

Lastrame, Firstname:

old basis:

new basis:

$$\vec{b}_1 = \langle 1, 1 \rangle, \vec{b}_2 = \langle -2, 1 \rangle$$

basis changing matrix (columns are new basis vectors)

its inverse:

linear change of coordinates

x interms of y: x=By

scalar form: X1 =

X2 =

 \vec{y} intems of \vec{x} : $\vec{y} = \vec{B}^{-1} \vec{x}$

 $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

 $9_1 =$

Yr =

point 1: $\langle x_1, x_2 \rangle = \langle -5, i \rangle \rightarrow \langle y_1, y_2 \rangle =$

point2: $\langle y_1, y_2 \rangle = \langle 2, 1 \rangle \rightarrow \langle x_1, x_2 \rangle =$

Instructions: Following the example handout, fill in the blanks above. Then reproduce the example graphic with $\vec{e_1}, \vec{e_2}$ then $\vec{b_1}, \vec{b_2}$. Then use a ruler to create the new 4×4 grid of "unit parallelograms" formed with edges $\vec{b_1}, \vec{b_2}$ and their translated vectors as in the example. Draw in the y_1, y_2 axes on this grid and label them. Then graphically locate and draw in the position vectors of point 1 using the x-grid and point 2 using the y-grid. Confirm that the other coordinates you read off from the other grid agree with your computation above.