1.a) From the derivative formula
$$\frac{d}{dx}(\operatorname{arctanh}(x)) = \frac{1}{1-x^2}$$
, let $f(x) = \operatorname{arctanh}(x)$ and use the taylor series

formula to evaluate by differentiation the third degree Taylor polynomial $T_3(x) = \sum_{n=0}^{3} \left(\frac{f^{(n)}(0) x^n}{n!} \right)$. Does this agree with the Maple taylor command result?

b) From the fundamental theorem of calculus, since
$$\operatorname{arctanh}(0) = 0$$
, we can define $\operatorname{arctanh}(x) = \int_0^x \frac{1}{1 - t^2} \, dt$.

Use this formula and the summation formula for a geometric series to evaluate the complete Taylor series $_{\infty}^{}$

 $\sum_{n=0}^{\infty} \left(c_n x^n \right)$ for this function. Confirm that this agrees with part a) for the first few nonzero terms. What is its radius of convergence (why?)?

c) Evaluate the (positive) fractional error $E_3 = \frac{\operatorname{arctanh}(0.2) - T_3(0.2)}{\operatorname{arctanh}(0.2)}$ and convert to a percentage. [Since this is a positive series, we cannot use the alternating series estimate for the maximum error to understand how many terms we need to get a certain precision.]

▶ solution