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12) The principle of adiabatics and the systems which do not admit
angle coordinates

“Il principio delle adiabatiche ed i sistemi che non ammettono coordinate
angolari,”

Nuovo Cimento 25, 171–175, (1923)

§ 1. - The importance of the Ehrenfest’s principle of adiabatics for the deter-
mination of the selection rules for the stationary orbits of a system, in the Bohr
theory, is well known. 1 This principle, as we know, can be stated as follows: Let us
assume that, in a mechanical system, the forces or the constraints are continuously
modified with time but very slowly in comparison with the periods of the system, or
according to Ehrenfest’s expression, adiabatically; the principle of adiabatics states
that, if the system is initially in a quantum preferred orbit, it will still be there at
the end of the transformation.

Let us consider, for instance, a pendulum and imagine shortening its string at a
very low rate in comparison with the period of the pendulum itself. The frequency ν
of the pendulum will then grow slowly, but it is easy to realize that the energy u also
will grow and in such a way that the ratio u/ν remains constant. In this way, if this
ratio was initially an integer multiple of Planck’s constant h, it will always remain
the same and so the state of the system will remain quantum preferred during the
whole transformation. For further examples we refer Ehrenfest’s memoir.

The formal basis for the principle of the adiabatics is provided by Burger’s
theorem. 2 Let us consider a system that in certain general coordinates q1, q2, . . . , qf
allows the separation of variables 3 Then put

IK =
∮
pKdqK (K = 1, 2, ....., f) (1)

where pK are the momenta canonically conjugate to qK and the integral extends
over a complete oscillation of the coordinate qK according to the rules of quantum
theory; in this way the conditions in order that the given orbit of the system be
quantum preferred are:

I1 = n1h ; I2 = n2h ; ....; If = nfh (2)

since n1, n2, . . . , nf are integers. Let us suppose now that we modify our system
adiabatically, but in such a way that it allows separation of variables at any instant.
Burger’s theorem states that in this case the integrals I1, I2, . . . , If do not change
1Ehrenfest, Ann. d. Phys. 51, 327 (1916).
2Burgers, Versl. Akad. van. Wetensch. – Amsterdam 1916, 1917; Ann. d. Phys. 52, 195 (1917).
3For the validity of Burger’s conclusions it is sufficient, more generally, that the system admit

angle coordinates, i.e., it is possible to introduce in place of qK , pK new variables wK , jK such
that the qK ’s, expressed by means of the (wK , jK) are periodic with period 1 in the variables
wK , and the energy in the new coordinates becomes a function only of the j’s. Then from the
Hamilton equations, the j’s must be constants and the w’s linear functions of the time; the q’s
can be expanded as Fourier series functions of the time with f indexes.



July 18, 2017 11:38 World Scientific Book - 9.75in x 6.5in fermi˙book˙B

Fermi’s Papers of the Italian Period 55

during the transformation, i.e., that they are adiabatic invariants. Therefore, if
conditions (2) are satisfied at the beginning of the transformation, they will also be
satisfied at the end; then the principle of the adiabatics is satisfied.

In this Note I intend to show by means of a simple example that if a system
adiabatically transforms into another system and the initial and final states both
admit separation of variables, but the intermediate states do not, the IK are no
longer adiabatic invariants. In this case the principle of adiabatics loses its validity.

§ 2. - Let us consider a mass point moving on a plane inside a rectangle; we
shall assume that no force acts on the point while it is inside the rectangle, but it
bounces off the walls when it hits them. Consider sides AB and AC of the rectangle
as coordinate axes x, y. Now, it is evident that our system admits separation of
variables in these coordinates. Calling a, b the lengths of sides AB, AC, coordinate
x in fact oscillates between values 0, a; coordinate y between values 0, b.

Moreover, if at a certain instant the components of the velocity are u, v, at
an instant whatever they will be ±u, ±v, where one must choose the sign + or
− according to whether the relative coordinate is increasing or decreasing at the
instant in question. The conjugate momenta to x and y will be ±mu, ±mv, where
m is the mass of the point; then one will have

Ix =
∮

(±mu) dx =
∫ a

0

mu dx+
∫ 0

a

(−mu) dx = 2mua (3)

and analogously

Iy = 2mvb . (3′)

Now we want to study how Ix and Iy change if we transform our system adia-
batically. We intend to transform the rectangle ABCD into the other one AB′CD′;
such a transformation can be carried out in three ways:

(1) one shifts the segment BD parallel to itself until it arrives at B′D′;
(2) one shifts the segment BB′ parallel to itself until it arrives at DD′, so that at

an intermediate instant, the mass point can move inside the concave polygon
AB′EFDC;
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(3) one arbitrarily deforms the broken line B′BDD′ until it coincides with the seg-
ment B′D′. Excluding from our considerations this last case which is clearly a
bit complicated, we shall limit ourselves to discuss the former two.

Concerning the first case, we observe that here at any instant the point can
always move inside a rectangle, so separation of variables is always possible in the
intermediate times as well; according to Burger’s theorem, in this case we must
expect that Ix and Iy remain invariant. This is obviously evident for Ix, since
neither b nor v change during the transformation and therefore due to (3′), neither
does Iy. As for Ix, instead, a decreases during the transformation, being reduced
from a = AB to a′ = AB′; but at the same time u increases in consequence of the
bounces on the moving wall and an immediate consideration shows that things go
just so that the product au and therefore also Ix remain constant, 4 obviously under
the condition that the transformation is realized slowly enough.

If we pass on to consider case (2), it is easy to see that now things are different.
As for Ix, in fact one immediately sees that the x component of the velocity remains
unchanged (except for the sign), since it could change its absolute value only hitting
a moving wall parallelly to the x-axis, but the only moving wall, EF, moves parallelly
to y; instead a decreases from AB to AB′. In all, therefore Ix reduces in the ratio
a′/a and so does not remain constant. Likewise also Iy does not remain constant; in
fact b remains unchanged whereas v increases due to the collisions with the moving
wall EF. An immediate evaluation shows that v, and then also Iy, increases in the
ratio a/a′.

From the above considerations we can conclude that the integrals IK are adi-
abatic invariants only if in the intermediate states the system always admits sep-
aration of variables or at least, according to Burger’s theorems, always admits a
system of angular coordinates. On the contrary, at least in general, this is not true
if the system does not always exhibit a multiperiodic motion. On the other hand,
this fact is easily understandable also from the point of view of quantum theory.
In fact one knows, following Bohr, that a well defined quantization is possible only
if the motion of the system is multiperiodic. Then one can realize that, if in the
intermediate states the system cannot be quantized rigorously, this inaccuracy is
transmitted to the final state.

Göttingen, February 1923.

4In fact the number of hits on the moving wall BD in the time interval dt is obviously u
2a

dt; on
the other hand, if V is the velocity of wall BD, the velocity of the point will experience an increase
of 2V at every hit; then the increase of u in time dt will be:

du = 2V
u

2a
dt =

u

a
V dt = −

u

a
da

since, obviously, −da = V dt. By integrating the preceding equation, we find exactly ua = const.,
as stated above.
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13) Some theorems of analytical mechanics of great importance for
quantum theory

“Alcuni teoremi di Meccanica Analitica importanti per la Teoria dei Quanti,”
Nuovo Cimento 25, 271–285, (1923)

§ 1. - Ehrenfest’s principle of adiabatics,1 as is known, states that if a mechanical
system is in a quantum orbit and its mechanism, forces or constraints is changed in
an infinitely slow way, the system remains in a quantum selected orbit during the
whole transformation.

In order that this principle have a definite sense, it is obviously necessary that
the final orbit of the system only depend on the final mechanism and not on the
particular sequence of intermediate mechanisms followed during the transformation.
Burgers2 has shown that this really is the case, at least for that kind of system which
up to now has only been considered in quantum theory, i.e., for systems which either
admit a complete separation of variables or at least can be represented by means
of angular coordinates.3 In this case, their motion can always be considered as
resulting from periodic motions, generally having as many periods as there are
degrees of freedom, in the case of degeneracy, with a lower number. But exactly
now that the study of the simplest atomic structures has been exhausted,4 which
belong to this type, some problems which do not admit angular coordinates have
been presenting themselves ever more insistently, above all the three-body problem
which occurs in the study of hydrogen molecule, and in the simplified four-body
problem which arises in the study of the hydrogen molecule. As is known, all
attempts made up to now to reduce the study of these systems to that of systems
with angular coordinates have been in vain. It is therefore desirable to investigate
if and how far is it possible to attempt an extension of the principle of adiabatics
to general systems, hoping that it can give some information which can help in
the search for rules suitable to determine the preferred orbits of these more general
systems.

§ 2. - First of all we better fix a classification of the systems to be studied.
Therefore we turn to the usual representation of the state of the system by means
of a point in a 2f -dimensional space Γ, which has q1, q2, . . . , qf as general coordinates
of the system and p1, p2, . . . , pf as their conjugate momenta. Through each point
of this space we have a trajectory which corresponds to the motion of the system
having its initial position and velocity determined by that point. We shall assume
the forces and the constraints of the system are time-independent and the forces

1P. Ehrenfest, Ann. d. Phys. 51, p. 327, 1916.
2Burgers, Versl. Akad. van Wetensch. Amsterdam, 25 November 1916; Ann. d. Phys. 52, p. 195,

1917; Phil. Mag. 33, p. 514, 1917.
3See for instance Sommerfeld, Atombau und Spektrallinen, III ed. Zusatz 7.
4They are the hydrogen atom and its various perturbations (Zeeman effect, Stark effect, and fine

structure) and the ion of the hydrogen molecule H+
2 , where nucleus rotations are not present.
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admit a potential so that there exists an integral representing conservation of energy.
We denote by E the hypersurfaces energy = constant; through each point of Γ, one
of the E’s passes containing the trajectory through that point (because fo the energy
integral).

The so called quasi-ergodic5 mechanical systems enjoy the property that the
trajectory generally passes infinitely close to every point of E, so as to densely fill
a (2f − 1)-dimensional manifold.

However, it might be that our system, besides the energy integral, admits some
other first integral uniform and independent of time. In this case the manifold filled
by the trajectory will obviously have a lower number of dimensions. Then let us
assume that our system have on the whole m uniform first integrals independent of
time,

Φ1 (p, q) = c1; Φ2 = c2; . . . ; Φm = cm

where ci are arbitrary constants. Through each point of Γ, we shall have a (2f−m)-
dimensional manifold G, the intersection of the m hypersurfaces Φi = ci; and the
trajectory passing through that point will be completely contained in G.

In general it will not be possible to find, within G, a submanifold which contains
the whole trajectory; on the contrary, on the analogy of quasi-ergodic systems, we
shall assume for our systems that in general the whole G be densely filled by the
trajectory, i.e. that the trajectory passes infinitely close to all the points of G.
In this way, the trajectory will come out characterized, at least in its statistical
elements, by the only knowledge of the values Φ1,Φ2, . . . ,Φm corresponding to it.

Therefore we call these values characteristics of the trajectory.
Thus a quasi-ergodic system has only one characteristic, its energy.
A system with energy independent of time, which admits the separation of vari-

ables, has in general as many characteristics as degrees of freedom, corresponding to
the f constants a of the Jacobi’s complete integral; a higher number can only occur
in case of degeneracy, i.e. when linear relations with integer coefficients between
the fundamental frequencies exist.

Let us consider, for instance, the motion of a point in a plane acted on by a force
proportional to the distance from two orthogonal straight lines. If the two attraction
coefficients are not commensurate, the point describes an open Lissajous’ curve in
the plane. And in the four-dimensional space Γ the representative point densely fills
a two-dimensional surface G. Therefore the system has two characteristics; for them
we can take the energies of the projections of the motion onto the two orthogonal
straight lines.

If instead the attraction coefficients are commensurate, the Lissajous’ curve
degenerates to a closed curve and G becomes one-dimensional; this corresponds to
three characteristics.
5The author recently demonstrated that ordinary mechanical systems are in general quasi-ergodic,

so that this is the most common case.
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§ 3. - Now we shall assume to be able to change arbitrarily the forces, or the
constraints of the system, i.e., which in totality, with a happy terminology due to
P. Hertz, 6 we shall call the mechanism of the system. If we change the mechanism
in an infinitely slow way, we have what is called an adiabatic transformation; and
in § 5, we shall easily find a system of differential equations which shows how the
characteristics of the system change when the guiding parameter of the mechanism
µ changes adiabatically. But as we have already mentioned, one can apply Ehren-
fest’s principle to a definite system only if the values that its characteristics take at
the end of an adiabatic transformation only depend on the final mechanism and not
on the intermediate mechanisms encountered during the transformation. To study
this question, we shall assume in what follows that the mechanism, rather than
depending on only one parameter, depends on two parameters λ and µ. The depen-
dence of the characteristics on λ and µ, instead of being on a system of ordinary
differential equations, will then be obviously expressed by a system of total differen-
tial equations; then the conditions for having the final values of the characteristics
not depending on the path followed during the transformation in the λ, µ plane
coincide with the integrability conditions for this system. We shall demonstrate
that these conditions, for the quasi-ergodic system, are actually satisfied. Instead,
for systems having more than one characteristic, in general they are not satisfied
although important classes of exceptions exist.

§ 4. - Before passing to the study of the adiabatic transformations it is convenient
to consider some formulae which are useful for calculating the probability that,
at any instant, the representative point is in G. For uniformity of notation, we
denote the coordinates of Γ by x1, x2, . . . , x2f rather than q1, . . . , qf , p1, . . . , pf . Our
problem can now be formulated in this way: calculate the probability that, at a
certain instant, x1, x2, . . . , x2f−m have values between x1 and x1 + dx1, x2 and
x2 +dx2,. . . ,x2f−m and x2f−m +dx2f−m, while the remaining m x’s obviously take
the values necessary to maintain the representative point in G.

Statistical mechanics as we know from Liouville’s theorem states that the nec-
essary condition for having a stationary distribution of points in the Γ space is that
their density in Γ should have a constant value on any G.

A volume element of Γ can be written dx1, dx2, . . . , dx2f , but also, taking as
new variables x1, x2, . . . , x2f−m,Φ1,Φ2, . . . ,Φm

as 1
Ddx1, dx2, . . . , dx2f−m, dΦ1, dΦ2, . . . , dΦm, where D is the functional determi-

nant ∂(Φ1,...,Φm)
∂(x2f−m+1,...,x2f ) . And since during the motion dΦ1, dΦ2, . . . , dΦm obviously

remain constant, the aforesaid volume element comes out to be proportional to
1
Ddx1, . . . , dx2f−m.

Therefore also the sought after probability is proportional to this expression;
and since the total probability is obviously = 1, we finally find that the desired

6P. Hertz, Ann. d. Phys. 33, pp. 225, 537, 1910; Weber, Gans, Repertorium der Physik 1, 2,
1916. We refer to these articles for any explanations regarding the statistical part of the text.
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probability is given by
dσ
D∫
dσ
D

, (1)

where for short we set dσ = dx1, dx2, . . . , dx2f−m and the integral is extended to
all values of x1, x2, . . . , x2f−m corresponding to the points of G.

Before leaving this discussion, we also want to deduce a formula that will be
useful in the case of quasi-ergodic systems. In this case G is a hypersurface, and
we assume for the sake of simplicity it should be closed, and such to be intersected
in only one point by the radii vectors coming out from a pole within it. This
because a more general approach, even though it is not essentially different, would
lead to rather complicated calculations. We refer the space Γ to polar coordinates,
by characterizing each point by means of its radius vector and the intersection of
this one with the unit hypersphere having the pole as center. We call H the only
characteristic, i.e., the energy. In accordance with what said above, the probability
that at a certain instant the representative point lies within an element of solid angle
dω is proportional to the hypervolume comprised between the two hypersurfaces
H (x1, . . . , x2f ) = H, and H (x1, . . . , x2f ) = H + dH, and the solid angle dω. This
volume, except for the constant factor dH, is evidently r2f−1dω

Hr
, where Hr = ∂H

∂r .
Since the total probability must be =1 , we find that the wanted probability is given
by

r2f−1 dω
Hr∫

r2f−1 dω
Hr

, (2)

where the integral is extended over the entire unit sphere.
§ 5. - In this section we assume the mechanism of our system to be a function

of a parameter µ and we aim to study how the characteristics change when this
parameter changes adiabatically. Since the mechanism depends on the parameter
µ, in general the characteristics Φ1,Φ2, . . . ,Φm will also depend on µ, besides on
the p’s and q’s. Then, if at a certain instant the parameter µ changes by dµ, the
characteristic Φi will correspondingly undergo the change ∂Φi

∂µ ∂µ. Since we are in
the presence of an adiabatic change, to have the effective change of Φi, we must
consider the average of this expression which, according to the results of the previous
section, will be

dµ

∫
∂Φi

∂µ
dσ
D∫

dσ
D

(3)

which turns out to be a function only of µ and Φ1, . . . ,Φm. The dependence of the
characteristics on µ in an adiabatic transformation will then be expressed by the
system of ordinary differential equations:

dΦ1

dµ
=

∫
∂Φ1
∂µ

dσ
D∫

dσ
D

;
dΦ2

dµ
=

∫
∂Φ2
∂µ

dσ
D∫

dσ
D

; . . . ;
dΦm

dµ
=

∫
∂Φm

∂µ
dσ
D∫

dσ
D

. (4)
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If we know the values of the Φ’s, for instance for µ = 0, the integration of
this system gives us their values for any µ. In the particular case of quasi-ergodic
systems, the system (4) reduces to the single equation:

dH

dµ
=

∫ Hµ

Hr
r2f−1dω∫

dω
Hr
r2f−1

, (5)

where Hµ = ∂H
∂µ .

§ 6. - Now we want to study in which cases the final values of the characteristics
are independent of the way followed in passing adiabatically from the initial mech-
anism to the final one. Therefore we shall represent the mechanism of the system
as a function of two parameters, λ and µ. If one alters adiabatically these two
parameters, dλ and dµ respectively, the same conclusion of the preceding section
shows that the corresponding change of the characteristic is:

dΦi =

∫
∂Φi

∂λ
dσ
D∫

dσ
D

dλ+

∫
∂Φi

∂µ
dσ
D∫

dσ
D

dµ, . (i = 1, 2, . . . ,m) (6)

The coefficients of dλ and dµ are clearly functions only of λ and Φ1, . . . ,Φm, so
the m equations (6) represent a system of total differential equations; if it will be
completely integrable, the final values of the Φ’s will effectively be independent of
the way followed during the transformation, or else it will not be so. We want to
demonstrate that, in the case of quasi-ergodic systems, the condition of complete
integrability is satisfied. In fact, for these systems, the system (6) reduces to a
single equation of total differentials analogous to (5)

dH = Ldλ+Mdµ , (7)

where

L =

∫
r2f−1Hλdω

Hr∫
r2f−1dω

Hr

; M =

∫ r2f−1Hµdω
Hr∫

r2f−1dω
Hr

, (8)

and then L and M represent two functions of λ, µ and H. As we know, for ob-
taining the complete integrability of (7), it is necessary and sufficient that the total
derivatives of L with respect to µ and of M with respect to λ be equal. Therefore
it must be that

∂L

∂µ
+M

∂L

∂H
=
∂M

∂λ
+ L

∂M

∂H
. (9)

To demonstrate that this equality is really satisfied, let us begin to calculate its
first term. Therefore, let us imagine giving independent variations δH and δµ to H
and µ, leaving λ unchanged; then we will have

δL =
∂L

∂H
δH +

∂L

δµ
δµ . (10)
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On the other hand, from the first of (8), we remark that:

δL =
1(∫

r2f−1dω
Hr

)2

{(∫
r2f−1dω

Hr

)
δ

∫
r2f−1Hλdω

Hr
−

−
(∫

r2f−1Hλdω

Hr

)
δ

∫
r2f−1dω

H2
r

}
. (11)

In the calculation of the two variations of the integrals within the curly brackets,
we can of course interchange the symbols δ and

∫
, since the limits of the integral do

not change because it is extended over the entire unit hypersphere. Then we have:

δ

∫
r2f−1dω

Hr
= (2f − 1)

∫
r2f−2δrdω

Hr
−
∫
r2f−1δHrdω

H2
r

. (12)

On the other hand, from the invariance on the unit sphere, one has:

δH = Hrδr +Hµδµ

where from

δr =
δH

Hr
− Hµ

Hr
δµ

and also

δHr = Hrrδr +Hrµδµ =
Hrr

Hr
δH +

(
Hrµ −

HrrHµ

Hr

)
δµ .

By substituting these expressions of δr, δHr into (12), one finds:

δ

∫
r2f−1dω

Hr
= δH

{
(2f − 1)

∫
r2f−2dω

H2
r

−
∫
r2f−1Hrrdω

H3
r

}
−δµ

{
(2f − 1)

∫
r2f−2Hµdω

H2
r

+
∫
r2f−1dω

H2
r

(
Hµr −

HµHrr

Hr

)}
.

In a similar way one finds:

δ

∫
r2f−1Hλdω

Hr
= δH

{
(2f − 1)

∫
r2f−2Hλdω

H2
r

+
∫
r2f−1Hλrdω

H2
r

−
∫
r2f−1HλHrr

H3
r

dω

}
+ δµ

{
− (2f − 1)

∫
r2f−2HλHµdω

H2
r

+
∫
r2f−1dω

Hr

(
Hλr −

HλrHµ

Hr

)
−
∫
r2f−1Hλdω

H2
r

(
Hµr −

HµHrr

Hr

)}
.

By substituting these two last expressions into (11) and comparing with (10),
one finally finds:

∂L

∂H
=

1(∫
r2f−1dω

Hr

)2

[(∫
r2f−1dω

Hr

){
(2f − 1)

∫
r2f−2Hλdω

H2
r

+
∫
r2f−1Hλrdω

H2
r

−
∫
r2f−1HλHrr

H3
r

dω

}
−
(∫

r2f−1Hλdω

Hr

){
(2f − 1)

∫
r2f−2dω

H2
r

−
∫
r2f−1Hrrdω

H3
r

}]
,
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∂L

∂µ
=

1(∫
r2f−1dω

Hr

)2

[(∫
r2f−1dω

Hr

){
− (2f − 1)

∫
r2f−2HλHµdω

H2
r

+
∫
r2f−1dω

Hr

(
Hλµ −

HλrHµ

Hr

)
−
∫
r2f−1Hλdω

H2
r

(
Hµr −

HµHrr

Hr

)}
−
∫
r2f−1Hλdω

Hr

{
(2f − 1)

∫
r2f−2Hµdω

H2
r

+
∫
r2f−1dω

H2
r

(
Hµr −

HµHrr

Hr

)}]
.

These two last equations, together with the second of (8), give us all the elements
necessary to calculate the first term of (9). Once it has been calculated, it is imme-
diate to recognize from its explicit expression that λ and µ appear symmetrically;
then ((9) is verified.

Therefore we can conclude that, for quasi-ergodic systems, the value assumed by
the energy at the end of an adiabatic transformation does not depend at all on the
intermediate mechanisms of the transformation.

§ 7. - We return now to consider the systems with more than one characteris-
tic. In order that for these systems as well, the final characteristics be independent
of the intermediate mechanisms of the transformation, the conditions of complete
integrability of the system (6) should be satisfied. But, if through a calculation,
obviously more complicated than that performed in the preceding section but not
essentially different from it, we effectively build up these conditions, we find that in
general they are not satisfied. Rather than to report here this lengthy calculation,
we prefer to show the argument through an example of a system with two charac-
teristics. The example we choose is very similar to another one I have recently used
in a note on the principle of adiabatics.

From an origin O, we draw in a plane two orthogonal axes x, y. Then we
take in the first quadrant two points P, Q and draw the perpendiculars from them
to axes (PA, PB, QC, QD). We shall assume that P be internal to the rectangle
OCQD. Now let us suppose that inside concave polygon APBDQCA a mass point is
moving not acted on by forces and elastically bouncing off the walls of the polygon.
Absolute values u, v of the components of the velocity of the point on axes x, y keep
evidently constant during the motion, therefore the system has two characteristics.
Let us suppose then to keep point Q (of coordinates a, b) fixed and to move point P
(of coordinates λ, µ). In this way we shall have realized a mechanical system with
two characteristics u, v and depending on two parameters λ, µ. By easy arguments,
analogous to the ones carried out in the note quoted above, one finds that, changing
adiabatically the position of point P, u and v change following the rule:

d log u =
2µ dλ
ab− λµ

; d log v =
2λ dµ
ab− λµ

obviously neither of these two equations is completely integrable; therefore the
values that u and v take at the end of a transformation also depend on the path
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followed by point P. Then, in general, it is not possible to apply Ehrenfest’s principle
to systems with more characteristics.

§ 8. - However, some important classes of exceptions to this rule exist. We aim
to study them in this section. The first one, and also the most important, is that of
the systems with angular coordinates. Of these systems, according to Burgers’ the-
orems, we not only know that Ehrenfest’s principle can be applied (in the sense that
it leads in any case to definite final conditions) but also that for them the aforesaid
principle results to be verified, by experience as a logical consequence of Sommer-
feld’s conditions which are supported by all the theory and the experience made
on the hydrogen atom. Another remarkable class of exceptions to the conclusions
of § 7 is the following: Let us assume that of the m characteristics of our system
only one, the energy, depends explicitly on parameters λ, µ of the mechanism. I
say that for these systems, at the end of every adiabatic transformation, the energy
takes a value independent of the intermediate mechanisms, while the other charac-
teristics even stay unchanged. The fact that all the characteristics, but the energy,
stay unchanged comes out evident from the circumstance that, since they do not
contain the parameters explicitly, stay unchanged in all the elementary processes of
the transformation; the same conclusion can be drawn from system (6) since, if Φi

is one of these characteristics, one has by hypothesis ∂Φi

∂λ = ∂Φi

∂µ = 0. For demon-
strating that the final value of the energy does not depend on the path followed
during the transformation in the plane λ, µ, one could put forward a consideration
analogous to that of § 6.

But it is easier to remark that, on the basis of the hypothesis, by means of a
canonical transformation independent of the parameters, one can try to transform
the characteristics independent of the parameters into coordinates of Γ.

After this, the consideration of § 6 can be repeated word for word and the
constant characteristics simply stand for constant parameters.

Systems of this kind occur very frequently in applications; for instance, of this
kind are all the systems which have, as only uniform integrals besides the energy
(and not dependent on the energy), some integral of the conservation of momentum,
or angular momentum, since the latter are always independent of the parameters
of the mechanism.

§ 9. - As regards a possible application of this to the theory of quanta, we remark
the following: On the basis of our conclusions, the possibility of an extension of
Ehrenfest’s principle is ruled out, save for the aforementioned exceptions. Instead,
for quasi-ergodic systems, or the exceptions studied in § 8, such an application is not
a priori ruled out, though obviously it is not possible now to foresee if experience
will confirm its results. All the same, one might try if, going on in this way, some
useful information on the rules for the determination of the quantum orbits of the
systems without angular coordinates could be obtained. Of course, Ehrenfest’s
principle by itself, even if in case that experience should confirm it in this more
general application, is not sufficient for the determination of such rules. It only
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allows us, when we know the selected orbits of a certain system, to deduce the
orbits for all the systems which can be obtained from it by means of an adiabatic
transformation. Therefore perhaps it might be useful, apart from the complexity
of calculations, for finding the quantitative relations between the spark spectra, for
instance of the alkaline metals, and the arc spectra of the noble gases. In fact, the
systems which emit these spectra only differ in the charge of the nucleus and then
can be easily transformed one into another.

Göttingen, April 1923.


