Show all work, including mental steps, in a clearly organized way that speaks for itself. Use proper mathematical notation, identifying expressions by their proper symbols (introducing them if necessary) and using equal signs when appropriate. [Box] final short answers requested.

The solid region between the cone \(z = \sqrt{x^2 + y^2} \) and the plane \(z = 1 \) is a conical solid with height \(h = 1 \) and radius \(r = 1 \) and so has volume \(V = \frac{1}{3} \pi r^2 h = \frac{\pi}{3} \).

Setup an iterated triple integral representing its volume \(V \):

a) in Cartesian coordinates \((dz \, dy \, dx) \) (clearly labeled diagrams are a big help)

b) in cylindrical coordinates \((dz \, dr \, d\theta) \)

c) in spherical coordinates \((d\rho \, d\phi \, d\theta) \).

Then d) pick the easiest one to evaluate. [If you don’t get the correct result, try to figure out your error.]

Optional. If you finish early, try evaluating a second such integral.