Solving a functional relationship between 2 variables for the input variable m (1)

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$ (equation)

$f(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$ is the definition of a function which produces a number (with units) from the input; f is the name of this function.

To find a formula for the inverse function, we must solve the equation in which v and m appear together for v. The expression we find for it will then define the formula for the inverse function.

f is the following sequence of operations:

- **input:** $v \geq 0$
- **square:** v^2
- **divide by c^2:** $\frac{v^2}{c^2}$
- **change sign:** $-\frac{v^2}{c^2}$
- **add 1:** $1 - \frac{v^2}{c^2}$
- **take square root:** $\sqrt{1 - \frac{v^2}{c^2}}$
- **take reciprocal:** $\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$
- **multiply by m_0:** $\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$
- **multiply by m:** $\frac{m_0}{m} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

simplification steps:

- take square root: $\sqrt{c^2(1 - \frac{m_0^2}{m^2})} = \sqrt{v^2} = v$ (since $v \geq 0$)
- multiply by c^2: $c^2(1 - \frac{m_0^2}{m^2}) = v^2$
- change sign: $1 - \frac{(m_0)^2}{m^2} = -\frac{v^2}{c^2}$
- subtract 1: $\frac{(m_0)^2}{m^2} - 1 = -\frac{v^2}{c^2}$
- **square:** $\left(\frac{m_0}{m}\right)^2 = 1 - \frac{v^2}{c^2}$
- **take reciprocal:** $\frac{m}{m_0} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$
- **divide by m_0:** $\frac{m}{m_0} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$

reverse process: to go from output back to input: one-by-one apply inverse operations in reverse order

final result:

$$v = c\sqrt{1 - \frac{m_0^2}{m^2}}$$ (function of variable m: $f^{-1}(m) = c\sqrt{1 - \frac{m_0^2}{m^2}}$)

domain of f^{-1}

what are the allowed input values m?

$$1 - \frac{m_0^2}{m^2} \geq 0 \quad \text{solve inequality} \quad 1 \geq \frac{m_0^2}{m^2} \quad m^2 \geq m_0^2 \quad m \geq m_0$$

Same for domain of f:

$$1 - \frac{v^2}{c^2} > 0 \rightarrow 1 > \frac{v^2}{c^2} \rightarrow c^2 > v^2 \rightarrow c > v \quad \text{or} \quad v < c$$

since by assumption $v \geq 0$:

$$0 \leq v < c$$
Graphs

These are the same curves and same relationship between the two variables, but with the axes interchanged.

While the axes are still labeled \(v \) and \(m \), it makes no sense to graph them together with these orientations since one then cannot use either variable name to label the axes.

The two constants \(c \) (with the same velocity units as the variable \(v \), so that their ratio \(v/c \) is dimensionless) and \(m_0 \) (with the same mass units as the variable \(m \), so that their quotient is dimensionless) set the scale for the two axes.

We could re-express these two equations in dimensionless form:

\[
\frac{m}{m_0} = \frac{1}{\sqrt{1-(\frac{v}{c})^2}} \rightarrow \quad M = \frac{1}{\sqrt{1-v^2}} = F(v)
\]

\[
\frac{v}{c} = \sqrt{1-(\frac{m_0}{m})^2} \rightarrow \quad \frac{v}{c} = \sqrt{1-\frac{1}{M^2}} = F^{-1}(M)
\]

This corresponds to measuring the variables by multiples of these 2 constants:

"Half the speed of light" : \(v = \frac{1}{2}c \rightarrow \frac{v}{c} = \frac{1}{2} \)

"twice the rest mass" : \(m = 2m_0 \rightarrow M = 2 \).

We can study the dimensionless mathematical functions with the default names \(x \) and \(y \) for inputs and outputs and graph them on the same axes:

\[
y = F(x) = \frac{1}{\sqrt{1-x^2}}
\]

\[
y = F^{-1}(x) = \sqrt{1-x^2}
\]

Now we don't have to worry about conflicting interpretations of variable names. \(x \) is just the input, \(y \) the output.

[By introducing different variable names \(x \) and \(y \) we could even make such a graph for the original functions.]

\[
\]