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Abstract

There are lots of books on differential geometry, including at the introductory level. Why yet
another one by an author who doesn’t seem to take himself that seriously and occasionally refers
to himself in the third person? This one is a bit different than all the rest. dr bob loves this
stuff, but how to teach it to students at his own (not elite) university in order to have a little
more fun at work than usual? This unique approach may not work for everyone, but it attempts
to explain the nuts and bolts of how a few basically simple ideas taken seriously underlie the
whole mess of formulas and concepts, without worrying about technicalities like “manifolds,”
“coordinate coverings” and “differentiability,” which only serve to put off students at the first
pass through this scenery. It is also presented with an eye towards being able to understand
the key concepts needed for the mathematical side of modern physical theories, while still
providing the tools that underlie the classical theory of surfaces in space. Examples of curves
and surfaces in 2 and 3-dimensional spacetimes have been incorporated as examples, with an
Appendix presenting a review of the elementary special relativity (hyperbolic geometry, directly
analogous to trigonometry) needed to make sense of them. The continuing theme of symmetry
groups and their implications for geometry are have also now been woven into the narrative,
which is somewhat uncommon for expositions of differential geometry, but essential to a proper
understanding of the implications of the subject for applications to physical theories.
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Preface

This book began as a set of handwritten notes from a course given at Villanova University in
the spring semester of 1991 that were scanned and posted on the web in 2006 at
http://www34.homepage.villanova.edu/robert. jantzen/notes/dg1991/

and were converted to a BIEX compuscript and completely revised in 2007-2008 with the
help of Hans Kuo of Taiwan through a serendipitous internet collaboration and chance second
offering of the course to actual students in the spring semester of 2008, offering the opportunity
for serious revision with feedback. Life then intervened and the necessary cleanup operations
to put this into a finished form were delayed indefinitely.

Most undergraduate courses on differential geometry are leftovers from the early part of the
last century, focusing on curves and surfaces in space, which is not very useful for the most
important application of the twentieth century: general relativity and field theory in theoretical
physics. Most mathematicians who teach such courses are not well versed in physics, so perhaps
this is a natural consequence of the distancing of mathematics from physics, two fields which
developed together in creating these ideas from Newton to Einstein and beyond. The idea of
these notes is to develop the essential tools of modern differential geometry while bypassing
more abstract notions like manifolds, which although important for global questions, are not
essential for local differential geometry and therefore need not steal precious time from a first
course aimed at undergraduates. On the other hand physicists interested in getting students to
the heart of general relativity under time constraints often neglect the mathematical structure
that makes tensor analysis more digestible when recast in a more modern light. (One of
these shortcuts I think is particularly regrettable is to bypass the understanding of linearity
embodied in the concept of the dual space to a vector space by using reciprocal bases to evaluate
components along a basis of a vector space. See Appendix E.) Since this is not the primary
objective of these notes, we can take a compromise path which tries to give a better view of
the overall mathematical structure that will enable interested students to explore applications
on their own.

Part 1 (Algebra) develops the vector space structure of R” and its dual space of real-valued
linear functions, and builds the tools of tensor algebra on that structure, getting the index
manipulation part of tensor analysis out of the way first. Part 2 (Calculus) then develops R™ as
a manifold first analyzed in Cartesian coordinates, beginning by redefining the tangent space
of multivariable calculus to be the space of directional derivatives at a point, so that all of the
tools of Part 1 then can be applied pointwise to the tangent space. Non-Cartesian coordinates
and the Euclidean metric are then used as a shortcut to what would be the consideration
of more general manifolds with Riemannian metrics in a more ambitious course, followed by
the covariant derivative and parallel transport, leading naturally into curvature. The exterior
derivative and integration of differential forms is the final topic, showing how conventional
vector analysis fits into a more elegant unified framework. Flat Minkowski spacetime geometry
is woven into the story together with its symmetry groups, and a few curved space examples
from general relativity help drive home the point of truly curved spaces.

The theme of Part 1 is that one needs to distinguish the linearity properties from the
inner product (“metric”) properties of elementary linear algebra. The inner product geometry
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governs lengths and angles, and the determinant then enables one to extend the linear measure
of length to area and volume in the plane or 3-dimensional space, and to p-dimensional objects
in R™. The determinant also tests linear independence of a set of vectors and hence is key to
characterizing subspaces independent of the particular set of vectors we use to describe them
while assigning an actual measure to the p-parallelepipeds formed by a particular set, once an
inner product sets the length scale for orthogonal directions. By appreciating the details of
these basic notions in the setting of R", one is ready for the tools needed point by point in the
tangent spaces to R", once one understands the relationship between each tangent space and
the simpler enveloping space. Along the way we discover how basic notions about matrices and
vectors and their algebra resurface in so many ways in the tensor algebra needed to do basic
differential geometry.

This book is not for everyone. It is verbose, trying to explain in much detail how everything
works, with lots of examples interwoven into the discussion. It is aimed at those students who
only have the limited foundation of multivariable calculus (see Appendices C, C), linear algebra
and differential equations, and tries to avoid abstractions. No inverse function theorem remarks
here, for example.

In the spring of 2013, I had a second opportunity to go further with this project by incor-
porating the mathematics of special relativity into the applications since clearly relativity is
a more interesting application than surfaces in space which are the prime target of the usual
differential geometry offerings. This in turn led to extending the existing material naturally
to include continuous symmetry groups, the missing component of these notes until then. I
decided to start the course with a simple multivariable calculus calculation which evaluates the
dominant contribution to the geodetic precession effect measured by the GP-B satellite exper-
iment in recent years, and follow with a crash course in hyperbolic geometry (see Appendix
A) that is always skipped in our calculus offerings, connecting it up with special relativity (see
Appendix B) which would then be woven into the main text in parallel with the more familiar
Euclidean geometry associated with the dot product. During the fall of 2012 I tried to think of
interesting ways to incorporate relativity into the applications at an elementary level, and hav-
ing gotten excited about the surface geometry of screw-symmetric surfaces in modeling pasta
and circularly orbiting particles, added some more appendices reviewing the basics of special
relativity and reviewing curves and surfaces from multivariable calculus. Only at the end of
this upgrade will it be clear whether this burst of enthusiasm was successful in exciting the
students.

Part 3 is indispensable to students trying to self-study using this book as well as to those rare
exceptions who might be in an actual course using it, since it is an ambitious text and includes
many options explored in exercises that might appeal to particular interests of the reader that
time won’t permit discussion of in a course setting. An index of the Maple worksheets which
are essential for many of the exercise solutions is first, followed by a complete solution manual
electronically linked back to the exercises of the main text in the PDF version of the book for
ready access. The Maple worksheets are freely available on dr bob’s website while it exists.



