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3) On Phenomena Occurring Close to a World Line

“Sopra i fenomeni che avvengono in vicinanza di una linea oraria,”
Rend. Lincei, 31 (I), 21–23, 51–52, 101–103 (1922). 1

Note I.

§ 1. – In order to study phenomena which occur close to a world line, i.e., in
nonrelativistic language, in a region of space in the spacetime manifold, even varying
in time, but always very small compared with the divergences from Euclidean space,
it would be convenient to find a particular frame such that close to the line being
studied, the spacetime ds2 will assume a simple form. In order to find such a frame,
we must begin with some geometrical considerations.

Let a line L be given in a Riemannian manifold Vn or in a manifold metrically
connected in the sense of Weyl.2 Let us associate at every point P of L a direction
y perpendicular to L, with the rule that the direction y + dy, corresponding to the
point P+dP, will be derived from that y associated to P in the following way: let η
be the direction tangent to L at P; let y and η be parallel transported3 from P to
P+dP and let y+δy and η+δη be the directions obtained in this way, which because
of the fundamental properties of parallel transport will still be orthogonal. If L is
not geodesic, η + δη will not coincide with the direction η + dη of the tangent to L
at P+dP, and these two directions at P+dP will define a 2-dimensional subspace.
Let us consider at P+dP the element of the Sn−2 perpendicular to this subspace
and let us rigidly rotate around this Sn−2 all the surrounding particle space until
η+ δη is superposed on η+ dη. Then y+ δy will be mapped to a position which we
will consider to be the direction y + dy relative to the point P+dP. It is clear that,
arbitrarily fixing the direction y at a point of L, an integration process will allow it
to be obtained at any point of L.

Let us now look for the analytic expressions which translate the indicated oper-
ations to a Riemannian manifold, which coincide with those valid for a Weyl metric
manifold as long as the “Eichung” is chosen such that the measure of a segment,
which moves rigidly around L, will be constant. Let

ds2 =
∑
ik

gikdx
idxk (i, k = 1, 2, . . . n) (1)

and let yi, y(i); ηi, η(i) = dxi/ds be the co- and contravariant systems of the
directions y, η. We will then have

δη(i)

ds
= −

∑
hl

{
h l

i

}
η(h) dxl

ds
= −

∑
hl

{
h l

i

}
dxh

ds

dxl

ds
,

1Presented by the Correspondent G. Armellini during the session of January 22, 1922.
2Weyl, Space, Time, Matter, p. 109. Berlin, Springer, 1921.
3T. Levi Civita, Rend. Circ. Palermo, Vol. XLII, p. 173 (1917).
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and moreover
dηi

ds
=

d

ds

dxi

ds
=
d2xi

ds2
. Therefore one finds

δη(i) − dη(i)

ds
= −

(
d2xi

ds2
+
∑
hl

{
h l

i

}
dxh

ds

dxl

ds

)
= −Ci .

The Ci are the contravariant components of the vector C, the geodetic curvature,
namely of a vector having the same orientation as the geodesic principal normal of
L and a magnitude equal to its geodesic curvature.

On the other hand, one has

δy(i)

ds
= −

∑
hk

{
h k

i

}
y(k) dxk

ds
. (2)

Now since y is orthogonal to L, the displacement with which from y + δy one
gets y + dy will be parallel to the tangent to L and will have magnitude equal to
the projection onto the same y of δη − dη; that is to say, since y has magnitude 1,
equal to the scalar product of δη − dη and y, namely∑

i

(δηi − dηi)y(i) = −ds
∑

i

Ciy
(i) .

Its contravariant components will therefore be obtained by multiplying its magni-
tude by the contravariant coordinates of the tangent to L, that is dxi/ds. These
are, in the final analysis, −dxi

∑
r Cry

(r). From (2) it follows immediately that

dy(i)

ds
= −

∑
hk

{
h k

i

}
y(k) dxk

ds
− dxi

ds

∑
h

Chy
h . (3)

Equation (3), written for i = 1, 2, . . . , n gives a system of n first order differential
equations for the n unknowns y(1), y(2), . . . , y(n), which are therefore determined
once the initial data are assigned. It would also be easy to formally verify from (3)
that, if the initial values of the y(i) satisfy the condition of perpendicularity to L,
such a condition will remain satisfied all along the line.

§ 2. – Let us now assign at a point P0 of L n mutually orthogonal directions
y1, y2, . . . , yn chosen at will, with the condition that yn be tangent to L. The direc-
tions y1, y2, . . . , yn−1 will be perpendicular to L, and we can transport them along
L by using the law given in the preceding section, which clearly from its definition
preserves their orthogonality. We are then in a position to associate with every
point of L n mutually orthogonal directions, the last one of which is tangent to L.
Let us now consider our Vn embedded in a Euclidean SN with a suitable number of
dimensions. We can take as coordinates of a point of Vn the orthogonal Cartesian
coordinates of its projection onto the SN tangent to Vn at a generic point P of L,
having P as the origin and the directions y1, y2, . . . , yn relative to the point P as
directions. In terms of these coordinates, the line element of Vn at P can be written
in the form ds2P = dy2

1 + dy2
2 + · · · + dy2

n; in addition, they are geodesics at P, as
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one can immediately see. In other words, for the coordinates y it is possible in
a neighborhood of P to set gii = 1, gik = 0 (i 6= k), up to infinitesimals of order
greater than the first. Obviously we shall have such a reference frame at every point
of L. Let us consider now a point Q0 of Vn with coordinates ȳ1, ȳ2, . . . , ȳn−1, 0 in
the reference frame corresponding to the point P0 on L. For any other point P of
L we can so determine a point Q having in the frame corresponding to P the same
coordinates as Q0 has in the frame corresponding to P0. The point Q will therefore
trace out a line parallel to L. Now we want to find the relation between dsQ and dsP,
assuming that the point Q is infinitely close to P. In order to do so, we note that the
displacement transporting Q to Q + dQ is composed of the displacements denoted
in § 1 by δ and d− δ, and that the first one gives δsQ = dsP up to infinitesimals of
greater order since it is a parallel displacement; the second one is a rotation, which
gives (d− δ)sQ = dsP C · (Q− P), as is seen from § 1 , denoting by · the symbol of
the scalar product, and with Q − P the vector with origin at P and endpoint at Q.
Moreover, both dsQ and (d − δ)sQ have the direction of the tangent to L. Hence,
one has dsQ = δsQ + (d− δ)sQ; namely

dsQ = dsP[1 + C · (Q− P)] . (4)

The trajectories of the points Q form a (n−1)ple infinity of lines, so at least with
proper limitations through each point M of Vn will pass one of these lines; in this
way, we can characterize M through the coordinates of the point Q, ȳ1, ȳ2, . . . , ȳn−1

corresponding to the line passing through M, and the arclength sP of the line L
marked off from an arbitrarily chosen origin to that point P corresponding to the
Q one coinciding with M.

If M is infinitely close to L, dsQ will be perpendicular to the hypersurface sP =
constant. Thus one will have

ds2M = ds2Q + dȳ2
1 + dȳ2

2 + · · ·+ dȳ2
n−1 ;

and taking into account (4),

ds2M = [1 + C · (M− P)]2ds2Q + dȳ2
1 + dȳ2

2 + · · ·+ dȳ2
n−1 . (5)

As a result, in the neighborhood of L we have found a very simple expression
for ds2.

Note II.

§ 3. – Before passing to the physical application of the results obtained above,
we still want to make some geometrical observations. First of all, it is clear that the
previous considerations, and so also the formula (5) representing their conclusion,
which for any manifold whatsoever are only valid close to L, are instead completely
rigorous for Euclidean spaces. So let us associate to the line L of Vn a line L∗ in a
Euclidean space Sn, in which we indicate the orthogonal cartesian coordinates by
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x∗i . If we indicate with asterisks the symbols referring to the line L∗, we can write
for Sn the formula analogous to (5):

ds2M∗ = [1 + C∗ · (M∗ − P∗)]2 ds2P∗ + dȳ∗1
2 + dȳ∗2

2 + · · ·+ dȳ∗n−1
2 ; (5∗)

as in (5) C is a function of sP, so in (5∗) C∗ is a function of sP∗ .
Let K(1), K(2), · · · , K(n−1) be the contravariant components of C with respect

to ȳ1, ȳ2, · · · , ȳn−1, and K(1) ∗, K(2) ∗, · · · , K(n−1) ∗ those of C∗ with respect to
ȳ∗. Let us try to determine L∗ in such a way that the functions K(r) ∗(sP∗) become
equal to the K(r)(sP). In order to do so, we shall begin by imposing that sP = sP∗ ,
i.e., by establishing between the points of L and L∗ a one-to-one correspondence
preserving the arclength. We then note that K(r) ∗ is the projection of C∗ on the
rth direction y∗. Namely, one has

K(r) ∗ =
i=n∑
i=1

y∗i|r
d2x∗i
ds2P

(r = 1, 2, · · · , n− 1). (6)

The K(r) are then known functions of sP. The condition K(r) = K(r ∗) thus leads
to the (n− 1) equations

K(r)(sP) =
i=n∑
i=1

y∗i|r
d2x∗i
ds2P

(r = 1, 2, · · · , n− 1) . (7)

On the other hand, (3) once written for the Sn, gives us another n(n − 1)
equations. If we add to these equations the following one

ds2P = dx∗1
2 + dx∗2

2 + · · ·+ dx∗n
2 , (8)

we obtain a system of n− 1 + n(n− 1) + 1 = n2 equations for the n2 unknowns x∗i ,
y∗i|r, which can be used to express them in terms of sP. In this way we can determine
the parametric equations x∗i = x∗i (sP) for L∗. With that the formula (5∗) becomes
identical to (5), that is we have represented by applicability the neighborhood of
the line L∗ onto that of L. In addition, since L∗ is in a Euclidean space, we can say
that we have unfolded the neighborhood of L in a Euclidean space, i.e., we have
found coordinates which are simultaneously geodesic at each point of L.

Note III.

§ 4. – In order to show the application to the theory of relativity of the results
obtained above, we shall assume that Vn is the V4 spacetime and that L is a world
line in whose neighborhood we want to study the phenomena. Setting ds2M = ds2

in (5) for the sake of brevity, one finds in this case:

ds2 = [1 + C · (M− P)]2 ds2P + dȳ2
1 + dȳ2

2 + dȳ2
3 .

To avoid the appearance of imaginary terms and to restore the homogeneity, it
is convenient to make the following change of variables:

sP = vt ; ȳ1 = ix ; ȳ2 = iy ; ȳ3 = iz ,
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where v is a constant with dimensions of a velocity, so that t has the dimensions of
time. Thus one obtains

ds2 = a dt2 − dx2 − dy2 − dz2 , (9)

where

a = v2[1 + C · (M− P)]2 . (10)

Hereafter, we refer to the space x, y, z using the ordinary symbols of vector
calculus. And it is just in this sense that the scalar product which enters in (10)
can be understood, provided that C is considered as the vector whose components
are the covariant components of the geodesic curvature of the world line x = y =
z = 0, and M − P is the vector with components x, y, z. We will call x, y, z spatial
coordinates, and t time. Sometimes for uniformity we will write x0, x1, x2, x3 in
place of t, x, y, z, and we will also denote the coefficients of the quadratic form (9)
by gik.

§ 5. – Let4 Fik be the electromagnetic field and (ϕ0, ϕ1, ϕ2, ϕ3) the first rank
tensor “potential” of Fik, such that Fik = ϕi,k−ϕk,i. We set ϕ0 = ϕ and call u the
vector with components ϕ1, ϕ2, ϕ3. First of all, we have:

F01

F02

F03

 = gradϕ− ∂u
∂t

,

F23

F31

F12

 = −curlu , Fii = 0 , Fik = −Fki ;

analogously

F(01)

F(02)

F(03)

 =
1
a

(
−gradϕ+

∂u
∂t

)
,

F(23)

F(31)

F(12)

 = −curlu , F(ii) = 0 , F(ik) = −F(ki) ,

so that

1
4

∑
ik

FikF(ik) =
1
2

{
curl2 u− 1

a

(
−gradϕ+

∂u
∂t

)2
}

.

Let dω be the hypervolume element of V4. We will have

dω =
√
−||gik|| dx0 dx1 dx2 dx3 =

√
a dt dτ ,

where dτ = dx dy dz is the volume element of the space.
One also has:∑

ϕidxi = ϕdx+ u · dM , dM = (dx, dy, dz) .

4See Weyl, op. cit., pp. 186 and 208 for the notation and the Hamiltonian derivation of the laws
of physics.
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Apart from the action of the metric field, whose variation is zero since we con-
sider it as given a priori by (9), the action will assume the following form:

W =
1
4

∫
ω

∑
ik

FikF(ik) dω +
∫

e

de

∫
ϕi dxi +

∫
m

dm

∫
ds ,

(
de = element of electric charge
dm = element of mass

)
.

By introducing the indicated notation, one finds

W =
1
2

∫∫ {
curl2 u− 1

a

(
−gradϕ+

∂u
∂t

)2
}
√
a dt dτ

+
∫∫

(ϕ+ u ·VL)ρ dτ dt+
∫∫ √

a−VM
2k dτ dt , (11)

where ρ, k are respectively the density of electricity and of matter, so that de = ρ dτ ,
dm = k dτ , VL is the velocity of the electric charges, VM that of the masses.

The integrals on the right hand side can be extended to an arbitrary region τ

between any two times t1, t2. Then one has the constraint that on the boundary of
the region τ , and for the two times t1, t2, all variations are zero.

Apart from these conditions, the variations of ϕ and of u are completely arbi-
trary. Further conditions can be imposed on the variations of x, y, z thought of as
coordinates of an element of charge or mass, expressing the constraints of the spe-
cific problem under consideration. Then writing that dW vanishes for any variation
δϕ of ϕ whatsoever, one finds

0 = −
∫∫ (

gradϕ− ∂u
∂t

)
· δ gradϕ

dτ dt√
a

+
∫∫

δϕρ dt dτ .

Transforming the first integral by a suitable application of Gauss’s theorem, and
taking into account that δϕ vanishes at the boundary, we find

0 =
∫∫

δϕ

{
ρ+ div

[
1√
a

(
gradϕ− ∂u

∂t

)]}
dt dτ ,

and since δϕ is arbitrary, we obtain the equation

ρ+ div
[

1√
a

(
gradϕ− ∂u

∂t

)]
= 0 . (12)

Analogously, taking the variation of u, one finds

ρVL + curl(
√
a curlu)− ∂

∂t

[
1√
a

(
gradϕ− ∂u

∂t

)]
= 0 . (13)

These last two equations allow us to determine the electromagnetic field, once
the charges and their motion are given.

Another set of equations can be obained by varying the trajectories of the charges
and masses in W . Let δPM be the variation of the trajectory of the masses, δPL that
of the charges. Moreover, since u is a vector function of the position and V a vector,
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let us denote by (∂u/∂P)(V) the vector with components
∂ux

∂x
Vx +

∂ux

∂y
Vy +

∂ux

∂z
Vz,

and so on. Now, writing that the variation of W is zero, one finds through the usual
methods:∫∫ (

δPM · gradϕ− δPL

(
∂u
∂t

+
∂u
∂P

(VL)
)

+ VL ·
∂u
∂P

(δPL)
)
ρ dt dτ

+
∫∫

δPM ·
{
dt

ds

grad a
2

+
d

dt

(
dt

ds
VM

)}
k dt dτ = 0 . (14)

If the δP’s at a given time do not depend on their values at other times, the coeffi-
cient of dt in (14) must be zero. So one finds:∫ {

δPM · gradϕ− δPL

[
∂u
∂t

+
∂u
∂P

(VL)
]

+ VL ·
∂u
∂P

(δPL)
}
ρ dτ

+
∫∫

δPM ·
{

1
2
dt

ds
grad a+

d

dt

(
dt

ds
VM

)}
k dτ , (15)

which has to be satisfied for all systems of δP satisfying the constraints.
Pisa, March 1921.


