Show all work, including mental steps, in a clearly organized way that speaks for itself. Use proper mathematical notation, identifying expressions by their proper symbols (introducing them if necessary) and using equal signs when appropriate. [Box] Final short answers requested.

\[\int_{0}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} x \, dy \, dx \]

\(a) \) Make a labeled diagram illustrating the region of integration.

\(b) \) Re-express the double integral by converting to polar coordinates and evaluate the new double integral.

\(y = \pm \sqrt{4-x^2} \) \(\quad \) circle of radius 2

\(x^2 + y^2 = 4 \) \(\quad \) from lower half circle to upper half circle

\(r = 2 \) \(\quad \) between \(x = 0 \) and \(x = 2 \)

\(y = -\sqrt{4-x^2} \)

\(y = \sqrt{4-x^2} \)

\(x^2 y^2 = 4 \) \((r = 3) \)

\(0 \leq r \leq 2 \), \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \)

\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2} r^2 \cos^3 \theta \, dr \, d\theta \]

\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{r^4}{2} \cos^3 \theta \right]_{r=0}^{r=2} \, d\theta \]

\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2^4}{2} \cos^3 \theta \, d\theta \]

\[= \frac{2^3}{3} \cos \theta \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \]

\[= \frac{8}{3} \cdot 1 = \frac{8}{3} \]

\[\therefore \text{Result} = \frac{16}{3} \]