MAT1500-03/11 Quiz 4 Print Name (Last, First)

Show all work on this sheet, including mental steps, in a clearly organized way that speaks for itself. Use proper mathematical notation. [Box] final short answers.

\[f(x) = 2x^2 - 3 \quad , \quad g(x) = \frac{3x^2 - 1}{1 - x^2} \]

1) a) Find the slope of the tangent line to \(f \) at \(a \) (or at \("x=a" \)). [using limits]

 b) Use your result to write the equation of the tangent line to \(f \) at \(x=1 \), and give your final result with \(y \) expressed as a function of \(x \).

2) a) Evaluate the limits necessary to determine if \(g \) has any horizontal asymptotes.

 b) Give the equations of any horizontal asymptotes you find.

0) a)
 \[m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]

 \[= \lim_{h \to 0} \frac{(2(a+h)^2-3) - [2a^2-3]}{h} \]

 \[= \lim_{h \to 0} \frac{2a^2 + 4ah + 2h^2 - 3 - 2a^2 + 3}{h} \]

 \[= \lim_{h \to 0} \frac{4ah + 2h^2}{h} \]

 \[= 4a + 2h \]

 so \(m = \lim_{h \to 0} (4a + 2h) = 4a + 2(0) = 4a \)

b) Setting \(a = 1 \):

 \(m = 4(1) = 4 \).

 If \(x = 1 \), then \(y = f(1) = 2(1)^2 - 3 = 2 - 3 = -1 \)

 Pt \((1, -1)\), slope 4 \(\xrightarrow{\text{pt-slope eq:}} \)

 \[y - (-1) = 4(x - 1) \]

 \[y + 1 = 4x - 4 \]

 \[y = 4x - 5 \]

2) a)
 \[\lim_{x \to \infty} \frac{3x^2 - 1}{1 - x^2} = \lim_{x \to \infty} \frac{3x^2 - 1}{1 - x^2} \times \frac{x^2}{x^2} = \lim_{x \to \infty} \frac{3 - \frac{\text{y}}{x^2}}{1 - \frac{\text{y}}{x^2}} = \frac{3}{-1} = -3 \]

 \[\lim_{x \to -\infty} \frac{3x^2 - 1}{1 - x^2} = -3 \] (same calculation, no change since \(g \) is even)

b) \(y = -3 \) is a horizontal asymptote for \(g \) both as \(x \to \infty \) and \(x \to -\infty \).