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38b) A theorem of calculus of probability and some applications

“Un teorema di calcolo delle probabilitá ed alcune sue applicazioni,”
Teacher’s Diploma Thesis of the Scuola Normale di Pisa.

Presented on June 20, 1922.

§ 1. The theorem we want to deal with concerns the properties of sums of
many uncorrelated terms having a known statistical distribution. The fundamental
theorem on these sums is due to Laplace.1 We announce the theorem together
with an outline of its demonstration towards which we must take the first steps in
establishing this new theorem. Let n be a very large number and let y1, y2 . . . , yn

represent n unknowns, of which we know their statistical distribution; that is, we
know that the probability that yi has a value ranging between yi and yi + dyi is
ϕi(yi)dyi, where ϕi is a known function for which, obviously∫ ∞

−∞
ϕi(y)dy = 1, (1)

which means that yi certainly has a value between −∞ and +∞. In addition we
will assume that the statistical distribution of yi is not affected by the values that
the other y ’s can assume, that is, we assume the yi’s are completely uncorrelated.
Then we take yi to have a vanishing average, that is:

ȳi =
∫ ∞

−∞
yϕi(y)dy = 0. (2)

Finally the average of the squared yi is

ȳ2
i =

∫ ∞

−∞
y2ϕi(y)dy = k2

i (3)

and assume that, for any i, k2
i is negligible with respect to

∑n
1 k

2
i . Under these

assumptions, Laplace’s theorem holds which says that: The probability that in-
equalities

x ≤
n∑
1

yi ≤ x+ dx (4)

hold at the same time is given by

F (x)dx =
1√

2π
∑n

1 k
2
i

e
− x2

2
Pn

1 k2
i dx. (5)

To demonstrate this, we let r be a number ≤ n and let F (r, x)dx be the proba-
bility that the inequalities

x ≤
r∑
1

yi ≤ x+ dx (6)

1Théorie analytique des probabilités, Oeuvres, VII, p. 309.
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hold true. Now, if p is any value, let us look for the probability that the inequalities
r−1∑
1

yi < p <

r∑
1

yi (7)

hold simultaneously, that is, that the addition of yr to
∑r−1

1 yi does not exceed p.
This probability is obviously given by∫ ∞

0

dξF (r − 1, p− ξ)
∫ ∞

ξ

ϕr(y)dy.

Analogously, the probability that inequalities
r−1∑
1

yi > p >

r∑
1

yi (8)

hold simultaneously is ∫ ∞

0

dξF (r − 1, p+ ξ)
∫ ∞

ξ

ϕr(y)dy.

The difference between these two probabilities is obviously given by the differ-
ence between the probability that

∑r
1 yi > p and the probability that

∑r−1
1 yi > p,

that is by ∫ ∞

p

F (r, x)dx−
∫ ∞

p

F (r − 1, x)dx .

Then we have∫ ∞

p

F (r, x)dx−
∫ ∞

p

F (r − 1, x)dx =
∫ ∞

0

dξF (r − 1, p− ξ)
∫ ∞

ξ

ϕr(y)dy

−
∫ ∞

0

dξF (r − 1, p+ ξ)
∫ ∞

ξ

ϕr(y)dy .

In the r.h.s. we can reverse the integrations by the formulas∫ ∞

0

dξ

∫ ∞

ξ

dy =
∫ ∞

0

dy

∫ y

0

dξ ;
∫ ∞

0

dξ

∫ −ξ

−∞
dy =

∫ 0

−∞
dy

∫ −y

0

dξ

and this becomes, also replacing ξ by −ξ in the second term∫ ∞

−∞
ϕr(y)dy

∫ y

0

F (r − 1, p− ξ)dξ .

As an approximation we set

F (r − 1, p− ξ) = F (r − 1, p)− ξ
∂F (r − 1, p)

∂p
.

Thus the above expression becomes

F (r − 1, p)
∫ ∞

−∞
ϕr(y)dy

∫ y

0

dξ − ∂F (r − 1, p)
∂p

∫ ∞

−∞
ϕr(y)dy

∫ y

0

ξdξ
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= F (r − 1, p)
∫ ∞

−∞
yϕr(y)dy −

1
2
∂F (r − 1, p)

∂p

∫ ∞

−∞
y2ϕr(y)dy

i.e., remembering (2) and (3):

−k
2
r

2
∂F (r − 1, p)

∂p
.

In this way we obtain the equality∫ ∞

p

F (r, x)dx−
∫ ∞

p

F (r − 1, x)dx = −k
2
r

2
∂F (r − 1, p)

∂p
. (9)

Differentiating it with respect to p we obtain

−F (r, p) + F (r − 1, p) = −k
2
r

2
∂2F (r − 1, p)

∂p2
. (10)

In this let us replace r − 1 by r, p by x, and in our approximation, set

F (r + 1, x)− F (r, x) =
∂

∂r
F (r, x).

Then (10) gives for F (r, x) the differential equation

∂

∂r
F (r, x) = −

k2
r+1

2
∂2

∂x
F (r, x) . (11)

Replacing r by a new variable

t =
∫ r+1

0

k2
i di , (12)

(11) becomes

∂F

∂t
=

1
2
∂2F

∂x2
. (13)

Then one obviously has the condition that, for any t∫ ∞

−∞
Fdx = 1 (14)

and that for t = 0, F has a nonvanishing value only when |x| is infinitesimal. It
is known that these conditions are more than sufficient to determine F. They are
satisfied by setting

F =
1√
2πt

e−
x2
2t .

By assigning t to its value, which in our degree of approximation is
∑r

1 k
2
i , we

find

F (r, x) =
1√

2π
∑r

1 k
2
i

e
− x2

2
Pr

1 k2
i . (15)

Then one obviously has F (x) = F (n, x), and then

F (x) =
1√

2π
∑n

1 k
2
i

e
− x2

2
Pn

1 k2
i Q.E.D.
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§ 2. Let us keep the notation and the assumptions made at the beginning of
the previous section and in addition assume that all the ϕi(y) are equal (as a
consequence we will cancel their index). Then let us indicate by a an arbitrary
positive value. Thus we can state the following

Theorem 2.1. The probability that at least one among the quantities

y1, y1 + y2, y1 + y2 + y3, . . . ,

n∑
1

yn

exceeds a is given by

2√
π

∫ ∞

a√
2nk2

e−x2
dx

provided that a is great enough with respect to k.

In particular, if n tends to infinity, such a probability tends to 1, i.e., to certainty.
To demonstrate this, let us indicate by F (r, x)dx(x < a) the probability that the
inequalities (6) are satisfied and in addition all r quantities

y1, y1 + y2, . . . ,

r∑
1

yi (16)

are less than a. At the same time, the same arguments of the previous section show
us that F (r, x) still will satisfy the differential equation (11) which, in this case, can
be written as

∂F

∂r
=
k2

2
∂2F

∂x2
. (17)

The boundary conditions will instead be changed. In fact, we observe that∫ a

−∞
F (r, x)dx

gives the probability that none of quantities (16) exceeds a and then

−
∫ a

−∞
F (r + 1, x)dx+

∫ a

−∞
F (r, x)dx

gives the proability that, because of the addition of yr+1,
∑r

1 yi then exceeds a. A
calculation analogous to the one performed in the previous section shows us that
this probability is ∫ ∞

0

F (r, a− ξ)dξ
∫ ∞

ξ

ϕ(y)dy

i.e., in our degree of approximation, neglecting ξ with respect to a

F (r, a)
∫ ∞

0

dξ

∫ ∞

ξ

ϕ(y)dy
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that is, by reversing the quadratures

F (r, a)
∫ ∞

0

ϕ(y)dy
∫ y

0

dξ = F (r, a)
∫ ∞

0

yϕ(y)dy.

By now setting

h =
∫ ∞

0

yϕ(y)dy (18)

we find ∫ a

−∞
{F (r + 1, x)− F (r, x)} dx = −hF (r, a) .

But, in our usual degree of approximation, we can set

F (r + 1, x)− F (r, x) =
∂F (r, x)
∂r

and the previous equation becomes

∂

∂r

∫ a

−∞
F (r, x)dx = −hF (r, a) . (19)

After all, our unknown function F must satisfy the differential equation (17) on
the interval −∞, a; satisfy equation (19) at the extremity a; then it must vanish
together with its derivatives at the extremity −∞ and, for r = 0, have a nonvan-
ishing value only for very small |x|, but with the condition that the area comprised
between it and the x axis be = 1.

It is easy to prove, at least when h is positive as in our case, that these conditions
are sufficient to determine F.

Therefore we observe that by multiplying (17) by dx and integrating it between
−∞ and a, one finds

k2

2

(
∂F

∂x

)
a

=
∂

∂r

∫ a

−∞
F (r, x)dx

as a consequence, (19) becomes

k2

2h

(
∂F (r, x)
∂x

)
a

+ F (r, a) = 0 . (19)

Then, for our purposes it is evidently sufficient to prove that if a function Φ(r, x)
is = 0 for r = 0 and satisfies the equations

∂Φ
∂r

=
k2

2
∂2Φ
∂x2

;
k2

2h

(
∂Φ
∂x

)
x=a

+ φ(r, a) = 0 (20)

and if for x = −∞ it is always = 0, then it is certainly identically zero. In fact one
has ∫ a

−∞

(
∂Φ
∂x

)2

dx =
∫ a

−∞

∂

∂x

(
Φ
∂Φ
∂x

)
dx−

∫ a

−∞
Φ
∂2Φ
∂x2

dx
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that is, because of (20)∫ a

−∞

(
∂Φ
∂x

)2

dx =
(

Φ
∂Φ
∂x

)a

−∞
− 2
k2

∫ a

−∞
Φ
∂Φ
∂r

dx

= Φ(r, a)
(
∂Φ
∂x

)
x=a

− 1
k2

∂

∂r

∫ a

−∞
Φ2dx = −2h

k2
Φ2(r, a)− 1

k2

∂

∂r

∫ a

−∞
Φ2dx

i.e., ∫ a

−∞

(
∂Φ
∂x

)2

dx+
2h
k2

Φ2(r, a) +
1
k2

∂

∂r

∫ a

−∞
Φ2(r, x)dx = 0 . (21)

Let us now suppose that, for some value of r and x, Φ could be different from
zero; then for some value r of r,

∫ a

−∞ Φ2dx would certainly be positive; in addition,
since r = 0 implies φ = 0 and so

∫ a

−∞ Φ2(0, x)dx = 0, there will certainly be some
value of r between zero and r for which d

dr

∫ a

−∞ Φ2(r, x)dx is positive.
Now, the first two terms in (21) cannot be negative; the first one is, at least

in some cases, positive and this is absurd. Therefore it must certainly be that
φ(r, x) = 0.
Q.E.D.

Given this, it will be enough for us to find any solution whatever fulfilling the
conditions imposed to be sure that it is the solution we were looking for. Let us try
to see if our conditions can be satisfied by setting

F (r, x) =
1

k
√

2πr
e−

x2

2rk2 − 1
k
√

2π

∫ r

0

u(ρ)e−
(a−x)2

2(r−ρ)k2

√
r − ρ

dρ (22)

where u(ρ) is a function to be determined. With this position, the differential
equation (17) and the limiting conditions for x = −∞ and r = 0 are certainly
satisfied. Then it remains to determine u(ρ) so that (19) is satisfied too.

Now from (22) we have

F (r, a) =
1

k
√

2πr
e−

a2

2rk2 − 1
k
√

2π

∫ r

0

u(ρ)dρ√
r − ρ∫ a

−∞
F (r, x)dx =

1
k
√

2πr

∫ a

−∞
e−

x2

2rk2 dx− 1
k
√

2π

∫ r

0

u(ρ)dρ√
r − ρ

∫ a

−∞
e
− (a−x)2

2(r−ρ)k2 dx

=
1√
π

∫ a
k
√

2r

−∞
e−x2

dx− 1
2

∫ r

0

u(ρ)dρ (23)

and so

∂

∂r

∫ a

−∞
F (r, x)dx = − ae−

a2

2rk2

2k
√

2πr3
− 1

2
u(r)

with which (19) becomes

e−
a2

2rk2

k
√

2πr

(
h− a

2r

)
=

h

k
√

2π

∫ r

0

u(ρ)dρ√
r − ρ

+
u(r)
2

(24)
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which is an integral equation of the second kind for the unknown function u(ρ). In
spite of all our efforts, we have not succeeded in solving it exactly; we only have
an approximate solution. We shall deal with this shortly. We want to prove first,
without approximation, that one has∫ ∞

0

u(r)dr = 1 .

Therefore, let ϑ be an arbitrary positive quantity and let us multiply both sides
of (24) by

√
θe−θrdr and then integrate from r = 0 to r = ∞. One finds

√
θh

k
√

2π

∫ ∞

0

e−θr− a2

2rk2

√
r

dr − a
√
θ

2k
√

2π

∫ ∞

0

e−θr− a2

2rk2

r3/2
dr

=
h
√
θ

k
√

2π

∫ ∞

0

e−θrdr

∫ r

0

u(ρ)dρ√
r − ρ

+

√
θ

2

∫ ∞

0

e−θru(r)dr

=
h
√
θ

k
√

2π

∫ ∞

0

u(ρ)dρ
∫ ∞

ρ

e−θrdr√
r − ρ

+

√
θ

2

∫ ∞

0

e−θru(r)dr

=
h

k
√

2

∫ ∞

0

e−θρu(ρ)dρ+

√
θ

2

∫ ∞

0

e−θru(r)dr .

In addition one has

√
θ

∫ ∞

0

e−θr− a2

2rk2

√
r

dr = 2
∫ ∞

0

e−x2− a2θ
2k2x2 dx =

√
πe−

a
√

2θ
k .

Passing to the limit θ = 0 the above equation then becomes

h

k
√

2
=

h

k
√

2

∫ ∞

0

u(ρ)dρ ,

from which it follows that∫ ∞

0

u(ρ)dρ = 1 . Q.E.D. (25)

At this point we can already get an interesting result. In fact, from (23) we have

lim
r=∞

∫ a

−∞
F (r, x)dx = lim

r=∞

1√
π

∫ a
k
√

2r

−∞
e−x2

dx− 1
2

∫ ∞

0

u(r)dr = 0 . (26)

If we remember the meaning of F (r, x) this result can be read:
The probability that at least one of the values (16) exceeds a becomes certain

when r tends to infinity. We remark that this result holds true independently of
the approximation we are going to make to solve (24).

Let us now turn to the approximate solution of (24).
For this we observe that, as one can immediately verify,

w(r) =
ae−

a2

2rk2

k
√

2πr3
(27)
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is a solution of the integral equation of the second kind

e−
a2

2rk2

k
√

2πr

(
h+

a

2r

)
=

h

k
√

2π

∫ r

0

w(ρ)dρ√
r − ρ

+
1
2
w(r) (28)

which differs from (24) only in the sign inside the bracket of the left hand side.
Now, owing to the assumptions we have made, whenever r is large enough so that

e−
a2

2rk2 is not too small, a/2r is negligible with respect to h and then we can assume
w(r) to be an approximate solution of (24) by setting

u(r) =
ae−

a2

2rk2

k
√

2πr3
. (29)

It is easy to check that from (29) one has
∫∞
0
u(r)dr = 1.

Now, from (23) we get∫ a

−∞
F (r, x)dx =

1√
π

∫ a
k
√

2r

−∞
e−x2

dx− 1
2
ae

− a2

2ρk2

k
√

2πρ3
dρ

=
1√
π

∫ a
k
√

2r

−∞
e−x2

dx− 1√
π

∫ ∞

a
k
√

2r

e−x2
dx = 1− 2√

π

∫ ∞

a
k
√

2r

e−x2
dx .

And so

1−
∫ a

−∞
F (r, x)dx =

2√
π

∫ ∞

a
k
√

2r

e−x2
dx . (30)

Remembering now the meaning of F (r, x) one immediately realizes that

1−
∫ a

−∞
F (r, x)dx

represents the probability that at least one of expressions (16) is greater than a.
Therefore (30) completely demonstrates the theorem we have stated.

§ 3. The theorem just proved is susceptible to immediate application to a famous
theorem of the calculus of probability: Peter and Paul play a game of chance. In
each game each one has probability 1/2 to win; the stake is always of k lire. Now
Peter is infinitely rich, on the contrary Paul owns only a lire. If at a certain moment
Peter is able to win all the holdings of Paul, the latter is ruined and is obliged to
stop the game. So we are in the case considered in the above theorem and we can
conclude that, after a sufficient number of games Peter will certainly ruin Paul;
moreover, if a is much greater than k the probability that this outcome happens in
n games is

2√
π

∫ ∞

a
k
√

2n

e−x2
dx .

§ 4. We want now to apply the above theorem to an astronomical problem. Let
us consider an elliptic comet which intersects Jupiter’s orbit. The cometary orbit
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will obviously be perturbed by the action of Jupiter, and this happens especially
when Jupiter and the comet pass very close. Now it may happen that in these
continuous transformations the comet’s orbit ends up changing into a parabolic or
hyperbolic orbit; then the comet will go away forever escaping from the attraction
of Jupiter and the Sun. I wish to study what is the probability that this happens
within a certain time. As far as I know the theory of the influence of Jupiter on the
cometary orbits has never been studied from this point of view; people only dealt
with this matter2 looking for an explanation of the capture of comets into parabolic
orbits when passing by chance close to Jupiter.

We will make the following simplifying assumptions, the same as for the re-
stricted 3-body problem:

The comet has a negligible mass, so that it does not perturb neither Jupiter nor
the Sun.

The mass of Jupiter (m) is negligible with respect to the mass of the Sun (M).
In this way we are allowed to assume the Sun to be fixed and to consider the orbit of
the comet to be appreciably perturbed only when passing in the close neighborhood
of Jupiter.

Jupiter’s orbit is circular.
Comet’s orbit is coplanar with Jupiter’s orbit.
We designate the velocity of Jupiter by u, by V the velocity of the comet when

it crosses Jupiter’s orbit with respect to a reference frame moving along this orbit
with velocity u, and by θ the angle between the direction of V and Jupiter’s orbit.
If v is the absolute velocity of the comet, when it is crossing Jupiter’s orbit one will
have

v2 = u2 + V2 + 2uV cos θ . (31)

Let us suppose that once, while the comet is crossing Jupiter’s orbit, it passes
very close this planet. Then it will be affected by a strong perturbation. Let b be the
smallest distance between the two bodies if they were not attracted to one another.
According to our assumptions, in order that the perturbation is considerable b must
be very small when compared with the curvature radii of the two unperturbed orbits
so that, during this “collision”, the comet will appreciably describe a Keplerian
hyperbolic orbit during its motion around Jupiter.

§ 5. Thus, let us consider this relative motion, referring to polar coordinates
(r, ϕ) having Jupiter as a pole and the polar axis parallel to the direction of the
incoming comet. Since the motion is a Keplerian motion, we have

1
r

= A− B cos(ϕ− ϕ0) (32)

since A, B, ϕ0 are constant. Moreover, for ϕ = 0, r must be infinite, that is

A− B cosϕ0 = 0 . (33)
2Tisserand, �Traité de mécanique céleste�, Vol. IV, pp. 198-216; Callandreau, Ann. de

l’observatoire 22; A. Newton, Mem. of the Nat. Acad. of Sci., 6.
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Therefore it must be that

b = lim
r=∞

r sinϕ = lim
ϕ=0

sinϕ
A− B cos(ϕ− ϕ0)

= − 1
B sinϕ0

. (34)

The area constant is then evidently Vb and owing to the well known formulas
for Keplerian motion one has

A =
m

V2b2
. (35)

From (33) and (34) we can now obtain the other two constants. One finds
exactly

tanϕ0 = −V2b

m
, B =

1
b

√
1 +

m2

b2V4 . (36)

Now, let ψ be the angle between the direction of the comet when approaching
and its direction when going away. Obviously one will have:

ψ = 2ϕ0 − π

and then

tan
ψ

2
= − cotϕ0 =

m

V2b
. (37)

We can conclude that the perturbation consists in keeping V unchanged and
in altering θ by the angle ψ given by (37). Now it is convenient to calculate the
average of the square of ψ. Therefore we observe that one has:

ψ = 2arctan
m

V2b

and then ∫ ∞

−∞
ψ2db = 4

∫ ∞

−∞

(
arctan

m

V2b

)2

db

=
4m
V2

∫ ∞

−∞

(
arctan

1
x

)2

dx =
8m
V2

∫ ∞

0

(
arctan

1
x

)2

dx

by putting

h =
∫ ∞

0

(
arctan

1
x

)2

dx ≈ 2.5

so one has ∫ ∞

−∞
ψ2db =

8mh
V2 . (38)

Now, b being very small, the probability that its value lies between b and b +
db is obviously

db

2πR sin θ
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where R is the radius of Jupiter’s orbit. The average of the square of ψ is therefore

ψ̄2 =
∫ ∞

−∞
ψ2 db

2πR sin θ
=

4mh
πR V2 sin θ

. (39)

§ 6. In its motion around the Sun the energy constant of our comet is given by
v2

2
− M

R
= W .

As is well known, a Keplerian orbit is elliptic, parabolic or hyperbolic according
to whether the energy constant is negative, zero or positive; now, remembering (31)
we find for our comet:

W =
1
2

(
u2 + V 2 + 2uV cos θ − 2

M
R

)
but since for Jupiter we have the relation:

u2

R
=

M
R2

we can write

2W = V2 + 2uV cos θ − M
R
.

Since in the subsequent perturbations V is not changed and only θ changes, in
order that the comet can become hyperbolic it is necessary that W, negative at
present, can become positive corresponding to suitable values of θ. Then it must
be that

V2 + 2uV >
M
R

but we remark that

u =

√
M
R

so that the above inequality can be written:(
V +

√
M
R

)2

>
2M
R

from which ∗

and finally reduces to

V >
(√

2− 1
)√M

R
=
(√

2− 1
)
u . (40)

We will therefore assume this inequality certainly to be satisfied. Moreover, for
some values of θ, W must certainly be negative, otherwise the cometary orbit could
not be elliptic; so one will have:

V2 + 2uV <
M
R

∗Editor’s Note: At this point, in Fermi’s manuscript there is a blank line which, obviously, would
have contained the expansion of the square of the last formula.
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from which as above

V >
(√

2 + 1
)√M

R
=
(√

2 + 1
)
u . (41)

Therefore let us assume that V satisfies (40) and (41) and denote by θ0 the
particular value of θ for which the comet’s orbit is hyperbolic, i.e., one has W = 0,
that is

V2 + 2uV cos θ0 =
M
R

and so

cos θ0 =
M
R −V2

2uV
=
u2 −V2

2uV
. (42)

When θ is greater than θ0, one has W < 0 and then the comet describes an
elliptic orbit; on the contrary, when θ is less then θ0 the orbit is hyperbolic.

Now we will suppose that initially the orbit is elliptical and very stretched, so
that θ is very close to θ0, and precisely slightly larger. We call θ∗ this initial value.

Whenever the comet goes beyond Jupiter’s orbit θ is changed by an amount ψ;
the average of the square of ψ depends indeed on θ, as (39) shows, but since we
have assumed that θ remains always very close to θ0 we can set

ψ̄2 =
4mh

πR V2 sin θ0
(43)

if after a certain time θ became < θ0 the comet would become hyperbolic and would
go away forever. Therefore we are can apply the theorem of §2. Then we must put
a = θ∗ − θ0; k2 = 4mh

πR V2 sin θ0
. And the theorem we proved tells us that:

The probability that the comet will be changed into a hyperbolic one after having
crossed Jupiter’s orbit n times is:

2√
π

∫ ∞

θ∗−θ0r
8mhn

πR V2 sin θ0

e−x2
dx (44)

and then tends to 1 when n tends to infinity.
In the strict sense one could object that the above calculations would fail if the

value of V were such that, when the orbit is parabolic, the comet took the same
time as Jupiter to go from A to B, where A is the point where the comet enters
Jupiter’s orbit, and B the point where it goes out. In Figure 1.3, S is the Sun,
AJB Jupiter’s orbit, and AKB the orbit of the comet. But it is easy to realize that
this case certainly cannot happen if the comet describes its trajectory with direct
motion. In fact, if v is the absolute velocity in A of the comet in its parabolic orbit,
one has

v2 = u2 + V2 + 2uV cos θ0

and then from (42)

v2 = 2u2
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that is:

v > u . (45)

Now, the velocity of the comet is not constant, but along the whole tract AKB
it is always greater than in the extremes A and B, thus inequality (45) holds true
with all the more reason in whole tract AKB. On the other hand, if the motion is
direct one has that arc AKB is shorter than arc AJB, and since it is covered with
even higher velocity it is certain that the comet will arrive at B before Jupiter.

If on the contrary the motion of the comet were retrograde, and it described for
instance the orbit AK’B’ in the sense indicated by the arrow one would have

arc AK’B’ > arc AJB’

and then, though (45) still holds, it is evident that for a particular value of the
parameter of the cometary orbit it can happen that the two heavenly bodies take
the same time to go from A to B’; of course this can only happen for a particular
value of V.

Now if this happened it could be that the comet’s orbit, elliptical at first, crossed
Jupiter when passing through A and got changed into a parabolic one; but in this
case it would meet Jupiter again when passing through B and could in case have
a new perturbation which would change it into an elliptical orbit again. For this
reason we consider this particular value of V ruled out from our calculations.

§ 7. At last we want to consider the possibility that before being changed into
a hyperbolic orbit the comet can crash into Jupiter and then be destroyed. What
is the probability of this event?

For this let us look first for the probability that the comet, crossing once the
orbit of Jupiter, it collides with it. For this we indicate by ρ the sum of the radii
of Jupiter and the comet. To have a collision it is necessary that the perihelian
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distance of Jupiter from the comet, as calculated though the formulas for Kepler
motion is smaller than ρ. Call δ this perihelian distance; from the formulas of §5 it
follows that

1
δ

= A + B

and then from (35) and (36)

1
δ

=
m

V2b2
+

1
b

√
1 +

m

V4b2
.

If we want the collision to occur it must be that δ < ρ and then
m

V2b2
+

1
b

√
1 +

m

V4b2
>

1
ρ

by multiplying this inequality by the quantity, certainly positive

ρ

(
1
b

√
1 +

m

V4b2
>

1
ρ
− m

V2b2

)
we find

ρ

b2
1
b

√
1 +

m

V4b2
>

1
ρ
− m

V2b2

and summing the last two inequalities(
2m
V2 + ρ

)
1
b2
>

1
ρ

from which finally

|b| <
√
ρ2 +

2mρ
V2 . (46)

We recall now that the probability that the value of b lies between b and b + db
is db

2πR sin θ0
and so the probability p that the collision occurs in only one crossing of

Jupiter’s orbit is given by

p =
1

πR sin θ0

√
ρ2 +

2mρ
V2 . (47)

We will assume p to be very small, and this obviously is equivalent to considering
Jupiter’s radius to be negligible if compared with the radius of its orbit. Let us
now look for the probability that a collision occurs at the n-th time the comet
crosses Jupiter’s orbit. Therefore it is evidently necessary that the collision has not
occurred before and the probability of this is obviously (1 − p)n−1, that is in our
approximation

e−pn .

That the comet has not yet been changed into a hyperbolic orbit; and, having
supposed p to be extremely small, remembering (44) and for the sake of brevity
setting:

θ∗ − θ0√
8mh

πRV2 sin θ0

= H
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we can hold that the probability of this event is given by

1− 2√
π

∫ ∞

H√
n

e−x2
dx =

2√
π

∫ H√
n

0

e−x2
dx .

And finally that the collision really occurs, for which we have the probability p.
After all the probability that the collision occurs the n-th time is

2e−pnp√
π

∫ H√
n

0

e−x2
dx

and therefore the probability that the collision occurs any time whatsoever will be
the sum of the above expression from n = 1 to n = ∞, or replacing the sum by an
integral

2p√
π

∫ ∞

0

e−pndn

∫ H√
n

0

e−x2
dx .

In this expression it is convenient to reverse the integration by the formula∫ ∞

0

dn

∫ H√
n

0

dx =
∫ ∞

0

dx

∫ H
x2

0

dn

and in this way one finds for the sought after probability the expression:

2p√
π

∫ ∞

0

e−x2
dx

∫ H
x2

0

e−pndn =
2√
π

∫ ∞

0

e−x2
(
1− e−

pH
x2

)
dx

= 1− 2√
π

∫ ∞

0

e−x2− pH
x2 dx = 1− e−2

√
pH .

The probability that the collision never occurs is then:

e−2
√

pH .




