MAT 2705-04/05 18F Final Exam Answers (1) (1) a) $$X_1 = 2\cos 6t + 19\cos 7t - \cos 8t$$ $X_2 = \cos 6t + 3\cos 7t + 3\cos 8t$ b) $$\omega_{1}=6$$ $\omega_{3}=7$ $\omega_{2}=8$ $T_{1}=2\pi$ $T_{2}=2\pi$ $T_{3}=2\pi$ is a common period, but in this case there is no smaller common period. $$6T_1 = 7T_3 = 8T_2 = 2T_1$$ # periods of each mode in common period c) $$\begin{bmatrix} X_1'' \\ Y_2'' \end{bmatrix} = \begin{bmatrix} -40 & 8 \\ 12 & -60 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} -195 & 6057t \\ -195 & 6057t \end{bmatrix}$$ $\begin{bmatrix} X_1(0) \\ Y_2(0) \end{bmatrix} = \begin{bmatrix} 20 \\ 7 \end{bmatrix}, \begin{bmatrix} X_1(0) \\ X_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ d) $$A = \begin{bmatrix} -40 & 8 \\ 12 & -60 \end{bmatrix}$$ maple $A = \begin{bmatrix} -40 & 8 \\ 12 & -60 \end{bmatrix}$ $A = \begin{bmatrix} -36, -64 \\ 8 = \begin{bmatrix} 2 & 1/3 \\ 1 & 1 \end{bmatrix}$ e) $$0 = |A - \lambda I| = |-40 - \lambda 8|$$ = $(1 + 40)(\lambda + 60) - 96$ = $\lambda^2 + (00)\lambda - (240) - 96) = \chi^2 + (00)\lambda + 2304$ Maple $$\lambda = [-36, -64 = \lambda_1, \lambda_2]$$ $\lambda = -36$: A+36I = $[-40+36]$ 8 $[12]$ -60+36 $$= \begin{bmatrix} -4 & 8 \\ 12-24 \end{bmatrix} \rightarrow \begin{bmatrix} 1-2 \\ 1-2 \end{bmatrix} \rightarrow \begin{bmatrix} 1-2 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$ $$x_2=t$$, $x_1-2x_2=0 \rightarrow x_1=2t$ $(x_1,x_2)=(2t,t)=t(2,\Delta)$ $$\lambda = -64$$: A+64I = $\begin{bmatrix} -40+64 & 8 \\ 12 & -60+64 \end{bmatrix}$ $$= \begin{bmatrix} 24 & 8 \\ 12 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & y_3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$ $\chi_{2}=t$, $\chi_{1}+\frac{1}{3}\chi_{2}=0 \rightarrow \chi_{1}=-\frac{1}{8}t$ $\langle \chi_{1}\chi_{2}\rangle = \langle t_{1}-t/3\rangle = t < 1, -1/3\rangle$ $$scateup \hookrightarrow \vec{b}_2 = \langle 3, -1 \rangle$$ e) continued $$B = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}, B^{-1} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, A_{B} = B^{-1}AB = \begin{bmatrix} -360 \\ 0 & -64 \end{bmatrix}$$ 5) $$\frac{1}{5}$$ $\frac{1}{5}$ \frac need decimal values to compare with new could axes— these looking ht 9) $$\begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \begin{bmatrix} 20 \\ 7 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 3(20) + 1(7) \\ -1(20) + 2(7) \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 67 \\ -67 \end{bmatrix} \approx \begin{bmatrix} 9.6 \\ -0.86 \end{bmatrix}$$ $$B^{-1}\vec{P}(0) = \frac{1}{7}\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} -195 \\ -195 \end{bmatrix} = -\frac{195}{7}\begin{bmatrix} 3+1 \\ -1+2 \end{bmatrix} = -\frac{195}{7}\begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -780/7 \\ -195/7 \end{bmatrix}$$ $$B^{-1}\begin{bmatrix} -7\\ -7 \end{bmatrix} = \frac{1}{7}\begin{bmatrix} 3 & 17 \\ -12 & 17 \end{bmatrix} = \begin{bmatrix} -4\\ -1 \end{bmatrix}$$ $Z = -4b_1^2 - b_2$ like on graph i) $$\begin{bmatrix} y_1'' \\ y_2'' \end{bmatrix} = \begin{bmatrix} -36 & 0 \\ 0 - 64 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} - \begin{bmatrix} 780/7 \\ 195/7 \end{bmatrix} \cos 7t$$ exchanged. $y_1'' + 36y_1 = -780/7 \cos 7t$ $y_2'' + 64y_2 = -195/7 \cos 7t$ $$y_{1p} + 36y_{1p} = 86-49) (\cos 7t + (6 \sin 7t) = -780 \cos 7t)$$ $$y_{2p}^{11} + 64y_{2p} = (64 - 49)(C_7 \omega s 7t + C_9 s in 7t) = -195 \omega s 7t$$ ## MAT 2705-04/05 18 F Final Exam Answers (2) $$||\mathbf{x}|| = ||\mathbf{x}|| ||\mathbf{x}|| = ||\mathbf{x}|| ||\mathbf{x}$$ 2) $$X_1 = 2\cos 6t - \frac{2}{3}\sin 6t - \cos 8t - \frac{1}{4}\sin 8t$$ $X_1(8) = -1\cos 8t - \frac{1}{4}\sin 8t$ input the equations correctly? k) Express the (correct) solution as a sum of the two eigenvector modes and the response mode in the form: $\overrightarrow{x} = y_{1h} \overrightarrow{b}_1 + y_{2h} \overrightarrow{b}_2 + \cos(7t) \overrightarrow{b}_3$ thus identifying the particular solution \overrightarrow{x}_p (last term), the response vector coefficient \overrightarrow{b}_3 and the homogeneous solution \overrightarrow{x}_h (first two terms), as well as the final expressions for the two decoupled variables y_{1h} and y_{2h} . Which homogeneous term is associated with the tandem mode and which with the accordian mode? Is the response term a tandem or accordian mode? 1) Use Maple to solve the undriven system $\vec{F} = \vec{0}$ with the initial conditions xI(0) = 1, xZ(0) = 4, xI'(0) = -6, xZ'(0) = 4. Write down the solution expression for x_1 and consider the term: $a\cos(\omega_2 t) + b\sin(\omega_2 t)$ in it. Plot the coefficient vector and evaluate its amplitude and phase shift exactly to reexpress this function in phase-shifted cosine form. By what (numerical) fraction of a cycle does this sinusoidal function lag behind (peak later in time) or lead (peak before in time) the standard cosine function. ## pledge When you have completed the exam, please read and sign the dr bob integrity pledge and hand this test sheet stapled on top of your answer sheets as a cover page, with the first test page facing up: "During this examination, all work has been my own. I have not accessed any of the class web pages or any other sites during the exam. I give my word that I have not resorted to any ethically questionable means of improving my grade or anyone else's on this examination and that I have not discussed this exam with anyone other than my instructor, nor will I until after the exam period is terminated for all participants." | ~: | T | |------------|-------| | Signature: | Date | | MIRHAUHE. | 17415 |