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39. The figure shows a line L, in space and a seeond line Lo,
which is the projection of L, on the xy-plane. (In other words,
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the points on L, are directly beneath, or above, the poinis

on L.}

(a) Find the coordinates of the poinl P on the line L.

{by Locate on the diagram the points A, &, and C, where
the line L, intersects the xy-plane, the yz-plane, and the
xz-plane, respectively.

Consider the points £ such that the distance from 7 ¢

A(—1, 3, 3} is twiee the distance from P to B(6, 2, —2). Show
that the set of all such points is a sphere, and find ils center and
radins.

Find an egnation of the set of all points equidistant. [roin the
points A{— 1, 5, 3) and B(6, 2, —2). Describe the set.

Find the volume of the solid that lies inside both of the spheres
Ay A -2y + 42+ 5=10

and Pyt i=4

The term vector is used by scientists to indicale a quantity {such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the

o vector and the arrow points in the direction of the vector. We denote a vecior by printing a
5 u,/” letter in boldface (v) or by putting an arrow above the letter (7).
v, “ v i For instance, suppose a particle moves along a line segment from point A to point B.
o P The corresponding displacement vector v, shown in Figure 1, has initial point A (the tail)
y c =

FIGURE 1
Equivalent vectors

||| _Combining Vectors

- and terminal point B (the tip) and we indicale this by writing v = AB. Notice that the vec-
tor w = CD has the same length and the same direction as v even though it is in a differ-
ent position. We say thal u and v are equivalent (or equal) and we write u = v. The zero
vector, denoted by 0. has length 9. Ii is the only vector with no specific direction.

.

c Suppose a particle moves from A to B, so its displacement vector is AB. Then the particle

Ve = changes direction and moves from B to C, with displacement vector BC as in Figure 2. The

%5 combined effect of these displacements is thal the particle has moved from A o C. The

s A resulting displacement vector AC is called the sum of AR and BC and we write
.// — = =
A AC = AB + BC
FIGURE 2

In general, if we start with vectors u and v, we first move v so that its tail coincides with

the tip of u and define the sum of u and v as follows.

Definition of Vector Addition If u and v are vectors positioned so the initial point of v
is at the terminal poinf of w, then the sum u + v is the vector from the initial point
of u to the terminal point of v.
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The definition of vector addition is 1llustrated in Figure 3. You can see why this defini-
tion is sometimes called the Triangle Law.
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FIGURE 3 The Triangle Law FIGURE 4 The Parallelogram Law

In Figure 4 we start with the same veclors u and v as in Figure 3 and draw another
copy of v with the same initial point as u. Completing the parallelogram, we see that
u + v = v + u This also gives another way to construct the sum: If we place u and v so
they start at the same point, then u + v lies along the diagonal of the parallelogram with
u and v as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors a and b shown in Figure 5.

SOLUTION First we translate b and place its tail at the tip of a, being careful to draw a copy
of b that has the same length and direction. Then we draw the vector a + b [see Fignre
6(a)] starting at the initial point of a and ending at the terminal point of the copy of b.
FIGURE 5 Alternatively, we could place b s0 it starts where a starls and construct a + b by the
Parallelogramn Law as in Figure 6(b}.

s Visual 12 2 shows how the Triangle and ___:_"_'-'-'* \ ‘
I " Parallelogram Laws work for various \—"a+h a+b
“ vecters wand v e \b
\\\\I'.‘
FIGURE & (a) (b

It is possible to multiply a vector by a real number c. (In this conlext we call the real
number ¢ a scalar to distinguish it from a vector.) For instance. we want 2v to be the same
vector as v + v, which has the same direction as v but is twice as long. In general, we mul-
tply a vector by a scalar as follows.

b Definition of Seolor Multiplicotion  If ¢ is a scalar and v is a vector, then the scalar mul-
tiple cv is the vector whose length is | c| times the length of v and whose direction

“ / is the same as v if ¢ = G and is opposite to vif ¢ << 0. lif ¢ = O or v = 0, then
2"_ Vo cv = 0.
¥ g —

3| —

This definition is illustrated in Figure 7. We see rhat real numbers work like scaling fac-
/ tors here; that's why we call them scalars. Notice thal two nonzero vectors are parallel if
—v =15 A they are scalar multiples of one another. In particular, the vector —v = (—1}v has the same
& > length as v but points in the opposite direction. We call it the negative of v.

By the difference u — v of (wo veclors we mean
FIGURE 7

Scalar multiples of v u—v=u+(—v)
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FIGURE 8

Drawing u —v

i’ {a). ay)
.
a_~
_ .
0
a={a,a,)
74
(), apa3)
! ot

a_.~

Ol
.
S
~
S
x

|
\
|
\
[
\
RN
a={a, aya}

FIGURE 11
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So we can construct w — v by first drawing the negative of v, —v, and then adding it to u
by the Parallelogram Law as in Figure &(a). Alternatively, since v + (u — v) = u, the vec-
tor u — v, when added (o v, gives u. So we could construct w — v as in Figure 8(b) by
means of the Triangle Law.

(a) (b

EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a — 2b.

SOLUTION We first draw the vector —2b pointing in the direction opposite to b and twice
as long. We place it with its tail at the tip of a and then use the Triangle Law to draw
a + (—2b) as in Figure 10.
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. ~" b &£ a—2b
FIGURE 9 FIGURE 10

HH Components

For some purposes it’s besl to introduce a coordinate systerm and treat veclors algebra-
ically. Il we place the initial point of a vector a at the origin of a rectangular coordinate
system, then the terminal point of a has coordinates of the form (a,, a;) or {(a), @, a1,
depending on whether our coordinate system is two- or three-dimensional {see Figure 11).
These coordinates are called the components of a and we write

a = (al, ﬂz) or a= (aJ,G'zs a3>

We use the notation {a,, a,) for the crdered pair that refers to a vector so as not to confuse
it with the ordered pair (&), a;) that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent lo the wvector
OP = (3.2) whose terminal point is P(3, 2). What they have in common is that the ter-
minal point is reached from the initial point by a displacement of three units to the right
and two upward. We can think of all these geometric vectors as representations of the
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 AEEP L EEENEE e
0 ¥
T xs ATy

FIGURE 12 FIGURE 13
Representations of the vector a = (3, 2} Representations of a = {a,, ¢y, a3}
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FIGURE 14

FIGURE 15
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algebraic vector a = {3, 2}. The particular representation (ﬁ) froen the origin to the point
P(3, 2} is called the position vector of the point P.

In three dimensions, the vector a = O? = {a), @z, a3} 1s the position vector of the
point Pa, a», as). (See Figure 13.) Let’s consider any other representation AB of a, where
the initial point is A(x,, ¥, z;} and the terminal point is B{x», s, z2). Then we must have
xita =xy, vy ta=y. and zy + a3 =1z and so @) =12 — X, a; = y; — ¥, and
ay = zz — z,. Thus, we have the following result.

1 Gi\Le}n the points A{x|, y1, z1) and B{x», v, z2), the vector a with represen-
tation AB is

2|>

a={x—x,v— Vi, —

EXAMPLE 3 Tind the vector represented by the directed line segment with initial point
A2, =3, 4) and terminal point B(—2, 1, 1).

SOLUTION By (1), the vector corresponding to FE?) is
a=(—2—-21—-(=3),1—4)=(-4,4,-3)

The magnitude or length of the vector v is the length of any of its representations and
is denoted by the symbol | v| or || ¥|. By using the distance formula to compute the length
of a segment OF, we obtain the following formulas.

The length of the two-dimensional vector a = {a,, @) is

jal = Va7 + a3

The length of the three-dimensional vector a = {a,, a2, as) 1s

lal = +a? + ai + ad

How do we add vectors algebraically? Figure 14 shows that if a = {a,, a;) and
b = {b:, by), thenthe sumisa + b = {a, + b, a; + by}, at least for the case where the
components are positive. In other words, to add algebraic vectors we add their compo-
nents, Similarly, to subtract vectors we subtract components. From the similar triangles in
Fignre 15 we see that the components of ca are ca, and caz. So to multiply a vector by a
scalar we multiply each component by that scalar.

Ifa= {a,,a:y and b = (b, k), then

a+b=~{a T h,a+ b — by}

a—b={a —b,a
ca = {ca, ca,)
Similarly, for three-dimensional vectors,
{a1, az, as} + (b, ba, ba) = {a, + by, a: + ba, as + b3)
{a), as, as) = (by, bz, by) = (a1 — by, @y — b, a3 — b3)

clay, az, ar) = {cay, cas, cay)
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Vectors in & dimengions are used to hst van-
ous guantities in an organized way For instance,
the components of & six-dimensional vector

P = {p0 e o o s )
might represent the prices of six different ingre-
dients required ta make a particular product
Four-cimensianal veclors {x, y. z, ¢} are used In
relatreity theory, where the first three compo-
nents specify a position in space and the fourth
represents time
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FIGURE 16
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EXAMPLE Ifa = (4,0,3)and b = {(—2,1,5), find |a| and the vectorsa + b, a — b,
3h, and 2a + 5h.

SOLUTION al =424+ 02+ 3 =25=35
a+tb=1{403+ (=215
={4-2,0+1,3+5)=1(21,8)

a—bh=1(403 —(-2,1.5)
={4 - (-2),0 - 1,3 =5y =146,-1,-2)
3h =3(=2,1,5) = (3(—2),3(1), 3(3)) = (6,3, 15)

2a + 5b=2(4,0,3) + 5(-2, 1,5}
= {(8,0.6) + (—10,5,25) = {~2,5,30)

We dencte by Vs the set of all two-dimensional vectors and hy Vs the set of all three-
dimensional vectors. More generally, we will later need to consider the set V, of all
n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

a= (ahaza--‘aarz>

where @, as, . .., a, are real numbers that are called the components of a. Addition and
scalar multiplication are defined in terms of components just as for the cases n = 2 and

= 3.

Properties of Vectars 1f a, b, and ¢ are vectors in V, and ¢ and 4 are scalars, then

l.La+b=b+a 2.a+(b+re=(+h +ec
J.ba+0=a 4, a + (—a} =10

5. cla+b)=rca+ b 6. (c +d)a=ca + da

7. (cd)a = c(da) 8. l[a=a

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case n = 2:

a+ b - (cz],a2> + <b1,[l?2> = (G\ + b],ag + bz)

- <b! + ﬂj,bg + G'.z) = (b;,b2> + ((M,G’,z)
=b+a

We can see why Property 2 (the associative law) is true by looking al Figurc 16 and
applving the Triangle Law several times: The vector P 1s obtained either by first con-
structing a + b and then adding ¢ or by adding a to the vector b + ¢.

Three vectors in Vi play a special role. Let

= ({10 1)

i= (10,0 J=10,1,0)



FIGURE 17
Standard basis vectors in V, and V;
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Then i, j, and k are veclors that have length | and peint in the directions of the positive
x-, y-, and z-axes. Similarly, in two dimensions we definei = (1,0} and j = {0, 1}. (See
Figure 17.)
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Ifa = {a,, a., ay), then we can write

a= {a,ayay) = {a,,0,0) + (0. a:,0) + (0,0, &)
=a{(1,0,0) +a,{0,1,0) +a:(0.0,1}
2 a=mi+agj+a3k

Thus, any vector in V) can be expressed in terins of the standard basis vectors i, j, and
k. For instance,

{1, -2,6) =i —2j + 6k
Similarly, in two dimensicns, we can write
3 a={a,m)=ait aj

See Figure 18§ for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLES ITa=1i+ 2j — 3kand b = 4i + 7k, express the veclor 2a + 3b in lerms
ofi, j, and k.

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have
2a + 3b = 2(i + 2j — 3k) + 34i + 7k)
—2i+4j — 6k + 120 + 21k = 14i + 4j + 15k

A unit vector is a vector whose length 1s 1, For instance, i, j. and k are all unijt vectors.
In general, if a # 0, then the unit vector that has the same direction as a i

A
At al

In order to verify this, we let ¢ = 1/]a]. Then u = ca aud ¢ is a positive scalar, so u has
the same direction as a. Also

]
lu| =|cal=|c¢|la] = ——[a] = I
EX
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FIGURE 20

EXAMPLE & Find the unit vector in the direction of the vector 2i — j — 2k
SOLUTIOR The given vector has length

[2i —j - 2k| =22+ (1) + (-2)* = /9 =3
50, by Equation 4, the unit vector with the same direction is

P21 —-j-2k) =3i—3j- ik

e

”I' Applications

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both & magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object 15 the vector sum of these forces.

EXAMPLE 7 A 100-Ib weight hangs from two wires as shown in Figure 19. Find the ten-
sions {forces) T, and Ty in both wires and their magnitudes.

SOLUTION We first express T, and T in terms of their horizontal and vertical components.
From Figure 20 we see that

5 T, = ~|Ti|cos 50°i + | Ty |sin 50°
& T, = | Tz|cos 32° + | T |sin 32°]
The resultant T, + T of the tensions counterbalances the weight w and so we must have
T, + T, = —w = 100j
Thus -
(=] T [cos 50° + | T2} cos 32°)i + {I T\ |sin 50° + | T;|sin 32°) j = 100j
Equating components, we get
=] Ty|cos 50° + | Ty ]cos 32° = 0
[T, ]sin 50° + | T2|sin 32° = 100

Solving the first of these equations for | T> | and substituting into the second, we get

T 50°
|7, | sin 50° + ‘—;li‘%‘)‘sm 32° = 100
08
So the magnitudes of the tensions are
100
Ty = ———————-—==85641b

sin 50° + tan 32° cos 50°

| Tyl cos 50°

and 12| = cos 32°

=~ 64,91 Ib

Substituting these values in (5) and {6), we obtain the tension vectors

T, = —55.051 + 63.60j Ty = 55051 + 34.40j
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1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the
vector {4, 737 Illustrate with a sketch,

3, Name all the equal vectors in the parallelogram shown.

/;.i‘
/.

B

-

o
-
N/

c

4. Write each combination of vectors as a single vector.
— —> — —>
(a) PO + OR (b} RP + FS
- g — —> —
c)yPS — PS (d} RS + SP + PO

[ 5

x/ !
b

R

3. Copy the vectors in the figure and use them to draw the
following vectors.
(a)u+v
@vt+w

(byua — v
{(dyw+v+u

6. Copy the vectors in the figure and use them to draw the follow-
ing vectors.

(a)a+ b (bya—">b
(c) Za (d) —3ib
e} 2a—+b {fib - 3a
;"-'/-"
N
a/ /b
L

7-127 i Find a yector a E)ith representation given by the directed
line segment AB. Draw AB and the equivalent representation start-
ing at the origin.

7. A(2,3), B(=2,1) 8. A(—2, ~2), B(5,3)

9. A(—1,-1), B(-3,4) 10. A(-2,2), B(3,0)
1. A3, 1), B(Z2.3 -1 12. A(4,0,-2), B(4.2,1)

) © o

13=16 m Find the sum of the given vectors and illustrate
geometrically,

13. (3, —1%, (=2,4}y — 14, {=2,-13, (5,7
15. (0,1,2), (0,0, -3} 16, (—1,0,2y, €0,4,0}
17-22 \u Find |a|,a + b,a — b, 2a, and 3a + 4b.
17.a={(—4,3), b= (62)

18. a=2i—3j, b=1i+3j

19. a={6,2,3}, b={(-1,5-2)

20, a= (-3 -4, -1;, b=¢6,2 -3}
N.a=i—2j+k, b=j+2k

222.a=3i—2k, b=i-j+k

u o a o b K &

23-25 i Find a unit vector that has the same direction as the given
vector.

23. {9, —5}

25. 8i —j + 4k

o B

24, 12i — 5§

26. Find a veclor that has the same direction as {—2, 4, 23 but has
length ©.

27. If v lies in the first quadrant and makes an angle /3 with the
positive x-axis and |v| = 4, find v in component form.

28. If a child pulls a sled through the snow with a force of 50 N
exerted at an angle of 38" above the horizontal, find the
horizontal and vertical components of the force.

79, Two forces ) and F» with magnitudes 10 Ib and 12 1b act
on an object at a point P as shown in the figure. Find the
resultant force F acting at P as well as its magnitude and its
direction. (Indicate the direction by finding the angle & shown
in the figure.)
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EXAMPLE & Find the nnit vector in the direction of the vector 2i — j — 2k.
SOLUTION The given vector has length

|2i —j—2k| = V22 + (—1)* + (-2 = .9 =3

50, by Eqnation 4, the nnit vector with the same direction is

321§ - 2K =53 -k

I|| fpplications

Vectors are nseful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects meoving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitnde (measuged in ponnds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-1b weight hangs from two wires as shown in Figure 19. Find the ten-
sions (forces) T, and T in both wires and their magnitudes.

SOLUTION We first express T, and T in terms of their horizontal and vertical components.
From Fignre 20 we see that

5 Ty = —|T|cos 50°i + | T, |sin 50°
(& T, = | T2l cos 32°0 + | T, |sin 32°j
The resuttant T, + T of the tensions connterbalances the weight w and so we must have
- Ty + Ty = —w=100j
Thus -
(=] Ti|cos 50° + | T2|cos 32°)i + {| T)|sin 50° + | T2 sin 32°) j = 100j
Equating components, we gel
—| T, |cos 50° + | T2|cos 32° = 0
\T)|sin 50° + | T2 |sin 32° = 100

Solving the first of these equatious for | T, | and substituting into the second, we get

T 50°
T, [sin 500+ L1609 50% e 100
0s 32
So the magnitudes of the tensious are
100
| T | = = 85.64 |b

siu 50° + tan 32° cos 50°

| Ty |cos 50°

and T:| cos 32°

= 64.91] lb

Substituting these values in (5) and {6), we obtain the tension vectors

T, = —55.051 + 65.60 T, = 55050 + 34.40j
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Velocities have both direction and magnitude and thus are
vectors. The magnitude of a velocity vector is called speed.
Suppose that a wind is blowing from the direction N45°W at a
speed of 50 km/h. {This means that the direction from which
the wiud blows is 45% west of the northerly direction.} A pilot
is steering a plane in the direction NGO°E al an airspeed (speed
in still airy of 230 km/h. The rrue course, or track, of the plane
is the direction of the resultant of the velocity vectors of the
plane and the wind. The ground speed of the plane is the mag-
nitude of the resultant. Find the true course aud the ground
speed of the plane.

A woman walks due west on the deck of a ship at 3 mi/h. The
ship is moving north at a speed of 22 mi/h. Find the speed and
direction of the woman relative to the surface of the water.

Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has a
mass of 5 kg. The ropes, fastened at different heights, make
angles of 52° and 40° wilh the horizontal. Find the tension in
each wire and the magnitude of each tension.

40°

Ln
[
5

3m dm

A clothesline is tied between two poles, 8 m apart. The line

is quite taut and has negligible sag. When a wet shirt with

a mass of 0.8 kg is hung at the middle of the line, the midpoint
1s pulled down 8 cm. Find the tension in each half of the
clothesline.

The tension T at eack end of the chain has magnitude 25 N.
What is the weight of the chain?

. e
~ -
~ -
37° 7°
37 ?‘\\ ./ﬂ 37
b #

e o

~ i

If A, B, and C are the vertices of a triangle, find
— — —
AB + BC + CA.

Let C be the point on the line segment AB that is twice as far

. — — —
from B as itis from A. If a = OA, b = 0B, and ¢ = OC, show
thatc = 3a + 3 b.

7.

8.

9.

40.

41,

42,

43.

44,

{a) Draw the vectorsa = (3,2, b= (2, —1),andc = {7, 1}.

{b) Show, by means of a sketch, that there are scalars 5 and r
such that ¢ = sa + rb.

(c) Use the sketch to estimale the values of s and ¢.

(d) Find the exact values of s and +.

Suppose that a and b are nonzero vectors that are not parallel
and ¢ is any vector in the plane determined by a and b. Give
a geometric argument to show that ¢ can be writlen as

¢ = sa + rb for suitable scalars s and ¢. Then give an argu-
menf using components.

Ifr = (x,v,2) and £y = (X0, Yo, 2o}, describe the set of all
points {x, y, z) such that |x — ry| = 1.

Ifr={x, ¥}, )= {xy,yiy,and r; = (xo, ¥»}, describe the
set of all goinis (x, ¥) such that |[r — r/| + |r — 12| = &,
where & > |1 — 1.

Figure 16 gives a geometric demonstration of Property 2 of
vectors, Use components to give an algebraic proof of this
[act for the case n = 2,

Prove Property 5 of vectors algebraically for the case n = 3.
Theu use similar triangles to give a geometric proof.

Use vectors to prove that the line joining the midpoints of two
sides of a triangle is parallel to the third side and half its length.

Suppose the three coordinale planes are ati mirrored and a
light ray given by the vector a = {a, a2, as} first strikes the
xz-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by b = {a;, —a2, a1;. Deduce
that, after being reflected by all three mutually perpendicular
mirrors, the resulting ray is parallel to the initia) ray. (American
space scientists used this principle, together with laser bearns
and an array of comer mirrors on the Moon, to calculate very
precisely the distance from the Earth to the Moon.)

)



