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12) The principle of adiabatics and the systems which do not admit
angle coordinates

“Il principio delle adiabatiche ed i sistemi che non ammeltono coordinate
angolari,”

Nuovo Cimento 25, 171-175, (1923)
S+ Qﬂ

§ 1. - The importance of the Ehrenfest’s principle of adiabatig ’EJ;Th.e determi-
in the Bohr theory,
as follows: Let us

nation of the selection rules for the stationary orbits of a systeny,

L. This principle, as we know, can be enuneiate

is well-known
assume that, in a mechanical system, the forces or the constraints are continuously
modified with time but very slowly in comparison with the periods of the systemn,
or, accordig to the Ehrenfest’s expression, adiabatically; the principle of adiabatics
states that, if the system initially is in a quantum preferred orbit, it will still be
there at the end of the transformation.

Let us consider, for instance, a pendulum and imagine to shorten its string at

a very low rate in comparison with the period of the pendulum itself. Frequency v

of the pendulum will then grow slowly, but it is easy to realize that energy uLalso A ‘\\ i
grow and just so that the ratio u/v mafitains constant. In this way, if this ratio W& jnton >
was initially an integer multiple of Planck constant h, it will Is’ve& remain the same P"

and then the state of the system will remain quantum preferred during the whole
transformation. For further examples we refer to the Ehrenfest’s memoir.

The formal basis for the principle of the adiabatics is provided by Burger S
theorem\?ALet us consider a system that in certain general coordinates 1, gz, - ,, qr A M
allows the separation of varlablesWhen put —

-

Ie = épkdffh’ (K=1,2,..4.1) (1)
i 2

A

_l,(:— e ;.-;;\'Lthe canonically conjugate momentum to gx and the integral extended,

according to the rules of quantum theory, to a complete oscillation of coordinate
g ; in this way the conditions in order that the considered orbit of the system be
quantum preferred are:

L =mnh; [-_;,:?'.'.gh'...)" Ir=nsh 2

AR i sody Ip=mng (2) !
~—fheimg ni,na, .. f, nfLinteng. Let us suppose, now, to modify adiabatically our
system, but in a way it allows the separation of the variables at any instant. Burger’s b
theorem states that in this case integrals Iy, I3, ...,, Iy do not change during the d\

IEhrenfest, Ann. d. Phy\"ol 327 (1916).
2Burgers, Versl. Akad. vanﬁmﬁ ensch. - Amsterdam 1916, 1917; Ann. . Phys, A2, 195 (1917). bl
3TFor the validity of Burger’s conclusions it is sufficient, more generally, that the svstem admits
angle coordinates, i.e.ait is possible to introduce in place of g, pre new variables wye, jk)such

that the gy¢’s, expressed by means of the (wy, 71(] are periodical with period 1 in variables wyg.
and the energy, in the new u&tlnmms results l wetion of the j's only. Then, because ol the Lﬁf‘ \(
Hamilton equations, the j's ! consti n ile iw's linear unctions ol the time: the ¢'s

as functions of the time can be expanded in Pouucr series with f indexes.
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transformation, i.e, that they are adiabatic invariants. Therefore, if conditions (2) /)\
) ; ; . g
are satisfied at the onset of the transformation, they will (belalsol satisfied at the
end; then the principle of the adiabatics is satisfied. INC Y2

In this Note I intend to show by means of a simple example that if a system
adiabatically transforms into another system and the initial and final states both
admit the separation of variables, but the intermediate states do not, the Iy are rer N O
were adiabatic invariants. In this case the principle of adiabatics loses its basis.

§2. - Let us consider a mass point, moving on a plane inside a rectangle; we
shall assume that no force acts on the point while it is inside the rectangle, but it
bounces off the walls when it hits them. Consider sides AB and AC of the rectangle
as coordinate axes x, y. Now, it is evident that our system admits the separation of
variables in these coordinates. Calling a, b the lengths of sides AB, AC, coordinate
z inffact oscillates between values 0, a; coordinate y between values 0, b.

Y
C D’ D
E F
A B’ B X
Moreover, if at a certain instant the components of the velocity are u, w, at ay V\M’ MAS

instant whatever they will be tu, v, where one must choose sign + or ~according
to, whether the relative coordinate is increasing or decreasing at the considered
instant. The conjugate momenta to x and y will be +mu, tmuv, beins ml;ohei mass
of the point; then one will have 1S

a 0
i, = j{(:tmu) dz = / mu dx +/ (—mu)dz = 2 mua (3)
0 a

\e_.-.u'ul analogously kb O C e F
I, =2mub (39
Now we want to study how I, and I, change@.ransform our system adia-___
ABCL

e

5 —— £
batically. We just intend to transform rectangle into the other AB'C: ’;‘We-‘~ PiwN_
remark that such a transformation can be carried out in three ways: - Vo

_ i feaunly /,?’(M AR D C
(1) one parallelly shifts the segment BD until ot (tﬂ-b 3D
(2) one parallelly shifts the segment BB until !ru"arH-ﬁHTx-L DL, so that at an inter-
mediate instant, the mass point (.'m\nnwa insicluLcont( ‘e polygon AB")EFDC;

*){W\p-.ﬂ_/

\ i)fw\l_,
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(3) one deforms anyway the broken line B’B@ until %e-brm‘é it fd coincide[with
5 t B’ oV
segmen K: {Y{\

Keeping out the last case, 195EEH'§( somewhat complicated, from our considera-
tions, we shall limit ourselves to discuss the former two. As to the first one, we
remark that in this case at any instant the point can always move inside a rectangle,
therefore also in the intermediate instants it is always possible to have the separa-
tion of variables; according to Burger’s theorem, in this case we must expect that
I, and I, remain invariant. This is obviously evident for I,, since neither b, nor v

change during the transformation and then, due to (37, nor 7,. As to I, instead, ?‘(
a decreasef during the transformation, being reduced from @ = AB to o’ = ABTN

but #p*the same time w increases in consequence of the bounces on the moving wall
and an immediate consideration shows that things go just so that product au, and
then also I, remains constant 4, obviously on condition that the transformation
is realized slowly enough. If we pass on to consider case (2), it is easy to realize
that now things arve different. As to I, in fact one immediately sees that the
component of the velocity remains unchanged (except for the sign), since it could
change its absolute value only hitting a moving wall parallelly to aznxis, but the only
moving wall, EF, moves parallelly to y; instead a decreases from ﬁB to ABL In all,

fermi'book'B
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N

therefore I, reduces in the ratio a’/a and then does not remain constant. Likewise— ?{ o
'

also I,, does not remain constant; in fact b remains unchanged whereas v increases
due to the collisions on the moving wall EF. An immediate evaluation shows that
v, and then also [, increases in the ratio a/a’. From the above considerations we
can conclude that integrals I are adiabatic invariants only if in the intermediate
states the system always admits the separation of variables or at least, according to
Burger’s theorems, always admits a system of angular coordinates. On the contrary,
at least in general, this is not true if the system does not always own a multiperiodic
motion. On the other hand, this fact is ea(cjyj} understandable also from the point
of view of quantwin theory. In fact oue knows, following Bohr, that a well ﬁleﬁnod
quantization is possible only if the motion of the system is multiperiodic. Then
one can realize that, if in the intermediate states the system cannot be quantized

rigorously, this mmrF transmits to the final state. g‘(

Gottingen, February 1923.

4In fact the number of knocks on the moving wall BD in time interval d¢ is obviously %dt; on
the other hand, if V is the velocity of wall BD, the velocity of the point will experience an increase
of 2V at every knock; then the increase of u in time dt will be:

du=2v2at=2var— —Yda
2a a a

since, obviously, —da = Vdt. By integrating the preceding equation, we [ind exactly wa = const.,

}l.‘-;.ﬁfr‘tl above,
w (e
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13) Son‘le’xilem'cms oféﬁ'lalytical r‘?ﬁechanics oi@reat _—{mportance for
uant‘.tnnﬁmory

“Alcuni teoremi di Meccanica Analitica importantt per la Teoria dei Quanti,”
Nuovo Cimento 25, 271-285, (1923)

§ 1. - Ehrenfest’s principle of adiabatics', as is known, states that, if a me-
chanical system is in a quantum orbit and its mechanism, forces or constraints, is
changed in an infinitely slow way, the system remains in a quantum sclected orbit,
during the whole transformation. In order that this principle have a definite sense,
it is obviously necessary that the final orbit of the system only depends on the final
mechanism and not on the one or another sequence of intermediate mechanisms
followed during the transformation. Burgers? has shown that this is really the case,
at least for that kind of systems which up to now has only been considered in quan-
tum theory, i.e. for systems which, or admit a complete separation of variables, or
at least can be represented by means of angular coordinates®A In this case, their
motion can always be considered as resulting from periodic motions, generally hav-
ing as many periods as the degrees of freedom are or, in case of degeneracy,
with a lower number. But, just at this moment, the study of the simplest atomic
structures having been accomplished(‘/,\some problems which do not admit angular
coordinates continually occur, first of all the three-body problemn whiclhh occurs in
the study of hydrogen wmolccule. As is known, all the eflorts made up to now to
reduce the study of these systems to that of systems with angular coordinates were
in vain. Then it is to be desired to investigate whether and how far]_ié?c\ possible to
attempt an extension of the principle of adiabatics to the general systems, hoping
that it can give some information which can help in the search for rules suitable to
determine the preferred opbits of these more general systems.

§ 2. - First of &H—w:@-‘iwm better to fix a c¢lassification of the systems to be
studied. Therefore we turn to the usual representation of the state of the system by
means of a point of a 2f-dimensional space I', which has ¢. ¢, o R the general
coordinates of the system and py, ps, SRS Bs their conjugate momenta. We have,
through each point of this space, a trajectory which corresponds to the motion of
the system having its initial position and velocity determined by the point itself. We
shall assume the forces and the constraints of the system being time-independent
and the forces deriving from a potential so that an integral of the energy conservation
does (-:xistﬁ. We call E hypersurfaces the ipersurfaces energ‘\,{;ﬁmst.;ml.; through each
point of I', onc of the E’s is passing on which (as provided by the encrgy integral)

1P, Ehrenfest. Ann. d. Phys. 51, p. 327; 1916.

2Burgers. Versl. Akad. van Wetensch. Amsterdam, 25 November 1916. - Ann. d. Phys. 52, p.
195; 1917. - Phil. Mag. 33, p. 514; 1917.

3See for instance Sommerfeld. tombau und Spektrallinen, III ed. Zusatz 7.

4They are the hydrogen atom and its various perturbations (Zeeman effect, Stark effect, and
Feinstruktur) and the ion of the hydrogen molecule H;, when nuclcus rotations are not present.
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the trajectory through the point is locatgd. The so(cnllctl quasi-ergodic® mechanical
systems enjoy the property that the t/njm-.t,m'y generally passes infinitely close to
every point of E, so to densely fill a 7fllh]illzc1135011all manifold. However, it may be ( >
that our system, besides the energy integral, admits some other uniform integral
independent of time. In this case the manifold filled by the trajectory will obviously
have a lower number of dimensions. Then let us assume that our system have on
the whole m uniform first integrals independent of time,
. Dy (pog) =3P =co;.oo; Oy = iy \/W\."""A"S
W\"C/“/\ / N
beinte ¢; arbitrary constants. We shall have, through each point of T, a &f—m)'j{limen- ( )
sional manifold G, intersection of the m_ hypersurfaces ®; = ¢;; and the trajectory
passing through that point will be @_hﬁl_!x):nutain(-::l in G. In general it will not covap! U"L\\j
be possible to find, within G, a subinanifold which contains the whole trajectory;
on the contrary, on the analogy of quasi-ergodic systems, we shall assume for our
systems that in general the whole G be densely filled by the trajectory, i.e./)\\'}ra:t\ /,\
the trajectory passes infinitely close to all the points of G. In this way, the tra-
jectory will come out characterized, at least in its statistical elements, by the only
knowledge of the values ®1, ®g, ...y, @,y corresponding to it. Therefore we call these 5—‘
values characteristics of the trajectory. Then a quasi-ergodic system has only one
characteristic, its energy. A system with its energy independent of time, which ad-
mits the separation of variables, has in general as many characteristics as degrees
of freedom, corresponding to the f a constants of the Jacobi’s complete integral;
a higher number can only occur in case of degeneracy, i.e()\when linear relations ()\
with integer coefficients between the fundamental frequencies exist. Let us consider,
for instance, the motion of a point in a plane acted on by a force proportional to
the distance from two orthogonal straight lines. If the two attraction coefficients
are not commensurate, the point describes an open Lissajous’ curve in the plane.
And in the four-dimensional space I' the representative point densely fills a two-
dimensional surface G. Therefore the system has two characteristics; for them we
can take the energies of the projections of the motion on the two orthogonal straight
lines. If instead the attraction coefficients are commensurate, the Lissajous’ curve
degenerates in a closed curve and G becomes one-dimensional; this corresponds to
three characteristics.
§ 3. - Now we shall assume to be able to change arbitrarily the forces, or the
constraints of the system, i.(-!.mvhat on the whole, with a happy naming due to P. (/\
[-lurt.z\"‘/,\w(-: shall call the mechanism of the system. If we change the mechanism
in an infinitely slow way, we have what is said an adiabatic transformation; and,
in § 5, we shall easily find a system of differential equations which shows how the
characteristics of the system change when the guiding parameter of the mechanism

5The author recently demonstrated that the ordinary mechanical systems are, in general, quasi-
ergodic, so that this is the most common case.

OP. Herz. Ann. d. Phys. 33, pp. 225, 537; 1910. Weber, Gans. Repertorium der Physik I, 2; 1916.
We refer to these works for any explanations regarding the statistical part of the text.
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1t, changes adiabatically. But, as we have already mentioned, one can speak-ef-ap=
plieationrof the Ehrenfest’s principle to a definite system only if the values that its
characteristics take at the end of an adiabatic transformation only depend on the
final mechanism and not on the intermediate workings crossed during the transfor-
mation. To study this question, we shall assume afterwards that the mechanism,
rather than depending on only one parameter, depend on two parameters A and
1. The dependence of the characteristics on A and i, instead of being on a system
of ordinary differential equations, will then be obviously expressed by a system of
equations of total differentials; then the conditions for having the final values of
the characteristics not depending on the path followed during the transformation
in the A, u plane coincide with the integrability conditions for this system. We shall
demonstrate that these conditions, for the quasi-ergodic system, are really satisfied.
Instead, for the systems having more than one characteristic, in general they are
not satisfied although important classes of exceptions exist.

§4. - Before passing-to-study/tlie adiabatic transformations¢ is convenient
to consider some formulae which are useful for calculating the probability that, at
any instant, the representative point is in G. Then, for uniforming notations, dif-
ferently from above we call z1, 22, ..., 72, the coordinates of I'. Our problem can
now be formulated in this way: calculate the probability that, at a certain instant,
r1, X9, l Za7—m have values between x, and 2y + dxy, 22 and 22 + d:ug,..'ff,-::gf_,,,
and xof_., + dxog_m, while the remaining m «’s obviously take the values neces-
sary to maintain the representative point in G. As we know, statistical mechan-
ics, through the Liouville’s theorem, states that the necessary condition for hav-
ing a stationary distribution of the points in the T' space is that their density in
I" should have a constant value on any G. A volumne element of I' can be written
dzy,dxg, ...}, dzay, but also, taking as new variables xy, x2, T Zaf—m, D1, P, 7, D,
as %r!:cl,rin:g, > o drap_m,dDq, dDo, . 1dd,,, where D is the functional determi-
nant Ul:r‘:?l}:.:‘..‘.??T-":u}cz;)' And, since during the motion d®;,d®, ...T,d.‘b.m obviously
remain constant, the aforesaid volume element comes out to be proportional to
%dml, i dmgf_m:. Therefore also the wanted probability is proportional to this
expression; and since the total probability is obviously = 1, we finally find that the
wanted probability is given by

L
)

s

-da

. 1)
D

where for short we put do = day . dag, ,..%(f.i.‘g’r_*,,, and the integral is extended
to all values of @y, wa, (i &9 [, COrresponding I.cv‘p\aﬁﬂ.’s of G. Before leaving this
subject, we also want to deduce a formula that will be useful in the case of quasi-
ergodic systems. In this case G is a hypersurface, and we assume for the sake
of simplicity it should be closed, and such to be intersected in only one point by
the radii vectors coming out from a pole within it. This because a more general

approach, even though it is not essentially different, would cause rather complicated
calculations. We refer the space I' to polar coordinates, by characterizing each

fermi'book'B
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point by means of its radius vector and the intersection of this Em-e‘with the unit
hypersphere having the pole as cent%. \fe call H the only characteristic, i.e.()-the e)(' \
energy. In accordance with what 1, the probability that at a certain instant N

the representative point lie within an element of solid angle dw is proportional to

the hypervolume comprised between the two hypersurfaces H (x1,..], 22 7) ‘7
and H (x1,.71 xoy) = H + dH, and the solid angle dw. This volume, except for P‘
the constant factor d}, is evidently r”‘,% where H,. = “”. Since the total
probability must be H we find that the wanted probability is given by F( H
- 120~ dw
.. M (2)
[ r‘lj’—l%ﬁ )

where the integral is extended to the whole unit sphere.
§5. - In this section we assume the mechanism of our system as a function
of a parameter p and we aim to study how the characteristics change when this
parameter changes adiabatically. Since the mechanism depends on the parameter
4, it general also the characteristics @1, o, T By will depend on p, besides the p’s FT
and g¢’s. Then, if at a certain instant the pnmnwter 1 changes of dj, characteristic
©; will correspondingly undergo the t‘han;,e ‘r)/: Since we are inypresence of an <\AQ_ /\
adiabatic change. to have the effective (Imnur' nf ®;, we must (01151(’101 the average

of this expression which, according to the results of the previous section, will be
t by do
’ dn D
du r’ = (3)

which results only .L(J—-L# a funetion of o and @1,7 ®,,,. The dependence of the
characteristics on g in an adiabatic transformation will then be expressed by the
dp / %’ dp fde 7 dy o f ‘g’

e

If we know the values of the ®’s, for instance for u = 0, the integration of this
system gives us their values for any pf, In the particular case of the quasi-ergodic —

system of ordinary differential equations:

0P, do dPg do Ay, rfa
d®, . o D d®, f ap DT dd,, f EIT Q

systems, system (4) reduces to the only equation:
dH [ ldw [\
& T e O (5)
h—where H, = %ﬁ
§ 6. - Now we want to study in which cases the final values of the characteristics

are independent of the way followed in passing adiabatically from the initial mech-
auism to the final one. Thercfore we shall represent the mechanism of the system

(D

as a function of two parameters, A and ;. . If one alters adiabatically these two
parameters, of dA and du respectively, the same conclusion of the preceding section

shows that the corresponding change of the characteristic is:
[ a0 da [ f’;l'- r%r; ‘37
db; = LD gy = D 4, Ai=1,2..a4m (6)

da da ’
o D )



January 29, 2017 12:55 World Scientific Book - 9.75in x 6.5in fermi’book B

From Fermi’s papers of the Italian period 61

The coeflicients of dX and du are evidently functions of only A and ®;, ...%(I)m,
then m equations (6) represent a system of equations of total differentiald; if it will
result unlimitedly integrable, the final values of ®’s will be effectively independent
of the way followed during the transformation, or else it will not be so. We want to
demonstrate that, in the case of quasi-ergodic systems, the condition of unlimited
integrability is satisfied. In fact, for these systems, system (6) reduces to only an
cquation of total differentials analogous to (5)

4l = Lax+ Mdp [N\ m 7
F’where
P2 dw 2 H, dw
J g = [—g=
L= TIH—M M = W (8)
i Her

and then L and M represent two functions of A, p and H. As we know, for
obtaining the unlimited integrability of (7), it is necessary and sufficient that the
total derivatives of L with respect to p and of M with respect to A be equal.
Therefore it must be

aL oL OM oM
— 4+ M—=—+1L : 9
au + oH o + oH 9)

To demonstrate that this equality is really satisfied, let us begin to calculate its J\(
first term. Therefore, let us l-ma-g-me—te} give independent variations dH and du to

H and p, leaving A unchanged; then we will have

oL oL
YL = —0H + —0. 1
oL BT, + o 7 (10)
On the other hand, from the first of (8), we remark that: /

51 - 1 2{ (/ "M_ld“’)éf r2 =1\ dw
< I ﬁ) H, H:
T
-V dw "2y
— —_— |y | —— ). 11
(J=2) [ =~ =

In the calculation of the two variations of the integrals within the curly brackets,
we can of course interchange symbols § and [, as the limits of the integral do not
change since it is extended to the whole unit hypersphere. Then we have:

2f-1y 2 =250, 2 1S H dw
" i 7 Tl T s
e s S PR 12

On the other hand, from the invariance on the unit sphere, one has:
OH = Hpor+ H,ou
wherefrom
’H H,
=k

5~
" m,  wH™M
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and also

i _ H,, Hy H,\
OH, = Hypdr + Hyydpp — 7 0H + <Hw s u) 5.

T

By substituting in (12) these expressions of ér, d H,., oue finds: /

2=V r2f=24u r21H,dw
5 _ . = j— — — _— .
[=a =em{er v [0 [

- 2/ =21 dw 21w H,H,.,
ou{(Qf—l)/ H'; + VB <Hw - —’};—)}

r

In a similar way one finds:

W2 =17 2f 2 p20-1 / /
6/.‘ Hydw ZJH{(2_f'1)]T Hydw / !i,\ dw

1, H?

2f-1 » 2f-2 d /
/?——I{J\Hn(iw}—kdu{ —(2f—1)/—r Iy H,dw

H HZ

2 dw I Hy, H, /7‘2f1HAdw 0o H,H,.,
HT Ar 1‘}, H72‘ ur HT 3

By substituting in (11) these[twq lastlexpressions, and comparing with (10), one
finally finds:

oL 1 2V =21\ dw
—_—E £ 2f 1 S
oH (f r2f*1dw)2 {(/ H, ){( f )/ .Hf +
2f-1 . 2f-1f - [/
+/‘r Hy,dw B /1 HyH, r)!w}

H? H}
w2 Ay dw 2120 r'gf_lffrr(fw
([=) e [ - [ H
p2/-1 p2f=2
2] ([ 2)] g e

O <f r2f ':1:.))2
H,

p2f-1 2l =17 1. oo [(
N dw (1]/\” B H)\THH.> B / 7 H ydw (H_“,- B H;;Lr)}

H, H 1z A

[ Hydw 1 A de (L HH
 Hy H? H? M H ‘

These two last equations, together with the second of (8), give us all the elements
necessary to calculate the first term of (9). Once it has been calculated, it is imme-

diate to recognize from its explicit expression that A and p appears symmetrically;
I.hm(g) is verified.

Therefore we can conclude that, for the quasi-ergodic systems, the value assumed
by the energy at the end of an adiabatic transformation does not depend F;t—a-l-l{on
the intermediate mechanisms of the transformation.

fermi'book’B
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§7. - Come back now to \iﬂﬁmrere»tml—rﬂ the systems with more than one o_’

characteristic. In order that, also for these systems, the final characteristics were
independent of the intermediate mechanisms of the transformation, the conditions
of mnlimited integrability of systcmn (6) should be satisfied. But, if through a cal-
culation, obviously more complicated than that performed in the preceding section
but not essentially different from it, we effectively build up these conditions, we - "A
find that in general they are not satisfied. Rather than H%l'('iafﬁ‘ﬁmre this lengthy ' f]
caleulation, we prefer to show the argument through an example of a system with
two characteristics. The example we choose is very similar to pfgother one I have
recently used in a note on the principle of adiabatics. From an origin O, we draw
in a plane two orthogonal axes x, y. Then we take in the first quadrant two points
P, Q and draw the perpendiculars from them to axes (PA, PB, QC, QD). We shall
assume that P be internal to the rectangle OCQD. Now let us suppose that inside
concave polygon APBDQCA a mass point is moving not acted on by forces and
elastically bouncing off the walls of the polygon. Absolute values u, v of the com-
ponents of the velocity of the point on axes x, y keep evidently constant during the
motion, therefore the system has two characteristics. Let us suppose then to keep
point Q (of coordinates a, b) fixed and to move point P (of coordinates A, u). In
this way we shall have accomplished a mechanical system with two characteristics
1, v and depending on two parameters A\, p. By easy arguments, analogous to the
ones carried out in the note quoted above, one finds that, changing adiabatically
the position of point P, u and v change following the r:\lle:
20 dA 2A dpu ,

dieg = ab — A,u; dlogv = ab— Ap O
@Jviously none of these two equations is unlimitedly integrable; therefore the
vilués that © and v take at the end of a transformation also depend on the path
followed by point P. Then, in general, it is not possible to apply Ehrenfest’s principle
to systems with more characteristics.

& 8. - However, some important classes of exceptions to this rule exist. We aim
to study them in this section. The first one, and also the most important, is that of
the systems with angular coordinates. Of these systems, according to Burgers’ the-
orems, we not only know that Ehrenfest’s principle can be applied (in the sense that
it leads in any case to definite final conditions) but also that for them the aforesaid
principle results to be wverified, by experience as a logical consequence of Sommer-
feld’s conditions which are supported by all the theory and the experience made on
the hydrogen atom. Another remarkable class of exceptions to the conclusions of
§ 7 is the following: Let us assume that of the rn characteristics of our system only
one, the energy, depends explicitly on parameters A, p of the mechanism. I say that
for these systems, at the end of every adiabatic transformation, the energy takes a
value independent of the intermediate mechanisms, while the other characteristics
even stay unchanged. The fact that all the characteristics, but the energy, stay
unchanged comes out evident from the circumstance that, since they do not con-
tain the parameters explicitly, stay unchanged in all the elementary processes of the

e
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transformation: the same conclusion can be drawn from system (6) since, if ®; is one
of these characteristics, one has by hypothesis %qj\i = "Z.ii = (. For demonstrating
that the final value of the energy does not depend on the path followed during the
transformation in the plane A, u, one could put forward a consideration analogous
to that of § 6. But it is easier to remark that, on the basis of the hypothesis, by
means of a canonical transformation independent of the parameters, one can try to
tranusform the characteristics independent of the parameters into coordinates of T
After this, the consideration of § 6 can be repeated word for word and the constant
characteristics simply stand for constant parameter. Systems of this kind occur very
frequently in applications; for instance, of this kind are all the systems which have,
as only uniform integrals besides the energy (and not dependent on the energy),
some integral of the conservation of momentum, or angular momentum, since the
latter are ;]I}yaws independent of the parameters of the mechanism.

'\\“ wrelgl possible application of jrhat-said-t4 the theory of quanta, we
anﬂl Hﬂw-mg On the basis of our conclusions, the possibility of an exten-
sion of hhrenfest s principle is ruled out, save the mentioned exceptions. Instead,
for quasi-ergodic systems, or the exceptions studied in § 8, such an application is
not a priori ruled out, though obviously it is not possible now to foresee if the
experience will confirm its results. All the same, one might try if, going on this
way, some useful information on the rules for the determination of the quantum
orbits of the systems without angular coordinates could be obtained. Of course,
Ehrenfest’s principle by itsclf, even if in case the experience should confirm it in
this more general application, is not sufficient for the determination of such rules. It
only allows us, when we know the selected orbits of a certain system, to deduce the
orbits for all the systems which can be obtained from it by means of an adiabatic
transformation. Therefore perhaps it might be useful, apart from the complexity
of calculations, for finding the quantitative relations between the spark spectra, for
instance of the alkaline metals, and the arc spectra of the noble gases. In fact, the
systems which emnit these spectra only differ in the charge of the nucleus and then

can be easily transformed the one into the other.

Gottingen, April 19231 = ) =

fermi'book’B
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38b) A‘E‘heorem of Cﬁlculus ofﬁ)robability and%ome fgplications

“Un teorema di calcolo delle probabilitd ed alcune sue applicazioni,”
Teacher’s Diploma Thests of the Scuola Normale di Pisa.
Presented on June 20, 1922.

§ 1. The theorem we want to deal with concerns the properties of the sums of n
many incoherent addenda having a known Sta&istical distribution. The fundamen- VP/
tal theorem on these sums is due to Laplace!. We announce the theorem together
with a short account of its demonstration from which we shall start for establishing
a new theorem. Let n be a very great number and yy,ya. . \yn represent n un- (;\
knowns, of which we know the statistical distribution; tha iﬁ’, we know that the_____
probability that y; has a value ranging between y; and y; + dy; is @, (y;)dy;, bemrg wWit\A L

w; a known function for which, obviously

/Oo wi(y)dy =1, (1)

— 00

which means that y; jhas)certainly la value between —oo and +oo. In addition UI"'«/ S

we will assume that the statistical distribution of w; is not affected by the valucs
that the other y’s can assume, that is, we assume the 3;’s are completely incoherent
among them. Then we take y; having a vanishing average, that is:

o0

i :/ ypi(y)dy = 0. (2)

Finally the average of the squared y; is put as
77 =/ Vpily)dy = k] (3)

Fﬂud assume that, for any 4, k2 is negligible with respect to > | k7. Under these
assumptions, the Laplace’s theorem holds which says that: The probability that
inequalities

n
z<Y y<z+ds (4)
1
old at the same time is given by
il R
F(z)dr = ——===e ?¥7" dx. (5)

NI

To demonstrate it, we call 7 a number < n and let F(r, x)dz be the probability
that inequalities

:cﬁZy,—Sx—l—dx (6)
1

IThéorie analytique des probabilités, Oeuvres, VII, p. 309.
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J’Fj‘ hold true. Now, if p is any value, let us look for the probability that inequalities

r—1

Zyi<P<Zyi (7) -

1 1

hold together, that is, that the addition of 1, to }:;_1 y; does not exceed p.
This probability is obviously given by

Jee]

/:c deF(r=1,p=0) / er(y)dy.

13
Analogously, the probability that inequalities

r—1 T
Z Yi>p> Zyi (8)
1 1
%—'—“ hold together is
[ are-vpre [ et
0

The difference of these two probabilities is obviously given by the difference

between the probability that Y] y; > p and the probability that Z;_l yi > p, that
is by

/oo F(1',w)dw—/.oo F(r—1z)dz .
Ip P
Then we have }
[ s [T R -1 = [T aere-1p-9) [ oty
P P 0 £

- - [ aere-1+6 [ et

/Ir( the r.h.s. we can reverse the integrations by formulae ? fH g )

oo: oc 00 Y 'S} —£ 0 —y
[ [Cav=[Tay [ [Tae [ a= [ w ] a
0 £ 0 0 0 —00 —0o0 0

and it becomes, also changing in the second term & with 756\

/OO er(y)dy /oy F(r—1,p—£)de.

— o

We put, as an approximation

OF(r —1,p)

Fir—1,p—-&=F(r—-1,p)—¢ o

Thus the above expression becomes

e 4 OF(r —1,p) [~ K
F(r— Lp)/ w(y)dy/ d€ — %l/ wr(y)d?// £de
— 00 0] oap —00 0
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= 1LF(r —1,p) [
= F('rfl-,p)f yoor(y)dy — 5_(_5;:—”/ yznpr(y)dy/,\

o
Le., remembering (2) and (3):
k2OF(r —1,p)
2 ap '
In this way we obtain equality
= e k2 OF(r —
/ F(v‘,x)da:f/ F(’/'—l,:l;)dz:f—i((?‘—l’p). (9) 7
Jp Jp 2 dp
Differentiating it with respect to p we obtain
E29?F(r—1,p)
-F Fr-1,p=-—S—_—"". 10
(r,p) + F(r —1,p) > o (10)

Let us change in it » — 1 with r, p with z, and, in our approximation, put
0
F(r+1,2)— F(r,z) = a—F(T,:L‘).
‘s

Then (10) gives, for F(r,z), differential equation

] k2, 0*
el = _ e . 11
= F(r,5) = —2E2 F(r,0) (1)
Changing r with the other variable
r+1
t= / k2di (12)
0
(11) becomes
oF 10°F
g 13
ot 2 0z? (13)

Then one has, obviously, the condition that, for any ¢

/ Pdr=1 (14)

—_—
anel that, for ¢ = 0, F has a nmi‘va.nislﬂng value only when |z| is infinitesimal. [\"

It is known that these conditions are more than sufficient to determine F. They are

satisfied by putting

1 12
F B e 2t
V2nt

By giving to t its value, which at our degree of approximation is Y, k2, we find

|

= —————c X7, (15)
V2mg k?
Then one obviously has F'(z) = F(n,z), and then

:1:2

2N q.e.d.

F(r,x)

bl

|
N

F(z) =

—
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& 2. Let us mpantajin the notations and the assumptions made at the beginning
of the previous séction and in addition assume that all p;(y) are equal (as a con-
sequence we will cancel their index). Then let us indicate with a a positive value
whatever. Thus we can state the following

Theorem 2.1. The probability that at least one among the quantities

n

y1,y1+yz,y1+yz+y3,...,2yn
1

exceeds a is given by
2 / o o2
o e " dx
m a
\/_ ;'—“ukg

provided that a is great enough with respect to k.

In particular, if n tends to infinity, such probability tends to 1, i.t‘.} o certitude. [)\
To demonstrate it, let us indicate with F(r, z)dz(z < a) the probability that the
inequalities (6) are fulfilled and in addition all r quantities

'

V1LYt Y2 Y U (16) ¢

1

Fnre lower than a. At the same time, the same arguments of the previous section
show us that F(r, z)(stillfwill\satisfy the differential equation (11) which, in this WIS
case, can be written as

oOF k2 0%F

=57z () (17)

or 2 9z2

The boundary conditions will be changed instead. In fact, we observe that

a
/ F(r,z)dzx
—
)ﬁ_gives the probability that none of quantities (16) exceeds ¢ and then

ity i
—/ F(r+1,2)dz+ / F(r,x)dx
—oQ o =00

—gives the proability that, because of the addition of y,41, >, y; arrives at ex-
ceeding a. A calculation analogous to that performed in the previous section shows
us that this probability is

/Ooo F(hﬂ-é)d§/:c so(y)dyn\

%« i.e., at our degree of approximation, neglecting £ with respect to a

F(r,a) /OOC d¢ /;C p(y)dy
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E that is, by reversing the quadratures

F(r,a) /OOO o(y)dy /Oy d§ = F(r,a) /OOO yo(y)dy.

By putting now

{f"_.——*we find
/_ {Fir+1,z) — F(r,z)}dx = —hF(r,a).

But, at our usual degree of approximation, we can put

h = /ooo yo(y)dy (18)

F(r+1,2)— F(r,z) = f)F(E';J)
,
Q%* and the previous equation becomes
82 / F(r,z)dz = —hF(r,a). (19)
r — 0

After all, our unknown function F must fulfill differential equation (17) in inter-
val —oo, a; fulfill equation (19) in extreme a; then it must vanish together with its
derivatives in extreme -co and, for r = 0, have a non-vanishing value only for |z
very small, but with the condition that the area comprised between it and zfaxis
is \H 1. It is easy to prove that at least when h is positive, as in our case, these
conditions are sufficient to determine F. Therefore, we observe that, by multiplying
(17) by dz and integrating it between —oo and a, one finds

k% (OF a [
5 <‘3?> b_r/ F(r,z)dx

a — 00
~as a consequence, (19) becomes

k2 (OF(r,x)
E<T>G+F(7,a)—0. (19)

Then, for our purposc,/i‘t is evidently sufficient to prove that, if a function ®(r, x)
isﬁ 0 for = 0 and fulfillds equations

v
0%  k?0%*® k2 (0D

— . - a) = 2
or 2 dx? ' 2h (393)1,:&—‘_(/5(77@) 0 (20)

IE and, for x = —o0, it is always/:f 0, it is certainly identically zero. In fact one

has
@ /9% \? “ 9 [ 00 “ 929
/. (%) w=[ o (@a) tr- [ oG
p]mt. is, owing to (20)
“ 7op\* ap\“ 2 [ 9D i
=) de= (022 - il
/m<ax) o (”aa:)oo k2 /,OO(DaTdT
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9® 10 [ 2h 19 [*
= = - = 2] 9%
q)(”)<al) . KZor S e - kzar/_oc( LA

ie. (N
- '/“ <@)2dz 2 g2(r0) + %%/;@(nw)dw*o' (21) #

oo \ Oz k?
“ Let us now suppose that, for some value of r and z, ® could be different from
zero; then for some value 7 of r [ ®2da wcm!du(fml)osmlve in addition, V\FV5

since for r = 0 is ¢ = 0, and then [“_ ®*(0, :)dr = (0, there will \befcertainly \
@tween zero and 1) some value of 1 :for which - f_oo ®?(r,z)dz is positive. Now,
the first two terms in (21) cannot be negative; the first one is, at least in some cases,

positive and this is absurd. Then it will eertermty (be|always\é(r, z) = 0. \/\T/>
qed—"

Granted that, it will be enough for us to find a solution Mftllﬁllinc the
imposed conditions -ﬁ»r—hﬂﬂgwmq—hheﬂtﬁmwr}ocknrg-fdl Let us try

il our conditions can be satisfied by putting

(= .1}'?‘
e T2 kT

u(p)
L\/ﬂ / =g

1
kv 2w

¢ '.rm'-’ —

F(r,z) = (22)

A -
~being u(p) % function to be determined. With this position, differential equation
(17) and the limit conditions for z = —co éd r = 0 are certainly satisfied. Then it o
remains o determine u(p) so that (19) isﬁaﬁsﬁmm{a Now, [rom (22) we have n
L
] _ a2 w(p)dp e
F('I‘,a):—e k2 — / ({}{ /\
kv 2nr kV2m Jo T —p

1 Tu(p)dp (¢ - te-m)?
F(r,z)dx e TQ‘ dr — e
-0 kv 2mr or Jo T —p H

Q\Kv 7 /;ﬁ e dy — %/ﬂru(p)dﬂ (23)

\_&_\ and then
l'12
a ae 2k’ 1

— Flroz)de = ———— — —u(r
or / r.) 2kV2mr8 2 )
&‘m this way (19) becomes

e . ( ﬁ) _ h “ulp)dp  u(r) (24)

L\/— 2r kv/2m Jo VT =p 2
hat is an integral equation of second kind for the unknown function u(p). In
spite of all our efforts, we have not sufeeded to solve it exactly; we only have an

approximate solution. We shall deal with this ﬂl‘ﬂ‘hﬁH‘(‘L‘W‘hﬁ‘L We want to prove
first, without approximations, that one has (,J‘O,(

/ w(rydr=1.
Jo
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Therefore, let ¥ be an arbritrary positive quantity and let us multipliﬁtte both
sides of (24) by Ve~ "dr and integr:.ltt-:mmﬂ from » = 0 to r = c0. One finds F]

o

VOh [ e "3 p ave % o=0r—g52 ; i
r—= : r
kv2m Jo Vr 2k 27 Jo r3/2

i /0 e dr u(p)dp +@/ e u(r)dr ((
k27 Jo Jo Yyr—p 2 Jo

h\/@ e~y \/g 3()
= d + —/ =0y (r)dr
kvV2r Jo ule) p/p rp 2 Jy © ulr)d

f ! e 6 [ .
“\ \v— = k\;i/ e~ %Pulp)dp + % /0 e O ulr)dr .
0 .

In addition one has

. 0 . F12

0 =0r= i = .2 vl

\/5/ ;dr:%/ ¢ T T REE Q= e R
Jo VT 0
Passing to the limit for # = 0 the above equation then becomes
h ho [

—_— = u(p)dp.
AN /0 (p)dp

/0 T u(p)dp = 10) (25)

From which

ged. ———

. W T ——————=5
At this point we kaﬂ already gef an interesting result. In fact, from (23) we hate
N 1 [ivE 1 />
lim F(r,z)dr = lim — / T e dr - - / u(r)dr =0 . (26)
r=o00 [_ r:oo\/7_r._m 2'0
If we remember the meaning of F(r, z) Llli;&;'eméli. :an be read: The probability
1]
that at least one offvalues (16) exceeds o becomes-e o vhen 7 tends to infinity.
We remark that this result holds true independentH of the approximation we are &7

going to make to solve (24). Let us pass now to the approximate solution of (24).
For this we observe that, as one can immediately verify,~/
(12

w(r) = u (27)
W
'{—is a solution of the integral equation ollsccoud kind A Mo

e Tz ( a h Ta(p)dp 1

— |+ —) = / + —w(r 28

ken/2r 2r kVorm Jo r—p 2 ) (28)
hich differs from (24) only in the sign inside the bracket of the left-hand side.

Now, owing to the assumptions we have made, whenever r is g-x-ﬁat enough so that

(C-faz,
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a2
e” 22 is not too small a/2r is negligible with respect to h and then we shall be

; et to assume w(r) as an approximate solution of (24}, by putting
Y =02

ae 2ek? ey /
== q 29
) = o (29)

It is easy to check that from (29) it is [H;’C u(r)dr = 1.
Now, from (23), we get G_\,‘(7

“ 1 WA 2 1 ac” 2k = }
F(r,z)da f= —/ e " dr —
( )//L v/ 38 - 2 ke/2m \/211',0*‘

fil ety e da =1 e d
S AT Y IR Y M

And then

-0 ___—

oc

2
17/ F(r,z)dz = e ¥ dx . (30)
\/_ :
Remembering now the meaning of F(r,z) one 1mmediately realizes that

a
1- / F(r,x)dx

—o0 A~
represents the probability that at least one of/expressions (16) is greater than a.
Therefore (30) completely demonstrates the theorem we have enunciated.

< \ be 0\]’?\0.»
§ 3. The theorem just proved W}H&M@—(ﬁ—:—\-& 1mmed1at(? appheatiom to a

famous theorem of calculus of probability: Peter and Paul make a game of chance.
In each game each one has probability 1/2 to win; the stake is always of & lire. Now
Peter is infinitely rich, on the contravy Ianl owns only a live. IF at a certain moment
Peter is able to win all the s:.ms?d i }'ﬁéﬁﬁ\ the latter is ruined and is obliged to
stop the game. So we are in the case considered in the above theorem and we can
conclude thatj after a sufficient number of games Peter will certainly ruin Paul;
moreover, if a is much greater than & /{he probability that this M happens in n
games is

2 o N
eV dy _—

§ 4. We want now to apply the above theorem to an astronomic problem. Let
us consider an elliptic comet which intersects Jupiter’s orbit. The cometary orbit
will be obviously perturbed by the action of Jupiter, and this particularly when
Jupiter and the comet pass very close. Now it may happen that in these continuous
transformations the comet’s orbit ends by changing into a parabolic or hyperbolic
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orbit; then the comet will go away forever escaping from the agtraction of Jupiter
and the Sun. Fwant to study what is the probability that this/happens in a certain
time. As far asdfknow the theory of the influence of Jnli&it'.m' on the cometary
orbits has never been studied from this point of view; peeple only dealt with this
matter? looking for an explanation of the capture of comets with parabolic orbits

when passing by chance close to Jupiter. We will make the following simplifyirrg-': \-QA

assumptions, the same of the restricted 3-body problem: The comet has a negligible
mass, so that it does not perturb J upii.er-ﬁe’rﬁ%ﬁ'{ the Sun. The mass of Jupiter
(m) is negligible with respect to the mass of the Sun (M). In this way we are allowed
to assume the Sun as fixed and to consider the orbit of the comet being appreciably
perturbed only when passing in the close neighboj;hood of Jupiter. Jupiter’s orbit
is circular. Comet’s orbit is coplanar with Jupiter’s orbit. We call u the velocity of
Jupiter and V the velocity of the comet when it crosses Jupiter’s orbit with respect
to a reference frame moving along this orbit with velocity u; we indicate with 6 the
angle between the direction of V and Jupiter’s orbit. If v is the absolute velocity of
the comet, when it is crossing Jupiter’s orbit one will have

v? = u? + V2 + 2uVcosd (31)

Let us suppose that once, while the comet is crossing Jupiter’s orbit, it passes
very close this planct. Then it will be affected by a strong perturbation. Let b be the
smallest, distance between the two bodies i;‘ they were not atiracted to one another.
According to our assumptions, in order t% the perturbation @:onsiderable b must
be very small if compared with the curvature radii of the two unperturbed orbits
so that, during this “collision”, the comet will appreciably describe a keplerian
hyperbolic orbit during its motion around Jupiter.

§ 5. Thus, let us consider this relative motion, referring to polar coordinates
(r,») having Jupiter as a pole and the polar axis parallel to the direction of the
incoming comet. Since the motion is a Kepler motion, we have

1
—_— A = = A~ Beos(¢w — o) (32)
NV V(7 4

bere A, BLlpu}\C()llﬁf-;llllr. Moreover, for ¢ = 0, r must be infinite, that is
—
AchosnpO:O(e)\ (33)

E_then it must be
' siny 1

b= lim rsiny = lim = m— O
r=0cC ¥ r,':==lll A-DB (TUS(‘: = '1:J|J) I3 sin wo

The areas constant is then evidently Vb and owing to the wellknown formulae

2TISSERAND, « Trailé de mécanigue céleste>>, Tome 1V, pp. 198-216; CALLANDREAU,
< Ann. de l'observatoire>> T. 22; A. NEWTON., <« Mem. of the Nat, Acad, of Sci.>>», T. 6.

(34)

of the Kepler motion one has

o

c3)
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From (33) and (34) we can now obtain the other two constants. One finds

V?b 1 [ m2 (} el
tan gy = ——— B= /14— ' 36
an o m b + b2y (36)

Now, let 1 be the angle between the direction of the comet when approaching

exactly

and its direction when going away. Obviously one will have:

Y =20 —

\fF,imd then
- tan v__ cotpp = —- (37)
2 = =g )

We can conclude that the perturbation consists in keeping V unchanged and
in altering 8 of the angle ¢ given by (37). Now it is convenient to calculate the
averages of the squares of ). Therefore we observe that one has:

m
= 2arctan ——
v V3

aind then ’
2@:4/ < ta ——)db
100 1 . arctan Vo

4m [ 1\? 8m [ 1\2
== arctan — | dr = — arctan — | dz
V7 /) x Ve Jo T

by putting
oo 1 2
h = / <arctan —) dx = 2.5
0 xT

then one has
e Smh
[ova-%5 O w

Now, b being very small, the probability that its value is comprised between b
and b + db is obviously

db 7 :
27Rsin @ U 1S
R being the radius of Jupiter’s orbit. The average of the squares of L/)[therefore

- o db 4mh
2 = 2 = . 39
v /;x¢ 2rRsingd 7R VZsinf (;) (39)

§ 6. In its motion around the Sun the energy constant of our comet is given by

2
oMW,
2 R

t=y
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As it is well known, a Iepler orbit is elliptie, parabolic or hyperbolic aec :
zg-the energy constant is negative, null or ]n.miLiV(i; now, WM)\(?)]J we [ind
) ras?%\-‘.m\g
W= E <u2 + V2% +2uV cos 6 — 2M>
2 R
E“hut since for Jupiter we have the relation:

2 M
R O

for our comet:

t&—-we can write

Since in the subsequent perturbations V is not changed and only 6 changes, in
order that the comet can become hyperbolic it is necessary that W, negative at
present, can become positive in correspondence to suitable values of §. Then it

M
2W = V2% 4+ 24V cos 6§ — R

must be
M
V?42uV > —
—+ 2uV > R
IG‘but we remark that
M
u=1/—=
R

therefore the above inequality can be written:

2
/M 2M
le-frmn which * and reduces at the end to

Vs \/f--]) %:(\/ﬁ—l)u. (40) /

)
Thew we will asswiney Lhis inequality :w—ﬂe'btmﬂ-y—m-kﬁ. Moreover, for some
values of 8, W must certainly be negative, otherwise the cometary orbit could not

M
2 ] M ]
Vv <= ()
From which as above

v (vae) M (vara)u. ()

Therefore let us assume that V fulﬁk'(40) and (41) and indicate with 8y that
particular value of # for which the comet’s orbit is hyperbolic, i.e. one has W = 0,

<hatie NG

be elliptic; so it will be:

M
V2 4 2uV cosfy = T

*Editor’s Note: At this point, in the Fermi’s manuscript there is a blank line which, obviously,
would have contained the expansion of the square of the last formula.
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Eﬂnd then ' P““'New ’D““

% —V? B u? — V2
2uV. 2uV
When 6 is greater than 6, one has W j () and then the comet describes an elliptic
orbit; on the contrary, when @ is less then”dy the orbit is hyperbolic.
Now we will suppose that initially the m‘la‘icli; éé-;‘lliptic and very stretched, so
that 6 is very close to fp, and preeisely] slightly greater. We call 0* this initial value.
Whenever the comet goes beyond Jupiter’s orbitpf is changed of an amount +; the
average of the squares of 9 depends indeed on #, as (39) shows, but since we have
sumﬂf;\scd that 6 remains always very close to Qoﬁze can put

ALFW = 4mh
)2 —
) v 7R VZsin
if after a certain time 8 became[j})fy the comet should become hyperbolic and
should go away forever. Therefore We are Mﬂﬂu—@p—h@ﬂf* able to apply the
theorem of §2. Then we must put @ = 0* —0y; k% = T\lf"#’:}hﬁ; And the theorem we
proved says p‘# that: The probability that the comet will be changed in hyperbolic

after having crossed n times Jupiter’s orbit is:

% / b ) e dx (44)
el 200
VeV
and then tends to 1 when n tends to infinity. In the strict sense one could object
that the above caleulations would fail if the value of V were such that, when the
orbit is parabolic, the comet took the same time as Jupiter to go from A to B,
beingl Althe point where the comet enters Jupiter’s orbit, and B the point where
it goes out. In Figure IH, S is the Sun, AJB Jupiter’s orbit, AKB the orbit of the
comet. But it is easy to realize that this case certainly cannot happen if the comet
describes its trajectory with direct motion. In fact, if v is the absolute velocity in
A of the comet in its parabolic orbit, one has

J{o/ﬁnd then from (42)
pt.lmt is:
V> {\/\9-' (45)

Now, the velocity of the comet is not constant, but in Lwhole tract AKDB it is
always greater than ii’lwxh'()!rles A and B, thus inequality (45) holds true with
all the more reason in‘}\-'llt.)le tract, AKIB. On the other hand, if the motion is direct
one has that arc AKD is shorter than arc AJB, and since it is covered with even
higher velocity it is certain that the comet will arrive at 3 before Jupiter. If on the

cos By =

(43)

12 = u? + V2 + 2uV cos b

v? = 2u?
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contrary|thf motion of the comet were retrograde, and it described for instance the
orbit AI’3" in the sense indicated by the arrow one would have
v e A
: - !
arc AK'BY > arc AJB

<and then, though (45) still holds, it is evident that for a particular value of the
parameter of the cometary orbit it can happen that the two heavenly bodies take
the same time to go from A to Bﬁ course this can only happen for a particular

P

value of V.

Now if this happened it could occur that the comet, elliptic at first, crossed
Jupiter when passing through A and got changed in a parabolic one; but in this
case it would meet Jupiter again when passing through B and could in case have a
new perturbation which would change it in an elliptic comet again. For this reason
we consider this particular value of V ruled out from our calculations.

§ 7. At last we want to consider the possibility that before being changed in
hyperbolic the comet can crash into Jupiter and then be destroyed. What is the
probability of this event? For this let us look first for the probability that the comet,
crossing once Jupiter’s orbit, collides with the planet. If we indicate with p the sum
of the radii of Jupiter and the comet, to have the collision it is necessary that the
perihelian distance of Jupiter from the comet, as calculated though the formulae
of the Kepler motion is smaller than p. Call § this perihelian distance; from the
formulae of §5 it results y~

1
~=A4B
; +

F.and then from (35) and (36)
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&o
If we want the collision[occur &c must be § < p and then

m +1 14 m >1
V2 b vz~ op

ﬁ-—hy multiplying this inequality by the quantity, certainly positive
P m 1 m

F—‘V;e find
z 1
A R R
b and sumx)[ﬂ'rré the last two inequalities

2m n 1 .
vZ TP ) B2 P
‘s« wherefrom finally
2mp /
bl < O (16)

We recall now ghal) the probability that the value of b is comprised between b
and b + db is #ﬁnu{, and then probability p that the collision oceurs in only one
crossing of Jupiter’s orbit is given by

1 2mp
= 2 , 47
o bq’p 7R sin fy Vp * V2 Q (47)

We will assume pyvery small, and this obviously is equivalent to considerr____
Jupiter’s radius negligible if compared with the radius of its orbit. Let us now ¥ A
look for the probability that the collision occurs at the ﬂ-'ith time the comet crosses
Jupiter’s orbit. Therefore it is evidently necessary that the collision has not oc °

~ curred before and the probability of this is obviously (1 — p)"~!, that is in our
appr0x1mat10n

m 1 m

1
— 1+ S - —
g (b Vie  p VQb2> @

—

e

That the comet has not yet been changed in hyperbolic; and, having supposed
p extremely small, remembering (44) and putting for the sake of brevity:
* — 0

8mh
*RVZsind,

'

=H

l{-. we can hold that the probability of this event is given by

2 > _l,zd 2 % 7332(1
= e T == e x
NG [y_ N
v

And finally that the collision really occurs, {or which we have the probability p.
After allﬁ&e probability that the collision occurs the rfth time is
_

‘ m
2(» F "p 7 o=
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J
Xy
and therefore the probability that the collision occurs }r‘mrmvhaw:mvrff will be

the sum of the above expression from n =1 to n = oo, or replacing the sum by an
integral

H
2 e VR 2
il e Pdn e ¥ dx .
T Jo 0

In this expression it is convenient to reverse the integration by the formula

/ dn/ d:c:/ da:/m dn
0 0 0 0

\%zmd in this way one finds for the wanted probability the expression:

2p &0 2 ;HQ- 2 ©0 2 pH J(
e * d:t/ e Pdn = —/ e ® (]_ - e_?) dz
0 VT Jo

v Jo

e 2vrH
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7) Formation of Images with Réntgen&ys

“Formazione di itmmagini coi raggi Rontgen,”
Nuovo Cimenlo 25, 63-68 (1923)

of
Rontgen rays do not undergo reflections mn“LrefracLions, at least in the usual
. . . - A
sense of the word, siuce the reflection of diffraction ocenrs ouly under well definite J¢ V\LQ]

incidence angles. As a consequence in the X-ray optics the problem of obtaining
images cannot be solved, as in the ordinary optics, by means of spherical lenses
or mirrors. Gouy™ suggested theoretically a method for obtaining monochromatic
images with X-rays, by means of a cylinder of mica. In a few words it is the following.
Let us consider a circular cylinder of mica and suppose that in a point of its axis
there is a source S of monochromatic Rontgen rays. They will be reflected on the
mica in those points where Bragg’s relation is fulfilled: these points\nhvinusly fare f V\.t(}
on circular sections of the cylinder. And the rays reflected on one of these circles
will gather in a point I on the axis, symmetric of § with respect to the plain of the
reflecting circle, where one will have a real monochromatic image of S. If S were in
the neighborhood of the axis, still an image of it will be formed in the neighborhood
of the axis'. Suppose now to have, in the neighborhood of the axis, a planar figure
from which points monochromatic X-rays come out, and to place a plate in the
position where its image is formed. Let r be the mirror-object distance, R the
radius of the cylinder of mica, 6 the Bragg incidence angle, r* the image-mirror
distance. If we project everything on a plane orthogonal to the axis of the cylinder
of mica, the projections of r and v’ will be r cos 0, r' cos 0; and then, according to

the usual formulae of the spherical mirrors it will be
1 1 2

b—_ =
rcos  r'eosl r

H

from which
i Rr
r = ———
2rcosf — R
The linear coeflicient of enlargement of the segments orthogonal to r and the axis
of the cylinder will be

R 1)
= T Srcos@-R O
If the object is close to the axisgwe have approximately i = 1. To calculate the /l\

( enlargement of the segments parallel to the plane of the axis and of 7, let us call
w and @' the angles that the lines orthogonal to the plane of the object and of the >
with 7 and 7’ respectively. Then one immediately sees that |.Im@ .

argement is
flo — (2)

“C.R.GOUY, «C R.>>», 161, 176 (1915).
tOr cowrse, provided|that the cylinder is confined in a region small enough comprised between
two generalrices.,

slate forn

for en

T‘\QG\S& mz.‘dﬂ— et QA
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Suppose now to photograph an aperture placed orthogonally to the plane of r and
the axis by a flat plate of mica of length I If h is the length of the aperture, the
length of its image will be 2/ + k. If instead we bend the mica in order that the
image is formed in the focus, the length will become h. The intensities of the two
images will be obviously approximately in the inverse ratio of their lengths. Their
ratio is then
20+ k
h

If, for instance, h = 1 ¢m,)l = 4 the ratio is 9. Then the intensity is almost
decupled. ¥shall now deséribe the way in whichlvﬁé'f\//e actually succeeded in obtain-
ing these images. The source of the rays consisted in a tube of the shape and size
approximately indicated in Figure 1. #created the vacuum by a rotational pump
Cacciari, type Gaede. Cathode K was concave, with a radius of 6 or 7 when one
wanted to concentrate the rays on the anticathode as much as possible; if instead
one wanted the whole surface of the anticathode be hit by the rays, the cathode was
made with a smaller radius. The anticathode was generally of iron and sometimes
was cut almost orthogonally to the cathode rays, in order to do without the slit.
Instead, in other experiments it was cut as the spout of a flute, in order to present

a large surface to the detecting instruments.

cm 40

17 L\

i

)L C

To the pump R

Fig. 1

Since the radiations typical of the iron are largely absorbed by the glass of the
bulb,—}":ctought it right to equip the tube with little window of aluminium R. During
the work the tube was kept attached to the pump, so that after a short time, it
assumed a running regular enough. The tube was driven by a big induction coil
with a Wehnelt switch; in ordinary conditions the equivalent spark was 10 or 12
@ long. The tube was contained in a small wooden box sheathed by lead 6
thick on the side of the instruments and 3 {uid thick on the other sided. To obtain
fairly precise images it was necessary the reflecting plate of mica be regular as much

fermi'book'B

Re—

as possible. Therefore, it was carefully chosen among many samples; nevertheless £ Lo

have never succeeded in finding plates that, in reflecting the light, were more regular
than an ordinary windowpane. This is the cause of the irregularities and smudges
we can observe in the reported images. The mica was bendH by binding it fast

il
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on a turned brass cylinder. Then a layer of sealing wax (little more than half a

centimet{g) thick) was spread on the convex part. When the sealing wax had cooledg\,

one (-.m{[r_l remove the fastenings and detach the mirror from the cylinder. In this

UQQ/ way .ﬁl.lcmedefl in obtaining cylindrical mirrors relatively |')l;p(:i.~;(-: given the limit

imposed l)_\rz-tlw natural irregularity of the plates used. “Fhey-hz sty dimensions oAQ W\Oﬂ*‘\j
&’4 x 6 Gmybut usually their aperture was reduced to 4 x 2 emiJor making use of

the less irregular parts, which were judged by trying the wirors by the reflection

of the ordinary light. The mirror was mounted on a graduate circle in order to

be able to put it right. (The angle e . for the study of the third

order of Hre{!\"ﬂ. of the iron was lei“ﬁﬂ'). The detection of the rays was performed 07
photographically. ?Q('Ean'ied out first a few experiments of orientation with planar

crystals to verify the nature of the anticathode and the inteusities of the reflections

of the various orders. It resulted that the double K, K, (X = 1.932;1.928), scarcely

resolvable in the experimental conditions in which fwes{ the K5(A = 1.748) were “"(
emitted. The K, was scarcely visiblg due to the low intensity. The most intense

orders were the first and the thivd. wrefe red to work in the third &.11 order not to

be obliged to use incidence gngles too #6 90°. Then d?:exparienced the

indicated method te ohtaﬁi images first on the anticathode which was also working

as an @erture. The distances anticathode crystal and crystal image varied from 18

to 22 pm. The exposure lasted about ten minutes.

S .|

A could immediately ascertain the very strong increase of intensity which can be ,o@-\ﬂ/
obtained in this way. A rough idea Qtf Jhis is given W Figge 2771, and 2;;_2 which CAN k‘ba’"

represent two photographs of the P order of iron K, obtammed approximately in
the same conditions of exposure and operation of the tube, the first one with flat
mica and the second one with curved mica. The increase in intensity was indeed

such that, particularly using mirrors of 6 @ of aperture, accustoming a few minutes R
the eyes to the darkness of the room, it was possible to see clearly the images on
a sereen of barimm platinum cyanide. From F,’?,“J it is clearly visible that the ’F")Mff?—‘

emission intensity of the central part of the anticathode, where the cathode rays
were concentrated, is considerably greater than that of the side parts. It is possible
to see this because the method of images allows to observe the slit "‘&‘ocl{yer"s art”, :
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thfmt is, to ebserve pt")i 1¥J?ywtgba1t\]1;.l])}£)s in t.he slit. To put this mc'm.a in

evidence ‘imarlrﬂw—fnq. ; ;\mvrn'g'ex-p em%qﬁé?r{ﬁ'lmred before the window of aluminium

a leaden thread of about 1 @ of diameter and shifted the photographic plate to = Nl
carry it in the point where the image of the alumininm window was forming. @ ;‘5 P
A7gives the result of this experiment; in the figure the gap in the image produced

by the leaden thread is clearly visible. Finally [ig) 274 represents an attempt of %’7%7’0,
obtaining an image of an object in two dimensions. The anticathode of iron was

therefore cut as the spout of a flute and two cross shaped hurows were cut in it and

inside them two copper wires were driven in order to form a sort of X. In 19‘1,,1“ el 18 ’("Wa/
one can see the image of this X, obviously together with several irregularities due 1-¥
to the irregularity of the reflector.

This work was carried out at the Institute of Physics of the University of Pisa in Winter
1922,
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30) On the @uantization of an Sdeal MOnatomic %as

“Sulla quantizzazione
del gas perfetto monoatomico,”
Rend. Lincei 8, 145-149 (1926).

§ 1.— In classical thermodynamics one takes (referring to a single molecule) as
specific heat at constant volume of an ideal monatomic gas ¢ = 3/2k. However,jt is
clear that, if one wants to admit the validity of the Nerst principle also in the case of
an ideal gas, one must think that the above expression of ¢ is only an approximation
valid at high temperatures and that, as a matter of fact,_c tends to zero for T'= 0, -
so that one can extend up to the absolute zero the integral expressing the value of

‘l'\’o\\ rc

entropy without the indeterminacy of the constant. And for realizing how such a
variation of ¢ can occur, it is necessary to admit that the motions of an ideal gas
must be quantized as well. Then one realizes that such a quantization, besides the
energy content of the gas, will influence the equation of state as well, thus giving
rise to the sgfcalled phenomena of degeneration of the ideal gas at low temperatures. L"

The purpose of this work is the exposition of a method for carrying out the
quantization of an ideal gas which, in our opinion, is as much as possible independent
of unjustified hypotheses on the statistical behaviofir of the molecules of the gas.”

Recently various attempts have been made I’Prm'ﬂv-rrrg to establish an equation
of state for the ideal gas.

The formulae given by the various authors differ from ours and from the classical

(U

equation of state only for very low temperatures and very high densities; unfortu-
nately these are the same circumstances in which the deviations of the laws of K—(
real gases from the ones of ideal gases are more important; and since, on conditions

one can easily carry out experimentally, the deviations from the equation of state

pV = kT due to the degeneration of the gas, even if not negligible, are always con-

siderably smaller than those due to the fact that the gas is real and not ideal, the

former have been so far hidden by the latter. This does not exclude the possibility

that, in a r[t-}m:e—mb’rc&}near future, and with a more profound knowledge of the P’
forces which act among the molecules of a real gas, one can pull the two deviations

apart, thus arriving to choose cxperimentally among the different theories of the
degeneration of the ideal gases.

\noordr ¥ o _ F{
§ 2. Forbe o carry out the quantization of the motions ul'brl«'rlnulmrult.-s
of an ideal g;\:};@m must be p-sue 3 wwm—l-n—{-#- able to apply Sommerfjeld’s ‘1

rules to their motion: and this can be um&' in an infinite munber of ways ghtofwhichs
bestdes—lead-to-the-sameresudty One can, for instance, suppose the gas contained in
a parallelepiped vessel with elastic walls, quantizing the thre(;)’fold periodic motion

*See for instance A. Einstein, Sitzber. d. Pr. Akad. d. Wiss, 22, 261 (1924); 23, 3, 18 (1925);
M. Planck, Sitzber. d. Pr. Akad. d. Wiss. 23, 49, (1925).
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of the molecule bouncing off the six walls; or, more generally, one can subject the
molecules to a system of forces such as their motion becomes periodic and then can
be quantized. The hypothesis that the gas is ideal allow us in all these cases to
neglect the forces acting among the molecules, so that the mechanical motion of
each of them happens as if the other ones should not exist. Nevertheless one can h
recognize that the mere quantization, following Sommerfjeld’s rules, of the motion __ 07
of the moleenles, considered mutually independent, is not sufficient for obtaining %! Q_Au
correct outcomes; since, even if in this case the specific heat tends to zero for T = 0,
yet his value , besides on temperature and density, comes to depend on the total
quantity of gas as well, and tends, at any temperature, to the limit 3/2k when,
even if the density remains constant, the quantity of gas tends to infinite. Then it
appears necessary to admit that some complement to Sommerfjeld’s rules is needed,
when calculating systems which, as ours, contain elements indistinguishable between
them.t
. To hgw‘e«em hint on how to formulate the most plausible hypothesis, it is worth
~ ‘(\% Jo consid-el;nlow things go in other systems which, as our ideal gas, contain indistin-
guishable elements; and precisely we want to examine the behaviofr of the atoms
heavier than hydrogen which all contain more than an electron. If We consider the
deep parts of a heavy atom, we are in such conditions that the forces acting among

(D

(S

the electrons are very small in comparison with the ones exerted by the nucleus. 0\'\
In these circumstances the mere application of the Sommerfjeld’s rules would lead .
-—t{wt-.\:.peet—bhaf, in the normal state of the atom, a considerable number of electrons
\3\”\'__;0:551-_1_9_14-1(:1—1-5{‘ in an orbit of total quantum mumber 1. As a matter of fact, instead
one sees that the ring K is already saturated when L'.onta-ijfkﬂtwo electrons, and - l“'\‘j L

likewise the ring becomes saturated when (:outﬁi“;\:{jﬂ electrons, ete. This fact has
been interpreted by Stoner,’ and in an even still more precise way by Pauli,$ as
follows: let us characterize an electronic orbit Tbte in a complex atom by means L
of 4 quantum numbers; n, k, 7, m, which have respectively the meanings of total
quantum, azimuthal quantum, internal quantum and magnetic quantum. Given the
inequalities to which these 4 numbers must satisfy, one finds that, for n = 1, only
two triplets of values exist of &, j, m: for n = 2, there are 8, etc. To realize the
above fact, therefore it is sufficient to admit that in the atom two clectrons whose
orbits are characterized by the same quantum numbers cannot exist; in other words
one must admit that an electronic orbit is already “occupied” when contains only
one electron.

§ 3.— |WeiNow fintend to investigate if such hypothesis can give good outcomes V"‘WS
in the problem of the quantization of the ideal gas as well: therefore we shall
admit that in our gas almost a molecule whose motion is characterized by certain
quantum numbers can exist, and we shall show that this hypothesis leads to a

tE. Fermi, N. Cimento 1, 145 (1924).
IE. C. Stoner, Phil. Mag. 48, 719 (1924),
SW. Pauli, Zs. f. Phys. 31, 765 (1925).
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pertectly consequent theory of the quantization of the ideal gas, and in particular
it gives reasons for the expected decrease of the specific heat at low temperatures,
and leads to the exact value for the constant of entropy of the ideal gas.

——— Putting off the publication of the mathematical details of the present theory
to a next occasion, in this Note we limit ourselves to expose the principles of the
method we have followed and the results obtained.

First of all we must put our gas in such a condition that the motion of its
molecules results to be quantizable. As we have seen, this can be made in an inﬁnit,\le f““"w
of ways; but, since the result is independent of the particular way one adopts, we
shall choose the most convenient for the calculation; and precisely we shall admit
that our molecules are attracted by a fixed point O, with a force proportional to the
distance r of the molecule from O; so that each molecule will be a spatial harmonic
oscillator whose frequency we call v. The orbit of the molecule will be characterized
by three quantum numbers, s, sq, s3, which are linked to its energy through the

relation
=] = shv . 1
w = hv(sy + sg + s3) = shv (1) Q\)j/
Then the energy of a molecule can take all the\m;)multiple of hy, anc
the value shr can be assumed @ = £ (s + 1)(s + 2) ways.

Therefore the zero energy can be realized in only one way, the energy hv in 3 \ocre h
' ways, the energy 2hv in 6 ways, etc. To realize the influence of our hypothesis, i.e. ? m-f
f{ to given quantum numbers can correspond only one moleculf, let us consider

the extreme case 6f N molecules to the absolute zero. At This Temperature the gas
must lie in the state of minimum energy. If we had no limitdted to the number of “7
molecules which can have a certain energy, all the molecules would lie in the state
of zero energy, and all the three quantum numbers of each of them would be zero.
On the contrary, as provided by our hypothesis, the existence of more than one
molecule with all the three quantum numbers equal to zero is forbidden; therefore
if N =1, the only one molecule will occupy the place of zero energy; if instead
N = 4, one of the molecules will occupy the place of zero energy, and the other
three the place of energy hv; if N = 10, one of the molecules will occupy the place
of zero energy, three of them the places of t‘Ib-i 2y .-'rg:_j_'lml the 1 vmanung six the six

places of energy 2hw, etc. Now let us : tllstlﬁlllt(‘ the total energy
W = Ehv (E = integer) among our moleculcs: and call Ng < Qg the numbers of
molecules of energy shv. We{mm that the most probable values of N, are V\%
() ;
Ng = ———, (2)

e;i:. +oex
where o and /3 are constants depending on W and N. To find the relation between G)H
these constants and the temperature, we observe that. as a consequence of the
attraction toward O, the density of our gas will be a function of r, which must
tend to zero for r = 8. Accordingly, for » = 8 the phenomena of degeneration
must cease, and in particular the distribution of velocities, easily deducible from
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(2), must change into Maxwell law. Thus one finds that it must be

i1 e
= 3

Now we are able to deduce from (2) the function n(L)dL, which represents, for a

given value of r, the density of the molecules of energy between L and L+dL (anal-

ogous to the Maxwell law), and from this we can deduce the mean kinetic energy L

of the molecules at distance r, which is a function, besides H—Hﬂ# temperature, of 0_]
the density n as well. One finds precisely

3hZn?/3 <‘2mnkT)

L= h2n2/3

(4)

dmm

In (4) we have called P(x) a function, of a bit complicated analytic definition,
which for values of z either very large or very small, can be calculated through the
asymptotic formulae

1
1
Pa) = -

(D)) ] e

To deduce from (4) the equation of state, we apply the virial relation. Then we find

that the pressure is given by
2 . hEnd3 2umkT
p=3n 27 < h2n2f3 > ( )71

At the limit for high temperatures, that is for small degeneration, the equation of
state M the form V\—‘—[ S

1 I
=nkT |1+ —————=+...] . 7
- p=n { + 16 (mmkT)3/2 + } ( )%

1S
Then the pressure resrtm#higher than the one coming from the classical equation of
state. For an ideal gas having the atomic weight of the helium, at the temperature 7

of absolute 5° and at pressure of 10 atmospheres, the difference would be H 15%.
From (4) and (5) one can also deduce the expression of the specific heat for low

temperatures. One finds
1678\ nk?
o < 9 > hEn2/d uE @ ®)

Likewise we can find the absolute value of entropy. Carrying out the calculations,

at high temperaturcs one finds

9

{27.‘?::}:"”;.?5"2(-75/2}

T 5
S:/O pib=n [ilongogPHOg E

which coincides with the value of entropy given by Tetrode and Stern.
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43) A&atistical ethod for theDetermination of &me roperties
of the¥atom (* )

“Un metodo statistico per la determinazione di alcune proprieta dell’atomo,”

Rend. Lincei 6, 602-607 (1927).

The purpose of this work is to show some results about the distribution of
electrons in a heavy atom which can be obtained dealing with these electrons, given
their great number, using a statistical method; or in other words, considering them
as a gas formed by electrons surrounding the nucleus.

Naturally this gas of electrons comes to find itself in a state of complete de-
generacy, so much so that we cannot deal with it using classical statistics; on the
contrary we must use the form of statistics proposed by the author (*) and based on
the application of Pauli’s exclusion principle to the theory of gas. This has the effect
that the kinetic energy of the electrons, in the conditions in which they come to find
themselves inside the atom, actually turns out to be bigger than it would have been
according to the principle of equipartition of energy and practically independent of
the temperature, at least as long as it does not go beyond certain limits.

In this Note we shall show first of all how the distribution of electrons around the
nucleus can be calculated statistically; and based on this we shall then calculate the
necessary energy to ionize completely the atomn, that is to tear off all the electrons
from it. The calculation of the distribution of electrons around the nucleus also
allows the determination of the behavior of the potential at various distances from
the nucleus and therefore tg know the electric ficld in which the electrons of the atom
come to find I.hc-m'lselw»s.%)]m to be able to show in a future work the application
of this to the approximate calculation of the binding energies of single electrons and
to some questions about the structure of the periodic system of elements.

To determine the distribution of electrons, we must first of all search for the
relation between their density and the electric potential at every point. If V is the
potential, the energy of an electron will be —eV and therefore according to classical
statistics, the density of electrons would have tokhen\ be proportional to e¢V/kT .
But, according to the new statistics, the relation between density and temperature

is the following one:

2rmkT )32
0y n= %F(acev/lﬁ) (1)

where a isolconstant for the whole gas; the function I in our case (complete degen-

eracy), has the asymptotic expression
4
F(A) = —=(log A)*2. (2)
3/
Then in our case we find / ?
0T/f2 ﬂ,.”,:ili (,.'t 2 )
y 2 - . 3/2
n=—-m" 3
38 3)
* Presented in the session of December 4, 1927 by the Fellow O.M. Corbino.
TE. FERMI, Zs. [. Phys. 36, 902 (1926).

fermi’book’'B

W



January 29, 2017 12:5% World Scientific Book - 9.75in x 6.5in fermi’book’ B

From Fermi’s papers of the Ilalian period 89
where
kT
v=V+4+ —loga 1) o
e

represents the potential, apart from an additional constant. Now we observe that

since in our case we are dealing with a gas of electrons, we must take into account

the fact (*) that the statistical weight of the electron is 2 (corresponding to the two
possibilities for the orientation of the spinning electron); and so for the density of
electrons we must ﬂema-l-l-!( take a value equal to twice the value (3); namely we 6—\
have:

29/2 /2 312,
=2 T ¢ e 5
" s (5)
If in our case classical statistics were valid, we would have the average kinetic
3 N
energy of the electrons = §kT. On the contrary according to the new statistics it

turns out to be
3
L= §kTG(aeev/kT) JF (VTR

where G represents a function that, in the case of complete degeneracy, takes the
asymptotic expression

8 [
F(A) = ——(log A)®/2,
(4) =17 ﬁ( og A)
Therefore we find for our case
3

L:Eev. (6)

Now we observe that the electric density at a point is evidently given by —n.e so

the potential v satisfies the equation

918/2 1 2.3/2 ,5/2
Av=4nne= e w32 (7

Since in our case it will then evidently be only a function of the distance r from the

nucleus; then (7) can be written

i 35

If we indicate by Z the atomic number of our atom we shall evidently have

v 2dv 213/2 g2 3/2 65/2, 3/2

(8)

ljrré ruv = Ze (9)

/ ndr = 4w / rindr = Z (dT = volume element) .
' 0

YW. PauLL, Zs. [. Phys. 41, 81 (1927).
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This last equation, taking into account (5){&m be written:
)
oc
218/272,3/2,5/2 f
/2,2 0.
—_—— f v dr = Ze . 10
303 / ! (10)
0

So the potential v will be obtained searching for a function which satisfies Eq. (8)
with the two conditions (9) and (10).

To simplify the search for v we change the variables r,v into two others z,
proportional to them, setting

repr ., v=ry (11)
where we have
32/3 h2 213/3 7[.4/3 TT),Z4/3 e3
B = 31378 1173 ye? FAVE ' 7= 32/3 |2
Equations (8), (9) and (10) thus become

(12)

[ w// +2w/ _ 1/)3/2
i op =1

' (13)
(s %!
/1,03/29321130 =1.

L3 b

These equations simplify further by setting

w=uxy . (14)

Indeed they become

r(p//:¢3/2/\/5

@(0) =1
(15)

/ws/z\/idx =1z

v O

It is easy to see that the last condition is certainly satisfied if ¢ goes to zero for
x = 0. So it remains only to search for a solution to the first of (15), with the
conditions at its limits £(0) = 1, y(oc) = 0.

Since I did not succeed in finding the general integral of the first of (15), I have
solved it numerically. The graph in Figure 1 represents yp(z); for = close to zero we

have
[ 4 3/2
plr)=1-158z+ gz +® (16)

fermi'book B
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1k
1 i I 1 .XI
1 2 3 4
Fig. 1
—"
Thus the problem of the determination of the electric potential of the atom at . b
a fixed distance from the nucleus is solved. Its result is given by = 'M‘YN

V=

! S~
7@ = %g@(w) = ?w (7;) : (17) c{/ =T

So we can therefore say that the potential at every point is equal to that produced
by an effective charge

7 r

o (u) ' = Iwm[IWL
Now we move on to calculate the total energy of the atom; this should be ,9},\'1

calculated as the sum of the kinetic energy of all the electrons and the potential

energy of the nucleus and electrons. However, it is easier taking into account the

fact that in an atom the total energy is equal, except for the sign, to the kinetic

cnergy (which anyway in our case cau be verified with an casy calculation). Thus

we have
W = —/LndT < c.,,,\\‘n‘/\"’t
and taking into account (5), (6), (11), (12), (14) we find ST~
5 "‘.'9,2 13/391/3,24/8,, 4 77/3 "":;5;2
W=—= |+ nvdr=— — dr .
Hh2 VT

5
o w0

The last integral can be evaluated taking into account that ¢ satisfies (15) and

(16); one finds
Y G2 d 5
Mgy = 2 <i> = 2158
y«T \/T 7 \ dx 2—0 7
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and therefore we have

DIBTE R IVESS VNS ey 91/331/3
W =—-158= =-158~——_RhZ"/3
o Th? ) Tr2/3 )

that is
W = ~154 RhZ"/3 (18) ~~

where by @ we indicate Rydberg’s number, so that — R is the energy of the fun-
damental state of hydrogen.

(18) gives us the necessary energy to tear off from an atom all its electrons.
Naturally given the statistical criteria which it has been deduced from, it begins to
be valid only for considerable values of Z; in fact we find that for hydrogen (18)
gives W = —1.54 Rh, while we actually have W = — Rh; the discrepancy is thus
54%. For helium the energy to produce complete ionization is obviously equal to
the sum of the ionization energies of H@and H@*; so we have W

~W =(1.844) Rh=5.8 Rh

but from the theory we obtain 1.54-27/3 = 7.8 Rh; therefore the discrepancy in this
case comes down to 35%. For the elements immediately following helium (Li, Be,
B, C), nearly all of the atomic energy is due only to the two K electrons (for carbon
about 86%) so the statistical method jpf-eerrsg must stillpeﬁ-ari‘ﬂ'l'} give considerable S\(
discrepancies. For C in fact we still find a discrepancy close to 34%.
But we must expect that for elements of considerable atomic weight, the dis-
crepancies between the statistical theory and empirical data are very much reduced;
unfortunately the data is lacking for a precise comparison and we can base ourselves
only on a rough valuation of the shield numbers for various orbits; such an evalua-
tion, however, shows much better agreement.
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80a) An g&tempt at al—heory of 3 ﬁays

“Tentativo di un a teoria dei raggi f3,”
Nuovo Cimento 11, 1-19 (1934)

ABSTRACT

A quantitative theory of the emission of 8 rays is proposed in which the existence
of the “neutrino” is assumed and the emission of electrons and neutrinos in § decay
is treated in a way similar to the one followed in the theory of radiation for describing
the emission of a quantum of light from an excited atom. We deduce the formulas
for the lifetime and for the shape of the continuous spectrum of g rays and compare
them with experimental data.

A The fundamental hypotheses of the theory
}\ NS
€ )

\,§-1—.—-} In the attempt to construct a theory of the nuclear electrons and the emission
of 7 rays, onc encounters, as is known, two principal difficulties. The first depends on
the fact that the primary g rays are emitted from nuclei with a continuous velocity
distribution. If we do not want to abandon the energy conservation principle, we
are obliged to admit that a fraction of the energy which is released in the process
of 3 decay escapes our present possibilities of observation. According to Pauli’s
proposal one can for instance assume the existence of a new particle, the soLcalled L -
“neutrino”, having vanishing electric charge and mass on the gorder of magnitude of
the electron mass or less. Thus we assume that H any [ pmc(e'.;:f-ﬁ‘m simultaneously
cmit'.],cn’ an electron, which is detected as a ray, and a neutrino which eludes the
observation carrying a part of the energy away. In the present theory, we shall
adopt the neutrino hypothesis.

— A second difficulty for a theory of nuclear electrons depends on the fact that
the present relativistic theories of the light particles (electrons or neutrinos) do not
give a satisfactory explanation for the possibility that these particles are bound in
orbits of nuclear size.

Consequently it seems more appropriate to agree with Heisenberg* and assume
that all nuclei consist only of heavy particles, protons and neutrons. Then with
the aim of understanding the possibility of emission of 5 rays, we will attempt to
construct a theory of the emission of light particles from a nucleus in analogy with
the theory of the emission of a quantum of light from an excited atom in the usual
process of radiation. In the theory of radiation, the total number of the light quanta
is not constant; the quanta are created when being emitted from an excited atom

*W. HEISENBERG, Zf', Jur Phys. 77,1 (1932); E. MAJORANA, Zﬁ. fur Phys. 82, 137 (1933). 6’7
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and disappear when absorbed. In analogy with that we will try to establish the
theory of 3 rays on these assumptions:

(a) The total number of electrons and neutrinos is not necessarily constant. Elec-
trons (or neutrinos) can be created or destroyed. On the other hand this pos-
sibility has no analogy with the possibility of the creation or destruction of an
electron-positron pair; in fact if we interpret a positron as a Dirac “hole”, we
can simply consider this latter process as a quantum jump of an electron from
a state of negative energy to a state of positive energy, conserving the total
number (infinitely large) of the electrons.

(b) The heavy particles, neutron and proton, can be considered, following Heisen-
berg, as two different internal states of the heavy particle. We shall formulate
this fact by introducing an internal coordinate p of the heavy particle, which
can assume only two values: p = + 1, if the particle is a neutron; p = — 1, if
the particle is a proton.

(¢) The Hamiltonian function of the overall system, consisting of heavy and light
particles, must be chosen so that every transition from neutron to proton be
accompanied by the creation of an electron and a neutrino; and the inverse
process, transformation of a proton into a neutron, be accompanied by the
disappearance of an electron and a neutrino. It must be remarked that in this
way the conservation of the electric charge is assured.

The operators of the theory

G [/

M—Q.—-AA mathematical formalism which allows us to construct a theory in agreement
with the three points of the preceding section can be easily constructed by using the
method of Dirac-Jordan-Kleint called “the method of second quantization.” Then
we shall consider the probability amplitudes 9 and ¢ of the electrons and neutrinos
in ordinary space, and their complex conjugates ©* and * as operators; while for
describing the heavy |>nrti<-l{?vgglm%l use the usual representation in configuration
space, in which obviously alSo wi]lL ve considered as a coordinate.

We introduce first two operators @ and Q* which operate on the functions of
the two-valued variable p as the linear substitutions

(1)

o 1

01
ofools @i

00

One immediately realizes thatg determines the transitions from proton to neutron,

and Q* the inverse transitions from neutron to proton.
(e

fCf. e.g. P. JORDAN and O. KLEIWN, Z§. fiir Phys, 45, 751 (1927); W. HEISENBERG, Ann. d. Phys.
10, 888 (1931). «
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The meaning of the probability amplitudes ¢ and i interpreted as operators is,
as we know, the following. Let

1/)11/)2...’(#;...

be a system of individual quantum states of the electrons. Then put
V=Y ;P =Y ylal. @

The amplitudes a,; and the conjugate complex quantities a} are operators which
act on the functions of the occupation numbers Ny, Na,...,Ng,... of the individual
quantum states. If the Pauli principle holds, each of the Ny can assume only one of
the values 0, 1; and the operators as and a¥ are defined as follows:

asV (Ny,Na, ..., Ng,...)
= (=1)Mrlet N (1 NYW (N, Ny, ..., 1= N,,...) (3
as¥V (N1, N, ..., Ng,...)
= (—1)NHNebe AN (1 N YT (Ny, Ny, ..., Ny, .. ) .
The operator a’ determines the creation, while the operator a, determines the

disappearance of an electron in the quantum state s.
Corresponding to (2), for the neutrinos we shall set:

0= Wobs i O =D @b (4)
The conjugate complex operators b, and b* operate on the functions of the occu-
pation numbers My, M,...,M,,.. . of the individual quantum states ¢1, ¢2,. - -,@o,. - .
of the neutrinos. If we assume that the Pauli principle also holds for these particles,
the numbers M, can only assume the two values 0, 1; and one has
by © (M, Ms,...,M,,...)
= (—1)MitMat A Moa (1 MY (My, M, ..., 1= M,y,...)  (5)
by & (My,Ma,....,M,,...)
= (—)MAMetAMes (A YO (M, My, .. M, )
The operators b, and b% determine the disappearance and the creation of a
neutrino in the state o, respectively.

Z’ . The Hamiltonian function

/k—?:ﬂ The energy of the overall system constituted by the heavy and the light
particles is the sum of the energy Hy, of the heavy particles + the energy Hi;, of
the light particles 4 the interaction energy H between the light and heavy particles.

Limiting ourselves for the sake of simplicity to consider only the heavy particle,
we shall write the first term in the form

1 1-—
Hhea - %N‘i’ _2_/373 (6)
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in which A/ and P are the operators which represent the energy of the neutron and
the proton. We notice in fact that, for p = + 1 (neutron), (6) reduces to A/ ; while
for p = — 1 (proton) it reduces to P.

To write the energy Hyg in the simplest way, we shall consider the quantum
states s and p, of the electrons and neutrinos to be stationary states. For the
electrons we shall take the eigenfunctions in the Coulomb ficld of the nucleus (conve-
niently shielded in order to take into account the action of the atomic electrons); for
the neutrinos we Wtake De Broglie plane waves, since possible forces act- V]/‘A
ing on neutrinos are certainly very weak. Let Hy,Hs,...,H,,... and K,K>,.. ,K,,. ..
be the energies of the stationary states of the electrons and the neutrinos; then we
shall have

Hyg =Y H,No+ Y K;M, . (n -~

There still remains to write the interaction energy. It consists first of the
Coulomb energy between proton and electrons; however, in the case of heavy nuclei
the attraction exercised by only a proton has no importancet and in any case does
not contribute in any way to the process of § decay. In order not tohse*'ess-bf com-
plicate the problem, we shall neglect this term. We must instead add a term to the

Hamiltonian such that it satisfies bbe} condition ¢) of § 1. 6"!
A term which necessarily joins the transformation of a neutron into a proton
with the creation of an electron and a neutrino has, according wsith the results of
§ 2, the form fo A
Q*azb; ®
while the conjugate complex operator L
Qasby (8'<)

joins together the inverse processes (transformation of a proton into a neutron and
disappearance of an electron and a neutrino).
An interaction term satisfying the condition c) will then have the following form

H=Q coashs + QY e alby 9)
S0 SO
where ¢, and ¢, are quantities which may depend on the coordinates, the mo-
menta, etc.iJof the heavy particle. W

A further determination of H must necessarily follow the principle of greatest
simplicity; in any case the choices for H are restricted by the fact that H must be
invariant with respect to a change of coordinates and moreover it must also satisfy
momentum conservation.

If at first we neglect spin and relativistic effects, the simplest choice for (9) is
the following

H = g [Qu(x)o(z) + Q"¢ ()¢ (2] | (10)
fThe Coulomb attraction due to the many other protons must obviously be taken into account
as a static field.
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where g is a constant with dimensions L> M T ~2; x represents the coordinates of the
heavy particle; ¥, ¢, ¥*, ©* are given by (2) and (4) and must be evaluated at the
position x, y, z of the heavy particle.

Obviously (10) is not the only possible choice for H; any scalar expression as

L(p) () M(p)p(x) N(p) + compl. conj.

where L{p), M(p), N(p), represent convenient functions of the momentum of the
heavy particle, would have been admissible. On the other hand, since until now the
consequences of (10) have been in agreement with experience, there is no need to
resort to more complicated expressions.

On the contrary, it is essential to generalize (10) in such a way to be able to
treat {relativistically Jat least) the light particles. Of course, HSJ in this generaliza-
tion, it does not seem possible to eliminate all arbitrariness. However, the most
natural solution of the problem appears to be the following: Relativistically we
have, in place of ¥ and ¢, two sets 11213104 and wipapsps of four Dirac func-
tions. Let us consider the 16 independent bilinear combinations of 11121314 and
p1o203ws. When the frame of reference undergoes a Lorentz transformation, the
16 bilinear combinations undergo a linear substitution which gives a representation
of the Lorenz group. In particular the four bilinear combinations

Ao = —trpa + b1 + Ysps — Yaps
A1 = P13 — hapa — PYap1 + Yapa (11)
Az = 113 + s — ih301 — a2
Az = —1h1ps — Yaps + P32 + Yapr

transform like the components of a four-vector, that is like the components of the
electromagnetic four-potential. Then it is natural to introduce in the Hamiltonian
of the heavy particle the four quantities

g(QA; +Q"A})

in a situation corresponding to that of the components of the four-potential. Here
we run into a problem depending on the fact that we do not know a relativistic
wave equation for the heavy particles. However, in the case in which the velocity
of the heavy particle is small compared to ¢, one can limit oneself to the term
corresponding to eV (V the scalar potential) and write

H = g[Q (=12 + o1 + P3ps — Yaps) + Q7 (V13 + Y307 + V3¢l — viws)] .
c (12)
-5
To this term one must add othex of the order of magnitude v/c. At the
moment, however, we shall neglect these terms, since the velocities of the neutrons
and protons inside the nuclei are in general small compared to ¢ (Cf. §9).
In matrix language, (12) can be written

H =g Qi op+ Qov"] . (13)

fermi’book™B

wks

G"(



January 29, 2017 12:55 World Scientific Book - 9.75in x 6.5in fermi'book'B

98 Fermi and Astrophysics

where 1) and o are meant as matrices with one column and the symbol ~ transforms
a matrix into its transposed conjugate; and moreover

0-1 0 0
1000 4
_ 14
g 0 0 01 (14)
o 0 0-1 0
With this notation, one finds by comparing (12) with (9)

o = gPidvs ;s cop = gisbyy (15)
where 1 and @ represent the four-component normalized eigenfunctions of the states

s of the electron and ¢ of the neutrino, considered as functions of the position z, ¥,
z occupied by the heavy particle.

=3 . The perturbation matrix
H‘l\l\ With the Hamiltonian we have established one can develop a theory of 3 decay
in complete analogy with the theory of radiation. In that theory, as is known, the
Hamiltonian consists of the sum: Energy of the atom + Energy of the radiation
field + Interaction between atom and radiation; the latter term is considered as a
perturbation of the other two. Analogously we shall take

Hhea"'H]ig (16)

as the unperturbed Hamiltonian. The perturbation is represented by the interaction
term (13).

The quantum states of the unperturbed system can be enumerated in the fol-
lowing way:

(p,’fl N1 Nz()\h\ M17 %\AMO(X) 5 (17)

where the first number p takes one of the values +1 and indicates if the heavy
particle is a neutron or a proton. The second number n indicates the quantum
state of the neutron or the proton. For p = 4 1 (neutron) let the corresponding
eigenfunction be

(1), (18)
while for p = — 1 (proton) let the eigenfunction be
up(z) . (19)
The other numbers Ny, :\ [1, f‘m’ can only take the values
0, 1 and indicate what states uft g (-le trons .mrl n('n rinos are occupied.

By an examination of the general form (9) of the perturbation energy, one im-
mediately realizes that it has nonvanishing matrix elements only for transitions in
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which either the heavy particle passes from neutron to proton, while in the mean-
time one electron and one neutrino are created, or vicéyersa.

Through (1), (3), (5), (9), (18), (19) one easily finds that the corresponding
matrix element is

Moy TING & (20)

1TLN1N2.,.OSJ\/]1]\/[2...O,1.,.
. j: m-sao

—1ImNi1No.. 1, My Mol

where the integration must be extended over the entire configuration space of the
heavy particle (with the exception of the coordinate p); the + sign means more
precisely

(Al)Nl+N2+~--+Ns71+]\/11+]\/fz+.-.]\/[,1_1

and in any case does not enter into the calculations that will follow. To the inverse
transition corresponds a matrix element which is the conjugate complex of (20).
Taking (15) into account, (20) becomes

11050,

—1misl,

= i/“:n“n"/;s(s@:d"— > (21)

where for the sake of brevity in the left/'\‘hand side we have omitted writing all the
indexes which do not change.

Theory of 3 decay

%—&—{A [ decay consists of a process in which a nuclear neutron transforms into a
proton, while at the same time, in the way e have described, an electron, which is
observed as a § particle, and a neutrino ar¥g emitted. To calculate the probability
of this process, we shall assume that, at the time £ = 0, a neutron is in a nuclear
state of eigenfunction wu,(z), and furthermore the electron state s and the neutrino
state o are free, that is Ny = M, = 0. Then for ¢ = 0 we shall put the probability
amplitude of the state (1,n,04,0,) equal to 1, that is

a1,n,0,,0, — 1, (22)

whereas we shall put the probability amplitude of the state (—1,m, 15, L}, in which
the neutron has been transformed into a proton with eigenfunction v,,(z) emitting
an electron and a neutrino in the states s and o initially equal to zero.

By applying the usual formulas of perturbation theory, for a time short enough
to still consider (22) approximately valid one finds
2Migy 000 B WA H K (23)

A-1mlsls = 7 h —1ml,1

where W stands for the difference in energy between the neutron state and the
proton state.

fermi'book'B
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By integrating (23) we cobtain (since for t =0, a_1m1.1, = 0)

1n0,0, € h CWAHH KOt

~ . . o4y <~
G-1mi1,1, " —1mlgl, —W + HS + K'J ( )

The probability of the transition we consider is then
2 sin® I (—W + H, + K,)
(—W + Hy + K,)*

To calculate the lifetime of the neutron state u,, it is necessary to sum (25) with
respect to all unoccupied states of the electrons and neutrinos. A strong reduction of

1100,

(25)

2
N =4
|a lmlsl”l ‘ —1ml.la.

this sum can be obtained by observing that the De Broglie wave length for electrons
or neutrinos having energies of some millions of volts is much larger than the nuclear
sizes. Thus one can, as a first approximation, consider the eigenfunctions 1, and
s t0 be constants inside the nucleus. Thus (21) becomes

1n0:0,

H - igqﬁs&p:— /v:nundT ) (26)

—1mlgl,
where here and below ¥, and ¢, are meant to be taken in the nucleus (Cf. § 8).
From (26) we draw:
/ U Un AT

States o of the neutrino are characterized by their momentum p, and by the
spin direction. If, for the convenience of normalization, we quantize inside a volume

2
%5%03%5% . (27)

2
1n0,0, 2
-9

—1mlsl,

), whose size later on will be made to tend to infinity, the normalized neutrino

eigenfunctions are Dirac plane waves having density 1/92. Then simple algebraic

considerations allow us to perform in (27) an average with respect to all the orien-

tations of p, and of the spin. (And in this only the states of positive energy must

be considered; the negative energy states must be eliminated through a device like

the Dirac hole theory‘}/,] One finds >
g

= o / Vo Uy (T

where p is the rest mass of the neutrino and § the Dirac matrix

2
110,40, 2

—1ml;l,

2 B 2
(1/)51/)3 . ’;T‘a/)sm/)s> : (28)

100 0
01 0 0

3= T 2

=10 01 nU (29)
00 0-1

By observing that the number of positive energy neutrino states with momentum
between p, and p, +dp, is 87p2 dp, /13, that furthermore 0K, /8p, is the neutrino
velocity for the state o, and finally that (25) has a strong maximum for the value
of p, for which there is no variation of the unperturbed energy, that is

-W+H, + K, =0, (30)



