practice with double integral limits of integration

Analyze these double integrals, drawing a diagram as explained by bob that illustrates both the region of integration and the order of integration and limits of integration, then reverse the order of integration drawing a new diagram and then from it deduce the new iteration. [Evaluating both might confirm they are correct, but if they don't agree, surely your second iteration is wrong.]
15.2.2
$\left[>\int_{0}^{2} \int_{0}^{y^{2}} 1 \mathrm{~d} x \mathrm{~d} y\right.$
$\left[>\int_{0}^{2} \int_{x^{2}}^{4} 1 \mathrm{~d} y \mathrm{~d} x\right.$
$=15.2 .58$
$>\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} 1 \mathrm{~d} x \mathrm{~d} y$
$=15.2 .66$
$=\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} 1 \mathrm{~d} x \mathrm{~d} y$
Find the area of the region (integrand equals 1) enclosed by the curves $x=y+2, x=y^{2}$.
Set up a $d x d y$ integration order and iteration first, then redraw for the opposite order.
Find the volume enclosed by the following surfaces:
[Hint: the conditions on z are just the floor and ceiling of the solid object, only the rest are relevant to the region of integration.]
15.2.34

The paraboloid $z=x^{2}+y^{2}+1$ and the planes $z=0, y=0, z=0, x+y=2$
15.2.37

The parabolic cylinders $z=x^{2}, y=x^{2}$, and the planes $z=0, y=4$

