1. \(f(x, y) = 5xy^2 - 4x^3y \)

 a) Find the directional derivative of \(f \) in the direction of the vector \(\mathbf{v} = \langle 4, 3 \rangle \) at the point \((1, 2) \).

 b) Find the maximum rate of change of \(f \) at the point \((1, 2) \) and a unit vector \(\mathbf{U} \) giving the direction in which this maximum occurs.

 c) Write an equation for the tangent plane to the graph \(z = f(x, y) \) at the point \((1, 2) \). Give a simple normal vector \(\mathbf{n} \) to this plane.

2. The voltage \(V \) in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance \(R \) is slowly increasing as the resistor heats up. Use Ohm's law \(I = V/R \) to find how the current \(I \) (measured in amperes; A) at the moment when \(R = 400 \Omega, V = 32 \text{ volts} \), \(dV/dt = -0.01 \text{ volts/s} \) and \(dR/dt = 0.03 \Omega/s \). Specify units in your answer.

3. Find three positive numbers \(x, y, z \) whose sum is 30 and whose product \(P \) is a maximum. Be sure to confirm your claim with the second derivative test.

4. Find the linear approximation \(L(x, y, z) \) to the function

 \(f(x, y, z) = x^3y^2 + z^2 \) at the point \((2, 3, 4) \) and use it to estimate the number \((1.98)^3 \sqrt{(3.01)^2 + (3.97)^2} \).