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80a) An attempt at a theory of β rays

“Tentativo di un a teoria dei raggi β,”
Nuovo Cimento 11, 1–19 (1934)

ABSTRACT

A quantitative theory of the emission of β rays is proposed in which the existence
of the “neutrino” is assumed and the emission of electrons and neutrinos in β decay
is treated in a way similar to the one followed in the theory of radiation for describing
the emission of a quantum of light from an excited atom. We deduce the formulas
for the lifetime and for the shape of the continuous spectrum of β rays and compare
them with experimental data.

The fundamental hypotheses of the theory

§ 1. – In the attempt to construct a theory of the nuclear electrons and the emission
of β rays, one encounters, as is known, two principal difficulties. The first depends on
the fact that the primary β rays are emitted from nuclei with a continuous velocity
distribution. If we do not want to abandon the energy conservation principle, we
are obliged to admit that a fraction of the energy which is released in the process
of β decay escapes our present possibilities of observation. According to Pauli’s
proposal one can for instance assume the existence of a new particle, the so called
“neutrino”, having vanishing electric charge and mass on the order of magnitude of
the electron mass or less. Thus we assume that in any β process are simultaneously
emitted an electron, which is detected as a ray, and a neutrino which eludes the
observation carrying a part of the energy away. In the present theory, we shall
adopt the neutrino hypothesis.

A second difficulty for a theory of nuclear electrons depends on the fact that
the present relativistic theories of the light particles (electrons or neutrinos) do not
give a satisfactory explanation for the possibility that these particles are bound in
orbits of nuclear size.

Consequently it seems more appropriate to agree with Heisenberg∗ and assume
that all nuclei consist only of heavy particles, protons and neutrons. Then with
the aim of understanding the possibility of emission of β rays, we will attempt to
construct a theory of the emission of light particles from a nucleus in analogy with
the theory of the emission of a quantum of light from an excited atom in the usual
process of radiation. In the theory of radiation, the total number of the light quanta
is not constant; the quanta are created when being emitted from an excited atom
∗W. Heisenberg, ZS. für Phys. 77, 1 (1932); E. Majorana, ZS. für Phys. 82, 137 (1933).
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and disappear when absorbed. In analogy with that we will try to establish the
theory of β rays on these assumptions:

(a) The total number of electrons and neutrinos is not necessarily constant. Elec-
trons (or neutrinos) can be created or destroyed. On the other hand this pos-
sibility has no analogy with the possibility of the creation or destruction of an
electron-positron pair; in fact if we interpret a positron as a Dirac “hole”, we
can simply consider this latter process as a quantum jump of an electron from
a state of negative energy to a state of positive energy, conserving the total
number (infinitely large) of the electrons.

(b) The heavy particles, neutron and proton, can be considered, following Heisen-
berg, as two different internal states of the heavy particle. We shall formulate
this fact by introducing an internal coordinate ρ of the heavy particle, which
can assume only two values: ρ = + 1, if the particle is a neutron; ρ = − 1, if
the particle is a proton.

(c) The Hamiltonian function of the overall system, consisting of heavy and light
particles, must be chosen so that every transition from neutron to proton be
accompanied by the creation of an electron and a neutrino; and the inverse
process, transformation of a proton into a neutron, be accompanied by the
disappearance of an electron and a neutrino. It must be remarked that in this
way the conservation of the electric charge is assured.

The operators of the theory

§ 2. – A mathematical formalism which allows us to construct a theory in agreement
with the three points of the preceding section can be easily constructed by using the
method of Dirac-Jordan-Klein† called “the method of second quantization.” Then
we shall consider the probability amplitudes ψ and ϕ of the electrons and neutrinos
in ordinary space, and their complex conjugates ψ∗ and ϕ∗ as operators; while for
describing the heavy particles we shall use the usual representation in configuration
space, in which obviously also ψ will be considered as a coordinate.

We introduce first two operators Q and Q∗ which operate on the functions of
the two-valued variable ρ as the linear substitutions

Q =
∣∣∣∣ 0 1
0 0

∣∣∣∣ ; Q∗ =
∣∣∣∣ 0 0
1 0

∣∣∣∣ . (1)

One immediately realizes that Q determines the transitions from proton to neutron,
and Q∗ the inverse transitions from neutron to proton.

†Cf. e.g. P. Jordan and O. Klein, ZS. für Phys. 45, 751 (1927); W. Heisenberg, Ann. d. Phys.
10, 888 (1931).
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The meaning of the probability amplitudes ψ and ϕ interpreted as operators is,
as we know, the following. Let

ψ1ψ2 . . . ψs . . .

be a system of individual quantum states of the electrons. Then put

ψ =
∑

s

ψsas ; ψ∗ =
∑

s

ψ∗sa
∗
s . (2)

The amplitudes as and the conjugate complex quantities a∗s are operators which
act on the functions of the occupation numbers N1, N2,. . .,Ns,. . . of the individual
quantum states. If the Pauli principle holds, each of the Ns can assume only one of
the values 0, 1; and the operators as and a∗s are defined as follows:

asΨ (N1, N2, . . . , Ns, . . .)

= (−1)N1+N2+...+Ns−1 (1−Ns) Ψ (N1, N2, . . . , 1−Ns, . . .) (3)

a∗sΨ (N1, N2, . . . , Ns, . . .)

= (−1)N1+N2+...+Ns−1 (1−Ns) Ψ (N1, N2, . . . , Ns, . . .) .

The operator a∗s determines the creation, while the operator as determines the
disappearance of an electron in the quantum state s.

Corresponding to (2), for the neutrinos we shall set:

ϕ =
∑

ϕσbσ ; ϕ∗ =
∑

ϕ∗σb
∗
σ . (4)

The conjugate complex operators bσ and b∗σ operate on the functions of the occu-
pation numbersM1,M2,. . .,Mσ,. . . of the individual quantum states ϕ1, ϕ2,. . .,ϕσ,. . .
of the neutrinos. If we assume that the Pauli principle also holds for these particles,
the numbers Mσ can only assume the two values 0, 1; and one has

bσ Φ (M1,M2, . . . ,Mσ, . . .)

= (−1)M1+M2+...+Mσ−1 (1−Mσ) Φ (M1,M2, . . . , 1−Mσ, . . .) (5)

b∗σ Φ (M1,M2, . . . ,Mσ, . . .)

= (−1)M1+M2+...+Mσ−1 (1−Mσ) Φ (M1,M2, . . . ,Mσ, . . .) .

The operators bσ and b∗σ determine the disappearance and the creation of a
neutrino in the state σ, respectively.

The Hamiltonian function

§ 3. – The energy of the overall system constituted by the heavy and the light
particles is the sum of the energy Hhea of the heavy particles + the energy Hlig of
the light particles + the interaction energy H between the light and heavy particles.

Limiting ourselves for the sake of simplicity to consider only the heavy particle,
we shall write the first term in the form

Hhea =
1 + ρ

2
N +

1− ρ

2
P (6)
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in which N and P are the operators which represent the energy of the neutron and
the proton. We notice in fact that, for ρ = + 1 (neutron), (6) reduces to N ; while
for ρ = − 1 (proton) it reduces to P.

To write the energy Hlig in the simplest way, we shall consider the quantum
states ψs and ϕσ of the electrons and neutrinos to be stationary states. For the
electrons we shall take the eigenfunctions in the Coulomb field of the nucleus (conve-
niently shielded in order to take into account the action of the atomic electrons); for
the neutrinos we simply shall take De Broglie plane waves, since possible forces act-
ing on neutrinos are certainly very weak. LetH1,H2,. . .,Hs,. . . andK1,K2,. . .,Kσ,. . .
be the energies of the stationary states of the electrons and the neutrinos; then we
shall have

Hlig =
∑

s

HsNs +
∑

σ

KσMσ . (7)

There still remains to write the interaction energy. It consists first of the
Coulomb energy between proton and electrons; however, in the case of heavy nuclei
the attraction exercised by only a proton has no importance‡ and in any case does
not contribute in any way to the process of β decay. In order not to uselessly com-
plicate the problem, we shall neglect this term. We must instead add a term to the
Hamiltonian such that it satisfies the condition c) of § 1.

A term which necessarily joins the transformation of a neutron into a proton
with the creation of an electron and a neutrino has, according with the results of
§ 2, the form

Q∗a∗sb
∗
σ (8)

while the conjugate complex operator

Qasbσ (8)

joins together the inverse processes (transformation of a proton into a neutron and
disappearance of an electron and a neutrino).

An interaction term satisfying the condition c) will then have the following form

H = Q
∑
sσ

csσasbσ +Q∗
∑
sσ

c∗sσa
∗
sb
∗
σ , (9)

where csσ and c∗sσ are quantities which may depend on the coordinates, the mo-
menta, etc.. . . of the heavy particle.

A further determination of H must necessarily follow the principle of greatest
simplicity; in any case the choices for H are restricted by the fact that H must be
invariant with respect to a change of coordinates and moreover it must also satisfy
momentum conservation.

If at first we neglect spin and relativistic effects, the simplest choice for (9) is
the following

H = g [Qψ(x)ϕ(x) +Q∗ψ∗(x)ϕ∗(x)] , (10)
‡The Coulomb attraction due to the many other protons must obviously be taken into account

as a static field.
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where g is a constant with dimensions L5MT−2; x represents the coordinates of the
heavy particle; ψ, ϕ, ψ∗, ϕ∗ are given by (2) and (4) and must be evaluated at the
position x, y, z of the heavy particle.

Obviously (10) is not the only possible choice for H; any scalar expression as

L(p)ψ(x)M(p)ϕ(x)N(p) + compl. conj.

where L(p), M(p), N(p), represent convenient functions of the momentum of the
heavy particle, would have been admissible. On the other hand, since until now the
consequences of (10) have been in agreement with experience, there is no need to
resort to more complicated expressions.

On the contrary, it is essential to generalize (10) in such a way to be able to
treat relativistically at least the light particles. Of course, also in this generaliza-
tion, it does not seem possible to eliminate all arbitrariness. However, the most
natural solution of the problem appears to be the following: Relativistically we
have, in place of ψ and ϕ, two sets ψ1ψ2ψ3ψ4 and ϕ1ϕ2ϕ3ϕ4 of four Dirac func-
tions. Let us consider the 16 independent bilinear combinations of ψ1ψ2ψ3ψ4 and
ϕ1ϕ2ϕ3ϕ4. When the frame of reference undergoes a Lorentz transformation, the
16 bilinear combinations undergo a linear substitution which gives a representation
of the Lorenz group. In particular the four bilinear combinations

A0 = −ψ1ϕ2 + ψ2ϕ1 + ψ3ϕ4 − ψ4ϕ3

A1 = ψ1ϕ3 − ψ2ϕ4 − ψ3ϕ1 + ψ4ϕ2 (11)

A2 = iψ1ϕ3 + iψ2ϕ4 − iψ3ϕ1 − iψ4ϕ2

A3 = −ψ1ϕ4 − ψ2ϕ3 + ψ3ϕ2 + ψ4ϕ1

transform like the components of a four-vector, that is like the components of the
electromagnetic four-potential. Then it is natural to introduce in the Hamiltonian
of the heavy particle the four quantities

g (QAi +Q∗A∗
i )

in a situation corresponding to that of the components of the four-potential. Here
we run into a problem depending on the fact that we do not know a relativistic
wave equation for the heavy particles. However, in the case in which the velocity
of the heavy particle is small compared to c, one can limit oneself to the term
corresponding to eV (V the scalar potential) and write

H = g [Q (−ψ1ϕ2 + ψ2ϕ1 + ψ3ϕ4 − ψ4ϕ3) +Q∗ (ψ∗1ϕ
∗
2 + ψ∗2ϕ

∗
1 + ψ∗3ϕ

∗
4 − ψ∗4ϕ

∗
3)] .
(12)

To this term one must add other ones of the order of magnitude v/c. At the
moment, however, we shall neglect these terms, since the velocities of the neutrons
and protons inside the nuclei are in general small compared to c (Cf. § 9).

In matrix language, (12) can be written

H = g
[
Qψ̃∗δϕ+Q∗ψ̃δϕ∗

]
, (13)
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where ψ and ϕ are meant as matrices with one column and the symbol ∼ transforms
a matrix into its transposed conjugate; and moreover

δ =

∣∣∣∣∣∣∣∣
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣ . (14)

With this notation, one finds by comparing (12) with (9)

csσ = gψ̃∗sδϕσ ; c∗sσ = gψ̃sδϕ
∗
σ , (15)

where ψ and ϕ represent the four-component normalized eigenfunctions of the states
s of the electron and σ of the neutrino, considered as functions of the position x, y,
z occupied by the heavy particle.

The perturbation matrix

§ 4. – With the Hamiltonian we have established one can develop a theory of β decay
in complete analogy with the theory of radiation. In that theory, as is known, the
Hamiltonian consists of the sum: Energy of the atom + Energy of the radiation
field + Interaction between atom and radiation; the latter term is considered as a
perturbation of the other two. Analogously we shall take

Hhea +Hlig (16)

as the unperturbed Hamiltonian. The perturbation is represented by the interaction
term (13).

The quantum states of the unperturbed system can be enumerated in the fol-
lowing way:

(ρ, n,N1, N2 . . . Ns . . .M1,M2 . . .Mσ . . .) , (17)

where the first number ρ takes one of the values ±1 and indicates if the heavy
particle is a neutron or a proton. The second number n indicates the quantum
state of the neutron or the proton. For ρ = + 1 (neutron) let the corresponding
eigenfunction be

un(x) , (18)

while for ρ = − 1 (proton) let the eigenfunction be

vn(x) . (19)

The other numbers N1, N2 . . . Ns . . .M1,M2 . . .Mσ . . . can only take the values
0, 1 and indicate what states of the electrons and neutrinos are occupied.

By an examination of the general form (9) of the perturbation energy, one im-
mediately realizes that it has nonvanishing matrix elements only for transitions in
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which either the heavy particle passes from neutron to proton, while in the mean-
time one electron and one neutrino are created, or viceversa.

Through (1), (3), (5), (9), (18), (19) one easily finds that the corresponding
matrix element is

H 1nN1N2...0sM1M2...0σ...

−1mN1N2...1sM1M2...1σ...
= ±

∫
v∗mc

∗
sσundτ , (20)

where the integration must be extended over the entire configuration space of the
heavy particle (with the exception of the coordinate ρ); the ± sign means more
precisely

(−1)N1+N2+...+Ns−1+M1+M2+...Mσ−1

and in any case does not enter into the calculations that will follow. To the inverse
transition corresponds a matrix element which is the conjugate complex of (20).

Taking (15) into account, (20) becomes

H 1n0s0σ

−1m1s1σ

= ±
∫
v∗munψ̃sδϕ

∗
σdτ , (21)

where for the sake of brevity in the left hand side we have omitted writing all the
indexes which do not change.

Theory of β decay

§ 5. – A β decay consists of a process in which a nuclear neutron transforms into a
proton, while at the same time, in the way we have described, an electron, which is
observed as a β particle, and a neutrino are emitted. To calculate the probability
of this process, we shall assume that, at the time t = 0, a neutron is in a nuclear
state of eigenfunction un(x), and furthermore the electron state s and the neutrino
state σ are free, that is Ns = Mσ = 0. Then for t = 0 we shall put the probability
amplitude of the state (1, n, 0s, 0σ) equal to 1, that is

a1,n,0s,0σ = 1 , (22)

whereas we shall put the probability amplitude of the state (−1,m, 1s, 1σ), in which
the neutron has been transformed into a proton with eigenfunction vm(x) emitting
an electron and a neutrino in the states s and σ initially equal to zero.

By applying the usual formulas of perturbation theory, for a time short enough
to still consider (22) approximately valid one finds

ȧ−1,m,1s,1σ = −2πi
h
H 1n0s0σ

−1m1s1σ

e
2πi
h (−W+Hs+Kσ)t , (23)

where W stands for the difference in energy between the neutron state and the
proton state.
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By integrating (23) we obtain (since for t = 0, a−1m1s1σ = 0)

a−1m1s1σ = −H 1n0s0σ

−1m1s1σ

e
2πi
h (−W+Hs+Kσ)t − 1
−W +Hs +Kσ

. (24)

The probability of the transition we consider is then

|a−1m1s1σ |
2 = 4

∣∣∣∣H 1n0s0σ

−1m1s1σ

∣∣∣∣2 sin2 πt
h (−W +Hs +Kσ)

(−W +Hs +Kσ)2
. (25)

To calculate the lifetime of the neutron state un it is necessary to sum (25) with
respect to all unoccupied states of the electrons and neutrinos. A strong reduction of
this sum can be obtained by observing that the De Broglie wave length for electrons
or neutrinos having energies of some millions of volts is much larger than the nuclear
sizes. Thus one can, as a first approximation, consider the eigenfunctions ψs and
ϕσ to be constants inside the nucleus. Thus (21) becomes

H 1n0s0σ

−1m1s1σ

= ±gψ̃sδϕ
∗
σ

∫
v∗mundτ , (26)

where here and below ψs and ϕσ are meant to be taken in the nucleus (Cf. § 8).
From (26) we draw:∣∣∣∣H 1n0s0σ

−1m1s1σ

∣∣∣∣2 = g2

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 ψ̃sδϕ
∗
σϕ̃

∗
σ δ̃ψσ . (27)

States σ of the neutrino are characterized by their momentum pσ and by the
spin direction. If, for the convenience of normalization, we quantize inside a volume
Ω, whose size later on will be made to tend to infinity, the normalized neutrino
eigenfunctions are Dirac plane waves having density 1/Ω. Then simple algebraic
considerations allow us to perform in (27) an average with respect to all the orien-
tations of pσ and of the spin. (And in this only the states of positive energy must
be considered; the negative energy states must be eliminated through a device like
the Dirac hole theory). One finds∣∣∣∣H 1n0s0σ

−1m1s1σ

∣∣∣∣2 =
g2

4Ω

∣∣∣∣∫ v∗mundτ

∣∣∣∣2(ψ̃sψs −
µc2

Kσ
ψ̃sβψs

)
, (28)

where µ is the rest mass of the neutrino and β the Dirac matrix

β =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣∣ (29)

By observing that the number of positive energy neutrino states with momentum
between pσ and pσ+dpσ is 8πΩp2

σdpσ/h
3, that furthermore ∂Kσ/∂pσ is the neutrino

velocity for the state σ, and finally that (25) has a strong maximum for the value
of pσ for which there is no variation of the unperturbed energy, that is

−W +Hs +Kσ = 0 , (30)
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one can perform the sum of (25) with respect to σ in the usual way§ and one finds

t
8π3g2

h4

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 p2
σ

vσ

(
ψ̃sψs −

µc2

Kσ
ψ̃sβψs

)
, (31)

where pσ is the value of the momentum of the neutrino for which (30) holds.

Determining elements of the transition probability

§ 6. – (31) expresses the probability that in a time t a β decay takes place in which
the electron is emitted in the state s. As must be the case, this probability turns
out to be proportional to the time (t has been considered small with respect to
the lifetime); the coefficient of t gives the transition probability for the process we
consider; it turns out to be

Ps =
8π3g2

h4

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 p2
σ

vσ

(
ψ̃sψs −

µc2

Kσ
ψ̃sβψs

)
. (32)

Note that:

(a) For the free states of the neutrinos one always has Kσ ≥ µc2. Then it is
necessary, in order that (30) can be satisfied, that

Hs ≤W − µc2 (33)

The upper limit of the β ray spectrum corresponds to the = sign.
(b) Secondly, since for the unoccupied electron state one has Hs ≥ mc2, we obtain,

in order that the decay be possible, the following condition:

W ≥ (m+ µ)c2 (34)

Then, in order that the β decay be possible, one must have a rather high
occupied neutron state over a free proton state.

(c) According to (32), Ps depends on the eigenfunctions un and vm of the heavy
particle in the nucleus, through the matrix element

Q∗
mn =

∫
v∗mundτ (35)

This matrix element plays a role, in the in the theory of β rays, which is anal-
ogous to that of the matrix element of the electric moment in the theory of
radiation. The matrix element (35) has normally the order of magnitude 1;
nevertheless it often happens that, due to particular symmetries of the eigen-
functions un and vm, Q∗

mn exactly vanishes. In that case we shall speak of
“forbidden β transitions”. On the other hand, one should not expect that the
forbidden transitions are really impossible, since (32) is only an approximate
formula. We shall come back to this matter in § 9.

§For a description of the methods used for performing such sums, cf. any expository article on
the theory of radiation. For instance, E. Fermi Rev. of Mod. Phys. 4, 87, (1932).
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The mass of the neutrino

§ 7. – The transition probability (32) determines among other things the shape of
the continuous spectrum of β rays. We will discuss here how the shape of this
spectrum depends on the rest mass of the neutrino, in order to be able to determine
this mass through a comparison with the experimental shape of the spectrum itself.
The mass µ also enters into (32) through the factor p2

σ/vσ. The dependence of the
shape of the curve of the energy distribution on µ is particularly pronounced in the
proximity of the maximum energy E0 of the β rays. It is easy to recognize that the
distribution curve for energies E close to the maximum value E0, behaves, apart
from a factor independent of E, as

p2
σ

vσ
=

1
c3
(
µc2 + E0 − E

)√
(E0 − E)2 + 2µc2 (E0 − E) . (36)

Fig. 1

In Figure 1 the end of the distribution curve is represented for µ = 0, and for
a small value and a large value of µ. The closest similarity of the theoretical curve
to the experimental curves corresponds to µ = 0. Thus we arrive at concluding
that the mass of the neutrino is equal to zero or, in any case, much smaller than
the mass of the electron¶. In the calculations below, for the sake of simplicity, we
always set µ = 0.

Then we have, also taking (32) into account

vσ = c ; Kσ = cpσ ; pσ =
Kσ

c
=
W −Hs

c
(37)

and the inequalities (33) and (34) become

Hs ≤W ; W ≥ mc2 . (38)
¶In a recent note F. Perrin, C.R., 197, 1625 (1933), by means of quantitative arguments arrives

at a similar conclusion.
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Finally the transition probability takes the form

Ps =
8π3g2

c3h4

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 ψ̃sψs (W −Hs)
2
. (39)

Lifetime and shape of the energy distribution curve for allowed tran-
sitions

§ 8. – From (39) one can derive a formula which expresses how many β transitions
in which a β particle gets a momentum ranging from mcη to mc(η+ dη) take place
in unit time. For this it is necessary to calculate the sum of the values of ψ̃sψs in the
nucleus, extended to all the states (of the continuum) which belong to the indicated
range of momentum. In this regard we point out that the relativistic eigenfunctions
in the Coulomb field for the states with j=1/2 (2s1/2 e 2p1/2) become infinite in
the center. On the other hand the Coulomb law does not hold up to the center of
the nucleus, but only up to a distance from it larger than R, where R is the nuclear
radius. At this point, a tentative calculation shows that, if we make plausible
assumptions on the behavior of the electric potential inside the nucleus, the value
of ψ̃sψs in the center of the nucleus turns out to be very close to the value which
ψ̃sψs should assume if the Coulomb law were valid at a distance R from the center.
Applying the known formulas‖ for the relativistic eigenfunctions of the continuum
spectrum in a Coulomb field, after a rather long but easy calculation, one finds∑

dη

ψ̃sψs = dη · 32πm3c3

h3 [Γ (3 + 2S)]2

(
4πmcR

h

)2S

η2+2Seπγ

√
1+η2
η ×

×

∣∣∣∣∣Γ
(

1 + S + iγ

√
1 + η2

η

)∣∣∣∣∣
2

, (40)

where we have set

γ = Z/137 ; S =
√

1− γ2 − 1 . (41)

The transition probability in an electric state in which the momentum has a
value in the interval mc dη then becomes (see (39))

P (η)dη = dη · g2 256π4

[Γ (3 + 2S)]2
m5c4

h7

(
4πmcR

h

)2S ∣∣∣∣∫ v∗mundτ

∣∣∣∣2 η2+2S ×

×eπγ

√
1+η2
η

∣∣∣∣∣Γ
(

1 + S + iγ

√
1 + η2

η

)∣∣∣∣∣
2(√

1 + η2
0 −

√
1 + η2

)2

, (42)

where η0 is the maximum momentum of the emitted β rays, as measured in units
of mc.
‖R.H. Hulme, Proc. Roy. Soc. 133, 381 (1931).
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For a numerical evaluation of (42) we refer to the particular value γ = 0.6, which
corresponds to Z = 82.2 since the atomic numbers of the radioactive substances are
not far from this value. For γ = 0.6, we have from (41) S = −0.2. Moreover one
finds that, for η < 10 it is possible to set, with a sufficient approximation

η1.6e0.6π

√
1+η2
η

∣∣∣∣∣Γ
(

0.8 + 0.6i

√
1 + η2

η

)∣∣∣∣∣
2

∼= 4.5η + 1.6η2 . (43)

With this, (42) becomes, setting R = 9 · 10−13 in it,

P (η)dη = 1.75 · 1095g2

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 (η + 0.355η2
)(√

1 + η2
0 −

√
1 + η2

)2

. (44)

The inverse of the lifetime is obtained by integrating (44) from η = 0 to η = η0;
one finds

1
τ

= 1.75 · 1095g2

∣∣∣∣∫ v∗mundτ

∣∣∣∣2 F (η0) , (45)

where we have set
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3
+
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[
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0
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+
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0
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+
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0

4
log
(
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√
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. (46)

For small values of the argument, F (η0) behaves like η6
0/24; for larger values of

the argument, the values of F are gathered together in the following table.

Table 1

η0 F (η0) η0 F (η0) η0 F (η0) η0 F (η0)

0 η6
0/24 2 1.2 4 29 6 185

1 0.03 3 7.5 5 80 7 380

The forbidden transitions

§ 9. – Before moving on to a comparison of the theory with experience, we still want
to illustrate some properties of the forbidden transitions.

As we have already said, a transition is forbidden when the corresponding matrix
element (35) vanishes. If the representation of the nucleus by means of individual
quantum states of the protons and neutrons turns out to be a good approximation,
the matrix element Q∗

mn vanishes, due to symmetry, when

i = i′ (47)
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does not hold, where i and i′ are the angular momentum, in units h/2π, of the
neutron state un and the proton state vm, respectively. When the individual quan-
tum states do not turn out to be a good approximation, to the selection rule (47)
coresponds the other one

I = I ′ , (48)

where I and I ′ represent the angular momentum of the nucleus before and after the
β decay.

The selection rules (47) and (48) are much less rigorous than the selection rules of
optics. It is possible to find exceptions to them, particularly with the two following
processes:

(a) Formula (26) has been obtained by neglecting the variations of ψs and ϕs

inside the region of the nucleus. If on the contrary these variations are taken
into account, one has the possibility of obtaining β transitions even when Q∗

mn

vanishes. It is easy to recognize that the intensity of these transitions has a
ratio, as an order of magnitude, with the intensity of the allowed processes given
by (R/λ)2, where λ is the De Broglie wave length of the light particles. It must
be noted that, if the electron and the neutrino have the same energy, when the
former is near the nucleus it has a higher kinetic energy, due to the electrostatic
attraction and so the most important effect comes from the variations of ψs. An
evaluation of the order of magnitude of the intensity of these forbidden processes
show that, at the same energy of the emitted electrons, they must have an
intensity of one hundredth of the intensity of the normal processes. Besides the
relatively small intensity, a characteristics of the forbidden transitions of this
type can be found in the different shape of the curve of the energy distribution
of β rays, which, for the forbidden transitions, must give a number of particles
with small energy lower than in the normal case.

(b) A second possibility to have β transitions forbidden by the rule (48) depends
on the fact, already pointed out at the end of § 3, that when the velocity of
neutrons and protons is not negligible in comparison with the velocity of light
we must add to the interaction term (12) other terms of order v/c. If e.g. one
would assume a relativistic wave equation of the Dirac type also for the heavy
particles, one could add to (12) terms like

gQ (αxA1 + αyA2 + αzA3) + complex conjugate , (49)

where αxαyαz are the usual Dirac matrices for the heavy particle and A1A2A3

the spatial components of the four vector defined by (12). A term of the type
(49) allows also β transitions which do not satisfy the selection rule (48), and
their intensity is, with respect to that of normal processes, of the order of
magnitude (v/c)2, that is about 1/100. Thus we find a second possibility for
forbidden transitions nearly 100 times less intense than the normal ones.
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Comparison with experience

§ 10. – (45) establishes a relation between the maximum momentum η0 of the β rays
emitted by a substance and its lifetime. In this relation, really, also an unknown
element enters, the integral ∫

v∗mundτ (50)

whose evaluation requires knowledge of the nuclear eigenfunctions un and vm of the
neutron and the proton. However, in the case of the allowed transitions, (50) is of
the order of magnitude of unity. Then we expect the product

τF (η0) (51)

to have the same order of magnitude in all the allowed transitions. Instead, for the
forbidden transitions, the lifetime will be, as an order of magnitude, one hundred
times larger, and correspondingly also the product (51) will be larger. In the follow-
ing table we collect the products τF (η0) for all the substances which disintegrate
by emitting β rays and for which we have sufficiently exact data.

Table 2

Element τ(hours) η0 F (η0) τF (η0)

UX2 0.026 5.4 115 3.0

RaB 0.64 2.04 1.34 0.9

ThB 15.3 1.37 0.176 2.7

ThC′′ 0.076 4.4 44 3.3

AcC′′ 0.115 3.6 17.6 2.0

RaC 0.47 7.07 398 190

RaE 173 3.23 10.5 1800

ThC 2.4 5.2 95 230

MsTh2 8.8 6.13 73 640

In this table the two groups we have expected are certainly recognizable;
moreover such a division of the elements which emit primary β rays into two
groups had been already observed experimentally by Sargent.∗∗ The values of η0
have been taken from the quoted paper of Sargent (for a comparison, note that:
η0 = (Hρ)max/1700). Besides the data in this table, Sargent gives the data for three
other elements, warning that they are not as reliable as the other ones. They are
UX1 for which τ = 830; η0 = 0.76; F (η0) = 0.0065; τF (η0) = 5.4; then this el-
ement appears to be attributable to the first group. For AcB one has: τ = 0.87;
η0 = 1.24; F (η0) = 0.102; τF (η0) = 0.09; then one finds a value of τF (η0) about ten
∗∗B.W. Sargent, Proc. Roy. Soc. 139, 659, (1933).
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times smaller than those of the first group. Finally for RaD one has: τ = 320000;
η0 = 0.38 (largely uncertain); F (η0) = 0.00011; τF (η0) = 35. Then this element
can be put roughly half-way between the two groups. I have not succeeded in find-
ing data for the other elements which emit primary β rays, that is Ms, Th1, UY ,
Ac, AcC, UZ, RaC ′′.

On the whole one can conclude from this comparison between theory and ex-
perience that the agreement is certainly as good as one would have expected. The
discrepancies observed for the elements with uncertain experimental data, RaD and
AcB, can be explained well partly by the lack of precision of the measures, partly
also by oscillations, quite plausible, in the value of the matrix element (50). More-
over one must notice that the fact that the majority of β decays are accompanied
by emission of γ rays indicates that the larger part of the β processes can leave the
proton in different excitation states and this gives a further mechanism which can
determine oscillations in the value of τF (η0).

From the data of Table 2 one can infer an evaluation, even if rough, of constant
g. If we admit, for instance, that when the matrix element (50) has the value 1,
one has τF (η0) = 1 hour = 3600 s; one finds from (45)

g = 4 · 10−50cm3 · erg

which gives nothing more than the order of magnitude.
Let us move on to discuss the shape of the curve of the velocity distribution of

β rays. In the case of allowed processes, the distribution curve, as a function of η
(that is, apart from a factor 1700, of Hρ) is represented in Fig. 2, for values of the
maximum momentum η0.

Fig. 2

The curves are satisfactorily similar to experimental ones collected by Sargent.††

Only in the range of small energy Sargent’s curves are a little lower than the theoret-
ical ones, and this is more easily evident in the curves of Fig. 3 where the abscissas
are the energies instead of the momenta. But we must remark that the part of
††B.W. Sargent, Proc. Camb. Phil. Soc. 28, 538 (1932).
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the curves of small energy is not perfectly known experimentally.‡‡ Moreover, for
the forbidden transitions, also theoretically, in the range of small energies the curve
must be lower than the curves of the allowed transitions, represented in Figs. 2 and
3.

Fig. 3

Of this fact one must particularly take into account for the case of RaE, which
is the best known from an experimental point of view. The emission of β rays from
this element, as results from the abnormally large value of τF (η0) (Cf. Table 2),
is certainly forbidden, or better it is possible that it is allowed only in the second
approximation. I hope, in a future article, to be able to better specify the behavior
of distribution curves for the forbidden transitions.

To summarize, it seems justified to assert that the theory in the form described
here does agree with the experimental data, which in any case are not always suffi-
ciently accurate. On the other hand, even if in a further comparison of the theory
with experience, one should arrive at some discrepancy, it would be always be possi-
ble to modify the theory without changing its conceptual foundations in an essential
way. It would be possible precisely to keep equation (9) but choose the csσ in a
different way. This will carry us, in particular, to a different form of the selection
rule (48) and to a different form of the curve of the energy distribution.

Only a further development of the theory, as also an increase in the precision of
the experimental data, will be able to indicate if such a change will be necessary.

FI 14 - E. Fermi: Artificial radioactivity produced by neutron bom-
bardment (Nobel lecture: December 12, 1938)

‡‡Cf. e.g., Rutherford, Ellis and Chadwick, Radiation from Radio-active Substances, Cam-
bridge, 1930. See, in particular p. 407.


