ω by

gw(ω) = 1

2π

λ2�(ε)

(ω − ε − λ2�(ε))2 + (λ2�(ε)/2)2
, (17.54)

which corresponds to the survival amplitude

Gw(t) = e−(λ2�(ε)/2)|t |e−i(ε+λ2�(ε))t . (17.55)
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For the true survival amplitude one still obtains the bound

|G(t) − Gw(t)| ≤ cλ2 (17.56)

uniformly in t , provided ϕ has some smoothness. The errors in (17.56) come from
very short times, λ2t � 1, and very long ones, λ2t � 1. In the intermediate regime
Gw(t) does very well.

For models like the Pauli–Fierz model one cannot hope for such explicit
formulas. Instead, for the purpose of computing g(ω), the strategy is to con-
tinue the resolvent Ĝ(z) from the upper half of the complex plane across R+ into
the second Riemann sheet. Ideally, one should discover a simple pole, the reso-
nance, located at zr(λ) = ε + λ2� − iλ2�/2 with � > 0. For small λ one expects
� ∼= �(ε), � ∼= �(ε), but as λ is increased the pole zr(λ) will move further away
from the real axis. The resonance pole is responsible for the exponential decay as in
(17.55) with �(ε), �(ε) replaced by the true �, �. The error, as in (17.56), comes
from the background spectrum of Ĝ(z) on the second Riemann sheet, unavoidable
due to the branch cut at z = 0.

One would hope that zr(λ) is an intrinsic property of Hλ and not merely of
the particular matrix element under study. Of course, we can always pick a bad
coupling function ϕ such that 〈ϕ, (z − x)−1ϕ〉 cannot be analytically continued
across R+ or for a nice coupling ϕ, we could pick a bad wave function ψ such that
〈ψ, (z − Hλ)

−1ψ〉 cannot be analytically continued across R+. Thus the best we
can expect is that for a given sufficiently smooth ϕ the location of the resonance
pole is independent of the choice of ψ within a reasonably large set. To accomplish
the desired analytic continuation we will implement a complex dilation of Hλ.

For real θ a dilation is defined by

U (θ)ψ(x) = e−θ/2ψ(e−θ x). (17.57)

U (θ) is unitary and Hλ transforms under U (θ) as

U (θ)HλU (θ)−1 = Hλ(θ) = H0(θ) + λHint(θ)

=
(

ε 0
0 e−θ x

)
+ λ

(
0 〈ϕθ |

|ϕθ 〉 0

)
, (17.58)

where ϕθ(x) = e−θ/2ϕ(e−θ x).

We want to extend (17.57), (17.58) to complex θ with θ inside the strip Sβ =
{θ | |Imθ | < β} with some β > 0. e−θ is clearly analytic. For ϕ we require that ϕθ

extends as an analytic function to Sβ such that
∫ ∞

0 dx |e−θ/2ϕ(e−θ x)|2 < ∞. Then
Hλ(θ) is an analytic family of operators of type A in the sense of Kato, separately
for θ ∈ Sβ and |λ| sufficiently small. Note that Hλ(θ)∗ = Hλ(θ

∗) for real λ, since
ϕ is real. The point of our construction is that for purely imaginary θ , θ = iϑ ,
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Figure 17.1: Spectrum of the rotated Hamiltonian Hλ(iϑ) for small coupling λ.

0 < ϑ < β, the continuous spectrum of H0(iϑ) rotates clockwise by the angle ϑ ,
see figure 17.1. Thereby the previously embedded eigenvalue ε becomes isolated
and we can use ordinary perturbation theory to show that it shifts downwards to
become the resonance pole zr(λ) on the second Riemann sheet. zr(λ) is analytic in
θ as long as it remains isolated. If one sets θ = κ + iϑ , κ, ϑ ∈ R, then Hλ(κ + iϑ)

is unitarily equivalent to Hλ(κ
′ + iϑ). Therefore zr(λ) is constant along lines of

fixed iϑ and by analyticity independent of θ . As the continuous spectrum rotates
clockwise, the resonance pole is uncovered and stays put. We summarize as

Theorem 17.2 (Analytic continuation of the resolvent). For λ sufficiently small,
there exists a dense set D ⊂ H = C ⊕ L2(R+, dx) such that for ψ1, ψ2 ∈ D the
resolvent 〈ψ1, (z − Hλ)

−1ψ2〉 has an analytic continuation from C+ across R+
into the second Riemann sheet. 〈ψ1, (z − Hλ)

−1ψ2〉 has a simple pole at zr(λ),
Imzr(λ) < 0, with the property that limλ→0 zr(λ) = ε. zr(λ) does not depend on
the choice of ψ1, ψ2.

Proof: Let D ⊂ H be the set of all vectors such that θ 	→ U (θ)ψ is an analytic
vector-valued function on Sβ . D is dense in H. For ψ1, ψ2 ∈ D we have

〈ψ1, (z − Hλ)
−1ψ2〉 = 〈U (−θ)∗ψ1, (z − Hλ(θ))−1U (θ)ψ2〉. (17.59)

For given θ with Imθ > 0, we can choose δ0 sufficiently small such that inside the
open disc |z − ε| ≤ δ0 the location zr(λ) of the pole is an analytic curve starting at
zr(0) = ε. �

Let us follow the first step of the perturbation expansion. We fix θ = iϑ, 0 <

ϑ < β. For λ = 0, H0(θ) has the eigenvalue ε with corresponding projector
|ψ0〉〈ψ0|. The eigenvalue persists for small λ and we expand in λ. The first-order
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term vanishes and to second order we have

zr(λ) = ε + λ2〈ψ0, Hint(θ)(ε − H0(θ))−1 Hint(θ)ψ0〉
= ε + lim

η→0+
λ2〈ψ0, Hint(ε + iη − H0)

−1 Hintψ0〉

= ε + λ2�(ε) − iλ2�(ε)/2. (17.60)

No surprise, we recover the result from the weak coupling theory. We will see
that this is a rather general fact and argue that the master equation (17.32) can be
understood as arising from the resonances of the Liouvillean to lowest order. If the
expansion in (17.60) is continued, the next order is λ4 and the eigenprojection of
the resonance will be slightly tilted.

With the Friedrichs–Lee model as a blueprint in hand we plan to implement
complex dilation for the Pauli–Fierz model in the N -level approximation (17.10).
As in the example above the complex dilation acts only on the photon degrees of
freedom. For an n-photon vector we define

Uf(θ)ψn(k1, λ1, . . . , kn, λn) = e−3nθ/2ψn(e
−θk1, λ1, . . . , e−θkn, λn) (17.61)

for θ ∈ R. In particular

Uf(θ)a∗( f )Uf(θ)−1 = a∗( fθ ) , fθ (k, λ) = e−3θ/2 f (e−θk, λ). (17.62)

Then for the field energy

Uf(θ)HfUf(θ)−1 = Hf(θ) = e−θ Hf (17.63)

and for the electric field

Uf(θ)EϕUf(θ)−1 = Eϕ(θ)

=
∑

λ=1,2

∫
d3ke−3θ/2ϕ̂(e−θk)e−θ/2

√
ω(k)/2

× eλ(k)i
(
a(k, λ) − a∗(k, λ)

)
. (17.64)

We want to extend (17.63), (17.64) to complex θ ∈ Sβ . Clearly Hf(θ) is analytic in
θ . For the charge distribution we require that ϕ̂θ (k) extends as an analytic function
to Sβ and ∫

d3k|ϕ̂θ |2
(
ω(k) + ω(k)−1) < ∞. (17.65)

Then Eϕ(θ) is bounded relative to Hf(θ) and

Hλ(θ) = Hat + Hf(θ) + λQ · Eϕ(θ) (17.66)

is an analytic family of operators of type A separately in θ ∈ Sβ and λ, with |λ| <

λ0 and λ0 sufficiently small. Thus we have established the abstract framework
needed for complex dilation.
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Figure 17.2: Spectrum of the rotated Hamiltonian H0(iϑ) at zero coupling.

The difficulty already becomes apparent when the case of zero coupling is con-
sidered, i.e. λ = 0 (= −e). Hf has a zero eigenvalue and the continuous spectrum
R+ is of infinite multiplicity. If θ = iϑ , the continuous spectrum rotates by the an-
gle ϑ . Thus for Hat + Hf(θ) we have a spectrum as shown in figure 17.2, where the
eigenvalues ε j , j = 1, . . . , N̄ , are at the tip of the continuous spectrum. In contrast
to the Friedrichs–Lee model, they are not isolated. We can make them become iso-
lated by giving the photons a small mass mph. Then ω(k) = (m2

ph + k2)1/2 which

becomes ωθ(k) = (e−2θk2 + m2
ph)

1/2 when complex dilated. The eigenvalues are
now isolated provided they do not lie in the set of thresholds {ε j + nmph| j =
1, . . . , N̄ , n = 1, 2, . . . }. Our previous arguments apply, but the range of allowed
λ is bounded by mph.

In a beautiful piece of analysis V. Bach, J. Fröhlich, and I. M. Sigal succeed in
controlling the situation depicted in figure 17.3. They prove that for sufficiently
small λ and a dense set D of vectors the resolvent 〈ψ, (z − Hλ)

−1ϕ〉, ψ, ϕ ∈ D,
can be analytically continued into a domain, schematically drawn in figure 17.3.
For λ = 0 the eigenvalues are ε j with multiplicity m j . Except for j = 1, for small
λ they turn into a group of resonances z jm(λ), m = 1, . . . , m j , with the property
that limλ→0 z jm(λ) = ε j . The ground state energy ε1 is nondegenerate and z1(λ)

stays on the real axis. z1(λ) is the ground state energy of the coupled system. The
z jm(λ) are eigenvalues of the complex dilated Hamiltonian Hλ(θ). The resonances
are located at the apex of a cone, which is tilted by the angle θ and has a square
root singularity at its tip.

To ensure that the resonances are strictly below the real axis we use the condi-
tion from second-order perturbation and require that

1

2
λ2

3∑
α=1

j−1∑
i=1

�(εi − ε j )Pj Qα Pi Qα Pj > 0 (17.67)
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Figure 17.3: Spectrum of the rotated Hamiltonian Hλ(iϑ) at small nonzero cou-
pling. The domain of analyticity is {z|Imz > −b0} with small b0 > 0 and away
from the shaded regions.

as an m j × m j matrix for j = 1, . . . , N̄ . The eigenvalues of this matrix are:
Imz jm(λ), m = 1, . . . , m j , to order λ2. To second-order the imaginary part of
the resonance poles agrees with the decay rates from the quantum master equa-
tion (17.32). Their real part coincides with the eigenvalues of Hat corrected by the
Hamiltonian part of K � from (17.37). To obtain the full generator K � one has to
study the resonances of the Liouvillean as will be discussed in chapter 18.

17.4 Fluorescence

We have described in considerable detail how the atom decays to its ground
state, at least for small coupling. So what then are the spectral characteristics
of the fluorescent light? How does the theory account for the experimental fact
that the line shapes differ for equally and for unequally spaced unperturbed
energy levels? We will address such questions only within the weak coupling
theory.

The initial state of the atom is chosen to be a pure state ψ ∈ C
N and that of the

field to be the vacuum. We want to determine e−iHλtψ ⊗ 	 for small λ and large
t , order of λ−2. One method is to use second-order perturbation theory for the res-
onance poles of the resolvent, as explained for a particular case in the previous
section. Another method is to expand the resolvent 〈ϕ ⊗ ∏n

j=1 a∗(k j , λ j )	, (z −
Hλ)

−1ψ ⊗ 	〉 and to resum all nonoverlapping internal photon lines lying in
between either the external photon legs or the atom legs. The results turn out to
be identical and have a simple physical interpretation.
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To state the approximation to e−iHλtψ ⊗ 	, we rewrite the generator of the
reduced atom dynamics as, compare with (17.37), (17.32),

LDρ = [Hat, ρ] + iλ2K �ρ

= [Hat + λ2 H� − iλ2 H�, ρ] + i
3∑

α=1

∑
ω∈σ(Lat)

�(ω)Qα(ω)∗ρQα(ω)

= LD0ρ + LD1ρ. (17.68)

Then

H� =
3∑

α=1

∑
ω∈σ(Lat)

�(ω)Qα(ω)Qα(ω)∗ =
3∑

α=1

N̄∑
i, j=1

�(εi − ε j )Pj Qα Pi Qα Pj ,

(17.69)

and

H� =
3∑

α=1

∑
ω∈σ(Lat)

�(ω)Qα(ω)Qα(ω)∗ =
3∑

α=1

N̄∑
i< j=1

�(εi − ε j )Pj Qα Pi Qα Pj ,

(17.70)

where we used the relation �(ω) = 0 for ω ≥ 0. We introduce the convenient
shorthand

Hd = Hat + λ2 H� − iλ2 H�. (17.71)

Note that Hd is not symmetric. As a photon is emitted, the energy of the atom
decreases by at least one level, which is described by the atom lowering part of the
interaction Hamiltonian,

Q− · E+
ϕ = −i

N̄∑
i< j=1

Pi Q Pj ⊗
( ∑

λ=1,2

∫
d3kϕ̂(k)

√
ω/2 · eλ(k)a∗(k, λ)

)
.

(17.72)

With this notation the approximate solution is

e−iHλtψ ⊗ 	 ∼= e−iHdtψ ⊗ 	 +
N̄−1∑
n=1

(−i)n
∫

0≤t1≤...≤tn≤t
dtn . . . dt1

× e−i(Hd+Hf)(t−tn)λQ− · E+
ϕ . . . e−i(Hd+Hf)(t2−t1)

× λQ− · E+
ϕ e−i(Hd+Hf)t1ψ ⊗ 	. (17.73)

The sum is finite, since (Q−)N̄ ψ = 0.
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Taking in (17.73) the trace over the atom results in the reduced state of the
photon field. Taking the trace over the field yields the reduced state of the atom.
But this state was already determined in section 17.2. To be consistent with it we
must have

trF [|e−iHλtψ ⊗ 	〉〈e−iHλtψ ⊗ 	|] = e−iLt Pψ, (17.74)

at least for small λ, Pψ the projection onto ψ . If (17.74) holds, the case of an
arbitrary initial density matrix follows by linearity.

To prove (17.74) we insert (17.73) and obtain

trF [|e−iHλtψ ⊗ 	〉〈e−iHλtψ ⊗ 	|] (17.75)

= e−iHdt PψeiH∗
d t +

N̄−1∑
n=1

λ2n
∫

0≤t1≤...≤tn≤t
dtn . . . dt1

×
∫

0≤s1≤...≤sn≤t
dsn...ds1

3∑
α1,β1=1

...

3∑
αn,βn=1

×
n∏

j=1

δα j β j h(s j − t j )e
−iHd(t−tn)Q−

αn
e−iHd(tn−tn−1)Q−

αn−1
...Q−

α1
e−iHdt1 Pψ

× eiH∗
d s1 Q−∗

β1
...Q−∗

βn−1
eiH∗

d (sn−sn−1)Q−∗
βn

eiH∗
d (t−sn).

Since [Hat, H�] = 0 = [Hat, H�], one can use the spectral representation

e−iHdt =
N̄∑

j=1

e−iε j t Pj e
−iλ2 H�t−λ2 H� t (17.76)

and insert it for each propagator in (17.75). On the time scale λ−2τ , τ = O(1), h(t)
decays quickly and the factors e−iεt are rapidly oscillating. The generic integral in
(17.75) is of the form

∫ τ

0
dt

∫ τ ′

0
dsλ−2h(λ−2(s − t))ei(εi −ε j )t/λ2

e−i(εm−εn)s/λ2
. (17.77)

In the limit λ → 0 it converges to

min(τ, τ ′)
∫

dt h(t)e−i(εm−εn)tδεi −ε j ,εm−εn = min(τ, τ ′)�(εm − εn)δεi −ε j ,εm−εn .

(17.78)
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Using (17.78) and (17.76), the small-λ limit of the expression in (17.75) is given
by

e−iLD0t Pψ +
N̄−1∑
n=1

(−i)n
∫

0≤t1≤...≤tn≤t
dtn . . . dt1

× e−iLD0(t−tn)LD1e−iLD0(tn−tn−1) . . . LD1e−iLD0t1 Pψ

= e−iLDt Pψ (17.79)

as was to be shown.
The approximate solution (17.73) describes the decay of the atom and the build-

up of photons. Such details are experimentally inaccessible. However, what can
be easily seen are the spectral characteristics of the fluorescent light, which are
obtained from (17.73) in the limit t → ∞ (on the time scale λ−2). Then the atom
is in its ground state and

e−iHλtψ ⊗ 	 ∼= e−i(ε1+λ2�1)tψ1 ⊗ e−iHftφ, (17.80)

where φ is a photon state propagating freely to infinity through e−iHft . φ can be
read off from (17.73) as

ψ1 ⊗ φ = P1ψ ⊗ 	 +
N̄−1∑
n=1

(−i)n
∫

0≤t1≤...≤tn<∞
dtn . . . dt1 P1ei(Hd+Hf)tn

× λQ− · E+
ϕ . . . e−i(Hd+Hf)(t2−t1)λQ− · E+

ϕ e−i(Hd+Hf)t1ψ ⊗ 	.

(17.81)

The projection P1 comes in, since states in (17.73) which are orthogonal to the
uncoupled ground state ψ1 decay exponentially and only the piece parallel to ψ1

persists in the long-time limit.
To see how (17.80) translates to the spectrum of the emitted light, it might be

useful to work out two concrete cases.

(i) Two-level atom. We consider two nondegenerate levels |1〉, |2〉 with resonance
poles z j = ε j + � j − i� j/2, j = 1, 2, �1 = 0. Initially the atom is in state |2〉.
Then the scattering state φ of (17.80) has only one photon, φ = (0, φ1, 0, . . . ),
with wave function

φ1(k1, λ1) = (
(�2/2) + i(ε2 + �2 − ε1 − �1 − ω(k1))

)−1
f12(k1, λ1), (17.82)

where

f12(k, λ) = eϕ̂(k)〈1|x |2〉 · eλ(k)
√

ω(k)/2. (17.83)



17.4 Fluorescence 267

E

ε1 + ∆1

k1, λ1

k3, λ3

k2, λ2

|1〉

|2〉

|3〉

ε2 + ∆2

ε3 + ∆3

Figure 17.4: Radiation cascade for a three-level atom.

The spectral distribution is |φ1|2. Since �2 is small, the variation from f12 can be
ignored to obtain

|φ1(k, λ)|2 ∼= C
[
(ε2 + �2 − ε1 − �1 − ω)2 + (�2/2)2]−1 = I (ω, k̂, λ)

(17.84)

with the constant C = | f12(k, λ)|2 evaluated at ω(k) = ε2 − ε1, C = e2|ϕ̂(ε2 −
ε1)|2((ε2 − ε1)/2)|〈1|x |2〉 · eλ(k)|2, which depends on the direction of emission,
k̂ = k/|k|, and on the polarization. As a function of the frequency ω of the emitted
light, the line shape is Lorentzian of natural width �2 and centered at ε2 + �2 −
ε1 − �1, differing from the bare line ε2 − ε1 by the shift �2 − �1.

If the initial state of the atom is c1|1〉 + c2|2〉, normalized as |c1|2 + |c2|2 = 1,
then φ = (c1	, c2φ1(k1, λ1), 0, . . . ). With probability |c1|2 no photon is emitted
and with probability |c2|2 the line shape is that of (17.84).

(ii) Three-level atom. We consider three nondegenerate levels |1〉, |2〉, |3〉 with
resonance poles z j = ε j + � j − i� j/2, j = 1, 2, 3, �1 = 0. The initial state of
the atom is |3〉. There is a direct transition |3〉 → |1〉 as in case (i). In ad-
dition we have the cascade |3〉 → |2〉 → |1〉. Therefore the scattering state is
φ = (0, φ1, φ2, 0, . . . ), see figure 17.4. φ1 is as in (17.82) with label 2 replaced
by label 3. For the cascade one obtains
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φ2(k1, λ1, k2, λ2) = S
{(

�3/2 + i(ε3 + �3 − ε1 − �1 − ω(k1) − ω(k2))
)−1

×(
�2/2 + i(ε2 + �2 − ε1 − �1 − ω(k2))

)−1

×
√

2 f12(k2, λ2) f23(k1, λ1)
}

(17.85)

with S denoting symmetrization. If the variation and the direction dependence
from f12, f23 are ignored, the intensity distribution for the two photons in the
cascade is

I (ω1, ω2) = C
(
4(�2/2)2 + (δ2 − ω1 + δ2 − ω2)

2)
×[(

(�3/2)2 + (δ2 + δ3 − ω1 − ω2)
2)((�2/2)2

+(δ2 − ω1)
2)((�2/2)2 + (δ2 − ω2)

2)]−1 (17.86)

with the shorthand δ3 = ε3 + �3 − ε2 − �2, δ2 = ε2 + �2 − ε1 − �1. If ε3 −
ε2 �= ε2 − ε1, then in the frequency spectrum one will observe a Lorentzian at δ2

with natural width �2 and a Lorentzian at δ3 with natural width �2 + �3. On the
other hand if ε3 − ε2 = ε2 − ε1 and, just as an example, also �2 = �3, 2�2 = �3,
then

I (ω1, ω2) = C
(
(�2/2)2 + (δ2 − ω1)

2)−1(
(�2/2)2 + (δ2 − ω2)

2)−1
, (17.87)

which corresponds to a single Lorentzian at δ2 = δ3 of natural width �2 with dou-
ble intensity. The two photons interfere when emitted. Otherwise, the intensity
would be the sum of a Lorentzian of natural width �2 and one of natural width
�2 + �3 = 3�2. If ε3 − ε2 ∼= ε2 − ε1, the exact intensity distribution (17.86) has
to be analyzed anew.

17.5 Scattering theory

From a very general perspective scattering theory is a comparison between an
interacting dynamics and a simplified “free” dynamics in the limit of long times.
In our context this means a study of

e−iHtψ as t → ∞ (17.88)

for an arbitrary initial state ψ ∈ H = C
N ⊗ F . We stay within the dipole approx-

imation and consider

H = Hat + Hf − eQ · Eϕ, (17.89)

Eϕ = Eϕ(0). Since the coupling is fixed, we omit the index λ and return to e =
−λ, see (17.10). Also, 〈· , ·〉 always denotes the scalar product in H. From the
outset we state
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Condition 17.3 (Uniqueness and localization of the ground state). H has a
unique ground state ψg, Hψg = Egψg with the property that 〈ψg, eδNfψg〉 < ∞
for some δ > 0. H has no other eigenvalues.

On physical grounds it is easy to conjecture the limit in (17.88). Photons are
traveling outwards according to a scattering state φ and the atom decays to its
ground state ψg. Thus for given ψ ∈ C

N ⊗ F , there exists a φ ∈ F such that

e−iHtψ ∼= e−iEgtψg ⊗s e−iHftφ as t → ∞. (17.90)

In rough terms, the state e−iHftφ lives far away from the ground state ψg. Still,
the bound photons of ψg must be properly symmetrized with the freely propagat-
ing photons of e−iHftφ. This is achieved by the symmetrization ⊗s as defined in
(17.91), (17.92) below. We note that in the previous sections we have discussed
an initial state of the particular form χ ⊗ 	. The relation (17.90) constitutes a
vast generalization thereof. Of course, the limit (17.90) can be considered also for
t → −∞. Combining both limits then yields the S-matrix for Rayleigh scattering
of photons from an atom.

To establish the limit (17.90) in this generality is a tough analytical problem,
since no exceptions are allowed. The limit is supposed to hold for all states ψ ∈ H.
We will only outline the general framework, in particular the proper definition of
the wave operators and their intertwining between the free and interacting dynam-
ics. As an easy step a Cook-type argument is established ensuring (17.90) at least
for a large class of states. One important consequence of the limit (17.90) is the
relaxation of the atom to its ground state without taking recourse to weak coupling,
respectively resonance theory. As will be explained, such a relaxation holds also
for local field observables.

Let us first have a look at the right-hand side of (17.90). The symmetrization ⊗s

can be defined for two arbitrary states in Fock space. We consider the Fock space
F = F(h) over the one-particle space h. Then F(h ⊕ h) = F(h) ⊗ F(h). On the
one-particle space we define the map

(u1, u2) 	→ u1 + u2 ∈ h. (17.91)

The second quantization of this map defines ψ1 ⊗ ψ2 ∈ F(h) ⊗ F(h) 	→ ψ1 ⊗s

ψ2 ∈ F(h). More explicitly, one has

( n∏
j=1

a∗( f j )	
)

⊗s

( m∏
i=1

a∗(gi )	
)

=
n∏

j=1

a∗( f j )

m∏
i=1

a∗(gi )	. (17.92)
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In our case one factor is the ground state ψg which can be thought of as a spinor-
valued vector in F . We then define J : F → C

N ⊗ F through

Jφ = ψg ⊗s φ, (17.93)

since ψg is considered as given. If φ is an n-photon vector, φ =
(0, . . . , φn, 0, . . . ), then

(ψg ⊗s φ)n+ j =
(

n + j

n

)1/2

Sψg jφn, (17.94)

with S denoting the symmetrizer.
As can be seen from (17.91), the symmetrization ⊗s is unbounded. In particular,

‖Jφ‖2 =
∞∑

n=0

n∑
i=0

n∑
j=0

(
n

i

)1/2(n

j

)1/2

〈Sψgiφn−i , Sψg jφn− j 〉

≤
∞∑

n=0

( n∑
j=0

(
n

j

)1/2

‖ψg j‖‖φn− j‖
)2

≤
∞∑

n=0

n∑
j=0

(
n

j

)
‖φn− j‖2e−δ j

n∑
i=0

‖ψgi‖2eδi . (17.95)

Let us define Dδ = {φ | ‖φn‖ ≤ c(1 − e−δ/2)n}. Then for φ ∈ Dδ , we have
‖Jφ‖ < ∞, which is the reason for assuming the exponential bound in condi-
tion 17.3. Without it, we would have to go into details in what sense φ is far away
from the atom.

If the state φ shifted to infinity, either by the spatial shift e−iw·Pf or by the time
shift e−iHft , then only the coupled ground state remains in focus. To see this on
a more formal level, we introduce the strictly local Weyl algebra WR consisting
of operators of the form W ( f ) = exp[a∗( f ) − a( f )] with f (x, λ) = 0 for |x | ≥
R. The quasi-local Weyl algebra W is the norm closure of ∪R>0WR . The local
character is of importance, e.g. g(Hf) with g bounded is obviously a bounded
operator, but g(Hf) does not lie in W . Let A ∈ B(CN ) ⊗ W . Shifting to infinity
then

lim
|w|→∞

〈ψg ⊗s e−iw·Pfφ, Aψg ⊗s e−iw·Pfφ〉 = 〈ψg, Aψg〉〈φ, φ〉F , (17.96)

lim
|t |→∞

〈ψg ⊗s e−iHftφ, Aψg ⊗s e−iHftφ〉 = 〈ψg, Aψg〉〈φ, φ〉F (17.97)

for all φ ∈ Dδ .
To prove (17.96), (17.97), we choose an n-photon state of the form φ =

(0, . . . , φn, 0, . . . ) with φn(x1, λ1, . . . , xn, λn) = S
∏n

j=1 f j (x j , λ j ), in other
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words φ = (n!)−1/2 ∏n
j=1 a∗( f j )	. We set f jw(x j , λ j ) = f j (x j − w, λ j ) and

similarly f̂ j t (k j , λ j ) = e−iω(k j )t f̂ j (k j , λ j ). Equations (17.96) and (17.97) go in
parallel and we consider only the latter. Then, for M ∈ B(CN ), W ( f ) ∈ W , and
since W ( f )a∗( f j ) = a∗( f j )W ( f ) − 〈 f, f j 〉hW ( f ), we get

〈Je−iHftφ, M ⊗ W ( f )Je−iHftφ〉

= 1

n!
〈

n∏
j=1

a∗( f j t )ψg, M ⊗ W ( f )

n∏
j=1

a∗( f j t )ψg〉

= 1

n!
〈

n∏
j=1

a∗( f j t )ψg,

n∏
j=1

a∗( f j t )M ⊗ W ( f )ψg〉

+ 1

n!

∑
�⊂{1,...,n},��=∅

∏
j∈�

( − 〈 f, f j t 〉h
)〈 n∏

j=1

a∗( f j t
)
ψg,

∏
j∈�c

a∗( f j t )Mψg〉.

(17.98)

Since f is local, by the Riemann–Lebesgue lemma, limt→∞〈 f, f j t 〉h = 0. Simi-
larly, for space translations, lim|w|→∞〈 f, f jw〉h = 0. Therefore each term having
at least one contraction vanishes in the limit t → ∞, respectively |w| → ∞. We
still have to discuss the first summand corresponding to zero contraction which
written out explicitly is

∞∑
j=0

(
n + j

n

)
〈Sψg jφnt , S(M ⊗ W ( f )ψg) jφnt 〉, (17.99)

by using (17.94) and setting φnt = (e−iHftφ)n . There are two types of terms in
the scalar product. If a φnt is integrated either against ψg j or against (M ⊗
W ( f )ψg) j , then all such terms vanish as t → ∞, again by the Riemann–Lebesgue
lemma. The only terms which survive in the limit are of the form 〈ψg j , (M ⊗
W ( f )ψg) j 〉〈φnt , φnt 〉F = 〈ψg j , (M ⊗ W ( f )ψg) j 〉〈φn, φn〉F by unitarity. We
conclude that the limit t → ∞ in (17.99) equals

∞∑
j=0

〈ψg j , (M ⊗ W ( f )ψg) j 〉〈φn, φn〉F = 〈ψg, M ⊗ W ( f )ψg〉〈φ, φ〉F ,

(17.100)

as claimed. To cover the general case one has to take suitable linear combinations
and uniform limits.
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With these preparations the limit in (17.90) can be formulated more concisely.
We define the wave operators 	∓ through the strong limit

	∓φ = s − lim
t→±∞ ei(H−Eg)t Je−iHftφ. (17.101)

The existence of this limit will be shown for all φ ∈ Dδ by a Cook estimate in
Proposition 17.6 below. But we first want to explore some consequences of our
definition.

In the usual definition of wave operators one projects onto the scattering states
of the comparison dynamics e−iHft . This is not needed here because for φ = 	,
the limit in (17.101) equals ψg. The formulation (17.101) assumes that H has no
other bound state. If this had been the case, one would have to allow in (17.101)
for several atomic channels, corresponding to the possibility that the atom remains
in an excited state forever.

The wave operators 	± are isometries from F to C
N ⊗ F , as can be seen from

〈	∓φ, 	∓φ〉 = lim
t→±∞〈Je−iHftφ, Je−iHftφ〉 = 〈φ, φ〉F (17.102)

by (17.97) for φ ∈ Dδ . By continuity this property extends to all of F . 	± inter-
twines between the free and interacting dynamics as

e−i(H−Eg)t	± = 	±e−iHft , (17.103)

which is an immediate consequence of the definition: for φ ∈ Dδ one has
e−iHftφ ∈ Dδ and

	−φ = lim
s→∞ ei(H−Eg)(t+s) Je−iHf(t+s)φ

= lim
s→∞ ei(H−Eg)t ei(H−Eg)s Je−iHfse−iHftφ

= ei(H−Eg)t	−e−iHftφ. (17.104)

Since Dδ is dense in F , (17.103) holds. As a consequence, Ran 	∓ are reducing
subspaces for H and H − E0 restricted to Ran 	∓ is unitarily equivalent to Hf on
F .

As emphasized, the limit in (17.90) should not only hold for some states but for
all ψ ∈ C

N ⊗ F . It is useful to have a name for such a property.

Definition 17.4 	± are called asymptotically complete if

Ran 	± = C
N ⊗ F . (17.105)

If 	± are asymptotically complete, then they are unitary and diagonalize H as

(	±)−1(H − Eg)	
± = Hf. (17.106)
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In particular, H has the absolutely continuous spectrum [Eg, ∞) of infinite multi-
plicity.

Under asymptotic completeness the long-time dynamics is fully characterized
through

Proposition 17.5 (Relaxation to the ground state). Let A be local in the sense
that A ∈ B(CN ) ⊗ W . Then for every ψ ∈ Ran 	− with ‖ψ‖ = 1 we have

lim
t→∞〈e−iHtψ, Ae−iHtψ〉 = 〈ψg, Aψg〉. (17.107)

In particular, if asymptotic completeness holds, then the limit (17.107) is valid for
all ψ ∈ C

N ⊗ F .

Proof : Let ψ = 	−φ with φ ∈ Dδ . By (17.101) one has

lim
t→∞〈e−iHtψ, Ae−iHtψ〉 = lim

t→∞〈Je−iHftφ, AJe−iHftφ〉, (17.108)

which converges to the limit (17.107) as is seen by the argument explained in
(17.98). Any ψ ∈ Ran 	− can be approximated through states of the form 	−φ

with φ ∈ Dδ. �

Proposition 17.6 (Cook estimate). Let the integrability condition (17.27) be sat-
isfied. Then for all φ ∈ Dδ the strong limit

lim
t→∞ ei(H−Eg)t Je−iHftφ = 	−φ (17.109)

exists.

Proof : If φ = 	, the limit exists and is ψg. Let then 〈	, φ〉 = 0 and φ ∈ Dδ ∩
D(Hf). Then Je−iHftφ ∈ D(H) and we have

d

dt
ei(H−Eg)t Je−iHftφ = iei(H−Eg)t (H J − Eg J − J Hf)e

−iHftφ

= −ei(H−Eg)t eQψg ⊗s ·E−
ϕ e−iHftφ. (17.110)

Here

E−
ϕ = i

∑
λ=1,2

∫
d3kϕ̂(k)

√
ω(k)/2eλ(k)a(k, λ) (17.111)

and we used

a( f )(ψg ⊗s φ) = a( f )ψg ⊗s φ + ψg ⊗s a( f )φ, (17.112)

a∗( f )(ψg ⊗s φ) = a∗( f )ψg ⊗s φ, (17.113)
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which follow from the definition (17.92). Thus

ei(H−Eg)t Je−iHftφ = Jφ − e
∫ t

0
ds ei(H−Eg)s Qψg ⊗s ·E−

ϕ e−iHfsφ (17.114)

and it is to be shown that t → ‖Qψg ⊗s ·E−
ϕ e−iHftφ‖ is integrable for a dense

set of φ’s. For this purpose we define Lϕ ⊂ L2
⊥(R3, R

3) to be the linear subspace
spanned by the set {e−iωt ϕ̂

√
ω/2eλ| t ∈ R}. We choose an n-photon vector in prod-

uct form, φ = (0, . . . , φn, 0, . . . ), φn = S
∏n

j=1 f̂ j with each factor being a sum

f̂ j (k, λ) =
� j∑

�=1

α j�e−iω(k)t j� ϕ̂(k)
√

ω(k)/2eλ(k) + f̂ ⊥
j (k, λ) (17.115)

with f̂ ⊥
j orthogonal to Lϕ . Then

‖Qψg ⊗s ·E−
ϕ e−iHftφ‖ ≤

n∑
j=1

∣∣∣ ∑
λ=1,2

∫
d3kϕ̂(k)

√
ω(k)/2eλ(k) · f̂ j (k, λ)e−iω(k)t

∣∣∣.
(17.116)

Inserting from (17.115) yields a finite sum of terms of the form∫
d3k|ϕ̂(k)|2ω(k)Q⊥(k)e−iω(k)(t+s) (17.117)

which are integrable, either by assumption or as a matter of fact for the Pauli–Fierz
model, cf. the remark below Theorem 17.1.

Our argument establishes the limit (17.109) for a dense set of vectors in the
n-photon subspace. By linearity and by taking uniform limits, this extends to all of
Dδ . �

For ψ ∈ Ran 	± one has all the desired properties, relaxation to the ground
state as in Proposition 17.5, long-time asymptotics as in (17.90), and spectral mea-
sures which are absolutely continuous except for a possible mass at Eg with weight
〈ψ, ψg〉. Asymptotic completeness, i.e. the property Ran 	± = C

N ⊗ F , ensures
that there are no states with unphysical dynamics.

Notes and references

Section 17.1

The dipole approximation in conjunction with the N -level approximation is com-
mon practice in atomic physics, for example Agarwal (1974), Cohen-Tannoudji
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et al. (1992). The unitary transformation (17.7) is linked with Power and Zienau
(1959). It is also used by Bloch and Nordsieck (1937). For the special case of
N = 2 the transition from Fock to non-Fock ground state is studied in consid-
erable detail by Leggett et al. (1987), Spohn (1989), Amann (1991), and Weiss
(1999). The corresponding Hamiltonian, Hsb, is known as the spin-boson model.
The vector character of the Bose field is ignored and one sets Hat = εσz , Q · Aϕ =
σx

∫
d3k(ĝ(k)a∗(k) + ĝ(k)∗a(k)). The t−2-decay of (17.6) is the so-called Ohmic

case, which is marginal for the transition to non-Fock. For small coupling Hsb has
a unique ground state in C

2 ⊗ F , whereas for large coupling Hsb acquires an in-
finite number of bosons, which leads to a two-fold degenerate ground state, both
lying outside Fock space. Form factors with a decay different from t−2 have been
also investigated.

Section 17.2

Landau (1927) uses density matrices in the description of the reduced state of
the atom. He arrives at a variant of the master equation (17.32). Its diagonal part
is often referred to as the Pauli master equation (Pauli 1928). A further influen-
tial work is Bloch (1928). The systematic weak coupling theory goes back to van
Hove (1955, 1957) and has been further developed in response to the theoreti-
cal challenges in quantum optics. Just to remind the reader: In theoretical models
of the laser one has to include dissipation for the field modes of the cavity to
account for lossy reflection at the walls. For photon counting statistics one has
to devise a simple model of a detector. An interesting exchange is Srinivas and
Davies (1981) and Mandel (1981). For laser cooling and trapping the spontaneous
emission and its associated recoil must be described in a concise way (Metcalf and
van der Straten 1999). Thus the general problem of how to model open quantum
systems necessarily comes into focus. On the classical level the addition of friction
forces and possibly of noise serves well. But quantum mechanics poses constraints
which are still of current research interest. As a short sample out of a large body
of literature we refer to Lax (1968), Glauber (1969), Kossakowski (1972), Haake
(1973), Spohn (1980), Carmichael (1999), Weiss (1999), and Breuer and Petruc-
cione (2002). Our presentation here is based on Davies (1974, 1975, 1976a). He
emphasizes time-averaging which has been overlooked mostly, but is done cor-
rectly in Cohen-Tannoudji et al. (1992) and Breuer and Petruccione (2002). The
various generators of the dissipative evolution in the weak coupling limit are com-
pared in Dümcke and Spohn (1979). In the text we discussed only single-time
statistics. Stationary two-time statistics appear frequently in applications. Multi-
time statistics are studied by Dümcke (1983) within the presented framework.
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Although even the most simplistic theory yields a shift of the spectral line, such
predictions were not taken seriously. The rough estimate of Bethe (1947) and the
more sophisticated computation of Grotch (1981) resulting in a cutoff-independent
shift could have been done as early as 1930. It is only through the war-related re-
search on radar that experimental techniques became available to measure such
fine effects. The theory followed soon; see Schweber (1994) for an excellent ac-
count.

The weak coupling theory is also a useful tool in studying decoherence. In
essence one starts the dynamics with a coherent superposition of two spatially
well-separated wave packets. According to the appropriate quantum master equa-
tion such a coherence is destroyed on a time scale which is much, much shorter
than the friction time scale. Properly speaking the master equation should not be
used on such short time scales. When decoherence is due to the coupling to the
quantized rediation field, Dürr and Spohn (2002) provide an analysis based on
the dipole approximation. A complete discussion, avoiding the dipole approxima-
tion, is given by Breuer and Petruccione (2001), who also list references to earlier
work.

The weak coupling theory had a mathematical spin-off, going way beyond the
specific application at hand. The basic observation is that the dissipative semigroup
Tt is the classical analog of the transition probability of a classical Markov process,
the Markov character being embodied in the semigroup property TtTs = Tt+s ,
t, s ≥ 0. Tt is positivity and normalization preserving, in the sense that if ρ is a
density matrix so is Ttρ. As recognized by Lindblad (1976) the stronger notion of
complete positivity is very natural. It means that if H is extended to H ⊗ C

n and
Tt in the trivial way to Tt ⊗ 1, then Tt ⊗ 1 is positivity preserving for every n. In
this framework the possible types of generators are classified by Lindblad (1976).
He also characterizes dissipation through the decrease of relative entropy (Lind-
blad 1975). Mixing and the long-time limit t → ∞ are studied by Spohn (1976),
Frigerio (1978), and Frigerio and Verri (1982). The generalization of the notion
of detailed balance to the quantum context is discussed by Gorini et al. (1984).
Most recommended introductions are Davies (1976b) and Alicki and Lendi (1987).
Clearly the next level is to inquire about multitime statistics and their build-up
from the semigroup Tt . This is a fairly straightforward step for classical Markov
processes through the concept of conditional independence of past and future. No
such thing seems to exist on the quantum level and the theory of quantum stochas-
tic processes tries to provide a consistent framework, possibly guided by specific
model systems, that can be analyzed in detail. We refer to Accardi, Frigerio and
Lewis (1982), Lindblad (1983), Hudson and Parthasarathy (1984), Accardi et al.
(1991), and Parthasarathy (1992), and the recent monographs by Alicki and Fannes
(2001) and by Accardi et al. (2001).
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Section 17.3

Already in his first work on radiation theory Dirac (1927) simplifies the problem
to a single level coupled to a continuum of modes. A two-level atom coupled to
the radiation field in the rotating wave approximation also reduces to a Friedrich–
Lee-type Hamiltonian.

Complex dilations were investigated in connection with the study of Regge
poles, cf. Reed and Simon (1978) for references. The mathematical framework
is developed by Aguilar and Combes (1971) and Balslev and Combes (1971). A
beautiful survey is Simon (1978). For an introduction we refer to Cycon et al.
(1987). Hunziker (1990) focuses on the question of how to translate the results on
the resolvent back to the real time-domain. Okamoto and Yajima (1985) observe
that the dilation of the massive photon field can be used to unfold resonances. Res-
onances of the Pauli–Fierz model are studied in Bach, Fröhlich and Sigal (1995,
1998a, 1998b, 1999). They develop a renormalization-type iterative procedure to
pin down the domain of analyticity of the complex dilated resolvent. This method
is refined by Bach et al. (2002). An infinitesimal version based on Mourre-type
estimates and the Feshbach method is Dereziński and Jakšić (2001).

Section 17.4

Our discussion is based on Davies (1976a). LD is the Davies generator in the weak
coupling theory. Line shapes are discussed by Weisskopf and Wigner (1930). Our
examples for the spectral characteristics of the emitted light are taken from Cohen-
Tannoudji et al. (1992), Chapter IIIC and Exercise 15.

Section 17.5

Potential scattering is discussed in Reed and Simon (1979) and N -body scatter-
ing in Cycon et al. (1987). We follow the presentation in Hübner and Spohn
(1995a). The Cook argument is based on Høegh-Krohn (1970) who also studies
the asymptotic electromagnetic fields; for a complete discussion see (Fröhlich,
Griesemer and Schlein 2001). In the meantime the mathematical investigation of
scattering of photons from an atom has flourished. For simplicity often the scalar
field model of section 19.2 is studied. An important step is Dereziński and Gérard
(1999) who establish asymptotic completeness in the case of massive photons,
ω(k) = (k2 + m2

ph)
1/2, mph > 0, and a strictly confining potential. Earlier work

restricted to an N -level atom is Gérard (1996) and Skibsted (1998). An extension
to massless photons under the condition ϕ̂(0) = 0 is Gérard (2002). For mph > 0
Fröhlich, Griesemer and Schlein (2001, 2002) allow for potentials which are not
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strictly confining, like the Coulomb potential. Thereby the channel for a freely
propagating electron is opened up as it occurs in the description of the photoelec-
tric effect (Bach, Klopp and Zenk 2002). Ammari (2000) establishes asymptotic
completeness for the Nelson model of section 19.2 with ultraviolet cutoff removed.
In these works asymptotic completeness is defined in such a way that H could
have other eigenvalues besides its ground state. To exclude them one has to resort
to Bach, Fröhlich and Sigal (1998a) and Fröhlich, Griesemer and Schlein (2002).

A different approach is to take the dipole approximation with harmonic con-
fining potential. Since the Hamiltonian is quadratic, the scattering theory can be
reduced to one-particle scattering with a finite rank perturbation. Maassen (1984)
notices that for a weakly anharmonic confining potential the time-dependent
perturbation series can be controlled uniformly in time. His estimates are improved
and optimized in Maassen, Gută and Botvich (1999) and Fidaleo and Liverani
(1999). With this input one can prove asymptotic completeness in the strong sense
of Definition 17.4. The perturbing potential must be bounded and so small that the
confining potential remains convex (Spohn 1997). The harmonic case is investi-
gated by Arai (1983b).
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Relaxation at finite temperatures

The weak coupling theory of chapter 17 is the workhorse of quantum optics and
serves very well in practice, also at nonzero temperatures. From the viewpoint of
the theory one might wonder about the structure at fixed small, but nonzero, cou-
pling strength, which needs to go beyond the analysis of the weak coupling theory.
Much effort has been invested to achieve this goal, basically by trying to iden-
tify corrections within time-dependent perturbation theory. Unfortunately, since
the long-time behavior must be extracted, the details quickly become unwieldy
and one has to rely on ad hoc approximations.

Over recent years a novel approach has been pursued which investigates the
pole structure of the analytic continuation of the resolvent of Hλ across the real
axis through complex dilations; compare with section 17.3. The techniques are
demanding but simplify substantially at finite temperatures when the Hamiltonian
is replaced by the Liouvillean and, since its spectrum is the full real line, complex
dilations are replaced by complex translations which can be handled more easily.
From the pole structure a fairly complete picture of the long-time dynamics can be
extracted with the potential of computing systematically higher corrections to the
weak coupling theory.

The finite temperature relaxation is a digression into the realm of time-
dependent statistical mechanics with small deviations from thermal equilibrium.
While this is of independent interest and has important applications in quantum
optics and condensed matter, our goal is merely to illustrate the power of complex
translations and make the connection to the weak coupling theory.

For completeness we recall once again the set-up. In the dipole approximation
and N -level approximation the Hamiltonian is

Hλ = Hat + Hf + λQ · Eϕ = H0 + λHint, (18.1)

see (17.10). Hat acts on C
N . Diverging from our previous convention, the energies

ε j are labeled as ε1 ≤ ε2 . . . ≤ εN allowing for possible degeneracies. Q is the

279
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dipole operator as an N × N matrix. The field energy Hf, and the electric field
Eϕ = Eϕ(0) are operators on Fock space F . For finite temperatures we need some
extra structure, which will be explained below.

The photon field is at temperature T > 0. It will be more convenient to work
with the inverse temperature and set β = 1/kBT . In the initial state the atom and
its nearby photons are out of equilibrium and the goal is to understand how the
coupled system relaxes back to global equilibrium. In the weak coupling theory
one disentangles the effective dynamics of the atom and regards the field as driven
by the atomic source. At fixed λ such a distinction becomes hazy and a more global
view is adopted with the separation deduced in the small-λ limit.

The analysis of thermal relaxation relies on the following strategy. One intro-
duces coordinates which encode the finite energy excitations away from equi-
librium. Doing this properly relies on tools from the representation theory of
C∗-algebras which for our context was mostly developed in the 1960–70s. For
noninteracting photons the representation of Araki and Woods (1963) is of a suf-
ficiently concrete form and also allows the incorporation of the coupling to the
atom. Note that at zero coupling the spectrum of finite energy excitation covers
the full real axis R, since ω(k) = |k| and energy can be either below or above its
equilibrium value. The energy differences of the atom are embedded in this spec-
trum as discrete eigenvalues. As the coupling is turned on, they become resonances
which are uncovered by a complex downward translation of the photon excitation
spectrum. The location of the resonance poles and the corresponding eigenspaces
can be handled through standard analytic perturbation theory.

To convince the reader that the Araki–Woods Liouvillean correctly describes the
finite energy excitation, we need some background material on quantum systems
at finite temperature. We conform with established notation which to some extent
deviates from our previous conventions.

18.1 Bounded quantum systems, Liouvillean

We start with an abstract quantum system on a separable Hilbert space H equipped
with the scalar product 〈·, ·〉. We assume that the Hamiltonian H is bounded from
below and has a purely discrete spectrum such that

tr[e−β H ] < ∞ (18.2)

for arbitrary β > 0. The algebra of observables, A, is the set of all bounded op-
erators on H, denoted by B(H). A general quantum state is given through the
density matrix ρ, satisfying ρ ≥ 0, trρ = 1. In particular ρ ∈ T1(H), denoting the
two-sided ideal of trace class operators on H. In the Heisenberg picture the time
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evolution is given through

αt (a) = eit H ae−it H (18.3)

as acting on a ∈ B(H). The dual Schrödinger picture provides the time evolution
of states as

ρ �→ ρt = α−t (ρ) = e−it Hρeit H . (18.4)

We want the evolution of density matrices to look like the evolution of vectors
on a Hilbert space and, for this purpose, introduce the two-sided ideal of Hilbert–
Schmidt operators T2(H). A bounded operator a belongs to T2(H) if and only if
tr[a∗a] < ∞. T2(H) becomes a Hilbert space under the scalar product

〈a|b〉 = tr[a∗b], a, b ∈ T2(H). (18.5)

It will be useful to represent A = B(H) as an algebra of operators on T2(H).
T2(H) carries a left representation through

�(a)κ = aκ ∈ T2(H). (18.6)

Later on we will need also the right antirepresentation defined through

r(a)κ = κa∗ ∈ T2(H). (18.7)

This representation is antilinear since r(za)κ = z∗r(a)κ for z ∈ C.
We transcribe states and dynamics to T2(H). To every element κ ∈ T2(H) a

state ρ is associated through

ρ = 〈κ|κ〉−1κκ∗. (18.8)

The expectation of a ∈ B(H) is given by

〈a〉ρ = tr[ρa] = 〈κ|κ〉−1〈κ|�(a)κ〉. (18.9)

The time evolution becomes

〈αt (a)〉ρ = 〈κ|κ〉−1tr[κ∗αt (a)κ] = 〈κ|κ〉−1〈κ|�(αt (a))κ〉 (18.10)

and for κ, σ ∈ T2(H)

〈κ|�(αt (a))σ 〉 = tr[κ∗αt (a)σ ] = tr[(e−it Hκeit H )∗a(e−it Hσeit H )]

= 〈α−t (κ)|�(a)α−t (σ )〉 = 〈e−itLκ|�(a)e−itLκ〉. (18.11)

The last identity defines the Liouvillean L. Clearly

Lκ = [H, κ] (18.12)
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and κt = α−t (κ) is governed by the Schrödinger-like equation

i
d

dt
κt = Lκt . (18.13)

The Liouvillean is a symmetric operator as can be seen from

〈κ|Lσ 〉 = tr[κ∗[H, σ ]] = tr[
(
[H, κ]

)∗
σ ] = 〈Lκ|σ 〉. (18.14)

To work concretely with the left, respectively right, representation of A and the
Liouvillean L it is convenient to identify T2(H) with H ⊗ H through the isomor-
phism

IC : T2(H) → H ⊗ H. (18.15)

In a suitable basis C is simply complex conjugation. More abstractly C is an anti-
unitary involution on H, i.e.

C2 = 1 and 〈Cψ, Cϕ〉 = 〈ϕ, ψ〉. (18.16)

Then with κ defined through κψ = ψ1〈ψ2, ψ〉 one sets

ICκ = ψ1 ⊗ Cψ2 ∈ H ⊗ H (18.17)

which extends by linearity. Note that

IC�(a)κ = ICaκ = aψ1 ⊗ Cψ2 = (a ⊗ 1)ICκ. (18.18)

Thus IC intertwines with the left representation � of A on H ⊗ H given by

�(a) = a ⊗ 1. (18.19)

Similarly

ICr(a)κ = IC(κa∗) = ψ1 ⊗ Caψ2 = 1 ⊗ CaC ICκ (18.20)

and

r(a) = 1 ⊗ CaC on H ⊗ H. (18.21)

In particular for the Liouvillean

ICLκ = Hψ1 ⊗ Cψ2 − ψ1 ⊗ C Hψ2 = Hψ1 ⊗ Cψ2 − ψ1 ⊗ (C HC)Cψ2

= (H ⊗ 1 − 1 ⊗ C HC)(ψ1 ⊗ Cψ2) = (H ⊗ 1 − 1 ⊗ C HC)ICκ (18.22)

and

L = ICLI −1
C = H ⊗ 1 − 1 ⊗ C HC on H ⊗ H. (18.23)
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If H is invariant under time-reversal, we may choose C = T , with time-reversal
T , and C HC = T H T = H . Then the Liouvillean is given by

L = H ⊗ 1 − 1 ⊗ H (18.24)

as an operator on H ⊗ H. Clearly the spectrum of L consists of the energy
differences {Ei − E j | i, j = 0, 1, . . . }, where Ei , i = 0, 1, . . . , are the eigenval-
ues of H .

18.2 Equilibrium states and their perturbations, KMS condition

Of the many possible quantum states thermal equilibrium plays a special role. It is
defined by the density matrix

ρβ = Z−1e−β H , Z = tr[e−β H ]. (18.25)

As an element of T2(H) we set

κβ = Z−1/2e−β H/2. (18.26)

Then ρβ = κβκ∗
β . Since ρβ is strictly positive, 〈a∗a〉β = tr[ρβ a∗a] = 0 for a ∈ A

implies a = 0. Equivalently,

�(a)κβ = 0 implies a = 0, (18.27)

which means that κβ is separating for the algebra �(A). In principle, one should
allow for additional conservation laws like total charge or total number of particles.
However, this is ignored here since the Hamiltonian (18.1) does not have such a
structure.

For the photon field in infinite space the spectrum of H is continuous and
Z−1e−β H as such makes no sense. On the other hand, the atom is a small per-
turbation. Thus the equilibrium state of the coupled system relative to that of the
uncoupled system remains meaningful even at infinite volume and is the object of
thermal perturbation theory.

We consider

H = H0 + I. (18.28)

H0 is the unperturbed reference system and I is the perturbation, assumed to be
bounded, ‖I‖ < ∞. By the Golden–Thompson inequality

Zβ = tr[e−β H ] = tr[e−β(H0+I )] ≤ tr[e−β H0e−β I ]

≤ eβ‖I‖tr[e−β H0] = eβ‖I‖Z0
β. (18.29)

Thus if Z0
β < ∞, as assumed, then ρβ = Z−1

β e−β H ∈ T1(H).
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The Liouvillean of the reference system is given by

L0 = �(H0) − r(H0) (18.30)

and the Liouvillean of the perturbed system by

L = �(H) − r(H). (18.31)

Under the isomorphism IC the Liouvilleans become

L = ICLI −1
C = (H0 + I ) ⊗ 1 − 1 ⊗ C(H0 + I )C = L0 + W,

L0 = H0 ⊗ 1 − 1 ⊗ C H0C, W = I ⊗ 1 − 1 ⊗ C I C. (18.32)

We also define the Radon–Nikodym operators, L� and Lr , through

L� = L0 + �(I ), Lr = L0 − r(I ). (18.33)

Then, with κβ = (Zβ)−1/2e−β H/2, κ0
β = (Z0

β)−1/2e−β H0/2, we have

e−βL�/2κ0
β = e−β(�(H0)+�(I )−r(H0))/2κ0

β = e−β(H0+I )/2κ0
βeβ H0/2

= (Zβ/Z0
β)1/2(Zβ)−1/2e−β H/2 = (Zβ/Z0

β)1/2κβ (18.34)

and by a similar calculation

eβLr /2κ0
β = (Zβ/Z0

β)1/2κβ. (18.35)

κ0
β is in the domain of the operators e−βL�/2 and eβLr /2 and their action maps

unperturbed to perturbed equilibrium,

κβ = (Z0
β/Zβ)1/2e−βL�/2κ0

β, κβ = (Z0
β/Zβ)1/2eβLr /2κ0

β. (18.36)

The thermal state e−β H is related to the unitary time evolution e−it H through an-
alytic continuation to β = it , which gives rise to a very powerful analytic structure
of equilibrium time correlations known as the Kubo–Martin–Schwinger (KMS)
boundary condition. We define the time correlations as

〈aαt (b)〉β = Fab(t), 〈αt (b)a〉β = Gab(t). (18.37)

They are linked through

〈aαt (b)〉β = Z−1
β tr[e−β H aeit H be−it H ] = Z−1

β tr[e−β H e(β+it)H be−(β+it)H a]

= 〈α−iβ+t (b)a〉β, (18.38)

which is the KMS condition. It states that Fab(t) is the boundary value of a function
Gab(z) which is analytic in the strip S−β = {z | − β < Imz < 0} such that

lim
η↑β

Gab(t − iη) = Fab(t). (18.39)



18.3 Spectrum of the Liouvillean and relaxation 285

Equivalently, Gab(t) is the boundary value of a function Fab(z) analytic in the strip
Sβ such that

lim
η↑β

Fab(t + iη) = Gab(t). (18.40)

A state which satisfies either of these boundary conditions is called a KMS state
with respect to the time evolution αt . In our set-up, the only KMS state is ρβ . The
KMS condition is used as a defining property for equilibrium states in infinitely ex-
tended systems. In general, for the same group of automorphisms there could then
be several KMS states. Physically they represent distinct thermodynamic phases.

18.3 Spectrum of the Liouvillean and relaxation

As discussed in section 17.5, at zero temperature the relaxation to the ground state
can be reduced to a scattering problem, see Proposition 17.5. As a simplification,
at finite temperature it suffices to have sufficiently strong spectral properties of
the Liouvillean. We have in mind now a situation where the size of the black-body
cavity is huge on the atomic scale. Therefore the relevant mathematical idealization
is to have the photon field infinitely extended. The algebra B(H) must be replaced
then by a suitable algebra A of quasi-local observables. Its construction will be
explained in the following. At the moment we focus on the abstract structure. Thus
we have given the C∗-algebra A and a one-parameter group αt of ∗-automorphisms
as the dynamics. The distinguished state on A is the KMS state ωβ at inverse
temperature β. Its time correlations are defined by

Fab(t) = ωβ(aαt (b)), Gab(t) = ωβ(αt (b)a) (18.41)

and they satisfy the KMS boundary condition

Gab(t − iβ) = Fab(t), Fab(t + iβ) = Gab(t) ; (18.42)

compare with (18.39), (18.40). Note that ωβ is necessarily time-invariant, since
ωβ(1αt (b)) = ωβ(αt (b)1) and by the KMS condition

F1b(t) = F1b(t + iβ). (18.43)

Let us define the ∗-algebra A0 through smoothing in time with a test function of
compact support in Fourier space,

A0 = {
a f =

∫
dt f (t)αt (a) | a ∈ A, f̂ ∈ C00(R)

}
. (18.44)

For b ∈ A0, z �→ F1b(z) is an entire function bounded as |F1b(z)| ≤ ‖αz(b)‖ ≤
‖αiImz(b)‖. By (18.43) F1b is periodic with period iβ. Hence F1b is bounded and
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thus constant by Liouville’s theorem, which implies

ωβ(αt (b)) = ωβ(b) (18.45)

for all t ∈ R.
We assume that A is a simple C∗-algebra, which means that the only two-sided

∗-ideals of A are either {0} or A itself. The KMS condition then ensures that for
every a ∈ A

ωβ(a∗a) = 0 implies a = 0. (18.46)

To prove (18.46) we define N = {a ∈ A| ωβ(a∗a) = 0} with the goal of establish-
ing that N is a two-sided ∗-ideal. Clearly, if ωβ(a∗a) = 0 and b ∈ A, then

ωβ(a∗b∗ba) ≤ ωβ(a∗b∗bb∗ba)1/2ωβ(a∗a)1/2 = 0 (18.47)

by the Schwarz inequality. Hence AN ⊂ N . To show the converse one chooses
b ∈ A. By the KMS condition

ωβ(b∗a∗ab) = ωβ((b∗a∗a)b) = ωβ(α−iβ(b)b∗a∗a) = 0 (18.48)

by the Schwarz inequality as before. Thus NA ⊂ N and N is a two-sided ∗-ideal.
Since A is simple, (18.46) follows.

Next we need the analog of T2(H) and of the Liouvillean, which is the content
of the Gelfand–Naimark–Segal (GNS) construction. The GNS Hilbert space Hβ is
defined as the completion of A equipped with the scalar product

〈a|b〉 = ωβ(a∗b). (18.49)

By the argument above 〈a|a〉 = 0 implies a = 0, as it should. In our context Hβ is
a separable Hilbert space. We set 
β = 1 and define the left representation of A
through

�(a)b = ab. (18.50)

Thereby �(A) ⊂ B(Hβ). In addition we define

e−itLa = αt a (18.51)

on Hβ . Since 〈b|e−itLa〉 = ω(b∗αt a) = ω(α−t b∗a) = 〈eitLb|a〉 and since
〈e−itLb|e−itLa〉 = ω(αt (b∗a)) = 〈b|a〉 by time-invariance of ωβ , e−itL is a
strongly continuous unitary group on Hβ . By Stone’s theorem it has a self-adjoint
generator, which by definition is the Liouvillean L.

The initial state of interest is a local perturbation of the equilibrium state ωβ . It
can be written as

ρ(a) = ωβ(b∗ab), b ∈ A, ωβ(b∗b) = 1. (18.52)
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In the GNS representation ρ corresponds to the state given by the vector b ∈ Hβ .
More generally, a perturbed state can be written as

ρ(a) =
∞∑

n=1

pnωβ(b∗
nabn) (18.53)

with bn ∈ A, ω(b∗
nbn) = 1, pn ≥ 0,

∑∞
n=1 pn = 1. States of the form (18.53) are

called normal. A state not covered by this class would be a two-temperature state
of the photon gas, for example, where the temperature to the far right differs from
that to the far left. In fact, its long-time behavior would be rather different from
that of the initial states discussed here.

Let ρ be a normal state with time evolved ρt (a) = ρ(αt (a)). By relaxation to
equilibrium we mean

lim
t→∞ ρt (a) = ωβ(a) (18.54)

for all a ∈ A.

Proposition 18.1 (Relaxation to equilibrium as a spectral property). Suppose the
Liouvillean L has a purely absolutely continuous spectrum except for a nondegen-
erate eigenvalue at 0. Then for all a ∈ A

lim
t→±∞ ρt (a) = ωβ(a). (18.55)

Proof: Since ωβ is time invariant, the (unique) zero eigenvector of L is 
β . By as-
sumption the spectral measure of 〈ψ |e−itLϕ〉 has the point mass 〈ψ |
β〉〈
β |ϕ〉 at
zero and is otherwise absolutely continuous. Therefore by the Riemann–Lebesgue
lemma

lim
t→∞〈ψ |e−itLϕ〉 = 〈ψ |
β〉〈
β |ϕ〉 (18.56)

for all ψ, ϕ ∈ Hβ .
In view of the structure of normal states it suffices to study

ωβ(b∗αt (a)c) = ωβ

(
α−iβ(c)b∗αt (a)

)
= 〈�(b)�(αiβ(c∗))
β |�(αt (a))
β〉
= 〈�(b)�(αiβ(c∗))
β |e−itL�(a)
β〉. (18.57)

We assume that a, b, c ∈ A0, see (18.44). Then �(b)�(αiβ(c∗))
β , �(a)
β ∈ Hβ .
Therefore from (18.56)

lim
t→∞ ωβ(b∗αt (a)c) = 〈�(b)�(αiβ(c∗))
β |
β〉〈
β |�(a)
β〉

= ωβ(α−iβ(c)b∗)ωβ(a)

= ωβ(b∗c)ωβ(a), (18.58)
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which, upon inserting in (18.53), implies the limit (18.55). Note that the KMS
condition is used twice, in the first identity of (18.57) and in the last identity of
(18.58). �

Proposition 18.1 suggests that relaxation to equilibrium can be established in
two steps: (i) One has to find for the equilibrium state a sufficiently concrete repre-
sentation of the algebra of local observables and of the Liouvillean. (ii) The spec-
tral properties of the Liouvillean must be studied. For (i) the natural representation
is the Araki–Woods representation of the free photon gas in infinite volume. It will
be taken up in the following section. The coupled system is constructed through
perturbation series. For the dynamics the time-dependent Dyson series is used and
for the thermal state the thermal perturbation theory of section 18.2. Of course, the
convergence of both series relies on the atom being modeled as an N -level system
and on the explicit control of the free photon gas. Only through the convergence
of the perturbation series are we assured of the correct representation spaces for
the interacting system. Nevertheless, we skip this important point completely and
jump to the spectral analysis of the interacting Liouvillean.

18.4 The Araki–Woods representation of the free photon field

For photons in a cavity �, the spectrum of allowed momenta is discrete,
tr[exp[−β Hf,�]] < ∞, and the rules of thermal equilibrium for bounded quantum
systems are applicable, through which the time-correlations of local observables
in the form ω�

β (aα�
t (b)) are defined. A macroscopic cavity with its surface

kept at a uniform temperature is extremely well approximated by the infinite-
volume limit � ↑ R

3. For the Hamiltonian (18.1) the infinite-volume limit of time-
correlations can be established. Rather than going through the construction, we
merely state the final answer, which will serve as a basis for the study of relaxa-
tion.

We work in the momentum space representation. Without risk of confusion we
set k = (k, λ) ∈ R

3 × {1, 2} and
∑

λ=1,2

∫
d3k = ∫

dk, δ(k − k′) = δλ,λ′δ(k −
k′). The bosonic field operators are

a( f ) =
∫

dk f (k)a(k) =
∑

λ=1,2

∫
d3k f (k, λ)a(k, λ), a∗( f ) =

∫
dk f (k)a∗(k)

(18.59)

with f ∈ S0(R
3 × {1, 2}), the Schwartz space of functions that decrease rapidly

and vanish at k = 0. Observe that our convention for the complex conjugation
of the test function f differs from that in (13.59), (13.60). Let us also intro-
duce the complex conjugation τ f (k) = f (k)∗ = (

f (k, 1)∗, f (k, 2)∗
)
. Its second
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quantization is the anti-unitary time-reversal operator T on F with the properties

T 
 = 
, T a�( f )T = a�(τ f ), T = T ∗ = T −1. (18.60)

Note that (a∗( f ))∗ = a(τ f ) and 〈 f, g〉h = ∫
dk(τ f )g. The boson fields satisfy the

canonical commutation relations (CCR),

[a∗( f ), a∗(g)] = 0 = [a( f ), a(g)], (18.61)

[a(τ f ), a∗(g)] = 〈 f, g〉h. (18.62)

Let P denote the polynomial ∗-algebra generated by

{a∗( f ), a(g) | f, g ∈ S0(R
3)2}. (18.63)

On P the time evolution αf
t is defined through

αf
t (a

∗(k)) = eitω(k)a∗(k), αf
t (a(k)) = e−itω(k)a(k). (18.64)

The equilibrium state ωf
β of the photon field at inverse temperature β is a quasi-free

state on P . Set

ρβ(k) = 1

eβω(k) − 1
. (18.65)

Then the two-point function is given by

ωf
β

(
a∗(τ f )a(g)

) = 〈 f, ρβg〉h (18.66)

and all other moments by

ωf
β

( n∏
i=1

a∗(τ fi )

m∏
j=1

a(g j )
) = δmn det{〈 fi , ρβg j 〉h}i, j=1,...,n. (18.67)

ωf
β satisfies the KMS condition as can be seen directly from

ωf
β

(
a(k)a∗(k′)

) = δ(k − k′) + ωf
β

(
a∗(k′)a(k)

)
= eβω(k)ρβ(k)δ(k − k′)
= ωf

β

(
αf

−iβ(a∗(k′))a(k)
)
. (18.68)

Through the GNS construction the data (P, αf
t , ω

f
β) determine a separable

Hilbert space Hf
β , a left representation � of P on Hf

β , a vector 
f
β ∈ Hf

β cyclic

for �(P), and a unitary one-parameter group e−itLf , t ∈ R, such that

ωf
β(a) = 〈
f

β |�(a)
f
β〉

�(αt (a)) = eitLf�(a)e−itLf, a ∈ P. (18.69)
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We follow Araki and Woods to construct, as for a bounded quantum system, an
isomorphism IT between Hf

β and F ⊗ F . On F ⊗ F we introduce the Bose fields

a�
�( f ) = a�( f ) ⊗ 1, a�

r ( f ) = 1 ⊗ a�(τ f ). (18.70)

Note that a�
r is an antilinear representation of the CCR. The isomorphism IT is

then defined through the following relations,

IT 
f
β = 
 ⊗ 
, (18.71)

IT �(a( f ))I −1
T = a�(

√
1 + ρβ f ) + a∗

r (
√

ρβ f ), (18.72)

IT r(a( f ))I −1
T = a∗

� (
√

ρβτ f ) + ar (
√

1 + ρβτ f ). (18.73)

As it should be, (18.72) is linear and (18.73) is antilinear in f .
IT �(a�( f ))I −1

T and IT r(a�( f ))I −1
T satisfy the CCR and one only has to check

that the two-point function is properly transported,

〈
 ⊗ 
|IT �(a∗( f ))�(a(g))I −1
T 
 ⊗ 
〉

= 〈
 ⊗ 
|ar (
√

ρβ f )a∗
r (

√
ρβg)
 ⊗ 
〉 = 〈τ f, ρβg〉h

= ωf
β(a∗( f )a(g)) = 〈
f

β |�(a∗( f ))�(a(g))
f
β〉 (18.74)

and likewise for the right representation. We conclude that, indeed, IT : Hf
β →

F ⊗ F is an isometry.
The Liouvillean is transported as L f = ITLf I −1

T . From the bounded systems
one would expect that

L f =
∫

dkω(k)
(
a∗
� (k)a�(k) − a∗

r (k)ar (k)
)
. (18.75)

Then indeed, as required,

eit Lfa�(k)e−it Lf = e−itω(k)a�(k), eit Lfar (k)e−it Lf = eitω(k)ar (k) (18.76)

and

eit Lf IT �(a(k))I −1
T e−it Lf = e−itω(k) IT �(a(k))I −1

T = IT �(αt (a(k)))I −1
T ; (18.77)

similarly for the right representation.

18.5 Atom in interaction with the photon gas

The atomic Hamiltonian Hat has N , possibly degenerate, eigenvalues, ε1 ≤ ε2 ≤
· · · ≤ εN , and the atomic Hilbert space is Hat = C

N . We fix a corresponding
eigenbasis, Hatϕ j = ε jϕ j , j = 1, . . . , N . The algebra of observables is the N × N
complex matrices MN and it carries the thermal state ωat

β = Z−1e−β Hat . As long
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as there is no interaction we merely tensor the atom with the photon field. The
algebra of observables is MN ⊗ P , the thermal state is

ω0
β = ωat

β ⊗ ωf
β, (18.78)

and the dynamics is generated by α0
t = αat

t ⊗ αf
t . As before, the GNS construction

determines a separable Hilbert space H0
β with cyclic vector 
0

β and a unitary time

evolution e−itL0 . With C denoting complex conjugation in the given basis of Hat,
the map I0 = IC ⊗ IT : H0

β → Hat ⊗ Hat ⊗ F ⊗ F = Ĥβ is an isomorphism. In

particular, I0

0
β = 
̂0

β with


̂0
β =

N∑
j=1

e−βε j ϕ j ⊗ ϕ j ⊗ 
 ⊗ 
. (18.79)

The Liouvillean is mapped as

I0L0 I −1
0 = L0 = Lat ⊗ 1 + 1 ⊗ L f, Lat = Hat ⊗ 1 − 1 ⊗ Hat. (18.80)

The real task is to find out how the interaction is mapped to the Araki–Woods
representation space. According to (18.1) one has

Hint = Q · Eϕ =
∑

λ=1,2

∫
d3k ϕ̂(k)

√
ω/2Q · eλ

(
ia(k, λ) − ia∗(k, λ)

)
. (18.81)

It is more convenient to slightly generalize from (18.81) as

Hint =
∫

dk
(
G(k) ⊗ a∗(k) + G(k)∗ ⊗ a(k)

)
, (18.82)

where G : R
3 × {1, 2} → MN as a matrix-valued function, with the memo that

some specific features of the coupling in (18.81) will be used in the spectral ana-
lysis below.

If G ∈ S0(R
3 × {1, 2},MN ) as matrix-valued function, one has Hint ∈

MN ⊗ P . Thus the Liouvillean in the GNS space necessarily takes the form

Lλ = L0 + λ�(Hint) − λr(Hint) = L0 + λLint (18.83)

and only the transformations (18.72), (18.73) have to be applied, resulting in

L int = I0Lint I
−1
0 (18.84)

=
∫

dk
{(√

1 + ρβG�(k) − √
ρβ G

∗
r (k)

)
a∗
� (k)

+ (√
1 + ρβG∗

�(k) − √
ρβ Gr (k)

)
a�(k)

+ (√
ρβG∗

�(k) − √
1 + ρβ Gr (k)

)
a∗

r (k)

+ (√
ρβG�(k) − √

1 + ρβ G
∗
r (k)

)
ar (k)

}
.
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Here G�
� = G� ⊗ 1, G�

r = 1 ⊗ G�, G
� = IC G� I −1

C . Extending the test function
notation to matrix-valued test functions, L int may be written more concisely as

L int = a∗
�

(√
1 + ρβG� − √

ρβ G
∗
r

) + a�

(√
1 + ρβG∗

� − √
ρβ Gr

)
+ a∗

r

(√
ρβG∗

� − √
1 + ρβ Gr

) + ar
(√

ρβG� − √
1 + ρβ G

∗
r

)
. (18.85)

With some effort we thus achieved our goal of writing the Liouvillean for the exci-
tations away from equilibrium. Note that through ρβ the interaction is temperature-
dependent and becomes singular as β → ∞, which only reflects the fact that the
ground state does not fall into the scheme explained before.

Two problems remain to be sorted out. First, Lλ = L0 + λL int must generate a
unitary time evolution on Ĥβ . If∫

dk
(
ω(k) + ω(k)−3)‖G(k)‖2 < ∞, (18.86)

then the self-adjointness of Lλ follows from the Nelson commutator theorem.
Note that for the physical case (18.81) the condition (18.86) translates to∫

d3k|ϕ̂|2(ω2 + ω−2) < ∞, which is satisfied.
Secondly, the equilibrium state of the interacting system must be represented by

a vector in Ĥβ . The thermal perturbation theory of section 18.2 tells us that this
new vector is formally given by


̂λ
β = (Zβ)−1/2e−βL�/2
̂0

β = (Zβ)−1/2eβLr /2
̂0
β, (18.87)

where, according to (18.33), (18.85)

L� = L0 + λL int�, Lr = L0 − λL intr (18.88)

and

L int� = a∗
� (

√
1 + ρβG�) + a�(

√
1 + ρβG∗

�) + a∗
r (

√
ρβG∗

�) + ar (
√

ρβG�),

L intr = a∗
� (

√
ρβ G

∗
r ) + a�(

√
ρβ Gr ) + a∗

r (
√

1 + ρβ Gr ) + ar (
√

1 + ρβ G
∗
r ).

(18.89)

(Zβ)−1/2 normalizes the vector to one. It can be shown that Zβ < ∞ provided∫
dk(1 + ω−1)‖G(k)‖2 < ∞. (18.90)

Therefore under the condition (18.86), 
̂λ
β ∈ Ĥβ .

By construction Lλ
̂
λ
β = 0. Thus Lλ has a zero eigenvector, which does not

change under the dynamics and represents the state of global equilibrium. Accord-
ing to Proposition 18.1, we have to make sure that 
̂λ

β is the only eigenvector
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of Lλ and that apart from the zero eigenvalue, the spectrum is purely absolutely
continuous.

18.6 Complex translations

L f has the full real line as spectrum. Its structure is more easily investigated by
switching to spherical coordinates in momentum space and to the corresponding
Bose field denoted here by b(ω, k̂). We set

(k, λ) = (ω, k̂), dk = ω2dωd̂k, (18.91)

where k̂ = (k/|k|, λ). The right representation in L f has negative excitation en-
ergies, which we associate with ω < 0. Thus the Bose field b�(ω, k̂) lives on
R × S2 × {1, 2} and is defined by

b�(ω, k̂) =
{

ωa�
�(k) for ω = |k|,

ωa�
r (k) for ω = −|k|. (18.92)

From the definition of a�
�, a�

r one confirms that b, b� satisfy the CCR as

[b(ω, k̂), b(ω′, k̂′)] = 0 = [b∗(ω, k̂), b∗(ω′, k̂′)] (18.93)

and

[b(ω, k̂), b∗(ω′, k̂′)] = δ(ω − ω′)δ(̂k − k̂′). (18.94)

In the new coordinates the Liouvillean becomes

L f =
∫

R

dω

∫
S2×{1,2}

d̂k ωb∗(ω, k̂)b(ω, k̂). (18.95)

We rewrite the interaction. Let us define the matrix-valued functions

F�(ω, k̂) =
{

ω−1/2G�(k) for ω = |k|,
−(−ω)−1/2G∗

�(k) for ω = −|k|, (18.96)

Fr (ω, k̂) =
{

ω1/2CG∗
r (k)C for ω = |k|,

−(−ω)−1/2CGr (k)C for ω = −|k|, (18.97)

F (β)
� (ω, k̂) = (

ω(1 − e−βω)−1)1/2
F�(ω, k̂),

F (β)
r (ω, k̂) = ( − ω(1 − eβω)−1)1/2

Fr (ω, k̂). (18.98)



294 Relaxation at finite temperatures

Then

L int = L int� − L int r (18.99)

with

L int� =
∫

R

dω

∫
S2×{1,2}

d̂k
(
F (β)

� (ω, k̂)b∗(ω, k̂) + F (β)
� (ω, k̂)∗b(ω, k̂)

)
.

(18.100)

With (18.95) and the definitions (18.99), (18.100) one concludes

Lλ = Lat + L f + λL int = L0 + λL int. (18.101)

Since L f has the real line for its continuous spectrum, it is natural to try to move
it through a downward translation. The generator T of translations along the ω-axis
is given by

T =
∫

dω

∫
d̂kb∗(ω, k̂)(−i∂ω)b(ω, k̂). (18.102)

Let θ ∈ C. Then

L0(θ) = e−iθT L0eiθT = Lat + L f − θ Nf (18.103)

with the number operator

Nf =
∫

dω

∫
d̂kb∗(ω, k̂)b(ω, k̂). (18.104)

We set θ = iϑ, ϑ > 0. Then L0(θ) has R − iϑ as continuous spectrum and the
isolated eigenvalues {εi − ε j | i, j = 1, . . . , N } on the real axis.

To be able to apply the theory of complex deformations θ �→ e−iθT L inteiθT =
L int(θ) has to be analytic in a strip around the real axis. L int(θ) is obtained by shift-
ing F (β)

� (ω, k̂) in (18.100) to F (β)
� (ω + θ, k̂). Thus the issue is whether F (β)

� (ω, k̂)

extends to an analytic function near the real axis. For the physical coupling

G(k, λ) = −iQ · eλ

√
ω/2ϕ̂(k). (18.105)

By assumption ϕ is radial and has compact support in position space. Thus ϕ̂r is an
analytic function on C. Therefore F�, Fr of (18.96), (18.97) are analytic in ω. The
prefactors in (18.98) have simple poles at ±2π iβn, n = 1, 2, . . . . We conclude
that F (β)

� (ω, k̂) are analytic in ω in the strip S2π/β = {θ | |Imθ | < 2π/β}. Lλ(θ) =
L0(θ) + λL int(θ) is jointly analytic in λ and θ ∈ S2π/β . To derive this result we
used the assumption that the photons have zero mass. Otherwise L f would have a
spectral gap and complex translations could not be implemented. We also assumed
that there is a

√
ω prefactor in the physical coupling. Both assumptions could be
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1/β

ε12 ε11 ε22 ε21

ε12(λ)
ε22(λ)

ε11(λ)

ε21(λ)

Figure 18.1: Spectrum of the complex translated Liouvillean in the case of a
two-level atom for zero and nonzero coupling.

avoided at the expense of a considerably more involved analysis. Note that the
width of the strip of analyticity decreases as 1/β which indicates that our estimates
worsen as zero temperature is approached.

We are now in a position to use the considerations from section 17.3 and choose
θ = iϑ with ϑ close to the optimal value 2π/β. For zero coupling the eigenvalues
of L0(θ) are εi j = εi − ε j , i, j = 1, . . . , N , see figure 18.1. The zero eigenvalue
is at least N -fold degenerate. As the coupling is turned on, λ �= 0, the eigenvalues
εi j (λ) move. From the general theory, there is a dense set of vectors, E ⊂ Ĥβ , such
that for ψ, ϕ ∈ E the resolvent 〈ψ |(z − Lλ)

−1ϕ〉 can be continued analytically
from the upper complex plane to {z | Imz > −ϑ}. In this domain 〈ψ |(z − Lλ)

−1ϕ〉
is analytic except for poles at z = εi j (λ). Thus εi j (λ) are the resonance poles of
the resolvent. These assertions remain valid up to the first λ when a resonance hits
the line {z = −iϑ}. Thereby the theory is restricted up to some maximal coupling
λ0, |λ| < λ0.

In our convention Im εi j (λ) < 0 corresponds to exponential decay. Thus, since
expectation values remain bounded in t , the resonances cannot move in the upper
half complex plane. From the thermal perturbation theory we know that at least
one eigenvalue remains at 0. Somewhat arbitrarily we label this eigenvalue by
ε11(λ). To prove relaxation to equilibrium, according to Proposition 18.1, it must
be ensured that all other resonances acquire a strictly negative imaginary part for
λ �= 0. At this point, second-order perturbation theory comes in handy. We require
that the dissipative part K � in (17.32) has a nondegenerate eigenvalue 0. Then
Im εi j (λ) = O(λ2) and, possibly further reducing λ0, the second order controls
the higher orders, which implies Im εi j < 0 for |λ| < λ0, except for ε11(λ).
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Theorem 18.2 (Absolute continuity of the spectrum of the Liouvillean). If K �

has a simple eigenvalue 0 and if |λ| < λ0 for sufficiently small λ0, then Lλ has 0 as
a simple eigenvalue. The remainder of the spectrum is absolutely continuous and
covers the real line.

From Theorem 18.2 in conjunction with Proposition 18.1 we conclude that an
N -level atom coupled to the photon field relaxes to thermal equilibrium in the
long-time limit.

For |λ| < λ0, the discrete part of Lλ(θ) is cut out through the contour integral

�λ =
∮

γ

dz

2π i
z(z − Lλ(θ))−1, (18.106)

where γ is a contour in the complex plane which encircles all eigenvalues εi j (λ)

and stays away from the half-space {z | Imz ≤ −ϑ}. �λ remains unchanged under
small shifts of ϑ . By the same token one can construct two maps W ±

λ E → MN

such that

〈φ|e−it Lλψ〉 = 〈W −
λ φ|e−it�λ W +

λ ψ〉 + O(e−ϑ t ) (18.107)

for t ≥ 0. Equation (18.107) defines the level shift operator �λ. Its eigenval-
ues are εi j (λ), i, j = 1, . . . , N . Thus (18.107) establishes exponentially fast
relaxation to equilibrium for a large class of initial states and of observa-
bles.

Our scheme leaves somewhat open how rapidly specific expectation values de-
cay. For example one could prepare the atom in the n-th level and ask how the
probability of survival decays as t → ∞. If Pn denotes the projection on the
n-th eigenstate ϕn , then the observable under consideration is Pn ⊗ 1. As initial
state one could take the uncorrelated state Pn ⊗ ωf

β . A physically more realis-

tic choice would be the state ω(n)(a) = ωβ(Pn ⊗ 1a Pn ⊗ 1)/ωβ(Pn ⊗ 1) with
ωβ the equilibrium state of the coupled system. The issue is to compute the
decay of ω(n)(αt (Pn ⊗ 1)). Equation (18.107) suggests that ω(n)(αt (Pn ⊗ 1)) −
ωβ(Pn ⊗ 1) decays exponentially to zero. To verify this one has to find the rep-
resentation vectors and determine their analytic continuation in θ . In our example
the observables do not depend on the field and therefore the representation vectors
are in E , which ensures exponential decay.

In specific systems, say only two levels, also the order λ4 could be computed.
Up to errors from O(e−ϑ t ) the line shape is still a Lorentzian, whose location and
width are given with a precision superior to the weak coupling theory.
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18.7 Comparison with the weak coupling theory

The weak coupling theory of section 17.2 predicts the decay of atomic expectations
in the form

tr[Ae−iLDt (Bρβ B∗)], (18.108)

which is written somewhat differently than before to ease comparison. The trace
is over C

N , A = A∗ is some atomic observable, ρβ = Z−1e−β Hat , Bρβ B∗ is
the initial density matrix of the atom normalized as tr[ρβ B∗B] = 1, and LD is
the Davies generator of (17.68). We assume {H, Qα, α = 1, 2, 3}′ = C1 and the
Wiener condition �(ω) > 0 for all ω. Then (18.108) converges exponentially fast
to the thermal equilibrium expectation of A, tr[ρβ A], independently of the choice
of B.

In the full microscopic theory the expectation in spirit closest to (18.108) is
given by

ωβ(B∗ ⊗ 1αλ
t (A ⊗ 1)B ⊗ 1), (18.109)

where, as before, ωβ is the thermal state of the coupled system and αλ
t is the time

evolution with Liouvillean (18.83). From the thermal perturbation theory one con-
cludes that there exists a local operator c such that ωβ(B∗ ⊗ 1aB ⊗ 1) = ωβ(ca)

for all a ∈ MN ⊗ A. Thus

ωβ(B∗ ⊗ 1αλ
t (A ⊗ 1)B ⊗ 1) = ωβ(cαλ

t (A ⊗ 1)). (18.110)

Since B ⊗ 1, A ⊗ 1 are atomic observables, in the GNS representation c and
A ⊗ 1 become vectors in E . Therefore the long-time behavior of the expectation
in (18.109) is determined by the resonances εi j (λ). If |λ| < λ0, then Im εi j (λ) < 0
except for i j = 11 when ε11(λ) = 0. Thus also the expectation value in (18.109)
decays exponentially fast to its equilibrium value ωβ(A ⊗ 1).

Optimally, one would like to compare (18.108) and (18.109) for small λ. The
form (18.108) is a sum of N 2 exponentials, decaying except for one constant term.
Likewise, (18.109) is a sum of N 2 exponentials plus an error which has an even
faster exponential decay independent of λ and can be neglected for small λ. Most
naturally, amplitudes and decay rates are compared. The amplitudes differ by or-
der λ2, since from the thermal perturbation theory ωβ(A ⊗ 1) = tr[ρβ A] + O(λ2)

using that ωf
β(E) = 0.

The decay rates for (18.108) are the eigenvalues of LD. The eigenvalues of
Lat = [Hat, ·] are εi − ε j = εi j , i, j = 1, . . . , N . Since Lat and iK � commute, LD

is block diagonal with respect to the eigenvalues of Lat. The eigenvalues εD
i j of LD
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are then necessarily of the form

εD
i j = εi j + λ2ε

�
i j (18.111)

with ε
�
i j the eigenvalues of iK � and they cluster at the eigenvalues of Lat. iK �

decomposes as

iK �ρ = [H�, ρ] + iK �
dρ (18.112)

with H� given by (17.69). [H�, Hat] = 0 by construction. H� shifts the atomic
levels and lifts possible degeneracies of Hat. K �

d and Lat also commute. By detailed

balance K �
d is symmetric with respect to the weighted inner product tr[ρβ A∗B].

Thus the eigenvalues of K �
d are negative, real, and with a nondegenerate eigenvalue

at 0. In general, [H�, ·] and iK �
d do not commute. If, however, the eigenvalues of

Hat are nondegenerate, then they do and the eigenvalues of [H�, ·] and iK �
d can

simply be added.
As explained the decay rates for (18.109) are determined by the resonances

εi j (λ). As a basic result one obtains that

|εi j (λ) − εD
i j | = O(λ3), (18.113)

where the naive error O(λ4) is reduced because of possible crossings of eigenval-
ues. In the weak coupling theory there is some freedom in choosing the generator.
For example, K and K � cannot be distinguished, see (17.28), (17.31). The non-
perturbative theory of resonances identifies K � as the optimal small-λ limit. Any
other version, like K, would have eigenvalues in general different from K �, and its
eigenvalues could thus not satisfy the bound (18.113).

Notes and references

Sections 18.1–18.6

These sections are based on the first part of Bach, Fröhlich and Sigal (2000). Jakšić
and Pillet (1995, 1996a, 1996b, 1997) establish the relaxation to thermal equilib-
rium with the help of complex translations of the Liouvillean. Their method can
be extended to the case when the small system is coupled to several reservoirs at
distinct temperatures (Jakšić and Pillet 2002). By more sophisticated techniques
one can control the analytic continuation of the resolvent uniformly in β (Bach,
Fröhlich and Sigal 2000). Dereziński and Jakšić (2003a) use an infinitesimal ver-
sion based on Mourre-type estimates. Such a technique has been used before in the
simplification of the spin-boson Hamiltonian (Hübner and Spohn 1995b). Positive
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commutator techniques are employed by Merkli (2001). Dereziński, Jakšić and
Pillet (2003) systematically develop the W ∗-algebraic approach.

The standard reference on the algebraic formulation of quantum statistical me-
chanics is Bratteli and Robinson (1987, 1997); see also Sewell (1986) for a more
gentle introduction. The representation theory for the free Bose gas is due to Araki
and Woods (1963). A very readable introduction to free quantum gases in the frame
of the algebraic approach is Dubin (1974).

Within the thermal context also the translation-invariant model (15.15) is of con-
siderable interest. The initial state can be taken to be factorized as ρ ⊗ ωf

β , with
ρ some density matrix of the electron. For small coupling, the electron has a rate
proportional to λ2 to be scattered by the photons. The collisions are approximately
independent and result in a finite energy and momentum transfer. Between consec-
utive collisions the electron travels freely. Such a situation is well approximated
by a classical linear Boltzmann equation. Only the jump rates know about the
quantum nature of the electron. We refer to Spohn (1978), Erdös and Yau (1998,
2000), and Erdös (2002). Transport of independent electrons by scattering either
through phonons or through impurities is discussed in Fujita (1966) and Vollhardt
and Wölfle (1980).

Section 18.7

Jakšić and Pillet (1997) and Dereziński and Jakšić (2003a) introduce the level shift
operator �λ. Dereziński and Jakšić (2003b) discuss in more detail the relation
to the weak coupling theory. If one defines L̃ D A = (ρβ)−1/2L∗

D((ρβ)1/2 A), then
they establish that ‖�λ − L̃ D‖ = O(λ3).
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Behavior at very large and very small distances

For the classical Abraham model, and its relativistic generalization, we had to ac-
cept a phenomenological charge distribution. The physically appealing idea to let
this charge distribution shrink to a point charge failed because the charged particle
acquires a mass which grows beyond any limit. There is simply no bare parameter
in the model which would balance the divergence in a meaningful way. Neverthe-
less the situation is much less dramatic than it sounds. When probed over distances
that are large compared to the size of the charge distribution and correspondingly
long times, only global properties of the charge distribution, like total charge and
total electrostatic energy, are needed, thereby greatly reducing the dependence on
the choice of the form factor. In the quantized version one has to investigate the
problem anew, which requires the study of the properties of the Pauli–Fierz Hamil-
tonian at very small distances. The form factor ϕ̂ cuts off the interaction with the
Maxwell field at large wave numbers. The point-charge limit thus means removing
this ultraviolet cutoff. If it could be done, we would be in the very satisfactory posi-
tion of having the empirical masses and empirical charges of the quantum particles
as the only model parameters. Of course, the validity of the theory would not ex-
tend beyond what we have discussed already. In particular, relativistic corrections
are not properly accounted for.

As we will see, the ultraviolet behavior of the Pauli–Fierz model is not so well
understood. If the Maxwell field is replaced by a scalar Bose field, the ultraviolet
divergencies simplify considerably and have been studied by E. Nelson in detail.
To have a sort of blueprint we therefore include a section on the scalar field model.

Since the photons have zero mass, the Coulomb potential decreases as
−e2/4π |x |. In a quantized field theory one has to check whether states which
have such a slow decay for the average fields still lie in Fock space, the Hilbert
space which we used throughout to develop our theory. This issue leads to a study
of the infrared behavior of the Pauli–Fierz Hamiltonian. Note that for this purpose
the dispersion relation ω(k) = |k| is crucial, whereas an ultraviolet cutoff in the

300
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interaction can be accommodated without harm. On the other hand, for the point-
charge limit we may assign the photons a small mass. The infrared and ultraviolet
behavior appear as disjoint properties.

19.1 Infrared photons

A classical charge traveling at constant velocity v carries with it the electric field
Ecl

v and the magnetic field Bcl
v , see Eq. (4.5), where we omitted the boldface and

added the superscript “cl” to distinguish from the quantized sister. One would ex-
pect that the quantized theory reproduces these fields on the average, at least very
far away from the charge. Thus we are led to consider states ψ in Fock space such
that

〈ψ, Eϕ(x)ψ〉F = Ecl
v⊥(x), 〈ψ, Bϕ(x)ψ〉F = Bcl

v (x). (19.1)

Under these constraints the average number of photons is minimal for the coherent
state ψcoh

v having averages (19.1) and the minimum is given by

〈ψcoh
v , Nfψ

coh
v 〉F = e2

2

∫
d3k|ϕ̂(k)|2(k2 − (v · k)2)−2

× ω(1 + ω−2(v · k)2)(v · Q⊥v). (19.2)

If ϕ̂(0) = (2π)−3/2 and ω(k) = |k|, then the integrand diverges as |k|−3 for small
k which makes the integral in (19.2) logarithmically infrared divergent. There is
no vector in Fock space which satisfies (19.1), unless v = 0.

A natural consequence is to take ψcoh
v as the basic object and to build the Fock

space Fv out of finite photon excitations away from it. If in Fv one searches for a
vector reproducing the classical fields at velocity u on the average, then the con-
straint (19.1) becomes

〈ψ, Eϕ(x)ψ〉Fv = Ecl
u⊥(x) − Ecl

v⊥(x), 〈ψ, Bϕ(x)ψ〉Fv = Bcl
u (x) − Bcl

v (x).

(19.3)

The minimal photon number consistent with (19.3) is

1

2

∫
d3k|ϕ̂(k)|2ω

(
(vφ̂v − uφ̂u) · Q⊥(vφ̂v − uφ̂u)

+ (
vφ̂v

1

ω
(v · k) − uφ̂u

1

ω
(u · k)

) · Q⊥(
vφ̂v

1

ω
(v · k) − uφ̂u

1

ω
(u · k)

))
,

(19.4)

φ̂v(k) from (4.6), which again diverges logarithmically for small k, unless u =
v. The family of coherent states {ψcoh

v | |v| < 1} leads to mutually inequivalent
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representations of the canonical commutation relations. Mathematically it is bad
news, since there is no single Hilbert space which can accommodate states corre-
sponding to the electron freely traveling at arbitrary uniform velocity.

To probe the subject further let us consider the scattering of photons where, to
simplify matters, it is assumed that the motion of the quantized particle is replaced
by a classical current. To figure out the Hamiltonian we return to (13.47) and regard
j (x, t) as a given current. In the Coulomb gauge Eq. (13.47) reads

∂t A = −E, ∂t E = −�A − j, (19.5)

where it is understood that (19.5) refers to the transverse components only.
The longitudinal piece of E is determined through the Poisson equation. Equa-
tions (19.5) are the Heisenberg equations of motion for the time-dependent
Hamiltonian

H(t) = Hf −
∫

d3x j (x, t)A(x) (19.6)

acting on F . Since H(t) is quadratic in a, a∗, its unitary propagator can be com-
puted explicitly. For t ≥ 0 one obtains, with time ordering denoted by T ,

U (t, 0) = T exp
[

− i

t∫
0

ds H(s)
]

= e−iHft exp
[
i

t∫
0

ds
∑

λ=1,2

∫
d3k(2ω)−1/2(eλ · ĵ(k, s)∗e−iωsa(k, λ)

+ eλ · ĵ(k, s)eiωsa∗(k, λ)
) + 1

2
iIm

t∫
0

ds

t∫
0

ds′ 	(s − s′)

×
∑

λ=1,2

∫
d3k(2ω)−1(eλ · ĵ(k, s))(eλ · ĵ(k, s′))∗eiω(s−s′)

]
(19.7)

with 	(s) = 1 for s ≥ 0, 	(s) = −1 for s < 0.
Let us first examine the case where the charge travels at constant velocity, i.e.

j (x, t) = eϕ(x − vt)v, |v| < 1, and the initial ψ = 
. Classically, the current
would build up the charge soliton; compare with (4.31), (4.32). There is no ac-
companying radiation. The quantum wave function ψ(t) = U (t, 0)
 is a coherent
state of the Maxwell field. This implies that Nf has a Poisson distribution with
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average

〈ψ(t), Nfψ(t)〉F
= e2

∑
λ=1,2

∫
d3k|ϕ̂|2ω−1(eλ · v)2(ω − k · v)−2(1 − cos((ω − v · k)t)

)
∼= v2 log t (19.8)

for large t . On the other hand, 〈ψ(t), Hfψ(t)〉F stays bounded because of the extra
factor of ω from the definition of the energy. Also, in every bounded region in posi-
tion space and in any region in momentum space avoiding the origin, the number of
photons is Poisson-distributed with a finite mean. The photons in (19.8) are bound
to the charge, i.e. virtual in the usual parlance. For the Pauli–Fierz Hamiltonian
virtual photons can be probed only indirectly, e.g. through the effective dynamics
discussed in chapter 16. As long as the energy remains finite no qualitative changes
are expected, as confirmed by the fact that the g-factor and the effective mass are
infrared convergent at least to order e2.

As a second example let us study the generation of photons through accelerated
motion. We prescribe the trajectory qt with velocity vt of the classical charge, and
thus the current j (x, t) = eϕ(x − qt )vt . The scattering process is captured most
conveniently through the S-matrix defined by

S = lim
t→∞ U (t, 0)∗e2iHftU (0, −t). (19.9)

From (19.7) we conclude

S = exp
[

− i

∞∫
−∞

dt
∑

λ=1,2

∫
d3k(2ω)−1/2eλ · vt

(
eϕ̂∗e−i(ωt−k·qt )a(k, λ)

+ eϕ̂ei(ωt−k·qt )a∗(k, λ)
) − 1

2
iIm

∞∫
−∞

ds

∞∫
−∞

ds′	(s − s′)

×
∑

λ=1,2

∫
d3ke2|ϕ̂|2(2ω)−1(eλ · vs)(eλ · vs′)ei(ωs−ωs′−k·qs+k·qs′ )

]
.

(19.10)

Note that for constant velocity, vt = v, |v| < 1, the time-integration yields the δ-
function δ(ω − k · v) and therefore the S-matrix is trivial, S = 1. For the sake of
an example let us assume that there are no incoming photons. Then the scattering
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state of interest is S
, which is a coherent state with average number of photons

〈S
, NfS
〉F = e2
∑

λ=1,2

∫
d3k|ϕ̂|2(2ω)−1|

∫
dt (eλ · vt )e

i(ωt−k·qt )|2. (19.11)

In standard scattering vt → v± for t → ±∞. If v+ = v−, from the previous ar-
gument one concludes that 〈S
, NfS
〉F < ∞. However if v+ 
= v−, then from
the time-integration a factor |k|−2 appears which together with the factor 1/ω

makes the integral in (19.11) logarithmically divergent at small k. As before,
〈S
, HfS
〉F < ∞. Also the number of photons is finite in any region of the
form {k| |k| > δ} with δ > 0.

If an electron is scattered by, say, a short-range electrostatic potential then in the
collision process a large number of infrared photons is generated. Strictly speak-
ing, there is no channel with elastic scattering. Since the total energy of scattered
photons is bounded, the collision cross-section is slightly modified but remains fi-
nite. These infrared photons are however somewhat elusive objects. For example,
for the state S
 the photon density in position space decays as |x |−3 for large |x |,
which means that there is a small probability for the photons to have been created
very far away from the source. A real detector necessarily makes a cutoff in the
energy range and in position, thus necessarily misses the infrared part.

19.2 Energy renormalization in Nelson’s scalar field model

On the classical level we consider a scalar wave field and couple it to a mechanical
particle in such a way that the interaction is linear in the field, local, and translation
invariant. This fixes the Hamiltonian function to be of the form

H = 1

2m
p2 + 1

2

∫
d3x

(
π(x)2 + (∇φ(x))2 + m2

phφ(x)2) + eφϕ(q). (19.12)

Here q, p are the position and momentum of the particle with bare mass m and
π(x) is the momentum field canonically conjugate to the scalar wave field φ(x).
The wave speed c is set equal to one. e is the coupling strength, and mph ≥ 0 is the
mass of the bosons. The equations of motion read

∂2
t φ(x, t) = (� − m2

ph)φ(x, t) − eϕ(x − qt ), (19.13)

mq̈t = −e∇φϕ(qt ). (19.14)

The solutions to (19.13) and (19.14) bear a fair qualitative similarity to the
Abraham model, in particular, our discussion of the energy–momentum relation,
the radiation reaction, and the center manifold could be repeated almost word for
word.
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The quantization of (19.12) is straightforward. π(x) and φ(x) become a scalar
Bose field with commutation relations

[φ(x), π(x ′)] = iδ(x − x ′), (19.15)

setting � = 1. It is convenient to introduce the scalar creation and annihilation
operators a∗(k), a(k) in momentum space. Then

φ(x) =
∫

d3k
1√
2ω

(2π)−3/2(eik·x a(k) + e−ik·x a∗(k)
)
, (19.16)

π(x) =
∫

d3k
√

ω/2(2π)−3/2( − ieik·xa(k) + ie−ik·x a∗(k)
)

(19.17)

with ω(k) = (k2 + m2
ph)

1/2. The quantized Hamiltonian reads

H = 1

2m
p2 + Hf + eφϕ(x), (19.18)

where the momentum operator p = −i∇x is canonically conjugate to the position
x and

φϕ(x) =
∫

d3kϕ̂(k)
1√
2ω

(
eik·x a(k) + e−ik·x a∗(k)

)
(19.19)

with ϕ̂ assumed to be real. H acts on L2(R3) ⊗ F ; we call it the Nelson
Hamiltonian. If

∫
d3k|ϕ̂|2(ω−2 + 1) < ∞, then the interaction eφϕ(x) is infinites-

imally bounded with respect to 1
2m p2 + Hf and, by the Kato–Rellich theorem, H

is self-adjoint with domain D((p2/2m) + Hf).
Since H is invariant under translations, the total momentum

P = p + Pf, Pf =
∫

d3kka∗(k)a(k), (19.20)

is conserved. As in section 15.2, H can be unitarily transformed to fixed total
momentum with the result

H(P) = 1

2m
(P − Pf)

2 + Hf + eφϕ (19.21)

and φϕ = φϕ(0). The ground state energy of (19.21) defines the energy–
momentum relation E(P). If one sets

H(0) = 1

2m
P2

f + Hf + eφϕ, (19.22)

then the effective mass is given by

m

meff
= 1 − 2

3m
〈ψg, Pf · 1

H(0) − E(0)
Pfψg〉F , (19.23)

where ψg is the ground state of H(0), i.e. H(0)ψg = E(0)ψg.
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With this somewhat rapid introduction the problem under consideration is
whether the Nelson Hamiltonian (19.18) remains well-defined in the point-charge
limit ϕ(x) → δ(x). Following the usual convention to denote the ultraviolet cutoff
in momentum space by �, the point-charge limit means scaling the form factor as

ϕ�(x) = �3ϕ(�x), respectively ϕ̂�(k) = ϕ̂(k/�) (19.24)

with � → ∞.
The interaction φϕ(x) is bounded relative to Hf only if

∫
d3k|ϕ̂|2/ω2 < ∞. At

� = ∞ this condition is violated indicating that the limit � → ∞ is singular. To
find out how singular we compute the ground state energy to second order in e2,
regarding in (19.22) eφϕ as a perturbation. Then

E(0) = −e2
∫

d3k|ϕ̂�(k)|2 1

2ω

(
ω + 1

2m
k2

)−1 + O(e4) (19.25)

which diverges as − log � for � → ∞. Physically only energy differences count
and one may want to subtract E(0) from H(0). After all, in the definition of Hf

an infinite zero-point energy was already subtracted. There are two caveats to this.
First, E(0) from (19.25) is only a second-order perturbation and a priori one does
not know which energy to subtract. More importantly, it must be ensured that phys-
ical properties are not distorted as � → ∞. In the classical model the effective
mass is the relevant indicator and we adopt the same criterion here. From (19.23)
we compute, compare with (15.36),

m

meff
= 1 − 2

3m
e2

∫
d3k|ϕ̂�(k)|2 1

2ω
k2

(
ω + 1

2m
k2

)−3 + O(e4), (19.26)

which stays finite as � → ∞, at least to second order, fostering our hope that
H(0) − E(0) is a well-defined Hamiltonian as � → ∞.

The Nelson model has the simplifying feature that the energy renormalization
can be made explicit through a unitary transformation originally introduced by
E. P. Gross. It is constructive to work out the case of N charges coupled to the
Bose field. The Hamiltonian (19.18) then generalizes to

HN =
N∑

j=1

1

2m j
p2

j + Hf +
N∑

j=1

e jφϕ(x j ). (19.27)

Here the j-th particle has position x j , momentum p j = −i∇x j , mass m j , and
charge e j . We define

T = −
N∑

j=1

e j

∫
d3kϕ̂

1√
2ω

β j
(
eik·x j a(k) − e−ik·x j a∗(k)

)
(19.28)
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with β j = (ω + 1
2m j

k2)−1. e−T is the Gross transformation. Since
∫

d3kβ2
j /ω <

∞ provided mph > 0, e−T is unitary and well defined in H even at � = ∞. Let us
set

A−
ϕ j (x) = −

∫
d3kϕ̂

1√
2ω

kβ j e
ik·x a(k) ,

A−
ϕ j (x)∗ = A+

ϕ j (x) , Aϕ j (x) = A+
ϕ j (x) + A−

ϕ j (x) . (19.29)

� We here use on purpose the same notation as for the transverse vector potential,
since through the Gross transformation Aϕ j (x) appears in the Hamiltonian in the
same way as the transverse vector potential does for the Pauli–Fierz model. How-
ever Aϕ j (x) is longitudinal and [p, Aϕ j (x)] 
= 0. It is better behaved at small x
because the factor β j gains one extra power in decay at large k. Only for section
19.2, Aϕ is defined through (19.29). �

e−T acts as

eT p j e
−T = p j − e j A−

ϕ j (x j ) − e j A+
ϕ j (x j ), eT x j e

−T = x j ,

eT a(k)e−T = a(k) −
N∑

j=1

e j ϕ̂
1√
2ω

β j e
−ik·x j ,

eT a∗(k)e−T = a∗(k) −
N∑

j=1

e j ϕ̂
1√
2ω

β j e
ik·x j . (19.30)

When normally ordered, the Gross-transformed Hamiltonian becomes

eT HN e−T =
N∑

j=1

1

2m j

(
p2

j − 2e j p j · A−
ϕ j (x j ) − 2e j A+

ϕ j (x j ) · p j

+ e2
j A−

ϕ j (x j )
2 + e2

j A+
ϕ j (x j )

2 + 2e2
j A+

ϕ j (x j ) · A−
ϕ j (x j )

) + Hf

−
N∑

i 
= j=1

ei e j

∫
d3k|ϕ̂|2 1

2ω
(βi + β j − ωβiβ j )e

ik·(xi −x j )

−
N∑

j=1

e2
j

∫
d3k|ϕ̂|2 1

2ω
β j . (19.31)

Note that Aϕ j (x j ) does not commute with p j . The last term in (19.31) is the en-
ergy renormalization, granted for a moment that the remainder is a well-defined
Hamiltonian with energy bounded from below. The energy renormalization co-
incides with E(0) as computed from second-order perturbation theory, compare
with (19.25), and diverges as −N log �.
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The next to last term in (19.31) is the instantaneous interaction between the
particles which dominates their dynamics at small velocities; see section 20.2.
Let us set mph = 0 and � = ∞. Then the interaction potential for particles i and
j is

Vi j (x) = −ei e j

∫
d3k

1

ω
(βi + β j − ωβiβ j )e

ik·x (19.32)

as a function of their relative distance. Vi j (x) ∼= −ei e j/4π |x | for large |x |, and
Vi j (x) ∼= ei e j log |x | for small |x |. Even in the point-charge limit the interaction
deviates from a strict Coulomb law at distances on the scale of the Compton wave-
length for particles i, j . This confirms our previous findings that it is natural to
regard the Compton wavelength as an effective size of the charged particles in the
quantized theory. Even more importantly, the sign of the interaction is −ei e j . In
the scalar theory particles of equal charge attract, those of opposite charge repel
each other. Thus particles of opposite charge tend to segregate and a big cluster of
one sign would be separated from a big cluster of the opposite sign. There could
not be the delicate balance between nuclei (ions) and electrons which is respon-
sible for the formation of atoms and molecules. If the photons were spinless, the
world would have no similarity to the one we know.

We are left with the first piece of (19.31). Since it is additive in the particles, for
notational simplicity we return to N = 1 and rewrite it as

lim
�→∞

eT
(

H + e2
∫

d3k|ϕ̂�|2 1

2ω
β
)

e−T

= 1

2m
p2 − e

m
(p · A−(x) + A+(x) · p)

+ e2

2m

(
A−(x)2 + A+(x)2 + 2A+(x) · A−(x)

) + Hf

= H̃ren. (19.33)

Here, using ϕ̂�(0) = (2π)−3/2, we have

A−(x) = −
∫

d3k
1√
2ω

kβ(2π)−3/2eik·x a(k) ,

A+(x) = A−(x)∗, A(x) = A+(x) + A−(x). (19.34)

H̃ren is the physical Hamiltonian in the point-charge limit. The splitting into A−
and A+ results from normal ordering. The A-field is longitudinal but otherwise
plays a role very similar to the vector potential in the Pauli–Fierz model.
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In the following it will be convenient to rewrite H̃ren in dimensionless form.
Through the canonical transformation (13.88) one obtains

H̃ren = m Hren

= m
(1

2
p2 − e(p · A−(x) + A+(x) · p)

+ 1

2
e2(A−(x)2 + A+(x)2 + 2A+(x) · A−(x)

) + Hf

)
= m(H0 + Hint) (19.35)

with ω = (k2 + (mph/m)2)1/2, β = (ω + 1
2k2)−1, and A−(x) as in (19.34). We

repeat the relative form bound estimates from section 13.3 with the result

|〈ψ, Hintψ〉| ≤
(

3e2(2π)−3
∫

d3kk2β2ω−2
)
〈ψ, H0ψ〉. (19.36)

If

3e2(2π)−3
∫

d3kk2β2ω−2 < 1, (19.37)

then Hint is H0-form bounded with a bound less than 1, which implies that Hren is
a self-adjoint operator bounded from below.

The total momentum transforms as eT (p + Pf)e−T = p + Pf = P and

[Hren, P] = 0, (19.38)

as can also be checked directly. For fixed total momentum Hren becomes

Hren(P) = 1

2
(P − Pf)

2 − e
(
(P − Pf) · A− + A+ · (P − Pf)

)
+ 1

2
e2(A+ · A+ + A− · A− + 2A+ · A−) + Hf (19.39)

as acting on F with the shorthand A = A(0).
The expression in (19.37) is finite also for mph = 0. Thus Hren and Hren(P) are

well-defined Hamiltonians even for massless bosons with infrared and ultraviolet
cutoffs removed. However, e−T is unitarily implemented only for mph > 0. At
mph = 0, H and Hren are not unitarily equivalent. As can be seen from (19.30) the
Gross-transformed φ-field has a vacuum expectation which decays as −e/4π |x |
for large x and thus singles out the P = 0 representation; compare with our dis-
cussion in section 19.1. Hren(0) has a ground state in Fock space, whereas Hren(P),
P 
= 0, has no ground state in Fock space, just as is the case for the Pauli–Fierz
model.

Hren is the result of a mathematical limit procedure and it is not automatically
guaranteed that the limit Hamiltonian inherits the physically desired properties.
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For a modest check we compute the self-energy, the effective mass, and the bind-
ing energy for hydrogen-like atoms in low-order perturbation theory. While these
quantities are well defined, it is not known whether they can be expanded around
e = 0. Only if the bosons had the strictly positive mass mph > 0, Hren(P) for small
|P| and Hren − Ze2Vcoul have a gap between their ground state and the continuous
spectrum, which implies a convergent Taylor expansion at e = 0.

(i) Self-energy

We expand Eren(0) in powers of e2. Hren(0) is split as

Hren(0) = H0 + eH1 + 1

2
e2 H2 (19.40)

with H0 = 1
2 P2

f + Hf, H1 = Pf · A− + A+ · Pf, H2 = A− · A− + A+ · A+ +
2A+ · A−. The unperturbed ground state is 
 with energy 0. The expansion is
written as

Eren(0) = 1

2
e2 E (2) + 1

4!
e4 E (4) + 1

6!
e6 E (6) + O(e8). (19.41)

E (2) = 0 , since H1
 = 0. The next order is

1

4!
e4 E (4) = −e4 1

2
〈
, A− · A− 1

H0
A+ · A+
〉F

= −e4(2π)−6
∫

d3k1

∫
d3k2

1

2ω1
β2

1
1

2ω2
β2

2 (k1 · k2)
2 1

E12
(19.42)

with ωi = ω(ki ), βi = (
ω(ki ) + 1

2k2
i

)−1, i = 1, 2, and E12 = ω1 + ω2 + 1
2(k1 +

k2)
2.
For the discussion below we still need the sixth order, which is given by

e6 1

6!
E (6) = e6 1

4

(
− 〈
, A− · A− 1

H0
Pf · A− 1

H0
A+ · Pf

1

H0
A+ · A+
〉F

− 〈
, A− · A− 1

H0
A+ · Pf

1

H0
Pf · A− 1

H0
A+ · A+
〉F

+ 〈
, A− · A− 1

H0
A+ · A− 1

H0
A+ · A+
〉F

)
. (19.43)

The integrals appearing in the expressions for E (4) and E (6) are convergent.

(ii) Effective mass

From the definition (15.23) and (19.39) one concludes

m

meff
= 1 − 2

3
〈ψg, (Pf + eA) · (Hren(0) − Eren(0))−1(Pf + eA)ψg〉F (19.44)
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with Hren(0)ψg = Eren(0)ψg. m/meff is even in e and, provided mph > 0, analytic
for small e. Expanding in (19.44) to order e2 by the scheme already explained, one
finds

meff

m
= 1 + 2

3
e2(2π)−3

∫
d3k(k2β3/2ω) + O(e4) (19.45)

which agrees with (19.26) in the limit � → ∞. For mph = 0,

meff = m
(

1 + 1

6π2
e2 + O(e4)

)
(19.46)

is obtained. Since the mass renormalization is finite, the relation (19.46) allows us
in principle to obtain the bare mass m from an acceleration experiment at small
velocities which measures meff according to our discussion in section 16.6.

(iii) Binding energy

We consider two charges, a nucleus of charge Ze of infinite mass nailed down
at the origin and a “meson” of charge e. According to (19.31) the renormalized
Hamiltonian for � → ∞ reads then

H = Hren − Ze2

4π |x | (19.47)

in units of m. For sufficiently small e, e 
= 0, H has a ground state. Denoting its
ground state energy by E , by definition the (positive) binding energy is

Ebin = m
(
Eren(0) − E

)
, (19.48)

since m Eren(0) is the energy of the meson far away from the nucleus. Ebin is even
in e and proportional to the bare mass m. Physically the natural units for Ebin are
meffc2 and we write

Ebin = meffhbin(e
2), (19.49)

which is regarded as a definition of hbin.
We expand E in powers of e2. To better follow the subtraction of the self-energy

we first transform to the total momentum representation. Then the split-up for H
is

H = Hat + Hf + 1

2
P2

f − p · Pf + e
(
(Pf − p) · A− + A+ · (Pf − p)

)
+ 1

2
e2(A− · A− + A+ · A+ + 2A+ · A−)

= H0 + eH1 + 1

2
e2 H2. (19.50)
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The atomic Hamiltonian is Hat = 1
2 p2 − Ze2/4π |x | with ground state en-

ergy Eat = −1
2(Ze2/4π)2 and ground state ψat(x) = (πr3

B)−1/2e−|x |/rB, rB =
4π/Ze2. The unperturbed ground state is ψat ⊗ 
 with energy Eat. The perturba-
tion expansion up to order e6 is given as in (19.42), (19.43) with the corresponding
substitutions for H0, H1. Let us first consider those terms not containing either
p · A− or A+ · p. The inverse operator (Hat + Hf + 1

2 P2
f − p · Pf)

−1 is expanded
in p · Pf. Since 〈ψat, p2ψat〉L2 = −2Eat, only the leading term contributes and all
the self-energy terms cancel including order e6. The only remaining contribution is

Ebin = −Eat + e2〈ψat ⊗ 
, p · A−(H0)
−1 A+ · pψat ⊗ 
〉H + O(e8)

= −Eat + e2(2π)−3
∫

d3k
1

2ω
β2〈ψat, p · k

1

Hat − Eat + E1 − p · k
p · kψat〉L2

+O(e8) (19.51)

with E1 = β−1. Expanding in p · k and in Hat − Eat yields

Ebin = −Eat + 1

3
e2(2π)−3

∫
d3k

1

2ω
β2k2〈ψat, (E1)

−1 p2ψat〉L2 + O(e8)

= −Eat

(
1 + 2

3
e2(2π)−3

∫
d3k(k2β3/2ω)

)
+ O(e8). (19.52)

Note that in (19.51) the Taylor coefficient of order e10 is infrared divergent, which
implies that Ebin cannot be analytic at e = 0.

As a final step, we carry out the mass renormalization to order e2 as required
according to (19.49). The corrections O(e6) cancel and

Ebin = −meff Eat + O(e8). (19.53)

hbin acquires a radiative correction at least as small as O(e8), which confirms
the conventional picture. For small coupling the predictions of the one-particle
theory are reliable. The coupling to the field generates to leading order the attrac-
tive Coulomb potential. Further effects of the interaction with the scalar field are
small. Having no compelling incentive, the strong coupling regime of Hren is ap-
parently little explored. It is conceivable that for large e the kinetic energy of the
meson cannot balance the singular Coulomb attraction. If so, H of (19.50) would
no longer be bounded from below.

19.3 Ultraviolet limit, energy and mass renormalization

The ultraviolet limit of the Pauli–Fierz model is a poorly understood subject.
All we can do is to explain the few hints available, which in their optimistic
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interpretation indicate that the ultraviolet cutoff may be removed at the expense
of a renormalization in energy and mass.

As we learned from the Nelson model, the indicative quantities are the self-
energy, the effective mass, and the binding energy of the electron. To study these
properties in the point-charge (= ultraviolet) limit, it is convenient to switch to
relativistic units as explained at the end of section 13.4. To repeat, for constant
total momentum p one has

H(p) = 1

2

(
p − Pf −

√
4παAϕ

)2 + Hf, (19.54)

where

Hf =
∑

λ=1,2

∫
d3k|k|a∗(k, λ)a(k, λ), Pf =

∑
λ=1,2

∫
d3kka∗(k, λ)a(k, λ),

Aϕ =
∑

λ=1,2

∫
d3kϕ̂(k/�λc)

1√
2|k|

(
a(k, λ) + a∗(k, λ)

)
. (19.55)

Here α = e2/4π�c is the fine-structure constant written in Heaviside–Lorentz
units, λc = �/mc the Compton wavelength, and � the large k cutoff, � → ∞
eventually. Energies are measured in units of mc2, momenta in units of mc. In the
case of the hydrogen atom with the nucleus pinned down at the origin, in relativis-
tic units the Hamiltonian reads

H = 1

2

( − i∇x −
√

4παAϕ(x)
)2 + Hf − αZ

|x | , (19.56)

where we ignored the smearing of the Coulomb potential by ϕ; compare with
(13.89).

19.3.1 Self-energy

Since E(p) has its minimum at p = 0, the self-energy is given by

Eself = mc2 E�, E� = inf
‖ψ‖=1

〈ψ, H(0)ψ〉F , (19.57)

and the first task is to get some idea of how E� diverges as � → ∞. Of course,
the self-energy has no observable consequences. Still, it is a sort of theoretical
test which must be passed before more difficult problems can be tackled. We
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normal-order H(0) as

H(0) = 1

2
P2

f + Hf + e(Pf · A−
ϕ + A+

ϕ · Pf) + 1

2
e2(A+

ϕ · A+
ϕ + A−

ϕ · A−
ϕ

+ 2A+
ϕ · A−

ϕ ) + 4πα

∫
d3k|ϕ̂(k/�λc)|2 1

2|k|
= H0 + eH1 + 1

2
e2 H2 + E0, (19.58)

where Aϕ is the transverse vector potential split as Aϕ = A+
ϕ + A−

ϕ , A+
ϕ = (A−

ϕ )∗.
E0 is the lowest order of the self-energy and diverges as �2. The next order is
computed as in the Gross-transformed Nelson Hamiltonian with the result

E� = E0 − (4πα)2 1

2
〈
, A−

ϕ · A−
ϕ

1

H0
A+

ϕ · A+
ϕ 
〉F

= E0 − (4πα)2
∫

d3k1

∫
d3k2|ϕ̂(k1/�λc)|2|ϕ̂(k2/�λc)|2

(
(2|k1|)(2|k2|)

× 4(|k1| + |k2| + 1

2
(k1 + k2)

2)
)−1(1 + (̂k1 · k̂2)

2) + O(α3). (19.59)

The order α2 diverges also as �2 with a negative prefactor, however. Thus in con-
trast to the Nelson model, mere perturbation theory does not tell of the self-energy.
If the electron spin were included, there are cancellations between E0 and the spin
contribution which yields a divergence proportional to �.

A second attempt is to guess a variational wave function. Variation over coher-
ent states leads to the trivial minimizer ψ = 
, which reflects that for p = 0 the
transverse vector field vanishes classically. A more ingenious approach is due to
Lieb and Loss. They give up the zero total momentum restriction and consider

H = 1

2

( − i∇x −
√

4παAϕ(x)
)2 + Hf. (19.60)

The minimum of H equals the self-energy E�; see section 15.2. The variational
wave function is taken to be of the Pekar form ψ = φ ⊗ �, with � ∈ F and φ(x)

a real function. Therefore

E� ≤ 〈ψ, Hψ〉H
= 1

2

∫
d3x |∇φ(x)|2 + 2πα

∫
d3xφ(x)2〈�, Aϕ(x)2�〉F + 〈�, Hf�〉F ,

(19.61)

since the cross-term has average zero. For � we choose the ground state of

Hφ = 2πα

∫
d3xφ(x)2 Aϕ(x)2 + Hf. (19.62)
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Hφ is a quadratic Hamiltonian and thus its ground state energy is given by

Eφ = 1

2
tr
[(

Q⊥ϕ̂(−� + 4παφ(x)2)ϕ̂Q⊥
)1/2 − (

Q⊥ϕ̂(−�)ϕ̂Q⊥
)1/2]

. (19.63)

Here the trace is over L2(R3, R
3), Q⊥ is the projection onto transverse vector

fields, ϕ̂ is regarded as a multiplication operator in momentum space, and −� +
4παφ(x)2 is diagonal with respect to the vector indices. Combining (19.61) and
(19.63) we obtain

E� ≤ 1

2

∫
d3x |∇φ(x)|2 + Eφ (19.64)

as a nonlinear variational bound for E�.
The difference of square roots is unpleasant. To simplify we use that

tr[
√

A + B − √
A − √

B] ≤ 0. Then

Eφ ≤ √
πα tr[(Q⊥ϕ̂φ2ϕ̂Q⊥)1/2] ≤ √

πα tr[(ϕ̂φ2ϕ̂)1/2], (19.65)

since the square root is increasing. In spirit, the bound (19.65) equals tr[ϕ̂φ] =
(2π)3/2ϕ(0)φ̂(0). To actually achieve it, one sets φ(x) = φK (x) = K 3/2φs(K x)

with scaling parameter K ∼= �6/7, such that φ̂s has support in a ball of radius 1
and ‖φs‖ = 1. Let us choose ϕ̂�(k) = χ(|k|/�λc), χ(|k|) = (2π)−3/2 for |k| ≤ 1,
χ = 0 for |k| > 1. If K < �λc, then ϕ̂2�φ̂K ϕ̂� = φ̂K ϕ̂�. Thus

tr[(ϕ̂�φ2
K ϕ̂�)1/2] = tr[(ϕ̂�φK ϕ̂2�φK ϕ̂�)1/2] ≤ tr[(ϕ̂2�φK ϕ̂2�φK ϕ̂2�)1/2]

= tr[ϕ̂2�φK ] = (2π)−1/2(2/3π3)(�λc)
3
∫

d3x φK (x). (19.66)

Hence

E� ≤ 1

2

∫
d3x |∇φK (x)|2 +

√
2α(2�λc)

3(1/3π3)

∫
d3x φK (x). (19.67)

One can choose φs such that φ̂s(0) > 0. Then

E� ≤ c1K 2 + c2
√

α(�λc)
3K −3/2 (19.68)

with c1, c2 > 0. Optimizing with respect to K yields, for �λc sufficiently large,

Eself ≤ c+(�λc)
12/7mc2. (19.69)

The guess is that 12/7 is the correct power. The best available lower bound is of
order (�λc)

3/2mc2.
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19.3.2 Effective mass

We turn to the effective mass, which is defined by

m

meff
= 1 − 2

3
〈ψg,

(
Pf +

√
4παAϕ

) · 1

H(0) − E(0)

(
Pf +

√
4παAϕ

)
ψg〉F ,

(19.70)

where ψg is the ground state of H(0), H(0)ψg = E(0)ψg, setting p = 0 in
(19.54). meff/m is an even function of e. The issue of interest is its cutoff de-
pendence for fixed e. Clearly the right-hand side depends only on �λc, compare
with (19.55). This allows us to write

meff

m
= hmas(��/mc), (19.71)

which defines hmas. hmas depends on α with hmas ≥ 1 and hmas(0) = 1.
If hmas has a finite limit as � → ∞, then

m�
eff = mhmas(∞), (19.72)

where m�
eff is the effective mass in the model with removed ultraviolet cutoff. This

situation is realized for the Nelson Hamiltonian (19.18). On the other hand, if
asymptotically hmas increases linearly in �, i.e. hmas(λ) = bλ, b > 0, for large λ,
then

m�
eff = lim

�→∞
m�hmas(��/m�c) = ∞ (19.73)

for any choice of m = m� as long as m� > 0, which is required by a stable theory.
Such a linear dependence we found for the classical Abraham model, where in the
point-charge limit the electron becomes infinitely heavy with no counterbalancing
mechanism.

The most intriguing case, presumably realized in the Pauli–Fierz model, is

hmas(λ) ∼= b0λ
γ (19.74)

for large λ with 0 < γ < 1 and γ possibly depending on α. Then

meff = b0(c
−1

��)γ m1−γ . (19.75)

Setting now

m = (c−1
��)−γ /(1−γ )b1/(1−γ )

1 , (19.76)

we obtain

m�
eff = b0b1. (19.77)
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Thus, as � → ∞ simultaneously we have to let m → 0 in accordance with
(19.76), recall that γ < 1. The effective mass m�

eff stays finite in this limit. Such a
limiting procedure is the standard mass renormalization. b0 is dimensionless and
defined through (19.70). b1 has the dimension of mass and is a free scaling parame-
ter adjustable to the effective mass m�

eff as supplied from sources outside of theory,
e.g. from an experiment. Note that, in contrast to a finite mass renormalization, the
bare mass m has disappeared from the scene.

At present the only way of deciding whether γ < 1 is a sort of consistency check
by expanding meff in powers of α. We use the normal-ordered H0 from (19.58) and
follow the scheme outlined in the case of Nelson’s model.

The order α is straightforward, since the approximations ψg = 
 and E(0) = 0
suffice, giving the result

m

meff
= 1 − 2

3
(4πα)

∫
d3k|ϕ̂(k/λc)|2

(
k2

(
1 + 1

2
|k|

))−1 + O(α2). (19.78)

The conventional sharp ultraviolet cutoff is made through the choice ϕ̂(k) =
(2π)−3/2 for |k| ≤ � and ϕ̂(k) = 0 for |k| > �. Inserting in (19.78) we obtain

m

meff
= 1 − 4α

3π

∫ �λc

0
dk

(
1 + 1

2
k
)−1 + O(α2)

= 1 − 8α

3π
log

(
1 + 1

2
�λc

)
+ O(α2). (19.79)

To order α, meff diverges as log � in contrast to the classical Abraham model
which has a divergence proportional to �. Equation (19.79) suggests that

meff

m
= (�λc)

8α/3π (19.80)

for small α and large �. If so, γ = 8α/3π . If the electron spin is included, then
there is an extra contribution from the fluctuating magnetic field, see Eq. (15.68),
and 8α/3π is increased to 16α/3π .

The order α2 requires more effort. The normalized ground state is needed up to
order e3 and is given by

ψg =
(

1 − e2 1

2

1

H0
A+

ϕ · A+
ϕ + e3 1

H0
(Pf · A−

ϕ + A+
ϕ · Pf)

1

H0
A+

ϕ · A+
ϕ

)

.

(19.81)
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Expanding (H(0) − E(0))−1 results in six terms proportional to α2. The details
are lengthy and not particularly illuminating. We obtain

m

meff
= 1 − 2

3
(4πα)

∫
d3k1|ϕ̂(k1/λc)|2 1

2|k1|
2

E1

− 2

3
(4πα)2

∫
d3k1|ϕ̂(k1/λc)|2 1

2|k1|
∫

d3k2|ϕ̂(k2/λc)|2 1

2|k2|
×

{
−

( 1

E1
+ 1

E2

) 1

E12
(1 + s) + 1

2(E12)3
(k1 + k2)

2(1 + s)

×
( 1

E1
+ 1

E2

) 1

(E12)2
(k1 · k2)(−1 + s) − 1

E1

1

E2

(
1 + s)

+
( k2

1

E2
1

+ k2
2

E2
2

) 1

E12
(1 − s) + 1

E1

1

E2

1

E12
(k1 · k2)(−1 + s)

}
+ O(α3)

(19.82)

with the shorthand

Ei = |ki | + 1

2
k2

i , i = 1, 2, E12 = |k1| + |k2| + 1

2
(k1 + k2)

2, s = (̂k1 · k̂2)
2.

(19.83)

The conventional wisdom is to take the lowest-order approximation seriously
and to make the ansatz

meff

m
= (�λc)

((8α/3π)+bα2). (19.84)

Expanding in α yields

meff

m
= 1 + 8α

3π
log(�λc) + 1

2

( 8α

3π
log(�λc)

)2 + bα2 log(�λc) + O(α3).

(19.85)

To be consistent, the (log(�λc))
2 term must have the correct prefactor, whereas

the log(�λc) term identifies the as yet unknown coefficient b. Indeed, inserting
in (19.82) the sharp cutoff ϕ̂ results in terms which diverge as log(�λc) and
(log(�λc))

2. Only the second term inside the curly brackets diverges as (�λc)
1/2.

This would suggest hmas(λ) = √
λ for large λ and γ = 1

2 independent of α, at least
for small α. Whether this is an artifact of our method remains to be understood.

To have an intuitive picture why in the ultraviolet limit the Pauli–Fierz model
can behave so differently from its classical relative, it is useful to turn to the func-
tional integral (14.51) with the Maxwell field already integrated out. First note that
the self-energy is automatically cancelled by the normalizing partition function.
Also, since we study the ultraviolet limit, to be definite we may set t = 1, V = 0,
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and pin the Brownian motion at both ends, q−1 = 0 = q1. m → 0 means that in
(14.51) the underlying Wiener measure has local fluctuations diverging as 1/

√
m.

They fight the singular behavior of W (qs − qs′, s − s′) near the diagonal {s = s′}.
If successfully, the two effects balance each other such that the limit measure lo-
cally looks like Brownian motion with effective diffusivity 1/m�

eff.

19.3.3 Binding energy

With Ecoul
� denoting the ground state energy of H from (19.56), the binding energy

is defined by

Ebin = mc2(E� − Ecoul
�

)
. (19.86)

Since m → 0, it is mandatory to take the binding energy in units of meff, and we
write

Ebin = meff
m

meff
hbin(�λc) = meff

( hbin(�λc)

hmas(�λc)

)
. (19.87)

The scaling function hbin depends on α, hbin ≥ 0. For the binding energy to remain
finite (and nonzero) in the limit � → ∞, assuming already the validity of (19.74),
it is required that

hbin(λ) = b
′
0λ

γ ′
and γ = γ ′, (19.88)

for large λ. If (19.88) holds, then

Ebin = m�
effc

2(b′
0/b0) (19.89)

in the limit � → ∞. The ratio b
′
0/b0 is a consequence of the theory. To have

agreement with experiments, on top of (19.88) one should have

b
′
0/b0 ∼= (αZ)2/2, (19.90)

at least for small α.
As before, a minimal control is provided by perturbation theory. The atomic

Hamiltonian is

Hat = −1
2� − αZ/|x | (19.91)

with eigenvalues Eat
n and eigenfunctions ψn, Hatψn = Eat

n ψn, n = 1, 2, . . . ,

ground state ψ1 = ψat. Eat
1 = Eat = −(αZ)2/2 is the atomic ground state energy.

The computation proceeds in perfect analogy with the Nelson model. Replacing m
by meff(m/meff) to order α removes the large k divergence of the matrix element



320 Behavior at very large and very small distances

for the perturbed energy. In the limit � → ∞ the net result is

Ebin = −meffc
2
[

Eat
1 + 4πα

2

3
(2π)−3

∫
d3k

1

2ω

(
ω + 1

2
k2

)−1

×〈pψat, (Hat − Eat
1 )

(
Hat − Eat

1 + ω + 1

2
k2

)−1 · pψat〉L2

]
+ h.o.,

(19.92)

where h.o. stands for higher orders in α. Of course, the hope is that through mass
renormalization the cancellation is so precise that h.o. really means smaller than
the leading correction.

To compute the matrix element in (19.92) we switch to atomic units through
the replacements x � x/α, p � pα, which implies H� α2 H . Let us denote by
µ(dλ) the spectral measure of Z−1(p2)1/2ψat in atomic units. It is normalized as
Z−2〈ψat, p2ψat〉L2 = 1 and has a support starting at Eat

2 − Eat
1 = Z2(1/2)(3/4).

With this notation (19.92) becomes

Ebin = −meffc
2 Eat

1

[
1 − 8

3π
α3

∫ α

3Z2/8
µ(dλ)λ

×
∫ ∞

0
dk(2 + k)−1(α2λ + k + 1

2
k2)−1]. (19.93)

Because of the coupling to the radiation field the binding energy is reduced. The
shift is, however, rather small, α3| log α| in relative and α5| log α| in absolute order.
Evaluating the integral in (19.93) yields a shift which is only a few percent away
from the experimental value of 8173 MHz, which should be compared with the
ionization energy of 3 × 109 MHz for the unperturbed hydrogen atom.

In addition the upper bound

γ ′ ≤ 6/7 (19.94)

is available. While the bound could be far from truth, the crucial point is its being
less than one. The proof of (19.94) is based on the operator bound

− 1

|x | ≥ −κ| − i∇x + A(x)| (19.95)

which holds for any vector field A. The numerical coefficient is κ = π Z/2 +
2.22Z2/3 + 1.04. Setting T = (−i∇x − √

4παAϕ(x))2/2 we obtain for H of
(19.56) with Z = 1

H ≥ T + Hf − κα
√

2T ≥ T + Hf − κα
√

2(T + Hf). (19.96)

Let now ψ be the ground state of H . Then by Jensen’s inequality and with the
abbreviation f (x) = x − κα

√
2x

Ecoul
� ≥ 〈ψ, f (T + Hf)ψ〉 ≥ f (〈ψ, (T + Hf)ψ〉). (19.97)
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f attains its minimum at xmin = 1
2(κα)2. If E� ≥ xmin, which is the case for suf-

ficiently large �, then

E� − Ecoul
� ≤ κα

√
2E�. (19.98)

Therefore by (19.69)

Ebin ≤ c̃+(�λc)
6/7mc2 (19.99)

and

hbin(λ) ≤ c̃+λ6/7 (19.100)

for large λ.

19.3.4 Lamb shift and line width

As explained in chapter 17, through the coupling to the quantized radiation field the
energy levels of the hydrogen atom are shifted and acquire a finite lifetime which is
measured by the inverse width of the spectral line. The expressions (17.35), (17.36)
are derived for an N -level atom in the dipole approximation. For the removal of
the ultraviolet cutoff, retardation effects are of importance and the translation-
invariant coupling must be used. Thus the arguments of chapter 17 have to be
adapted to the Hamiltonian (19.56), which could be easily done. An alternative,
for our purposes equivalent, route is to use perturbation theory for the level shift.
The lifetime then follows from a Kramers–Kronig relation, since both quantities
are linked to the same spectral measure; compare with Eq. (17.34).

We follow this second route. The computation is basically identical to that lead-
ing to (19.92) and uses the virial theorem 〈ψn, p2ψn〉 = −2Eat

n . If δEn denotes
the level shift relative to E�, the net result reads

δEn = meffc
2
[

Eat
n + 4πα

∫
d3k|ϕ̂(k/�λc)|2 1

2ω

(
ω + 1

2
k2
)−1〈∇xψn, (Hat − Eat

n )

×
(
Hat − Eat

n + ω + 1

2
k2
)−1 · Q⊥(k)∇xψn〉L2

]
+ h.o. (19.101)

For large k the matrix element decays as |k|−2, which makes the integral (19.101)
ultraviolet convergent. The Lamb shift refers to the frequency of emitted radiation
and is therefore an energy difference. In fact, experimentally the splitting between
the 2S1/2 and 2P1/2 levels is 1058 MHz, in comparison to the unperturbed ground
state energy of 3 × 109 MHz, and is mostly due to the coupling to the quantized
radiation field. Evaluating numerically the intergrals in (19.101) at � = ∞ and
taking into account the coupling of the electron to the quantized magnetic field,
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a few percent effect only, yields a Lamb shift which is 2.5% lower than the true
value.

19.3.5 g-factor of the electron

The gyromagnetic ratio was discussed in section 16.6 through investigating the
motion of an electron in a homogeneous weak magnetic field. Here we point out
that the g-factor can also be obtained from the Zeeman splitting of the ground state
energy at total momentum P = 0, which is the basis of the high-precision Penning
trap experiment. For a constant external magnetic field B, in relativistic units, the
Hamiltonian reads

HB = m
(1

2

(
σ · (p − eAϕ(x))

)2 + Hf

− e

2m2
σ · B − e

2m2

(
(p − eAϕ(x)) × x

) · B + e2

8m2
(x × B)2

)
. (19.102)

Let ψ be an approximate ground state for H = HB=0. Then the linear Zeeman
splitting, �E , is given through first-order perturbation theory in B as

�E = 1

m
B ·

(
− e

2
〈ψ, σψ〉H − e

2
〈ψ, (p − eAϕ(x)) × xψ〉H

)
. (19.103)

Next we write

(
H − E(0)

)
xψ = [H − E(0), x]ψ = −i(p − eAϕ(x))ψ. (19.104)

In this form the total momentum can be fixed at P = 0. Then H becomes

H(0) = 1

2
(Pf + eAϕ)2 − e

2
σ · Bϕ + Hf (19.105)

with ψ the ground state ψg of H(0). Hence

�E = 1

meff

meff

m
B ·

(
− e

2
〈ψg, σψg〉C2⊗F

+ e

2
i〈ψg, (Pf + eAϕ)

1

H(0) − E(0)
× (Pf + eAϕ)ψg〉C2⊗F

)
= |B| e

2meff
g. (19.106)

We orient the B-field along the z-axis and take as ground state the one with
total angular momentum pointing parallel to B; compare with section 16.6. Since
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(σ3 + 2Jf3 + 2Sf3)ψg+ = ψg+, the g-factor is thus given by

1

2
g =

(
1 − 2

3
〈ψg+, (Pf + eAϕ)(H(0) − E(0))−1(Pf + eAϕ)ψg+〉C2⊗F

)−1

×
(

1 − 2〈ψg+, (Jf3 + Sf3)ψg+〉C2⊗F

− 2Im〈ψg+, (Pf + eAϕ)2(H(0) − E(0))−1(Pf + eAϕ)1ψg+〉C2⊗F

)
,

(19.107)

in agreement with (19.104).
We recall that, to second order and with no cutoffs, the g-factor is computed to

1

2
g = 1 + 8

3

(
α

2π

)
+ O(α2), (19.108)

which is 0.2% away from the true value. For fixed, small e both numerator and
denominator in (19.107) are expected to tend to 0 as � → ∞ in such a way that
their ratio is close to 1.

Notes and references

Section 19.1

The infrared behavior of radiative corrections to scattering was first studied by
Bloch and Nordsieck (1937), Nordsieck (1937), and Pauli and Fierz (1938). Within
the framework of the massless scalar Nelson model of section 19.2, Fröhlich
(1973) constructs the one-particle shell and investigates the scattering theory.
Further progress in this direction is Pizzo (2000). In his thesis Chen (2001) estab-
lishes the infrared limit of the energy–momentum relation. In contrast to the Pauli–
Fierz model the scalar Nelson model is infrared divergent also at p = 0. The Gross
transformation (19.28) switches to the representation corresponding to p = 0. In
fact it implements the shift φ(x) − eVϕcoul(x). We refer to Arai (2001), Lőrinczi,
Minlos and Spohn (2002b) and Hirokawa, Hiroshima and Spohn (2002). The quan-
tized Maxwell field coupled to a classical current is a standard textbook example
(Kibble 1968; Thirring 1958). The representation theory for coherent states is de-
veloped by Klauder, McKenna and Woods (1966) with follow-ups within the alge-
braic framework (Emch 1972; Dubin 1974; Bratteli and Robinson 1987, 1997).

Section 19.2

The scalar field model is studied in solid state physics and includes a large body of
experimental work. It describes an electron coupled to the optical mode of a polar
crystal and is known as a polaron (Landau 1933; Fröhlich 1954). In the standard
approximation the dispersion of the field is ω(k) = ω0 and the coupling function
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ϕ̂(k) = |k|−1. The ground state energy is well approximated by the variational
approach of Feynman (1955). Upper and lower bounds are proved by Lieb and
Yamazaki (1958). A large coupling theory is available (Pekar 1954). A rigorous
proof of the Pekar limit can be found in Donsker and Varadhan (1983) and Lieb and
Thomas (1997). The effective mass is studied in Spohn (1987) who also provides
an extensive list of references. The Pekar limit of the effective mass still remains
an open problem. Useful reviews are Devreese and Peeters (1984) and Gerlach and
Löwen (1991). Gross (1976) develops systematic corrections to the large coupling
theory. Nelson (1964a) studies the scalar model through functional integration; see
chapter 14. Nelson (1964b) uses the transformation of Gross (1962), itself inspired
by Lee, Low and Pines (1953), to control the removal of the ultraviolet cutoff.
Nelson’s analysis is pushed much further in Fröhlich (1973, 1974). The discussion
of chapter 14 transcribes word for word to the Nelson model with the welcome
simplification that stochastic Ito integrals become Riemann integrals. We refer to
Lőrinczi and Minlos (2001), Lőrinczi et al. (2002a), and Betz et al. (2002). For suf-
ficiently small coupling the existence of a ground state for H of (19.18) is proved
in Hirokawa et al. (2002). On the one-particle level, H =

√
p2 + m2 − e2/4π |x |

is not bounded from below for large e. Since for the Nelson model E(p) � |p| for
large p, the same instability could be present for the Hamiltonian (19.18). Hainzl,
Hirokawa and Spohn (2003) provide upper and lower bounds on Ebin which estab-
lish (19.52) with an error O(e7 log e).

Section 19.3

The estimates of the ground state energy are taken from Lieb and Loss (2000,
2002), who study in addition the case of many particles and semirelativistic mod-
els. The scaling (19.80) follows also from a perturbative one-loop renormalization
(Chen 1996; Bugliaro et al. 1996). The effective mass to order α2 seems to be
novel. Details of the perturbative computation leading to (19.82) can be found
in Hiroshima and Spohn (2003). Fröhlich argues that the effective mass depends
nonanalytically on α and therefore the interchange of limits, α → 0 and � → ∞,
leads to erroneous results. In a more proper treatment one should successively
eliminate the interaction at high momenta. The resulting renormalization group
flow equations yield a plausible outcome and, indeed, reflect the nonanalytic de-
pendence in α. Moniz and Sharp (1974, 1977) and Grotch et al. (1982) claim
cutoff dependences of the effective mass which are in contradiction to our find-
ings. The bound for γ ′ is from Lieb and Loss (2002), which is based on the lower
operator bound (19.95) for the Coulomb potential as proved in Lieb, Loss and
Siedentop (1996). The famous calculation of the Lamb shift by Bethe (1947) is
based on the dipole approximation and has a divergence as log �. As pointed out
immediately (Kroll and Lamb 1949), the shift becomes ultraviolet convergent in a
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relativistic theory which necessarily includes positrons. The role of retardation is
mentioned by Kroll (1965). An accurate calculation is Au and Feinberg (1974), ig-
noring spin however. It is included in Grotch (1981), from which our numbers are
taken. Quantum electrodynamic effects are most dominant for the 1S Lamb shift,
which experimentally is determined with higher accuracy than the 2S1/2 − 2P1/2

splitting. We refer to Weitz et al. (1994). For small coupling quantitative estimates
on the binding energy are available. One constructs upper and lower bounds with
the leading terms given by formal perturbation theory, which is not directly ap-
plicable because of the missing spectral gap; see Catto and Hainzl (2004), Chen,
Voulgater and Vulgater (2003), Hainzl (2002, 2003), Hainzl, Seiringer (2002), and
Hainzl, Voulgater, Vulgater (2003). At present, one obstacle is that no correspond-
ing result for the effective mass is available. Since physically energies are cali-
brated through meffc2, such a bound is mandatory. The g-factor as based on the
shift in energy is computed in Grotch and Kazes (1977) to second order in e. The
derivation of the nonperturbative expression (19.107) seems to be new.
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Many charges, stability of matter

In the low-energy sector, to an excellent approximation, the world consists of pho-
tons, electrons, and nuclei. To simplify the forthcoming discussion, let us consider
only one species of nuclei with charge eZ , Z = 1, 2, . . . . In fact, we also assume
that the nuclei are infinitely heavy and located at positions r1, . . . , rK ∈ R

3. This
is hardly realistic, but not of central importance for the stability issues studied here.
We also ignore nuclear spins. To include them would require yet another layer of
considerations. With these assumptions we have an arbitrary number of photons,
N electrons, and K nuclei governed by the Hamiltonian

H =
N∑

j=1

1

2m

(
σ j · (p j − eAϕ(x j )

)2 + Hf + Vϕcoul , (20.1)

compare with (13.39). σ j are the Pauli spin matrices for the j-th electron. Since
electrons are fermions, the corresponding Hilbert space is

H = Pa
(
L2(R3, C

2)⊗N ) ⊗ F (20.2)

with Pa denoting the projection onto the subspace of antisymmetric wave func-
tions. Vϕcoul is the smeared Coulomb potential, cf. (13.17), which in the case con-
sidered here is given through

Vϕcoul(x1, . . . , xN ) = e2
∫

d3k|ϕ̂(k)|2|k|−2
( ∑

1≤i< j≤N

eik·(xi −x j )

−Z
N∑

i=1

K∑
j=1

eik·(xi −r j ) + Z2
∑

1≤i< j≤K

eik·(ri −r j )
)

. (20.3)

One of the most basic facts about nature, which the Hamiltonian (20.1) should
better explain, is the apparent stability of ordinary matter over extremely long pe-
riods of time. It has become customary to divide the issue roughly into

326
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(i) atomic stability,
(ii) energy stability (or H-stability),

(iii) thermodynamic stability.

An atom is the special case of (20.1) with K = 1 (hence r1 = 0) and N , Z
arbitrary. Atomic stability means that the ground state for H looks like what we
know from real atoms in nature. In particular, provided that N < Z + 1, or per-
haps N ≤ Z + 1 admitting a negatively charged ion, H has a ground state eigen-
vector with an exponentially localized electronic density. Also the ultraviolet cutoff
should not have to be fine-tuned. Our understanding of the stability of atoms and
molecules within nonrelativistic QED has advanced spectacularly over the past
few years. An overview is provided in section 20.1.

Energy stability and thermodynamic stability refer to the property that matter at
the human scale is (volume) extensive: Adding two buckets of water of 10 liters
each merely results in 20 liters of water. Since now many molecules are involved,
(20.1) is to be considered for large N with N ∼= K Z , Z ≤ 100. For an energy
stable system, the volume of the combined system in its ground state is at least
as large as the sum of the volumes of the subsystems. It is more convenient to
re-express this property in energetic terms. If E(N ; K , r1, . . . , rK ) denotes the
ground state energy of H in (20.1), then for an H-stable system

E(N ; K , r1, . . . , rK ) ≥ −c0 (N + K ) (20.4)

with suitable c0 ≥ 0 independent of the location of the nuclei. In fact, such a bound
obviously holds, since

H ≥ Vϕcoul ≥ −1

2

( ∫
d3k|ϕ̂(k)|2|k|−2)(e2 N + e2 Z2K ) . (20.5)

While correct, (20.5) teaches us little about the physics involved, since the bound
is cutoff-dependent and is not of the order of one Rydberg, as expected.

The condition (20.4) overlooks the fact that even when the electrons are stripped
off to infinity they still carry a self-energy. Denoting as before the self-energy of a
single electron by Eself, the sharper stability condition is

E(N ; K , r1, . . . , rK ) − N Eself ≥ −c1 (N + K ) (20.6)

with some suitable constant c1 independent of the location of the nuclei. Hopefully
c1 is of order of a Rydberg and less sensitive to the cutoff than c0. Energy stability,
as far as aspects of the quantized radiation field are involved, is discussed in section
20.3.

As the name indicates, thermodynamic stability means that the thermodynamic
potentials are volume extensive. In particular, the thermodynamic pressure, i.e.
the force per unit area on the confining container, is in essence size independent.
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For proper statistical mechanics also the nuclei should have a finite mass. In our
context a natural model would be to assume charge neutrality, i.e. N = K Z , and
that the nuclei form a regular crystal lattice. Then one aspect of thermodynamic
stability is a ground state energy proportional to the number of particles, which
requires (20.6) to be augmented by an upper bound linear in N + K . We refer to
the notes at the end of the chapter for further details.

No surprise, energy and thermodynamic stability are best understood in the case
when the interaction with the radiation field is neglected. This raises the question:
In what sense is the standard N -body Coulomb Hamiltonian a good approximation
to (20.1)? In the classical context we discussed this problem rather exhaustively in
section 11.2. Quantum mechanics adds a layer of difficulty, as will be explained in
section 20.2.

20.1 Stability of atoms and molecules

The number of electrons, N , is regarded as fixed and the goal is to understand
under what conditions, in their lowest-energy state, they are all bound to the nuclei.
For this purpose the interaction between nuclei can be dropped. We also ignore
the smearing of the Coulomb potential. On the other hand, we want to allow a
variation in the nucleon charge, i.e. the j-th nucleus is located at r j and has charge
eZ j , Z j > 0, j = 1, . . . ,K . With these modifications, the Hamiltonian reads

HV(N ) =
N∑

j=1

1

2m

(
σ j · (p j − eAϕ(x j ))

)2 + Hf +
∑

1≤i< j≤N

e2(4π |xi − x j |)−1

−
N∑

i=1

K∑
j=1

e2 Z j (4π |xi − r j |)−1 . (20.7)

The form factor ensures a smooth cutoff at large k, but ϕ̂(0) = (2π)−3/2 as it
should. The bottom of the spectrum for HV(N ) is

EV(N ) = inf σ(HV(N )) = inf
ψ,‖ψ‖H=1

〈ψ, HV(N )ψ〉H . (20.8)

We will have to compare with free electrons whose Hamiltonian is

H0(N ) =
N∑

j=1

1

2m

(
σ j · (p j − eAϕ(x j ))

)2 + Hf +
∑

1≤i< j≤N

e2(4π |xi − x j |)−1 .

(20.9)
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Its lowest energy is denoted by E0(N ). It is unlikely that the effective interaction
induced by the photon cloud overrules the combined Coulomb repulsion and Fermi
exclusion. Thus E0(N ) = N EV(1) is expected, but will not be assumed here.

The general strategy is to introduce a suitable notion of the ionization energy
Eion(N ). Then the binding energy is defined by

Ebin(N ) = Eion(N ) − EV(N ) . (20.10)

If Ebin(N ) > 0, the energy interval � = [EV(N ), Eion(N )) is nonempty and states
with an energy distribution supported by � should be well localized near the nu-
clei. Amongst them there will be the stable ground state.

It seems clear how to proceed. If one electron is moved to infinity it has en-
ergy E0(1) and the corresponding lowest-energy state of HV(N ) has the energy
EV(N − 1) + E0(1). Of course it could be energetically more favorable to move
two electrons to infinity, etc. Thus

Eion(N ) = min
1≤N ′≤N

{
EV(N − N ′) + E0(N ′)

}
(20.11)

with the convention EV(0) = 0. Note that if the interaction with the photon field
is turned off, formally setting ϕ̂ = 0, then E0(N ) = 0 and (20.11) agrees with the
standard definition of the ionization energy for the Coulomb Hamiltonian.

There is a more direct way of moving electrons to infinity. As in chapter 16,
we regard ψ(x) as a C

2N ⊗ F-valued wave function, x = (x1, . . . ,xN ). We define
PR as the projection on the subspace of wave functions satisfying ψ(x) = 0 for
|x | < R. Then the alternative definition is

Eion(N ) = lim
R→∞

inf σ(PR HV(N )PR) . (20.12)

As proved by Griesemer (2002) the definitions (20.11) and (20.12) of the ioniza-
tion energy agree in the context of the Pauli–Fierz Hamiltonian. Note that with
(20.12) it is obvious that Ebin ≥ 0. Also, if HV(N ) admits surplus electrons, nec-
essarily Ebin = 0.

Let us denote by Eλ = Eλ(HV(N )) the spectral resolution of HV(N ), i.e. Eλ

is the projection corresponding to the energy interval (−∞, λ].

Theorem 20.1 (Exponential localization). Let Ebin(N ) > 0 and let us choose
λ, β such that λ + (β2/2m) < Eion(N ), EV(N ) ≤ λ, β > 0. If Eλψ = ψ , then

‖eβ|x |ψ‖H ≤ c0‖ψ‖H . (20.13)

The proof is due to Griesemer (2004). In fact, the proof exploits only properties
of the Laplacian. As in chapter 16, we regard H = L2(Rn,Hf) = L2(Rn, dnx) ⊗
Hf with some Hilbert space Hf of “internal degrees of freedom”. The operator
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H with domain D(H) is self-adjoint on H. Let f ∈ C∞(Rn, R) with f and ∇ f
bounded. The crucial assumption concerns the double commutator

[[H, f ], f ] = −2|∇ f |2 (20.14)

with f regarded as a multiplication operator. Note that (20.14) holds in the case
F = C and H = −�. But (20.14) holds also for H = HV(N ) setting n = 3N . As
before the ionization threshold for H is

Eion = lim
R→∞

inf σ(PR H PR) . (20.15)

Proposition 20.2 Let H satisfy (20.14) and let λ + β2 < Eion, β > 0. Then

‖eβ|x |Eλ(H)‖H < ∞ . (20.16)

Let us return to the existence of a ground state for HV(N ). If Ebin > 0, the
exponential localization is a favorable indication. But it could happen that more
and more photons are bound by the electrons. Thus we need a soft photon bound
of the type of Theorem 15.1. The proof is now considerably more demanding and
established by Griesemer, Lieb and Loss (2001).

Theorem 20.3 (Existence of a ground state). If Ebin(N ) > 0, then HV(N ) has a
ground state.

Because of Pauli exclusion and spin, no obvious positivity is available which
would ensure uniqueness. Note that there is no restriction on the coupling strength
e. Also, by Proposition 20.2, the ground state is exponentially localized with length
less than 1/

√
2m Ebin(N ).

The existence of a ground state is reduced to the issue of whether Ebin(N ) > 0.
While the statement looks innocent and seems to require only the clever choice of
a wave function, the actual construction is ingenious and has been achieved only
very recently by Lieb and Loss (2003). The main obstacle is the, in position space,
nonlocal nature of the photon kinetic energy.

Theorem 20.4 (Strictly positive binding energy). Let eZ tot be the total nuclear
charge, Z tot = ∑K

j=1 Z j . If

N < Z tot + 1 , (20.17)

then Ebin(N ) > 0 .

In nature ions carrying one, or perhaps two, extra electrons are rather common.
Such fine chemical features are difficult to access. In fact, even on the level of the
Coulomb Hamiltonian the excess charge for stable ions is poorly understood.
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20.2 Quasi-static limit

We plan to investigate under what limiting conditions the many-particle Pauli–
Fierz Hamiltonian can be approximated by the Coulomb Hamiltonian with possi-
ble corrections. The implementation of the limit (11.8) on the quantum level has
not yet been attempted. Thus we have to be satisfied with the more down-to-earth
limit c → ∞ already discussed briefly at the beginning of section 11.2. c → ∞
means that the interaction between the charges becomes instantaneous, a princi-
ple on which the Coulomb Hamiltonian is built. To study this limit we had better
reintroduce the velocity of light, which amounts to

H(c) =
N∑

j=1

1

2m j

(
σ j ·

(
p j − 1√

c
e j Aϕ(x j )

))2 + Vϕcoul + cHf . (20.18)

Aϕ(x), Vϕcoul, and Hf do not depend on c. The prefactors as written result from
reintroducing ω(k) = c|k|. The masses and charges are arbitrary.

c has a dimension. So what we really mean is |v|/c → 0, where v is some
characteristic velocity of the charges. Thus either c → ∞ at fixed |v| or |v| → 0
at fixed c. The latter can also be achieved by assuming the particles to be
heavy and, hence, by replacing in (20.18) m j by ε−2m j , ε � 1. On the classi-
cal level the limits c → ∞ and ε → 0 are related through the time scale change
t to εt , and thus are completely equivalent. Quantum mechanically the two
Hamiltonians are not unitarily related, which reflects the additional scale coming
from �.

Let us first study the limit c → ∞. Except for normal order the Hamiltonian
(20.18) reads

H(c) =
N∑

j=1

1

2m j
p2

j + Vϕcoul − 1√
c

N∑
j=1

e j

m j
p j · Aϕ(x j )

− 1√
c

N∑
j=1

e j

2m j
σ j · Bϕ(x j ) + 1

c

N∑
j=1

e2
j

2m j
: Aϕ(x j )

2: + cHf .

(20.19)

H(c) should be compared with the weak coupling Hamiltonian (17.4), written for
the long-time scale λ−2τ and with the abbreviation Hint = Q̃ · Aϕ(0),

Hλ = λ−2 Hat + λ−1 Hint + λ−2 Hf . (20.20)

The interaction part Hint satisfies 〈�, Hint�〉F = 0, which holds also for (20.19),
since 〈�, Aϕ(x j ) �〉F = 0, 〈�, Bϕ(x j ) �〉F = 0, and 〈�, : Aϕ(x j )

2: �〉F = 0.
The central insight of the weak coupling theory is that the correction to Hat results
from balancing λ−2(Hint)

2 with the time averaging due to λ−2 Hf; compare with
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(17.22). Clearly this balance can be achieved also in (20.19) by considering the
long-time scale

t = c2τ with τ = O(1) . (20.21)

Then Hf has the prefactor c3, Hint the prefactor c3/2 with a subleading correction
of order c, and Hat has the prefactor c2. The analog of (17.24) becomes

Kρ = −
∫ ∞

0
dteiLatc−1t trFLinte

−i(c−1Lat+Lf)tLint P�]ρ . (20.22)

In the limit c → ∞ the dependence on Lat drops out. In particular, this implies
that the correction term must be nondissipative; compare with (17.35) which is
evaluated at ω = 0.

Let us first write out the limiting objects. The analog of Hat is

Hϕcoul =
N∑

j=1

1

2m j
p2

j + Vϕcoul . (20.23)

It is corrected by

(−i)Vϕdarw = i

∞∫
0

dt 〈�, Hinte
−it Hf Hint�〉F , (20.24)

which upon working out the integrals becomes

Vϕdarw = −
N∑

i, j=1

ei e j

4mi m j

∫
d3k|ϕ̂(k)|2 1

2k2
eik·xi (pi · Q⊥(k)p j )e

−ik·x j

−
N∑

i, j=1

ei e j

12mi m j
σi · σ j

∫
d3k|ϕ̂(k)|2eik·(xi −x j ),

(20.25)

which is the Darwin correction. We set

Hϕdarw = Hϕcoul + c−2Vϕdarw . (20.26)

Note that the integrability condition (17.27) is satisfied, since the integrand in
(20.24) is bounded by (1 + t2)−1. In contrast to section 17.2, Hint has an un-
bounded factor acting on Hp, which necessitates a restriction on the initial wave
function. We summarize as
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Theorem 20.5 (Coulomb Hamiltonian and correction). Let ψ ∈ L2 with
〈ψ, Hcoulψ〉L2 < ∞. Then

lim
c→∞ ‖(e−iH(c)c2t − e−i(Hϕdarw+cHf)c2t)ψ ⊗ �‖ = 0 . (20.27)

Since the limit (20.27) is on the long-time scale c2, the Darwin correction is mean-
ingfully singled out.

Except for operator ordering, (20.27) is in accordance with the results in section
11.2. However in Ldarw of (11.27) the kinetic energy is modified and the Coulomb
potential is not smeared out, which reflects the fact that limits here and in section
11.2 differ somewhat.

For the limit m j → ∞ we can also rely on methods developed before. We start
with the classical symbol

H(q, p) =
N∑

j=1

( 1

2m j
p2

j − ε
e j

m j
p j · Aϕ(q j )

− ε2 e j

2m j
σ j · Bϕ(q j ) + ε2

e2
j

2m j
: Aϕ(q j )

2:
)

+ Vϕcoul(q) + Hf ,

(20.28)

q = (q1, . . . , qN ), p = (p1, . . . , pN ). The Weyl quantization of H(q, p) is
H(c) of (20.18) with m j replaced by ε−2m j , where for convenience we returned
to c = 1. The leading symbol for H(q, p) is

H0(p, q) =
N∑

j=1

1

2m j
p2

j + Vϕcoul(q) + Hf . (20.29)

Its ground state band has the projection P0(q, p) = 1 ⊗ P� , independent of q, p,
and the eigenvalue e0(q, p) = ∑N

j=1(p2
j/2m j ) + Vϕcoul(q). Thus, following sec-

tion 16.4, the Coulomb Hamiltonian can be understood as Peierls’ substitution for
(20.28). It approximates on the time scale ε−1t the true unitary evolution projected
to 1 ⊗ P� .

To obtain corrections we have to first compute h1. Since 〈�, Hint�〉 = 0 and
since P0 does not depend on p, q, h1 = 0, in accordance with the previous find-
ings that the Darwin correction is of order ε−2. Thus we need h2. In section 16.4 no
explicit formula was given, since it is already somewhat lengthy. In our particular



334 Many charges, stability of matter

case, many simplifications occur and as a net result one finds that

h2(q, p) = −
N∑

i, j=1

ei e j

mi m j

( ∫
d3k|ϕ̂(k)|2 1

2ω2
(pi · Q⊥(k)p j )e

ik·(qi −q j )

+ 1

12
(σi · σ j )

∫
d3k|ϕ̂(k)|2 k2

ω2
eik·(qi −q j )

)
. (20.30)

While, since in agreement with the previous result, (20.30) is very satisfactory on
a formal level, a complete proof has to deal with the fact that the ground state band
is not separated by a gap from the remainder of the spectrum. If one is willing to
impose a gap by hand through a massive dispersion ω, then a suitable version of
the results described in section 16.4 becomes available. The picture so derived is
somewhat different from the c → ∞ limit: the almost invariant subspace is tilted
by order ε relative to (1 ⊗ P�)H. Over the time scale ε−2t the motion in this
subspace is governed by h0 + ε2h2.

20.3 H-stability

For the (no-cutoff) Coulomb Hamiltonian

Hcoul =
N∑

j=1

1

2
p2

j + Vcoul ,

Vcoul = e2

4π

( ∑
1≤i< j≤N

|xi − x j |−1 − Z
N∑

i=1

K∑
j=1

|xi − r j |−1

+ Z2
∑

1≤i< j≤K

|ri − r j |−1
)

, (20.31)

the H-stability is a famous result by Dyson and Lenard. An independent proof
was achieved by Lieb and Thirring, who succeeded in a fairly realistic estimate
of the stability constant. For stability to hold the electrons must satisfy the Pauli
exclusion principle, as they do in nature. For bosons the energy would decrease as
−N 5/3. If the nuclei have a finite mass, for a H-stable system at least one of the
two species must be fermions.

To extend H-stability to the realm of nonrelativistic quantum electrodynamics,
one has to establish a lower bound on Hv(N ) = H , see (20.7), linear in K + N .
Note that for spinless electrons H ≥ Hcoul by the diamagnetic inequality (14.69)
and one is back to the H-stability in (20.31). Thus the difficult point is to deal with
electron spin and the associated magnetic energy. The Schrödinger representation,
as explained in Chapter 14, suggests that for the purpose of a lower bound, Hf
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could be substituted by the classical field energy stored in the A-field, i.e. by

Emagn = 1

2

∫
d3x B(x)2 . (20.32)

If it could be established that Hf − Emagn ≥ 0, then

H = H + Emagn − Emagn ≥
N∑

j=1

1

2

(
σ j · (p j − eAϕ(x j ))

)2 + Vcoul + Emagn .

(20.33)

H-stability of the Coulomb Hamiltonian with magnetic field energy added would
have to be shown for an arbitrary external transverse vector potential.

To progress towards our goal we note that, for an arbitrary operator A,
|〈ψ, A2ψ〉| ≤ ‖A∗ψ‖ ‖Aψ‖ ≤ 1

2〈ψ, (AA∗ + A∗ A)ψ〉 and therefore

(A + A∗)2 ≤ 2(AA∗ + A∗ A) . (20.34)

We split the magnetic field as Bϕ(x) = B+
ϕ (x) + B−

ϕ (x) and apply (20.34),

Bϕ(x)2 ≤ 4B+
ϕ (x)B−

ϕ (x) + 2[B+
ϕ (x), B−

ϕ (x)] , (20.35)

which remains true when multiplied by f (x) ≥ 0. Then

1

2

∫
d3x f (x)Bϕ(x)2 ≤ ‖ f ‖∞

∑
λ=1,2

∫
d3k(2π)3|ϕ̂(k)|2|k|a∗(k, λ)a(k, λ)

+‖ f ‖1

∫
d3k|ϕ̂(k)|2|k| . (20.36)

Let us assume that |ϕ̂(k)| ≤ (2π)−3/2 and
∫

d3k|ϕ̂(k)| |k| = C
 < ∞. For f we
choose f (x) = 1 if |x − r j | ≤ 1 for some j and f (x) = 0 otherwise. Then

H ≥
N∑

j=1

1

2

(
σ j · (p j − eAϕ(x j ))

)2 + Vcoul + 1

2

∫
d3x f (x)B(x)2 − K C
 .

(20.37)

The energy stability with an arbitrary external B-field is difficult, but has been
done. Unfortunately the field energy balances the Coulomb attraction only for |e|
sufficiently small. To have H-stability for all e one also has to include the B-field
gradients. In addition, the choice of f should be optimized. As one result we state

Theorem 20.6 (H-stability of nonrelativistic QED). Let ϕ̂ be the form factor
with sharp cutoff at 
. Then there exists a positive constant C(e, Z) such that

H ≥ −C(e, Z)(
 + 1)K (20.38)

independently of N.
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The proof of Theorem 20.6 relies on the H-stability of the Hamiltonian on the right
hand side of (20.37) and thus requires the electrons to be fermions.

In the Pauli–Fierz Hamiltonian (20.7) the self-energy of the electrons is not
subtracted. Thus, in principle, the stability bound (20.38) could exclusively be due
to the positive contribution from the self-energy. To rule out such an unphysical
mechanism we employ a technique, briefly touched upon already in section 19.3.
The results available are sharper in the case of spinless electrons with Hamiltonian

HN =
N∑

j=1

1

2

(
p j − eAϕ(x j )

)2 + Hf + Vcoul = TN + Hf + Vcoul . (20.39)

Since N is the important parameter, it is displayed explicitly. The no-cutoff
Coulomb potential carries the information on the K nuclei located at r1, . . . , rK .
Let E(N ) be the bottom of the spectrum of HN and E0(N ) that of TN + Hf. The
binding energy for HN is defined as in (20.10) with the nucleon repulsion as an
additive constant. Then

Ebin(N ) ≤ E0(N ) − E(N ) . (20.40)

Similar to (19.95) the Coulomb energy is bounded from below as

Vcoul ≥ −κe2
N∑

j=1

|p j − eAϕ(x j )| (20.41)

with κ = (
(π/2)Z + (2.22)Z2/3 + 1.03

)
/4π . Therefore, using Schwarz’s in-

equality,

HN ≥ TN + Hf − κe2
√

2N
√

TN + Hf . (20.42)

The function f (x) = x − κe2
√

2N
√

x takes its minimum at xmin = 1
2(κe2)2 N ,

f (xmin) = −1
2(κe2)2 N . Thus, if

E0(N ) ≤ 1

2
N (κe2)2 (case I) , (20.43)

then HN ≥ −1
2(κe2)2 N and E(N ) − E0(N ) ≥ −(κe2)2 N . On the other hand, if

E0(N ) ≥ 1

2
N (κe2)2 (case II) , (20.44)

we can use the fact that f is monotonically increasing to conclude that HN ≥
f (E0(N )) and E(N ) ≥ E0(N ) − (e2κ)

√
2N

√
E0(N ). We summarize as

Theorem 20.7 (Upper bound for N -particle binding energy). For the Hamilto-
nian HN of (20.39), in case I

Ebin(N ) ≤ (κe2)2 N (20.45)
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and in case II

Ebin(N ) ≤ (κe2)
√

2N
√

E0(N ) . (20.46)

Note that energies are in units of mc2.
The bound (20.46) is unexpected, since the binding energy is estimated in terms

of the self-energy of a system of N electrons without Coulomb repulsion. The
Pauli exclusion principle has not yet been invoked.

To make further progress one needs a good estimate on E0(N ). Fermions like to
stay alone and the state of lowest energy should be achieved once they are infinitely
separated.

Conjecture 20.8 For fermions

E0(N ) = N E0(1) . (20.47)

If Conjecture 20.8 is assumed to hold, then the condition for the two cases reads

(case I) : E0(1) ≤ 1

2
(κe2)2, (case II) : E0(1) ≥ 1

2
(κe2)2 . (20.48)

As explained in section 19.3, E0(1) ≤ c2e4/7(
λc)
12/7. Consequently

Ebin ≤ (κe2)2 N (case I) ,

Ebin ≤ (κe2)
√

2c2e2/7(
λc)
6/7 N (case II) . (20.49)

The binding energy is extensive. However, our estimate on the stability bound di-
verges with the cutoff 
. Since energies are calibrated in units of mc2, the folklore
tells us that multiplying the true stability constant by m/meff should result in a

-independent prefactor.

Notes and references

Stability for the Coulomb Hamiltonian is covered extensively and excellently in
survey articles. Particularly recommended are Lieb (1976, 1990), which have
become classics. Some of the original articles are reprinted in the Lieb Selecta
(2001), where the reader should in addition consult the introduction by Thirring,
see also Thirring (2002). The first proof of stability is Dyson and Lenard (1968).
The use of the Thomas–Fermi theory as a comparison standard is introduced in
Lieb and Thirring (1975). Extensions to Coulomb systems with relativistic kinetic
energy are investigated by Conlon (1984), Feffermann and de la Llave (1986), and
were finally settled in Lieb and Yau (1988a, b). The basic discovery is that stabil-
ity holds only under a smallness condition on Zα and α. If electrons were bosons,
they would cluster with a density increasing with N . In the ground state energy
this can be seen in a faster than linear decrease with N . For bosons and fixed
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nuclei it is known that EN � −N 5/3 (Lieb 1979 and references therein), while
with bosonic nuclei of finite mass, EN

∼= −N 7/5 (Dyson 1967; Conlon, Lieb and
Yau 1988).

Thermodynamic stability for Coulomb systems is proved by Lieb and Lebowitz
(1972).

If photons were scalar, then the Coulomb potential has the “wrong” sign; see
section 19.2. This leads to instability, some partial aspects of which are studied in
Gallavotti, Ginibre and Velo (1970).

Section 20.1

For Schrödinger operators, F = C, the exponential localization of Proposition
20.2 goes back to Agmon (1982). Griesemer (2002) observes that it remains valid
for general F . Theorem 20.4 is proved by Lieb and Loss (2003). For the helium
atom, N = 2, the strict positivity of the binding energy is established by Barbaroux
et al. (2003).

Section 20.2

For the Nelson model, i.e. a scalar Bose field, the limit c → ∞ is studied by Davies
(1979), see also Hiroshima (1997a), and the limit m → ∞ by Teufel (2002). They
prove that the dynamics is well-approximated through the Coulomb Hamiltonian.
Our observation seems to be new, but could have been made already by Davies, if
he had chosen the Gross-transformed Nelson Hamiltonian as a starting point.

Section 20.3

The argument leading to Theorem 20.6 is taken from Fefferman, Fröhlich and
Graf (1997), see also Bugliaro, Fröhlich and Graf (1996). The harder part is to
establish stability for the Hamiltonian on the right hand side of (20.37), which is
achieved by Feffermann (1996) with a “sufficiently small” constant and is sub-
sequently improved and simplified by Lieb, Loss and Solovej (1995) to include
the physical case. Theorem 20.7 is a result by Lieb and Loss (2002). They also
establish that the self-energy for N electrons is bounded as c1α

1/2(
λc)
3/2 N ≤

E0(N ) ≤ c2α
2/7(
λc)

12/7 N with suitable constants c1, c2, which is somewhat
weaker than our Conjecture 20.8. The discussion does not change; only the
prefactors are less sharp. For bosons the bounds c3α

1/2(
λc)
3/2 N 1/2 ≤ E0(N ) ≤

c4α
2/7(
λc)

12/7 N 5/7 are available, which together with Theorem 20.7 strongly
indicate that, as to be expected, bosons remain unstable when the quantized radi-
ation field is added. The basic inequality (20.41) holds also in the case where the
electron spin is included, see Lieb and Loss (2002).
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Birkhäuser.



354 References

Pauli W. (1921). Relativitätstheorie, Enzyklopädie der Mathematischen Wissenschaften,
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