A capacitor charges to its maximum charge \(Q_{\text{max}} = 1000 \) in a fraction of a second following the relation between charge \(Q \) in some units and time \(t \) in seconds.

\[Q = 1000 \left(1 - e^{-100t} \right) \]

a) Express \(t \) as a function of \(Q \).

b) Use your result to determine the time it takes the capacitor to reach 50% of its maximum charge. Give your final answer with units.

c) Repeat for 99%.

\[Q = 1000 \left(1 - e^{-100t} \right) \]

\[\frac{Q}{1000} = 1 - e^{-100t} \]

\[\ln \left(e^{-100t} \right) = \ln \left(1 - \frac{Q}{1000} \right) \]

\[-100t = \ln \left(1 - \frac{Q}{1000} \right) \]

\[t = -\frac{1}{100} \ln \left(1 - \frac{Q}{1000} \right) \]

Note:

\[1 - \frac{Q}{1000} > 0 \]

\[1 > \frac{Q}{1000} \]

\[1000 > Q \quad \text{or} \quad Q < 1000 \]

In fact, since the relationship holds only for \(t \geq 0 \), then \(Q \geq 0 \), and the domain of this function is \(0 \leq Q < 1000 \). Obvious from the range of allowed values for \(Q \) in the graph.

\[Q = .50 \cdot 1000 \rightarrow \]

\[t = -\frac{1}{100} \ln \left(1 - \frac{.50}{1000} \right) = -\frac{1}{100} \ln \left(.50 \right) \approx \frac{0.69}{100} \text{sec} \]

(about 7 milliseconds)

\[Q = .99 \cdot 1000 \rightarrow \]

\[t = -\frac{1}{100} \ln \left(1 - \frac{.99}{1000} \right) = -\frac{1}{100} \ln \left(.01 \right) \]

\[= \frac{1}{100} \ln \left(0.01^\frac{1}{100} \right) \approx \frac{1}{100} \ln 100 \approx 0.46 \text{sec} \]

(about 46 milliseconds)