1. \(f(x) = 3x^4 - 4x^3 - 12x^2 + 5 \) Taylor expand about \(x = 1 \) and then about \(x = 2 \).

Check with MAPLE and print out your verification.

2. Stewart II, R.58: The force due to gravity on an object with mass \(m \) at a height \(h \) above the surface of the Earth is

\[F = \frac{mgR^2}{(R+h)^2}, \]

where \(R \) is the radius of Earth and \(g \) is the acceleration due to gravity.

a) Express \(F \) as a series in powers of \(h/R \).

b) Observe that if we approximate \(F \) by the first term in the series, we get the expression \(F \approx mg \) that is usually used when \(h \) is much smaller than \(R \). Use the Alternating Series Estimation Theorem to estimate the range of values of \(h \) for which the approximation \(F \approx mg \) is accurate to within 1%. (Use \(R = 6400 \text{ km} \).)

Hint: Use \((1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots \) with \(x = h/R \). First Taylor expand \(f(x) = (1+x)^{-2} \) and easily get formula for \(n \)th term.

\[
\begin{align*}
\int f(x) &= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)(x-1)^n}{n!} \\
&= \int \left[-8 - 24(x-1) - 12(x-1)^2 + \frac{48}{3} (x-1)^3 + \frac{72}{4} (x-1)^4 \right] \\
&= \int \left[-8 - 24(x-1) - 6(x-1)^2 + 8(x-1)^3 + 3(x-1)^4 \right] \\
&= f(x) - 8 \cdot 24 - 6 \cdot 24 + 8 \cdot 24 + 3 \cdot 24 - 27 + 72(x-2)^2 + 48(x-2)^3 + 12(x-2)^4 \\
&= f(x) + 27 + 36(x-2)^2 + 20(x-2)^3 + 3(x-2)^4 \\
&= \text{Taylor}(f(x), x=1, 5); \\
&= \text{Taylor}(f(x), x=2, 5);
\end{align*}
\]

2. \(F = \frac{mgR^2}{(R+h)^2} = \frac{mgR^2}{R^2(1+\frac{h}{R})^2} = mg(1+\frac{h}{R})^{-2} = mg(1+x)^{-2} \)

\[
\begin{align*}
f(x) &= (1+x)^{-2} \\
f^{(0)}(x) &= 1 \\
f^{(1)}(x) &= -2x \\
f^{(2)}(x) &= -2 \\
f^{(3)}(x) &= 6x \\
f^{(4)}(x) &= +12 \\
f^{(5)}(x) &= -24 \\
f^{(6)}(x) &= +36 \\
f^{(7)}(x) &= -48 \\
f^{(8)}(x) &= +72 \\
f^{(9)}(x) &= -84 \\
f^{(10)}(x) &= +96 \\
f^{(11)}(x) &= -108 \\
&= \sum_{n=0}^{\infty} (-1)^n n! x^n \\
&= mg \sum_{n=0}^{\infty} (-1)^n (n+1)! (\frac{h}{R})^n \\
&= mg \left(1 - 2(\frac{h}{R}) + 3(\frac{h}{R})^2 - \cdots \right) \\
&= mg \left(1 - 2(\frac{h}{R}) + (\frac{h}{R})^2 - \cdots \right) \\
&= mg - \frac{2mh}{R} + \cdots
\end{align*}
\]

\[
\begin{align*}
2\frac{mh}{R} &\leq 0.01 mg \quad (\text{error less than } 1\% \text{ of } mg) \\
2\frac{h}{R} &\leq 0.01 R = 0.01(6400 \text{ km}) = 32 \text{ km}
\end{align*}
\]

\(h \leq 32 \text{ km} \)