
dynamic mass damper
Edwards, Penney, Calvis  DiffEq and LinAlg Editions 1-3: 7.4.14, 
Edwards, Penney and Calvis, Differential Equations and Linear Algebra Edition 4: 7.5.14. 

Do a web search or check Wikipedia for the description of a dynamic oscillator damper. [wiki, DMD]

This a toy model of coupling two oscillators in a driven system so that one will remain at rest! We adjust the 
second small mass until  we find that the first large mass (which is being driven by an oscillating applied force)
does not move in the response mode to the applied oscillation in the steady state situation (ignoring the 
undriven motion of the system). This idea underlies the dynamic damping of the swaying motion of tall 
buildings, where one engineers an internal damping oscillator in the top of the building to counteract the 
natural swaying motion. This idea of a tuned mass damper also underlies part of the solution to the swaying
Millenium Bridge.

problem
In the diagram, we can arrange that the second mass is moving towards the first mass when the external 
force is pushing that first mass to the right so that the second spring pushes back and the first mass does not 
move and vice versa when moving away. The "force" F  refers to the force per unit mass since it has 
already been divided by the mass when the second derivatives were solved for.

solution
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Note the driving frequency of 10 radians/sec is about 1.6 seconds.

The first mass has a natural frequency of . The second spring is a factor of 5

weaker  so requires a much smaller mass to get its natural frequency in the same ball park. Not

sure if this is relevant or not, but it smells right.

7.071067812

: :

The 2 mass 3 spring Hookes law coefficient matrix is  so with these parameters

we get the coefficient matrix:

Notice that for the following mass value , the frequency  becomes an eigenfrequency 

(corresponding to eigenvalue )leading to resonance and the trial vector solution in the 
method of undetermined coefficients must be multiplied by  t.
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The larger eigenvalue corresponds to the eigenfrequency 10 of the coupled system,
The differential equations:

The prime notation will not allow simplifying the derivative of these substituted trial functions from the 
method of undetermined coefficients! so we use the explicit derivative

:

Backsubtituting these trial solutions into the DEs and simplifying leads to these equations:

The equations for determining the coefficients are then these:

We want a solution for which  so that the first mass does not move:

Notice that this solution 1/10 for the second mass is close to the value 1/8 , the latter of which leads to a 
natural frequency 10 which means it will result in a big response through resonance so that the much 
smaller mass can compete with the larger mass.

Numerically, the general solution and the particular response function solution for this particular mass 
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choice:

The first mass is stationary, while the second mass is in the oppositive direction from the applied force in 
order to cancel it out. The new eigenvfrequencies here in the above solution are:

This method of undetermined coefficients will not work for the mass choice  where the frequency 

 is a natural frequency of the system, which leads to resonance and a trial solution multiplied by . 

Notice that the accordian mode natural frequency (larger frequency)  of the coupled mass system is nearly 
the same as the driving frequency. Hmm. This means we should get a large response if we drive at that 
frequency. So it seems to make sense.

By forcing  which leads to no oscillation in the first mass, the second amplitude   is fixed to
oppose the direction of the forcing function (minus sign). The Hookes law force on the first mass 
exerted by the second spring exactly opposes the force applied to the first mass: 

. This allows the first mass to remain stationary.

We can explore how the system behaves a range of masses about this value.
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The tandem mode switches to the accordian mode at this special mass value , leaving the first mass 
displacement at zero there as the system switches from tandem to accordian response mode (from both 
displacements in the same direction to in opposing directions).  If we get close to the resonant frequency 

mass at  we see the growth of the amplitudes.
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Notice at 0.125 how the vertical axis tickmarks grow and then fall sharply.
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Notice at 0.125 how the vertical axis tickmarks grow and then fall sharply.
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movie
We can compare the horizontal oscillations of the steady state solution visually as a function of the second 
small mass.

:

These animations are just to compare the motions side by side for the two masses, with no motion for the 
first mass at the starting mass value. This is illustrated as a function of the mass in the next section.
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We can compare the horizontal oscillations of the steady state solution visually as a function of the second 
small mass.

:

These animations are just to compare the motions side by side for the two masses, with no motion for the 
first mass at the starting mass value. This is illustrated as a function of the mass in the next section.
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Very little relative motion near the left endpoint value.
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resonance at this mass value
For the chosen mass value we can explore the frequency response to see why the frequency w = 10 is 
special for that mass.

: :

: :
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resonance at this mass value
For the chosen mass value we can explore the frequency response to see why the frequency w = 10 is 
special for that mass.
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Resonance at the two natural frequencies occurs. At low frequency the displacements are both positive in 
the slow tandem mode, so in phase with the driving force which is the case at zero frequency when the 
displacements simply go to new equilibrium positions. For very small frequencies, the two masses and 
springs can keep up with the slowly varying driving force since they can keep up with it, but soon they are 
both excited by the first natural tandem resonance mode. As we learned for a single mass spring system, 
when you cross the resonance frequency with weak damping, the phase shift of the response compared to 
the driving function quickly rises from a small value passing through 90 degrees and then quickly reaching 
180 degrees when the response is 180 degrees out of phase with the driving function.

At frequency 10, the crossover to the accordian mode takes place. For these two mass two spring systems 
there is always such a crossover frequency between the tandem and accordian modes, and so one can tune 
that crossover point by adjusting some parameter in the system.

Passing through the second resonance again the response switches sign reflecting the usual rapid change in 
the phase shift by 180 degrees across any resonance peak. As the frequency increases past the second 
resonance frequency, the system is too sluggish to keep up and the amplitudes both go to zero.

damping? [needs more interpretation]
We add weak damping equally to the two variable DEs:
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The response functions are not so bad, only one screen approximately.
: :

:

The damping causes the response modes to be out of phase with the driving force, so we can calculate the 
phase shift and amplitudes of each variable.
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Take a peak at the small frequency values of the coefficients of the cosine and sine of the two response 
vector components. [What does this mean?]
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[What does the next sentence mean?]
Looking at the plot below, as the frequency increases from zero, the sine coefficient goes negative so the 
phase shift in the sinusoidal coefficient plane goes into the fourth quadrant where the response functions 
lead the driving force, which is unexpected. I would have thought the phase shift would go positive to 
reflect a lagging behind behavior. See the plot below.

First we plot the separate amplitudes of each variable and then the total amplitude of the response vector 
function. The switch in sign now goes into the phase shift changing by 180 degrees, also plotted below.

: : :
: :
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Very small but not zero.
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This is curious, the phase shift goes in the opposite direction compared to the single mass spring system, 
through negative values leading the driving force instead of lagging behind, but indeed passes through 
negative 90 degrees quickly to 180 degrees passing through the first resonance frequency. It then briefly 
returns towards zero as it passes through the second resonance and then returns to 180 degrees.  I do not 
understand this. It requires more investigation.

parameter analysis
:
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We can make it a sum of squares except for one term, not sure if this observation can help further analysis.

0

The DE system is  , or  so if  for a unit driving force on the first 

mass, and the response is  we get  or explicitly the coefficient matrix 
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So the first mass will remain fixed in the response mode if the natural frequency of the uncoupled second 
mass spring system is the driving frequency. This enables the natural oscillation of the decoupled second 
mass spring system to exactly balance the force applied to the first mass, and hence leave it fixed.


