1. The curve \(y = -h \ln \left(1 - \frac{x}{R} \right) \) over the interval \(0 \leq x < R \) is rotated around the \(x \)-axis, with \(h > 0, R > 0 \).

a) Let \(H > 0 \) designate the average value of \(y \) over this interval. Write down a simplified definite integral for \(H \) and then evaluate it by hand showing all your steps, and make sure it agrees with Maple's evaluation.

b) Make a diagram of this curve over this interval and include a horizontal line for this average value. Does the rectangle it makes appear to have the same area as that above the curve? Explain.

c) Let \(V \) denote the volume of a solid formed by revolving this curve segment around the \(x \)-axis, and indicate a typical vertical cross-section of the integration region needed to evaluate this volume, labeling its endpoints appropriately to justify your limits of integration and indicating how you obtained your integrand. Write down a simplified definite integral for \(V \) and then use Maple to evaluate it.

d) Compare this solid with a cylinder of revolution about the \(x \)-axis. What radius would the cylinder need to have for it to have the same volume?

\[H = \frac{1}{R} \int_{0}^{R} -h \ln \left(1 - \frac{x}{R} \right) \, dx \]

\[\int \ln \left(1 - \frac{x}{R} \right) \, dx = \int \ln u \, \frac{1}{u} \, du \]

\[\frac{du}{dx} = 1 - \frac{x}{R}, \quad x = 1 - u \]

\[= x \ln \left(1 - \frac{x}{R} \right) - \int \frac{x \, dx}{R - x} \]

\[= x \ln \left(1 - \frac{x}{R} \right) - \left[\frac{xR}{x} \ln x - \frac{xR}{x} \right] \]

\[= (x - R) \ln \left(1 - \frac{x}{R} \right) + R - x \]

\[H = -h_0 \int_{0}^{R} \ln \left(1 - \frac{x}{R} \right) \, dx = \left. \left[x \ln (1 - x) - (-1)(x - 1) \right] \right|_{0}^{R} \]

\[= h_0 \]

\[V = \pi \int_{0}^{R} \left(h (1 - \frac{x}{R}) \right)^2 \, dx \]

\[\Rightarrow \]

\[\text{Maple} \]

\[V = \frac{2h^2 \pi R^2}{2} \]

\[r = \sqrt{2h} \]