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10) On the mass of the radiation in an empty space

“Sulla massa della radiazione in uno spazio vuoto,”
Rend. Lincei 32(1), 162-164 (1923)

Recently, one of us1 had been able to demonstrate, by introducing a more correct
concept of rigidity, that the standard electrodynamics allows us to reach a determi-
nation of the electron rest mass not different from that coming from the theory of
relativity which, as is known, simply amounts to dividing the energy of the system
by the squared speed of light. We have observed that a similar difference, between
the value determined following from standard electrodynamics and the one given
by the theory of relativity, occurs in the calculation of the mass of the radiation in
an empty space2. We intend to demonstrate that this discrepancy can be removed
by analogous arguments. The procedure followed until now for determining by elec-
trodynamics the mass of the radiation in a cavity consisted first of all in evaluating
the electromagnetic momentum G0 for slow and quasi-stationary motions, which,
neglecting terms in v2/c2, results to be given by3

G0 =
4
3

W0

c2
v

where W0 is the energy of the radiation for the cavity at rest, v is the actual
velocity of the cavity, and c is the speed of light. From this, one deduced that the
inertial reaction is given by

−dG0

dt
= −4

3
W0

c2
Γ

where Γ is the acceleration; whence an apparent mass of the radiation equals
4
3

W0
c2 , while, according to the theory of relativity, it should be simply W0

c2 . In this
procedure it is implicitly contained the assertion that the external force F is equal
to the time derivative of the electromagnetic momentum, i.e., to the resultant of
the electromagnetic forces dϕ acting on every single part of the system; in this way,
one then puts:

F =
∫

dϕ. (1)

But this is not correct, because, if one considers the notion of rigidity discussed by
one of us in the quoted paper, the external force is given instead by

F =
∫

dϕ

[
1 +

Γ(P −O)
c2

]
, (2)

1E. Fermi, these “Rendiconti”, Vol. XXXI pp. 184 and 306 (1922), “Physikalische Zeit.”, Vol.
XXIII (1922), p. 340.
2F. Hasenöhrl, “Ann. der Physik”, Vol. XV, p. 344 (1904) and Vol. XVI, p. 589 (1905); K. von

Mosengeil, “Ann. der Physik”, Vol XXII, p. 867 (1927); M. Planck, “Berlin. Sitzber.”, p. 542
(1907); M. Abraham, Theorie der Elektrizität, Vol. II, p. 341 (1920).
3M. Abraham, loc. cit. p. 345.
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(P - O) being the vector from the point P, where the force dϕ is applied, to a fixed
point O, which we can take as the center of coordinates, internal to the system.
Now, dϕ is the resultant of force dϕ1, exerted by the radiation pressure which
would exist if the cavity were at rest, and a force dϕ2, caused by the perturbations
of this pressure due to the motion of the cavity. By applying (1), since evidently∫

dϕ1 = 0, because dϕ1 is the force exerted by a homogeneous pressure on a closed
surface, one finds that the external force is

F =
∫

dϕ2. (3)

This force is exactly the one calculated as the inertial reaction by the quoted
authors, whence ∫

dϕ2 = −4
3

W0

c2
Γ (4)

On the contrary, by applying (2), still taking into account that
∫

dϕ1 = 0, one
finds

F =
∫

(dϕ1+dϕ2)
[
1 +

Γ(P −O)
c2

]
=
∫

dϕ1
Γ(P −O)

c2
+
∫

dϕ2+
∫

dϕ2
Γ(P −O)

c2
.

Neglecting terms in Γ2 and observing that dϕ2 is proportional to Γ, one can
simply put

F =
∫

dϕ1
Γ(P −O)

c2
+
∫

dϕ2. (5)

In this case the difference between (3) and (5) is not a priori negligible, although
it contains c2 at the denominator, since dϕ1/dϕ2 can become considerably large,
being the ratio between a force and its perturbation4. In fact dϕ2 = pndσ, where p
is the radiation pressure which, as it is known, equals 1

3
W0
V , being V the volume of

the cavity, and n a unit vector with the direction of the external normal to element
dσ of the surface of the cavity with coordinates (x, y, z). The x component of the
first integral of ((5) is then[∫

dϕ1
Γ(P −O)

c2

]
x

=
W0

3c2V

∫
(Γxdx + Γydy + Γzdz)cosn̂x dσ =

=
W0

3c2V

(
Γx

∫
dx cosn̂x dσ + Γy

∫
dy cosn̂x dσ + Γz

∫
dz cosn̂x dσ

)
;

but an immediate application of the Gauss theorem shows that∫
dx cosn̂x dσ = V,

∫
dy cosn̂x dσ =

∫
dz cosn̂x dσ = 0.

4In the case of electromagnetic masses one has dϕ equal to the resultant of the Coulomb forces
(which are the predominant part) and the forces due to the acceleration. For the Coulomb forces,
evidently also in this case the relation

R
dϕ1 = 0 holds; therefore they have effect only if we apply

(5) instead of (3).
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Therefore our component is (W0Γx)/3c2 and∫
dϕ1

Γ(P −O)
c2

=
W0Γx

3c2

Considering this relation and (4), it is easy to see that the ratio between the inte-
grals of the right hand side of (5) is −1/4 and thus effectively not negligible. By
substituting these values into (5), one finds

F = −W0

c2
Γ

from which the requested rest mass results to be equal to W0/c2, in accordance
with the principle of relativity.


