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Abstract

There are lots of books on differential geometry, including at the introductory level. Why yet
another one by an author who doesn’t seem to take himself that seriously and occasionally
refers to himself in the third person? This one is a bit different than all the rest. dr bob loves
this stuff, but how to teach it to students at his own (not elite) university in order to have
a little more fun at work than usual? This unique approach may not work for everyone, but
it attempts to explain the nuts and bolts of how a few basically simple ideas taken seriously
underlie the whole mess of formulas and concepts, without worrying about technicalities like
“manifolds,” “coordinate coverings” and “differentiability,” which only serve to put off students
at the first pass through this scenery. It is also presented with an eye towards being able to
understand the key concepts needed for the mathematical side of modern physical theories,
while still providing the tools that underlie the classical theory of curves and surfaces in space.
Examples of curves and surfaces in 2- and 3-dimensional spacetimes have been incorporated as
examples, with an Appendix presenting a review of the elementary special relativity (hyperbolic
geometry, directly analogous to trigonometry) needed to make sense of them. The continuing
theme of symmetry groups and their implications for geometry have also now been woven
into the narrative, which is somewhat uncommon for expositions of differential geometry, but
essential to a proper understanding of the implications of the subject for applications to physical
theories. Finally, economy of explanation and derivations is abandoned for lengthy explanations
and detailed derivations to try to make the material as readable as possible without forcing
the reader to think about missing steps unless intended to be an explicit exercise or digest new
ideas that are presented too concisely.

100 years of general relativity.
Differential geometry got an enormous boost from Albert Einstein and his general relativity
theory of 1915, a theory for which the then new tensor analysis tools developed by Ricci and
Levi-Civita based on the work of Gauss and Riemann and a handful of others provided the key
to its development. The crucial idea of parallel transport did not come until 1917 when Levi-
Civita, motivated by general relativity, thought it up, and soon after Cartan created the modern
theory of connections on fiber bundles. Indeed a lot of attention was focused on differential
geometry because of its obvious importance for general relativity in those early days, but in
fact the rest of the century revealed that geometrization was the key to understanding the
fundamental forces and their unification. It is therefore entirely reasonable that finally in the
twenty first century, the subject might be taught at an elementary level acknowledging this
aspect of its history.
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Preface

This book began as a set of handwritten notes from a course given at Villanova University in
the spring semester of 1991 that were scanned and posted on the web in 2006 at
http://www34.homepage.villanova.edu/robert.jantzen/notes/dg1991/

and were converted to a LATEX compuscript and completely revised in 2007–2008 with the
help of Hans Kuo of Taiwan through a serendipitous internet collaboration and chance second
offering of the course to actual students in the spring semester of 2008, offering the opportunity
for serious revision with feedback. Life then intervened and the necessary cleanup operations
to put this into a finished form were delayed indefinitely.

Most undergraduate courses on differential geometry are leftovers from the early part of the
last century, focusing on curves and surfaces in space, which is not very useful for the most
important application of the twentieth century: general relativity and field theory in theoretical
physics. Most mathematicians who teach such courses are not well versed in physics, so perhaps
this is a natural consequence of the distancing of mathematics from physics, two fields which
developed together in creating these ideas from Newton to Einstein and beyond. The idea of
these notes is to develop the essential tools of modern differential geometry while bypassing
more abstract notions like manifolds, which although important for global questions, are not
essential for local differential geometry and therefore need not steal precious time from a first
course aimed at undergraduates. On the other hand physicists interested in getting students to
the heart of general relativity under time constraints often neglect the mathematical structure
that makes tensor analysis more digestible when recast in a more modern light. (One of
these shortcuts I think is particularly regrettable is to bypass the understanding of linearity
embodied in the concept of the dual space to a vector space by using reciprocal bases to evaluate
components along a basis of a vector space. See Appendix F.) Since this is not the primary
objective of these notes, we can take a compromise path which tries to give a better view of
the overall mathematical structure that will enable interested students to explore applications
on their own.

Part 1 (Algebra) develops the vector space structure of Rn and its dual space of real-valued
linear functions, and builds the tools of tensor algebra on that structure, getting the index
manipulation part of tensor analysis out of the way first. Part 2 (Calculus) then develops Rn as
a manifold first analyzed in Cartesian coordinates, beginning by redefining the tangent space
of multivariable calculus to be the space of directional derivatives at a point, so that all of the
tools of Part 1 then can be applied pointwise to the tangent space. Non-Cartesian coordinates
and the Euclidean metric are then used as a shortcut to what would be the consideration
of more general manifolds with Riemannian metrics in a more ambitious course, followed by
the covariant derivative and parallel transport, leading naturally into curvature. The exterior
derivative and integration of differential forms is the final topic, showing how conventional
vector analysis fits into a more elegant unified framework. Flat Minkowski spacetime geometry
is woven into the story together with its symmetry groups, and a few curved space examples
from general relativity help drive home the point of truly curved spaces.

Two appendices in Part 3 help remind the reader of the background from multivariable
calculus required for the present study. Traditional differential geometry of curves and surfaces

http://www34.homepage.villanova.edu/robert.jantzen/notes/dg1991/


12

in ordinary flat space builds on this knowledge, but here in the main text we eventually extend
these ideas to more general curved spaces, including higher dimensions as well as 4-dimensional
spacetime. Two other appendices summarize basic ideas of hyperbolic geometry in analogy
with the trigonometric geometry of the unit circle in order to treat some special relativistic
differential geometry ideas.

The theme of Part 1 is that one needs to distinguish the linearity properties from the
inner product (“metric”) properties of elementary linear algebra. The inner product geometry
governs lengths and angles, and the determinant then enables one to extend the linear measure
of length to area and volume in the plane or 3-dimensional space, and to p-dimensional objects
in Rn. The determinant also tests linear independence of a set of vectors and hence is key to
characterizing subspaces independent of the particular set of vectors we use to describe them
while assigning an actual measure to the p-parallelepipeds formed by a particular set, once an
inner product sets the length scale for orthogonal directions. By appreciating the details of
these basic notions in the setting of Rn, one is ready for the tools needed point by point in the
tangent spaces to Rn, once one understands the relationship between each tangent space and
the simpler enveloping space. Along the way we discover how basic notions about matrices and
vectors and their algebra resurface in so many ways in the tensor algebra needed to do basic
differential geometry.

This book is not for everyone. It is verbose, trying to explain in much detail how everything
works, with lots of examples interwoven into the discussion. It is aimed at those students who
only have the limited foundation of multivariable calculus (see Appendix C for curves and D for
surfaces), linear algebra and differential equations, and tries to avoid abstractions. No inverse
function theorem remarks here, for example, or talk about atlases of coordinate patches on
manifolds.

In the spring of 2013, I had a second opportunity to go further with this project by incor-
porating the mathematics of special relativity into the applications since clearly relativity is
a more interesting application than surfaces in space which are the prime target of the usual
differential geometry offerings. This in turn led to extending the existing material naturally
to include continuous symmetry groups, the missing component of these notes until then. I
decided to start the course with a simple multivariable calculus calculation which evaluates the
dominant contribution to the geodetic precession effect measured by the GP-B satellite exper-
iment in recent years, and follow with a crash course in hyperbolic geometry (see Appendix
A) that is always skipped in our calculus offerings, connecting it up with special relativity (see
Appendix B) which would then be woven into the main text in parallel with the more familiar
Euclidean geometry associated with the dot product. During the fall of 2012 I tried to think of
interesting ways to incorporate relativity into the applications at an elementary level, and hav-
ing gotten excited about the surface geometry of screw-symmetric surfaces in modeling pasta
and circularly orbiting particles, added some more appendices reviewing the basics of special
relativity and reviewing curves and surfaces from multivariable calculus. Only at the end of
this upgrade will it be clear whether this burst of enthusiasm was successful in exciting the
students.

Part 4 is indispensable to students trying to self-study using this book as well as to those
rare exceptions who might be in an actual course using it, since it is an ambitious text and
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includes many options explored in exercises that might appeal to particular interests of the
reader that time won’t permit discussion of in a course setting. These supplementary materials
begin with a complete solution manual electronically linked back to the exercises of the main
text in the PDF version of the book for ready access. Many of the exercise solutions refer
to Maple worksheets freely available on dr bob’s website while it exists, so an index of these
follows the solution manual.



Part I

ALGEBRA
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Chapter 0

Introduction: motivating index algebra

Elementary linear algebra is the mathematics of linearity, whose basic objects are 1- and 2-
dimensional arrays of numbers, which can be visualized as at most 2-dimensional rectangular
arrangements of those numbers on sheets of paper or computer screens. Arrays of numbers of
dimension d can be described as sets that can be put into a 1-1 correspondence with regular
rectangular grids of points in Rd whose coordinates are integers, used as index labels:

{ai|i = 1, . . . , n} 1-d array : n entries

{aij|i = 1, . . . , n1, j = 1, . . . , n2} 2-d array : n1n2 entries

{aijk|i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3} 3-d array : n1n2n3 entries

1-dimensional arrays (vectors) and 2-dimensional arrays (matrices), coupled with the basic op-
eration of matrix multiplication, itself an organized way of performing dot products of two sets
of vectors, combine into a powerful machine for linear computation. When working with arrays
of specific dimensions (3 component vectors, 2×3 matrices, etc.), one can avoid index notation
and the sigma summation symbol

∑n
i=1 after using it perhaps to define the basic operation

of dot products for vectors of arbitrary dimension, but to discuss theory for indeterminant di-
mensions (n-component vectors, m× n matrices), index notation is necessary. However, index
“positioning” (distinguishing subscript and superscript indices) is not essential and rarely used,
especially by mathematicians. Going beyond 2-dimensional arrays to d-dimensional arrays for
d > 2, the arena of “tensors”, index notation and index positioning are instead both essential
to an efficient computational language.

Suppose we start with 3-vectors to illustrate the basic idea. (We will sometimes use an over
arrow symbol to signal a vector in Rn for emphasis, but not always.) The dot product between
two vectors is symmetric in the two factors

~a = 〈a1, a2, a3〉 , ~b = 〈b1, b2, b3〉

~a ·~b = a1b1 + a2b2 + a3b3 =
3∑
i=1

aibi = ~b · ~a ,

15
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but using it to describe a linear function in R3, a basic asymmetry is introduced

f~a(~x) = ~a · ~x = a1x1 + a2x2 + a3x3 =
3∑
i=1

aixi .

The left factor is a constant vector of “coefficients”, while the right factor is the vector of
“variables” and this choice of left and right is arbitrary but convenient, although some mathe-
maticians like to reverse it for some reason. To reflect this distinction, we introduce superscripts
(up position) to denote the variable indices and subscripts (down position) to denote the coef-
ficient indices, and then agree to sum over the understood 3 values of the index range for any
repeated such pair of indices (one up, one down)

f~a(~x) = a1x
1 + a2x

2 + a3x
3 =

3∑
i=1

aix
i = aix

i .

The last convention, called the Einstein summation convention, turns out to be an extremely
convenient and powerful shorthand, which in this example, streamlines the notation for taking
a “linear combination of variables,” namely the sum of the matched products of corresponding
coefficients and variables.

This index positioning notation encodes the distinction between rows and columns in the
matrix notation for a linear transformation. We will represent a matrix (aij) representing a
linear transformation instead as (aij) with row indices (left) associated with superscripts, and
column indices (right) with subscripts. A single row matrix or column matrix is used to denote
respectively a “coefficient” vector and a “variable” vector

(
a1 a2 a3

)
,

x1

x2

x3

 ,

where the entries of a single row matrix are labeled by the column index (down), and the entries
of a single column matrix are labeled by the row index (up).

The matrix product of a row matrix on the left by a column matrix on the right re-interprets
the dot product between two vectors as the way to combine a row vector (left factor) of coeffi-
cients with a column vector (right factor) of variables to produce a single number, the value of
a linear function of the variables

(
a1 a2 a3

)x1

x2

x3

 = a1x
1 + a2x

2 + a3x
3 = ~a · ~x .

If we agree to use an underlined kernel symbol x for a column vector, and the transpose aT for
a row vector, where the transpose simply interchanges rows and columns of a matrix, this can
be represented as aTx = ~a · ~x. Since many geometric objects also have component matrices,
it will be useful to link them together by using the same kernel symbol and underlining the
matrix symbol to distinguish it from the object from which the components are taken.
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Extending the matrix product to more than one row in the left factor is the second step in
defining a general matrix product, leading to a column vector result

(
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

)x1

x2

x3

 =

(
a1T

a2T

)x1

x2

x3

 =

(
~a1 · ~x
~a2 · ~x

)
=

(
a1
ix
i

a2
ix
i

)
.

Thinking of the coefficient matrix as a 1-dimensional vertical array of row vectors (the first
right hand side of this sequence of equations), one gets a corresponding array of numbers (a
column) as the result, consisting of the corresponding dot products of the rows with the single
column. Denoting the left matrix factor by A, then the product column matrix has entries

[Ax]i =
3∑

k=1

aikx
k = aikx

k , 1 ≤ i ≤ 2 .

Finally, adding more columns to the right factor in the matrix product, we generate corre-
sponding columns in the matrix product, with the resulting array of numbers representing all
possible dot products between the row vectors on the left and the column vectors on the right,
labeled by the same row and column indices as the factor vectors from which they come

(
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

)x1
1 x1

2

x2
1 x2

2

x3
1 x3

2

 =

(
a1T

a2T

)(
x1 x2

)
=

(
~a1 · ~x1 ~a1 · ~x2

~a2 · ~x1 ~a2 · ~x2

)
.

Denoting the new left matrix factor again by A and the right matrix factor by X, then the
product matrix has entries (row index left up, column index right down)

[AX]ij =
3∑

k=1

aikx
k
j = aikx

k
j , 1 ≤ i ≤ 2 , 1 ≤ j ≤ 2 ,

where the sum over three entries (representing the dot product) is implied by our summation
convention in the second equality, and the row and column indices here go from 1 to 2 to label
the entries of the 2 rows and 2 columns of the product matrix. Thus matrix multiplication in
this example is just an organized way of displaying all such dot products of two ordered sets
of vectors in an array where the rows of the left factor in the matrix product correspond to
the coefficient vectors in the left set and the columns in the right factor in the matrix product
correspond to the variable vectors in the right set. The dot product itself in this context of
matrix multiplication is representing the natural evaluation of linear functions (left row) on
vectors (right column). No geometry (lengths and angles in Euclidean geometry) is implied in
this context, only linearity and the process of linear combination.

The matrix product of a matrix with a single column vector can be reinterpreted in terms
of the more general concept of a vector-valued linear function of vectors, namely a linear
combination of vectors, in which case the right factor column vector entries play the role of
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coefficients. In this case the left factor matrix must be thought of as a horizontal array of
column vectors(

v 1 v 2 v 3

)x1

x2

x3

 =

(
v1

1 v1
2 v1

3

v2
1 v2

2 v2
3

)x1

x2

x3

 =

(
v1

1x
1 + v1

2x
2 + v1

3x
3

v2
1x

1 + v2
2x

2 + v2
3x

3

)

= x1

(
v1

1

v2
1

)
+ x2

(
v1

2

v2
2

)
+ x3

(
v1

3

v2
3

)
= x1v 1 + x2v 2 + x3v 3 = xivi .

Thus in this case the summed-over index pair performs a linear combination of the columns
of the left factor of the matrix product, whose coefficients are the entries of the right column
matrix factor. This interpretation extends to more columns in the right matrix factor, leading
to a matrix product consisting of the same number of columns, each of which represents a
linear combination of the column vectors of the left factor matrix. In this case the coefficient
indices are superscripts since the labels of the vectors being combined linearly are subscripts,
but the one up, one down repeated index summation is still consistent. Note that when the
left factor matrix is not square (in this example, a 2× 3 matrix multiplied by a 3× 1 matrix),
one is dealing with coefficient vectors vi and vectors x of different dimensions, in this example
combining three 2-component vectors by linear combination.

If we call our basic column vectors just vectors (contravariant vectors, indices up) and call
row vectors “covectors” (covariant vectors, indices down), then combining them with the matrix
product represents the evaluation operation for linear functions, and implies no geometry in the
sense of lengths and angles usually associated with the dot product, although one can easily
carry over this interpretation. In this example R3 is our basic vector space consisting of all
possible ordered triplets of real numbers, and the space of all linear functions on it is equivalent
to another copy of R3, the space of all coefficient vectors. The space of linear functions on a
vector space is called the dual space, and given a basis of the original vector space, expressing
linear functions with respect to this basis leads to a component representation in terms of their
matrix of coefficients as above.

It is this basic foundation of a vector space and its dual, together with the natural evalua-
tion represented by matrix multiplication in component language, reflected in superscript and
subscript index positioning respectively associated with column vectors and row vectors, that is
used to go beyond elementary linear algebra to the algebra of tensors, or d-dimensional arrays
for any positive integer d. Index positioning together with the Einstein summation convention
is essential in letting the notation itself directly carry the information about its role in this
scheme of linear mathematics extended beyond the elementary level.

Combining this linear algebra structure with multivariable calculus leads to differential
geometry. Consider R3 with the usual Cartesian coordinates x1, x2, x3 thought of as functions
on this space. The differential of any function on this space can be expressed in terms of partial
derivatives by the formula

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 = ∂ifdx

i = f,idx
i

using first the abbreviation ∂i = ∂/∂xi for the partial derivative operator and then the abbre-
viation f,i for the corresponding partial derivatives of the function f . At each point of R3, the
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differentials df and dxi play the role of linear functions on the tangent space. The differential
of f acts on a tangent vector ~v at a given point by evaluation to form the directional derivative
along the vector

D~vf =
∂f

∂x1
v1 +

∂f

∂x2
v2 +

∂f

∂x3
v3 =

∂f

∂xi
vi ,

so that the coefficients of this linear function of a tangent vector ~v at a given point are the
values of the partial derivative functions there, and hence have indices down compared to the
up indices of the tangent vector itself, which belongs to the tangent space, the fundamental
vector space describing the diffential geometry near each point of the whole space. In the linear
function notation, the application of the linear function df to the vector ~v gives the same result

df(~v) =
∂f

∂xi
vi .

If ∂f/∂xi are therefore the components of a covector, and vi the components of a vector in
the tangent space, what is the basis of the tangent space, analogous to the natural (ordered)
basis {e1, e2, e3} = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉} of R3 thought of as a vector space in our previous
discussion? In other words how do we express a tangent vector in the abstract form like in
the naive R3 discussion where ~x = 〈x1, x2, x3〉 = xiei is expressed as a linear combination of
the standard basis vectors {ei} = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉} usually denoted by i, j,k? This
question will be answered in the following notes, making the link between old fashioned tensor
analysis and modern differential geometry.

One last remark about matrix notation is needed. We adopt here the notational conventions
of the computer algebra system Maple for matrices and vectors. A vector 〈u1, u2〉 will be
interpreted as a column matrix in matrix expressions

u = 〈u1, u2〉 =

(
u1

u2

)
while its transpose will be denoted by

uT = 〈u1|u2〉 =
(
u1 u2

)
.

In other words within triangle bracket delimiters, a comma will represent a vertical separator
in a list, while a vertical line will represent a horizontal separator in a list. A matrix can then
be represented as a vertical list of rows or as a horizontal list of columns, as in(

a b
c d

)
= 〈〈a|b〉, 〈c|d〉〉 = 〈〈a, c〉|〈b, d〉〉 .

Finally if A is a matrix, we will not use a lowercase letter aij for its entries but retain the same
symbol: A = (Aij).

Since the matrix notation and matrix multiplication which suppresses all indices and the
summation is so efficient, it is important to be able to translate between the summed indexed
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notation to the corresponding index-free matrix symbols. In the usual language, matrix multi-
plication the ith row and jth column entry of the product matrix is

[AB]ij =
n∑
k=1

AikBkj ,

while in our streamlined notation when these represent linear transformations of the vectors
space into itself, this becomes

[AB]ij = AikB
k
j .

However, as we will see all other index position combinations are possible with corresponding
different meanings. In our application of the matrix product to matrices with indices in various
up/down positions, the left index will always be the row index and the right index the column
index and to translate from indexed notation to symbolic matrices we always have to use the
above correspondence independent of the index up or down position: only left-right position
counts. Thus to translate an expression like MijB

i
mB

j
n we need to first rearrange the factors

to Bi
mMijB

j
n and then recognize that the second summed index j is in the right adjacent pair

of positions for interpretation of matrix multiplication, but the first summed index i is in the
row instead of column position so the transpose is required to place it adjacent to the middle
matrix factor

(Bi
mMijB

j
n) = ([BTM B]mn) = BTM B .

Geometry?

Finally it is important to give some sense of what all this index business is needed for, connect-
ing up with what has already been encountered in undergraduate multivariable calculus. In
particular, what does all of this have to do with geometry? First, the term differential geometry
refers to the study of the differential structure of “manifolds” which encompass not only the
familiar straight line, flat plane and flat space of multivariable calculus but more complicated
“curved spaces” like circles, spheres and cylinders or other conic-section related surfaces or
more general surfaces in space as well as higher dimensional examples like the 3-sphere within
4-dimensional Euclidean space, a space which is often encountered in popular discussions of
closed universe models. Second, geometry we first encounter in the context of lengths of line
segments or angles between them (high school geometry class!). This idea of lengths and an-
gles underlies the foundations of Riemannian (or pseudo-Riemannian) geometry in which the
differential structure of differential geometry is given an additional “metric structure” that we
associate with the distance formula and the dot product in multivariable calculus. To explain
in more detail, we need more preliminary tools, but we can begin with an example that gives
us a preview of what a metric is.

When we study arclengths of curves, we easily accept the expression for the square of
the differential of arclength for a differential displacement in the plane from a point (x, y) to
(x+ dx, y + dy) as the Pythagorean relation for right triangles

ds2 = dx2 + dy2 =
(
dx dy

)(dx
dy

)
, (1)



21

which is very useful for integrating up finite arclengths along curves once the curve is parametrized.
We also learn to re-express this formula passing from the standard Cartesian coordinates to
polar coordinates in the plane by way of the coordinate transformation

(x, y) = (r sin θ, r cos θ) (2)

whose differential(
dx
dy

)
=

(
cos θ dr − r sin θ dθ
sin θ dr + r cos θ dθ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)(
dr
dθ

)
≡ J

(
dr
dθ

)
, (3)

which defines the so-called Jacobian matrix J of partial derivatives of the old coordinates with
respect to the new ones. It is then a simple matter to substitute these relations into the
square of the differential arclength, and expand and simplify the result using the fundamental
trigonometric identity

ds2 = (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2 = . . . = dr2 + r2dθ2 . (4)

In terms of the matrix representation of this same calculation, we have instead

ds2 =

(
dx
dy

)T (
dx
dy

)
=

(
J

(
dr
dθ

))T (
J

(
dr
dθ

))
=

(
dr
dθ

)T
JTJ

(
dr
dθ

)
, (5)

where

JTJ =

(
1 0
0 r2

)
(6)

and we have used the well known property (AB)T = BTAT of the matrix transpose which
converts columns into rows and vice versa.

The quantity ds2 is a quadratic function of the coordinate differentials, or a “quadratic
form,” usually called the “line element” in differential geometry. The diagonal matrix g = JTJ
consists of the coefficients of this quadratic form, or the components of the “metric.”

But so far no indices! For that we have to introduce superscripted coordinate variables.
The old and new coordinates are

(x1, x2) = (x, y) , (y1, y2) = (r, θ) (7)

and we can let i, j, k, . . . = 1, 2. Then their differential relationship is

dxi =
∂xi

∂yj
dyj ≡ J ijdy

j (8)

and

ds2 = gijdy
idyj , gij =

(
JTJ

)
ij

=
2∑

m=1

JmiJ
m
j (9)

defines the metric expressed in the new coordinates. More precisely, the components of the
metric gij are the entries of the matrix of the quadratic form represented by the “line element”
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ds2. The only way to get rid of the summation symbol here is to introduce the unit matrix
with both indices down to be able to use the summation convention

I = (δij) =

(
1 0
0 1

)
.

Then we can write

gij = JmiJ
n
jδmn = JmiδmnJ

n
j = (JT I J)ij .

In fact since lowered indices are associated with coefficients of linear forms, it makes sense that
the coefficients of a bilinear quadratic form gijX

iY j also have lowered indices.
In my institution the section of the textbook on changes of variables and the Jacobian

matrix is omitted from the multivariable calculus syllabus, but as you can see, it easily deter-
mines the differential arclength in non-Cartesian coordinates as in this toy calculation. It also
determines the correction factor for the differential of area in the plane in polar coordinates
dA = r drdθ through its determinant |J | = r, which we instead alternatively derive using the
formula for the area of a sector of a circle. In fact while the dot product and its generalization
to a metric determine lengths of line segments and arclengths of curves, the 1-dimensional
measure associated with geometry, it is the determinant and its generalizations that allow this
1-dimensional measure to be extended to higher dimensional structures like parallelograms and
parallelopipeds and differentials of surface area and volume in non-Cartesian coordinates in R3.
In Rn with n > 3, there are p = 1, 2, . . . , n − 1, n dimensional structures and measures, all
governed by the mathematics of determinants and Jacobians.

Old fashioned tensor calculus deals with understanding differential properties of spaces
described by different coordinate systems, giving preference to those quantities which do not
depend on the choice of coordinates and therefore have to “transform” in a certain way to guar-
antee that coordinate independence. The Jacobian is the matrix of the linear transformation
of derivatives between different coordinate systems. Calculations with it can become tedious,
as we will see when we later study the corresponding derivation for spherical coordinates in
space. Fortunately computer algebra systems can now save us from a lot of the hand algebra
that becomes quite cumbersome in this subject. For this reason it is important to use either
Maple or Mathematica as a tool in learning the ropes of this area of mathematics as one works
problems to gain familiarity with the concepts. These software products have slightly different
conventions from each other and the classical notation of the discipline, so we have to be a bit
flexible in dealing with notation. Modern differential geometry organizes old fashioned tensor
calculus in such a way that we deal with invariant objects instead of collections of components
which change with the choice of coordinate system, like the notion of a vector as an abstract
arrow rather than as a list of components, but those components are still implicit in everything
we do, even if we do it with a modern flair.

Exercise 0.0.1.
arclength in the plane

a) Evaluate ds2 for polar coordinates, filling in the lower dots in the above derivation.
b) Evaluate gij for polar coordinates from the matrix product JTJ .
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c) If you want to try something unfamiliar, evaluate ds2 for x = uv, y = 1
2
(u2 − v2). This

too results in a sum of squares, which characterizes what are called “orthogonal coordinates”
as we will learn about later. These particular orthogonal coordinates in the plane are called
parabolic coordinates since the coordinate lines for both coordinates are parabolas. We will
return to these much later.

�

Exercise 0.0.2.
matrix multiplication and the trace

The matrix equation defining the inverse of a matrix A−1A = I can be written with our
index conventions as A−1i

jA
j
k = δik, where here we need one index up and one index down

on the identity matrix component representation in this context for consistency with our index
conventions (the identity matrix plays a different role here than above!). The identity matrix
property I A = A translates to δijA

j
k = Aik. Given that the trace is defined by TrA = Aii,

write out the matrix identity Tr
(
A−1BA

)
= TrB in our index notation and use the inverse

property to show why the left hand side reduces to the right hand side, thus proving the identity
easily. Similarly show the more general property of the trace holds: Tr (AB C) = Tr (C AB),
etc., for cyclic permutations of the factor matrices. These are simple examples of how this
streamlined index notation for linear behavior easily allows one to prove identities that otherwise
are not obvious.

�
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Chapter 1

Foundations of tensor algebra

Tensors have a certain mystery about them to the uninitiated, but once students have taken
multivariable calculus and a bit of linear algebra, they have already become familiar with a
number of nontrivial tensors without having ever been told. The dot product is a scalar-valued
bilinear function of a pair of vectors, the triple scalar product in three dimensions is a trilinear
scalar function of three vectors, and the quadruple scalar product naturally introduced in three
dimensions but generalizable to any dimension using the dot product alone is a quadrilinear
scalar function of four vectors. The determinant of a square matrix is a linear function of each
of its columns (or rows) which in turn may be identified with a set of vectors. Tensors are
simply multilinear scalar functions of a set of vector arguments. The story really starts with
scalar-valued linear functions of a single vector, so after discussing the usual Rn vector spaces,
we will study the space of linear functions over these spaces, called the dual space. More general
tensors can then be built from the single argument case.

Too often tensors are introduced in the context of curvilinear coordinate systems and cal-
culus, but this confuses issues since they are really just a part of linear algebra over a vector
space. We develop this side of the story before introducing them into that more complicated
arena.

25
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1.1 Index conventions

We need an efficient abbreviated notation to handle the complexity of mathematical structure
before us. We will use indices of a given “type” to denote all possible values of given index
ranges. By index type we mean a collection of similar letter types, like those from the beginning
or middle of the Latin alphabet, or Greek letters

a, b, c, . . .

i, j, k, . . .

α, β, γ . . .

each index of which is understood to have a given common range of successive integer values.
Variations of these might be barred or primed letters or capital letters. For example, suppose
we are looking at linear transformations between Rn and Rm where m 6= n. We would need
two different index ranges to denote vector components in the two vector spaces of different
dimensions, say i, j, k, ... = 1, 2, . . . , n and α, β, γ, . . . = 1, 2, . . . ,m.

In order to introduce the so called Einstein summation convention, we agree to the following
limitations on how indices may appear in formulas. A given index letter may occur only once
in a given term in an expression (call this a “free index”), in which case the expression is
understood to stand for the set of all such expressions for which the index assumes its allowed
values, or it may occur twice but only as a superscript-subscript pair (one up, one down) which
will stand for the sum over all allowed values (call this a “repeated index”). Here are some
examples. If i, j = 1, . . . , n then

Ai ←→ n expressions : A1, A2, . . . , An,
Aii ←→

∑n
i=1A

i
i, a single expression with n terms

(this is called the trace of the matrix A = (Aij)),
Ajii ←→

∑n
i=1A

1i
i, . . . ,

∑n
i=1A

ni
i, n expressions each of which has n terms in the sum,

Aii ←→ no sum, just an expression for each i, if we want to refer to a specific
diagonal component (entry) of a matrix, for example,

Aivi + Aiwi = Ai(vi + wi), 2 sums of n terms each (left) or one combined sum (right).

A repeated index is a “dummy index,” like the dummy variable in a definite integral∫ b
a
f(x)dx =

∫ b
a
f(u)du. We can change them at will: Aii = Ajj.
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1.2 A vector space V

Let V be an n-dimensional real vector space. Elements of this space are called “vectors.”
Ordinary real numbers (let R denote the set of real numbers) will be called “scalars” and
denoted by a, b, c, . . . , while vectors will be denoted by various symbols depending on the
context: u, v, w or u(1), u(2), . . . , where here the parentheses indicate that the subscripts are
only labeling the vectors in an ordered set of vectors, to distinguish them from component
indices. Sometimes X, Y, Z,W are convenient vector symbols.

The basic structure of a real vector space is that it has two operations defined, vector
addition and scalar multiplication, which can then be combined together to perform linear
combinations of vectors:

• vector addition:
the sum of two vectors u+ v is again a vector in the space,

• scalar multiplication:
the product cu of a scalar c and a vector u is again a vector in the space, called a scalar
multiple of the vector,

so that linear combinations of two or more vectors with scalar coefficients

au+ bv

are defined. These operations satisfy a list of properties that we take for granted when working
with sums and products of real numbers alone, i.e., the set of real numbers R thought of as a
1-dimensional vector space. Every vector space has a zero vector, often denoted by the same
symbol as the zero scalar: 0. It is the additive identity and the result of multiplication by the
zero scalar: u+ 0 = u = 0u.

A basis of V , denoted by {ei}, i = 1, 2, ..., n or just {ei}, where it is understood that a
“free index” (meaning not repeated and therefore summed over) like the i in this expression
will assume all of its possible values, is a linearly independent spanning set for V

1. spanning condition:
Any vector v ∈ V can be represented as a linear combination of the basis vectors:

v =
n∑
i=1

viei = viei

whose coefficients vi are called the “components” of v with respect to {ei}. The index i
on vi labels the components (coefficients), while the index i on ei labels the basis vectors.

2. linear independence:
If viei = 0, then vi = 0, (i.e., more explicitly if v =

∑n
i=1 v

iei = 0, then vi = 0 for all
i = 1, 2, ..., n).
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Example 1.2.1. the vector spaces Rn

V = Rn = {u = (u1, . . . , un) = (ui) |ui ∈ R}, the space of n-tuples of real numbers with the
natural basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1), which we will refer to
as the “standard basis” or “natural basis.” In R3, these basis vectors are customarily denoted
by i, j,k, and a typical vector a1i + a2j + a3k then becomes the more compact expression aiei
if we let {e1, e2, e3} = {i, j,k}.

When we want to distinguish the vector properties of Rn from its point properties, we
will emphasize the difference by using angle brackets instead of parentheses: 〈u1, u2, u3〉. In
the context of matrix calculations, this representation of a vector will be understood to be a
column matrix

〈u1, u2, u3〉 ∼

u1

u2

u3

 ≡ u .

Underlining symbols will remind us that we are dealing with matrix quantities.
As a set of points, Rn has a natural set of “Cartesian” coordinate functions xi which pick

out the ith entry in an n-tuple, for example on R3: x1((a1, a2, a3)) = a1, etc. These are linear
functions on the space. Interpreting the points as vectors, these coordinate functions pick out
the individual components of the vectors with respect to the standard basis. When thought of
as column matrices, the standard basis vector ei is the ith column vector of the identity matrix:
I = 〈e1| . . . |en〉.

We will also consider complex vector spaces where real numbers are replaced by complex
numbers, leading to Cn which has the same natural basis as Rn but complex rather than vector
components for elements expressed in this basis. One also consider Cn to be a (2n)-dimensional
real vector space with basis {ek, i ek}. Reinterpreting a complex vector space as a real vector
space with twice the dimension is a useful idea for studying certain complex matrix vector
spaces.

�

Any two real n-dimensional vector spaces are “isomorphic.” This just means there is some
map from one to the other, say Φ : V → W , and it does not matter whether the vector
operations (vector sum and scalar multiplication, i.e., linear combination which encompasses
them both) are done before or after using the map: Φ(au + bv) = aΦ(u) + bΦ(v). The prac-
tical implication of this rather abstract statement is that once you establish a basis in any
real n-dimensional vector space V , the n-tuples of components of vectors with respect to this
basis undergo the usual vector operations in Rn when the vectors they represent undergo the
vector operations in V . For example, the set of at most quadratic polynomial functions in a
single variable ax2 + bx + c = a(x2) + b(x) + c(1) has the natural basis {1, x, x2} and under
linear combination of these functions, the triplet of coordinates (c, b, a) (coefficients ordered by
increasing powers) undergo the corresponding linear combination as vectors in R3. We might
as well just work in R3 to visualize relationships between vectors in the original abstract space.

Exercise 1.2.1.
2× 2 matrices as a vector space
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The space gl(n,R) of real n × n matrices is an n2-dimensional vector space isomorphic to
Rn2

. Each of n rows has n entries, so listing all the entries row after row gives a list of n2

entries, which gives a point in Rn2
. For example(
x1 x2

x3 x4

)
↔ 〈x1, x2, x3, x4〉

shows the correspondence between gl(2,R) and R4, which identifies the natural bases of the
two spaces.

The trace of a matrix is the sum of its diagonal entries, in this case x1+x4. A tracefree matrix
has zero trace, in this case : x1 + x4 = 0. This is a vector subspace since linear combinations of
tracefree matrices are still tracefree (check it!). We can choose a new basis of the whole space
consisting of the identity matrix and 3 linearly independent tracefree matrices, for example

E0 =

(
1 0
0 1

)
, E1 =

(
0 1
−1 0

)
, E2 =

(
0 1
1 0

)
, E3 =

(
1 0
0 −1

)
,

using the index range α = 0, 1, 2, 3 instead of 1, 2, 3, 4. The latter three matrices {Ek}, k = 1, 2, 3
form a basis of the subspace sl(2,R) of tracefree matrices, to which we can easily specialize
by ignoring the pure trace identity matrix E0. “gl” stands for “general linear” while “sl”
stands for “special linear” because of the relation of these spaces to the general linear group of
invertible square matricesGL(n,R) and its special linear subgroup SL(n,R) of unit determinant
matrices, which we will study later. The first three of these matrices are basis of the subspace
of symmetric matrices, while the last is a basis of the subspace of antisymmetric matrices.

The new basis has interesting matrix properties. Let

Y = y0E0 + y1E1 + y2E2 + y3E3 .

a) Show that the unit determinant matrices when expressed in this basis correspond to a
hyperboloid of revolution in R4

1 = detY = (y0)2 + (y1)2 − (y2)2 − (y3)2 .

b) Show that setting the trace of the square of the matrix equal to 1 when expressed in this
basis corresponds instead to a different kind of hyperboloid

1 =
1

2
Tr
(
Y 2
)

= (y0)2 − (y1)2 + (y2)2 + (y3)2 .

c) Show that this basis is orthogonal with respect to the usual inner product on R4

1 =
1

2
Tr
(
Y TY

)
= (y0)2 + (y1)2 + (y2)2 + (y3)2 .

This is equivalent to showing that TrET
i Ej ∝ δij. What are the self inner products of these

matrices?
This example shows that linear isomorphisms between different vector spaces can sometimes

be useful for nonlinear properties of those spaces.
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�

Exercise 1.2.2.
2× 2 complex matrices as a real vector space h(2)

Define the three tracefree Pauli matrices

σ 1 =

(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
,

and let E0 = I as in the previous problem but let Ea = σa, a = 1, 2, 3.
These determine a 4-dimensional real vector space h(2) of complex matrices, namely all real

linear combinations of these matrices

X = xiEi =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

Repeat the previous exercise to see some sign changes. In particular show that

detX = −
(
−(x0)2 + (x1)2 + (x2)2 + (x3)2

)
.

�

Exercise 1.2.3.
up to quadratic functions as a vector space

Real polynomial functions of a variable x which are at most of degree 2 are of the form
Q(x) = ax2 + bx + c = c1 + bx + ax2, if we order them by increasing powers so that we can
add higher power terms to the right to more easily generalize the degree, where the coefficient
vector 〈c, b, a〉 is a vector in R3. Linear combinations of these polynomials correspond to the
same linear combinations of the corresponding coefficient vectors, so these two vector spaces are
naturally isomorphic. The ordered basis {1, x, x2} corresponds to the natural basis {e1, e2, e3}
of R3: c1 + bx+ ax2 ↔ c e1 + b e2 + a e3.

By expanding at most quadratic polynomial functions of a variable x in a Taylor series
about x = 1, one expresses these functions in the new basis {(x − 1)p}, p = 0, 1, 2, say as
Q(x) = A(x − 1)2 + B(x − 1) + C(1). Express (c, b, a) as linear functions of (C,B,A) by
expanding out this latter expression. Then solve these relations for the inverse expressions,
giving (C,A,B) as functions of (c, b, a) and express both relationships in matrix form, showing
explicitly the coefficient matrices. Alternatively, actually evaluate (C,B,A) in terms of (c, b, a)
using the Taylor series expansion technique, which will give the same result through calculus.
Make a crude drawing of the three new basis vectors in R3 which correspond to the new basis
functions, or use technology to draw them.

�
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Exercise 1.2.4.
3× 3 antisymmetric matrices and the cross product

An antisymmetric matrix is a square matrix which reverses sign under the transpose oper-
ation: AT = −A. Any 3× 3 antisymmetric matrix has the form

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 = a1

0 0 0
0 0 −1
0 1 0

+ a2

 0 0 1
0 0 0
−1 0 0

+ a3

0 −1 0
1 0 0
0 0 0


≡ a1L1 + a2L2 + a3L3 .

The space of all such matrices is a 3-dimensional vector space with basis {Li} since it is defined
as the span of this set of vectors (hence a subspace of the vector space of 3×3 matrices), and
setting the linear combination equal to the zero matrix forces all the coefficients to be zero
proving the linear independence of this set of vectors (which is therefore a linear independent
spanning set).

a) Show that matrix multiplication of a vector in R3 by such a matrix A is equivalent to
taking the cross product with the corresponding vector a = 〈a1, a2, a3〉:

Ab = a× b .

Hint: use a computer algebra system!
b) Although the result of two successive cross products a × (b × u) is not equivalent to a

single cross product c× u, the difference of two such successive cross products is. Confirm the
matrix product

AB −BA = (a× b)iLi
Then by part a) it follows that

(AB −BA)u = (a× b)× u ,

c) Use the matrix distributive law on the left hand side, together with the iteration of part
a) for the individual terms, to fill in the one further step which then proves the “vector identity”

a× (b× u)− b× (a× u) = (a× b)× u .

Comment.
Under this relationship 〈a1, a2, a3〉 7→ aiLi = “~a × ”, the three matrices L1, L2, L3 correspond
directly to the standard basis vectors of R3 often denoted by î, ĵ, k̂, which satisfy the cyclic
relations

î× ĵ = k̂ , ĵ × k̂ = î , k̂ × î = ĵ .

This means that
[L2, L3] = L1 , [L3, L1] = L2 , [L1, L2] = L3 .

These “angular momentum” equations turn out to be fundamentally important in quantum
mechanics, determining the energy levels of electrons in atoms by providing 2 quantum numbers
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associated with the electron’s total (magnitude of the vector) angular momentum about the
nucleus and one of its components, or in electromagnetic radiation theory where these same
quantities help classify the radiation itself. We will see in part 2 how they are related to angular
momentum.

�

Exercise 1.2.5.
complex numbers as a 2-dimensional real vector space

The field C of complex numbers is a 2-dimensional real vector space isomorphic to R2

through the isomorphism z = x+ iy ↔ (x, y) which associates the ordered basis {1, i} with the
standard basis {e1, e2} = {(1, 0), (0, 1)}. Addition of complex numbers corresponds to addition
of the corresponding vectors. Let z = x− iy denote the complex conjugate.

a) If a = a1 + ia2 and b = b1 + ib2 and we think of vectors in the plane as sitting in R3 so we

can take their cross product: ~a = 〈a1, a2, 0〉, ~b = 〈b1, b2, 0〉. Then with ~e3 = 〈0, 0, 1〉, show that

a b = ~a ·~b+ i ~e3 · (~a×~b) .
b) Recall the notation introduced in Chapter 0 for partial derivatives with respect to the

coordinates xi on Rn:
∂

∂xi
= ∂i .

Let a = ∂1 + i∂2 = ∇ and ~a = 〈∂1, ∂2, 0〉. Using part a), show that if ~b = 〈b1, b2, 0〉 is a 3-vector
valued function on the plane (i.e., b1 and b2 only depend on x1 and x2), then

∇ b = div~b+ i ~e3 · curl~b = ~∇ ·~b+ i~e2 · ~∇×~b .
Complex numbers have a nice way of combining real vector operations in a much more efficient
way than separate real expressions, which can be exploited in differential geometry through
what are called spinors and quaternions and other complex “group representations.” For ex-
ample, calculus operations acting on eix = cos x + i sinx are much simpler then those acting
on the individual trig functions which are its real and imaginary parts. This idea generalizes
to differential geometry under the name of geometric algebra.

�

A p-dimensional linear subspace of a vector space V can be represented as the set of all
possible linear combinations of a set of p linearly independent vectors, and such a subspace
results from the solution of a set of linear homogeneous conditions on the variable components
of a vector variable expressed in some basis. Thus if x = 〈x1, . . . , xn〉 is the column matrix
of components of an unknown vector in V with respect to a basis {ei}, and A is an m × n
matrix of rank m (i.e., the rows are linearly independent), the solution space of Ax = 0 will
be a (p = n − m)-dimensional subspace, since m < n independent conditions on n variables
leave n −m variables freely specifiable. In R3, these are the lines (p = 1) and planes (p = 2)
through the origin. In higher dimensional Rn spaces, the (n − 1)-dimensional subspaces are
called hyperplanes in analogy with the ordinary planes in the case n = 3, and we can refer to
p-planes through the origin for the values of p between 2 and n− 1.
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Elementary linear algebra: solving systems of linear equations

It is worth remembering the basic problem of elementary linear algebra: solving m linear
equations in n “unknowns” or “variables” xi, which is most efficiently handled with matrix
notation

A1
1x

1 + · · ·A1
nx

n = b1

...
...

Am1x
1 + · · ·Amnxn = bm

, Aijx
j = bi , A x = b .

The interpretation of the problem requires a slight shift in emphasis to the n columns u(i) ∈
Rm of the coefficient matrix by defining ui(j) = Aij or A = 〈u(1)| · · · |u(n)〉. Then this is
equivalent to setting a linear combination of these columns equal to the right hand side vector
b = 〈b1, . . . , bm〉 ∈ Rm

Ax = x1u(1) + · · ·xnu(n) = b .

If b = 0, the homogeneous case, this is equivalent to trying to find a linear relationship
among the n column vectors, namely a linear combination of them equal to the zero vector
whose coefficients are not all zero; then for each nonzero coefficient, one can solve for the vector
it multiplies and express it as a linear combination of the remaining vectors in the set. When
no such relationship exists among the vectors, they are called linearly independent, otherwise
they are called linearly dependent. The span (set of all possible linear combinations) of the set
of these column vectors is called the column space Col(A) of the coefficient matrix A. If b 6= 0,
then the system admits a solution only if b belongs to the column space, and is inconsistent if
not. If b 6= 0 and the vectors are linearly independent, then if the solution admits a solution, it
is unique. If they are not linearly independent, then the solution is not unique but involves a
number of free parameters.

The solution technique is row reduction involving a sequence of elementary row operations
of three types: adding a multiple of one row to another row, multiplying a row by a nonzero
number, and interchanging two rows. These row operations correspond to taking new indepen-
dent combinations of the equations in the system, or scaling a particular equation, or changing
their order, none of which changes the solution of the system. The row reduced echelon form
〈AR|bR〉 of the augmented matrix 〈A|b〉 leads to an equivalent (“reduced”) system of equations
AR x = bR which is easily solved. The row reduced echelon form has all the zero rows (if any)
at the bottom of the matrix, the leading (first from left to right) entry of each nonzero row is
1, the columns containing those leading 1 entries (the leading columns) have zero entries above
and below those leading 1 entries, and finally the pattern of leading 1 entries moves down
and to the right, i.e., the leading entry of the next nonzero row is to the right of a preceding
leading entry. The leading 1 entries of the matrix are also called the pivot entries, and the
corresponding columns, the pivot columns. A pivot consists of the set of “add row” operations
which makes the remaining entries of a pivot column zero.

The number of nonzero rows of the reduced augmented matrix is called the rank of the
augmented matrix and represents the number of independent equations in the original set. The
number of nonzero rows of the reduced coefficient matrix alone is called its rank: r = rank(A) ≤
m and equals the number of leading 1 entries in AR, in turn the number of leading 1 columns
of AR. The remaining n − r ≥ n − m columns are called free columns. This classification
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of the columns of the reduced coefficient matrix into leading and free columns is extended to
the original coefficient matrix. The associated variables of the system of linear equations then
fall into two groups, the leading variables (r ≤ m in number) and the free variables (n − r in
number), since each variable corresponds to one of the columns of the coefficient matrix. Each
leading variable can immediately be solved for in its corresponding reduced system equation and
expressed in terms of the free variables, whose values are then not constrained and may take any
real values. Setting the n− r free variables equal to arbitrary parameters tB, B = 1, · · · , n− r
leads to a solution in the form

xi = xi(particular) + tBvi(B)

The “particular solution” satisfies Ax(particular) = b, while the remaining part is the general
solution of the related homogeneous linear system for which b = 0, an (n − r)-dimensional
subspace Null(A) of Rn called the null space of the matrix A, since it consists of those vectors
which are taken to zero under multiplication by that matrix.

A(tBvi(B)) = tB(Avi(B)) = 0 .

This form of the solution defines a basis {v(B)} of the null space since by definition any solution
of the homogeneous equations can be expressed as a linear combination of them, and if such
a linear combination is zero, every parameter tB is forced to be zero, so they are linearly
independent.

This basis of coefficient vectors {v(B)} ∈ Rn is really a basis of the space of linear relation-
ships among the original n vectors {u(1), . . . , u(n)}, each one representing the coefficients of an

independent linear relationship among those vectors: 0 = Aj iv
i
(B) = vi(B)u

j
(i). In fact these re-

lationships correspond to the fact that each free column of the reduced matrix can be expressed
as a linear combination of the leading columns which precede it going from left to right in the
matrix, and in fact the same linear relationships apply to the original set of vectors (since the
coefficients xi of the solution space are the same!). Thus one can remove the free columns from
the original set of vectors to get a basis of the column space of the matrix consisting of its r
leading columns, so the dimension of the column space is the rank r of the matrix.

By introducing the row space of the coefficient matrix Row(A) ⊂ Rn consisting of all possible
linear combinations of the rows of the matrix, the row reduction process can be interpreted
as finding a basis of this subspace that has a certain characteristic form: the r nonzero rows
of the reduced matrix. The dimension of the row space is thus equal to the rank r of the
matrix. Each equation of the original system corresponding to each (nonzero) row of the
coefficient matrix separately has a solution space which represents a hyperplane in Rn, namely
an (n−1)-dimensional subspace. Re-interpreting the linear combination of the variables as a dot
product with the row vector, in the homogeneous case, these hyperplanes consist of all vectors
orthogonal to the original row vector, and the joint solution of all the equations of the system
is the subspace which is orthogonal to the entire row space, namely the orthogonal complement
of the row space within Rn. Thus Null(A) and Row(A) decompose the total space Rn into an
orthogonal decomposition with respect to the dot product, and the solution algorithm for the
homogeneous linear system provides a basis of each such subspace.
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Left multiplication of A by a row matrix of variables yT = 〈y1| . . . |ym〉 yields a row matrix,
so one can consider the transposed linear system in which that product is set equal to a constant
row vector cT = 〈c1| . . . |cm〉

yTA = cT , or ATy = c

This is the linear system of equations associated with the transpose of the matrix, which
interchanges rows and columns and hence the row space and column space

Row(AT ) = Col(A) , Col(AT ) = Row(A) ,

but adds one more space Null(AT ), which can be interpreted as the subspace orthogonal to
Row(AT ) = Col(A), hence determining an orthogonal decomposition of Rm as well.

Example 1.2.2. concrete example of row reduction and linear system solution
Here is the augmented matrix and its row reduced echelon form for 5 equations in 7 un-

knowns

〈A|b〉 =


−1 2 4 11 0 −4 1 16
1 −2 1 4 0 −2 0 5
0 0 −4 −12 0 2 4 12
−3 6 −4 −15 0 2 −4 −42
−4 8 −1 −7 0 −1 3 7

 , 〈AR|bR〉 =


1 −2 0 1 0 0 0 2
0 0 1 3 0 0 0 3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0


and its solution

x =



2 + 2t1 − t2
t1

3− 3t2

t2

t3

0
6


=



2
0
3
0
0
0
6


+ t1



2
1
0
0
1
0
0


+ t2



−1
0
−3
1
0
0
0


+ t3



0
0
0
0
1
0
0


= x(particular) + tBv(B) .

The rank of the 5 × 7 coefficient matrix (and of the 5 × 8 augmented matrix) is r = 4 with
4 leading variables {x1, x3, x6, x7} and 3 free variables {x2, x4, x5}. By inspection one sees
that the 2nd, 4th, and 5th columns are linear combinations of the preceding leading columns
with coefficients which are exactly the entries of those columns. The same linear relation-
ships apply to the original matrix, so columns 1,3,6,7 of the coefficient matrix A = 〈u1| . . . |u7,
namely {u1, u3, u6, u7}, are a basis of the column space Col(A) ⊂ R5. The 4 nonzero rows
of the reduced coefficient matrix AR are a basis of the row space Row(A) ⊂ R7. The three
columns {v(1), v(2), v(3)} appearing in the solution vector x multiplied by the arbitrary param-
eters {t1, t2, t3} are a basis of the homogeneous solution space Null(A) ⊂ R7. Together these 7
vectors form a basis of R7.

One concludes that the right hand side vector b ∈ R5 can be expressed in the form

b = xiu(i) = xi(particular)u(i) + tBvi(B)u(i) = xi(particular)u(i) = 2u(1) + 3u(3) + 6u(7)
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since the homogeneous part of the solution forms the zero vector from its linear combination
of the original columns. Notice that the fifth column u(5) = 0; the zero vector makes any set of
vectors trivially linearly dependent, so t3 is a trivial parameter and v(3) represents that trivial
linear relationship. Thus there are only two independent relationships among the 6 nonzero
columns of A.

The row space Row(A) = Col(AT ) is a 4-dimensional subspace of R5. If one row reduces
the 7 × 5 transpose matrix AT , the 4 nonzero rows of the reduced matrix are a basis of this
space, and one finds one free variable and a single basis vector

〈−258, 166,−165,−96, 178〉/178

for the 1-dimensional subspace Null(AT ), which is the orthogonal subspace to the 4-dimensional
subspace Row(A) ⊂ R5.

Don’t worry. We will not need the details of row and column spaces in what follows, so if
your first introduction to linear algebra stopped short of this topic, don’t despair.

�

Example 1.2.3. solving linear systems for unknown matrices
We can also consider multiple linear systems with the same coefficient matrix. For example

consider the two linearly independent vectors X(1) = 〈1, 3, 2〉, X(2) = 〈2, 3, 1〉 which span a
plane through the origin in R3 and let

X = 〈X(1)|X(2)〉 =

1 2
3 3
2 1

 .

Clearly the sum X(1) +X(2) = 〈3, 6, 3〉 and difference X(2)−X(1) = 〈1, 0,−1〉 vectors are a new
basis of the same subspace (since they are not proportional) so if we try to express each of
them in turn as linear combinations of the original basis vectors, we know already the unique
solutions for each

u1

1
2
3

+ u2

2
3
1

 =

1 2
3 3
2 1

(u1

u2

)
=

3
6
3

 , v1

1
2
3

+ v2

2
3
1

 =

1 2
3 3
2 1

(v1

v2

)
=

 1
0
−1


→
(
u1

u2

)
=

(
1
1

)
,

(
v1

v2

)
=

(
−1
1

)
.

Clearly from the definition of matrix multiplication, we can put these two linear systems to-
gether as 1 2

3 3
2 1

(u1 v1

u2 v2

)
=

3 1
6 0
3 −1

 ,

which has the form X Z = Y where X is the 3 × 2 coefficient matrix, Y is the 3 × 2 right
hand side matrix, and Z is the unknown 2 × 2 matrix whose columns tell us how to express
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the vectors Y(1), Y(2) as linear combinations of the vectors X(1), X(2). Of course here we know
the unique solution is

Z =

(
1 −1
1 1

)
,

a matrix which together with its inverse can be used to transform the components of vectors
from one basis to the other.

In other words it is sometimes useful to generalize the simple linear system Ax = b to an
unknown matrix X of more than one column AX = B when the right hand side matrix is more
than one column

A︸︷︷︸
m×n

X︸︷︷︸
n×p

= B︸︷︷︸
m×p

.

�

Elementary linear algebra: the eigenvalue problem and linear trans-
formations

The next step in elementary linear algebra is to understand how a square n× n matrix acts on
Rn by matrix multiplication as linear transformation of the space into itself

x→ Ax , xi → Aijx
j

which maps each vector x to the new location Ax. Under this mapping the standard basis
vectors ei are mapped to the new vectors Aei, each of which can be expressed as a unique
linear combination of the basis vectors with coefficients Aj i, hence the index notation

ei → Aei = ejA
j
i

which makes those coefficients for each value of i into the columns of the matrix A. To un-
derstand how this matrix multiplication moves around the vectors in the space, one looks for
special directions (“eigendirections”) along which matrix multiplication reduces to scalar mul-
tiplication, i.e., subspaces along which the direction of the new vectors remains parallel to their
original directions (although they might reverse direction)

Ax = λx , x 6= 0 ,

which defines a proportionality factor λ called the “eigenvalue” associated with the “eigenvec-
tor” x, which must be nonzero to have a direction to speak about. This eigenvector condition
is equivalent to

(A− λ I)x = Ax− λx = 0 .

In order for the square matrix A − λ I to admit nonzero solutions it must row reduce to
a matrix which has at least one free variable and hence at least one zero row, and hence zero
determinant, so a necessary condition for finding an eigenvector is that the “characteristic
equation” is satisfied by the eigenvalue

det(A− λ I) = 0 .



38 Chapter 1. Foundations of tensor algebra

The roots of this nth degree polynomial are the eigenvalues of the matrix, and once found can
be separately backsubstituted into the linear system to find the solution space which defines
the corresponding eigenspace. The row reduction procedure provides a default basis of this
eigenspace, i.e., a set of linearly independent eigenvectors for each eigenvalue.

It is easily shown that eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent so this process leads to a basis of the subspace of Rn spanned by all these eigenspace
bases. If they are n in number, this is a basis of the whole space and the matrix can be diago-
nalized. Let B = 〈b1| . . . |bn〉 be the matrix whose columns are such an eigenbasis of Rn, with
Abi = λi bi. In other words define Bj

i = bj i as the jth component of the ith eigenvector. Then

AB = 〈Ab1| . . . |Ab1〉 = 〈λ1 b1| . . . |λn b1〉 = 〈b1| . . . |bn〉

λ1 . . . 0
...

. . .
...

0 . . . λn

 ,

where the latter diagonal matrix multiplies each column by its corresponding eigenvalue, so
that

B−1AB =

λ1 . . . 0
...

. . .
...

0 . . . λn

 ≡ AB

is a diagonal matrix whose diagonal elements are the eigenvalues listed in the same order as
the corresponding eigenvectors. Thus (multiplying this equation on the left by B and on the
right by B−1) the matrix A can be represented in the form

A = BAB B
−1 .

This matrix transformation has a simple interpretation in terms of a linear transformation
of the Cartesian coordinates of the space, expressing the old coordinates xi (with respect to
the standard basis) as linear combinations of the new basis vectors bj whose coefficients are the
new coordinates xi = yjbij = Bi

jy
j, which takes the matrix form

x = B y , xi = Bi
jy
j ,

y = B−1 x , yi = B−1 i
jx
j ,

The top line expresses the old coordinates as linear functions of the new Cartesian coordinates
yi. Inverting this relationship by multiplying both sides of the top matrix equation by B−1,
one arrives at the bottom line, which instead expresses the new coordinates as linear functions
of the old coordinates. Then under matrix multiplication of the old coordinates by A, namely
x→ Ax, the new coordinates are mapped according to

xi → Aikx
k

yi = B−1 i
jx
j → B−1 i

j(A
j
kx

k) = B−1 i
jA

j
kB

k
my

m = [AB]imy
m ,

so AB is just the new matrix of the linear transformation with respect to the new basis of
eigenvectors. In the eigenbasis, matrix multiplication is reduced to distinct scalar multipli-
cations along each eigenvector, which may be interpreted as a contraction 0 ≤ λi < 1 or a
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Figure 1.1: The action of a linear transformation on a figure shown with a grid adapted to
the new basis of eigenvectors. Vectors are stretched by a factor 5 along the y1 direction and
reflected across that direction along the y2 direction.

stretch 1 < λi (but no change if λi = 1) combined with a change in direction (reflection) if the
eigenvalue is negative λi < 0. Not all square matrices can be diagonalized in this way. For
example, rotations occur in the interesting case in which one cannot find enough independent
(real) eigenvectors to form a complete basis, but correspond instead to complex conjugate pairs
of eigenvectors.

Don’t worry. We will not need to deal with the eigenvector problem in most of what
follows, except in passing for symmetric matrices A = AT which can always be diagonalized by
an orthogonal matrix B. However, the change of basis example is fundamental to everything
we will do. When eigenvector analysis is needed or helpful, computer algebra systems give us
the results effortlessly.

Example 1.2.4. eigenvalues and stretch/contraction interpretation
Consider the matrix

A =

(
1 4
2 3

)
= BAB B

−1 , AB =

(
5 0
0 −1

)
, B =

(
1 −2
1 1

)
, B−1 =

1

3

(
1 2
−1 1

)
.

Under matrix multiplication by A, the first eigenvector b1 = 〈1, 1〉 is stretched by a factor of 5
while the second one b2 = 〈−2, 1〉 is reversed in direction. A shown in Fig. 1.1, this reflects the
letter F across the y1 axis and then stretches it in the y1 direction by a factor of 5.

�
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1.3 The dual space V ∗

Let V ∗ be the “dual space” of V , just a fancy name for the space of real-valued linear functions
on V ; elements of V ∗ are called “covectors.” These are also referred to as “1-forms” in the same
sense that one sometimes speaks of a “linear form” or a “quadratic form” on a vector space.
The condition of linearity is

linearity condition: f ∈ V ∗ −→ f(au+ bv) = af(u) + bf(v) ,

or in words: “the value on a linear combination = the linear combination of the values.” This
easily extends to linear combinations with any number of terms; for example

f(v) = f

(
N∑
i=1

viei

)
=

N∑
i=1

vif(ei)

where the coefficients fi ≡ f(ei) are the “components” of a covector with respect to the basis
{ei}, or in our shorthand notation

f(v) = f(viei) (express in terms of basis)

= vif(ei) (linearity)

= vifi . (definition of components)

A covector f is entirely determined by its values fi on the basis vectors, namely its components
with respect to that basis.

Our linearity condition is usually presented separately as a pair of separate conditions on
the two operations which define a vector space:

• sum rule: the value of the function on a sum of vectors is the sum of the values, f(u+v) =
f(u) + f(v),

• scalar multiple rule: the value of the function on a scalar multiple of a vector is the scalar
times the value on the vector, f(cu) = cf(u).

Example 1.3.1. linear homogeneous functions!
In the usual calculus notation on R3, with Cartesian coordinates (x1, x2, x3) = (x, y, z),

linear functions are of the form f(x, y, z) = ax+ by+ cz, but a function with an extra additive
term g(x, y, z) = ax+ by + c+ d is called “linear” as well. Only linear homogeneous functions
(no additive term) satisfy the basic linearity property f(au + bv) = af(u) + bf(v). Unless
otherwise indicated, the term “linear” here will always be intended in its narrow meaning of
“linear homogeneous.”
Warning:
In this example, the “variables” (x, y, z) in the defining statement f(x, y, z) = ax+ by+ cz are
simply place holders for any three real numbers in the equation, while the Cartesian coordinate
functions denoted by the same symbols are instead the names of three independent (linear)
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functions on the vector space whose values on any triplet of numbers are just the corresponding
number from the triplet: y(1, 2, 3) = 2, for example. To emphasize that it is indeed a function of
the vector u = (1, 2, 3), we might also write this as y(u) = y((1, 2, 3)) = 2 or even y(〈1, 2, 3〉) = 2
if we adopt the vector delimiters 〈, 〉 instead of the point delimiters (, ). Notation is extremely
important in conveying mathematical meaning, but we only have so many symbols to go around,
so flexibility in interpretation is also required.

�

The dual space V ∗ is itself an n-dimensional vector space, with linear combinations of
covectors defined in the usual way that one can takes linear combinations of any functions, i.e.,
in terms of values

covector addition: (af + bg)(v) ≡ af(v) + bg(v) , f, g covectors, v a vector .

Exercise 1.3.1.
closure of the dual space

Show that this defines a linear function a f + b g, so that the space is closed under this
linear combination operation. [All the other vector space properties of V ∗ are inherited from
the linear structure of V .] In other words, show that if f, g are linear functions, satisfying our
linearity condition, then a f + b g also satisfies the linearity condition for linear functions:

(a f + b g)(c1u+ c2v) = c1(a f + b g)(u) + c2(a f + b g)(v) .

�

Let us produce a basis for V ∗, called the dual basis {ωi} or “the basis dual to {ei},” by
defining n covectors which satisfy the following “duality relations”

ωi(ej) = δij ≡
{

1 if i = j ,

0 if i 6= j ,

where the symbol δij is called the “Kronecker delta,” nothing more than a symbol for the
components of the n × n identity matrix I = (δij). We then extend them to any other vector
by linearity. Then by linearity

ωi(v) = ωi(vjej) (expand in basis)

= vjωi(ej) (linearity)

= vjδij (duality)

= vi (Kronecker delta definition)

where the last equality follows since for each i, only the term with j = i in the sum over
j contributes to the sum. Alternatively matrix multiplication of a vector on the left by the
identity matrix δijv

j = vi does not change the vector. Thus the calculation shows that the i-th
dual basis covector ωi picks out the i-th component vi of a vector v.
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Notice that a Greek letter has been introduced for the covectors ωi partially following a
convention that distinguishes vectors and covectors using Latin and Greek letters, but this con-
vention is obviously incompatible with our more familiar calculus notation in which f denotes a
function, so we limit it to our conventional symbol for the dual basis associated with a starting
basis {ei}.

Why do the n covectors {ωi} form a basis of V ∗? We can easily show that the two conditions
for a basis are satisfied.

1. spanning condition:
Using linearity and the definition fi = f(ei), this calculation shows that every linear
function f can be written as a linear combination of these covectors

f(v) = f(viei) (expand in basis)

= vif(ei) (linearity)

= vifi (definition of components)

= viδj ifj (Kronecker delta definition)

= viωj(ei)fj (dual basis definition)

= (fjω
j)(viei) (linearity)

= (fjω
j)(v) . (expansion in basis, in reverse)

Thus f and fiω
i have the same value on every v ∈ V so they are the same function:

f = fiω
i, where fi = f(ei) are the “components” of f with respect to the basis {ωi} of

V ∗ also said to be the “components” of f with respect to the basis {ei} of V already
introduced above. The index i on fi labels the components of f , while the index i on ωi

labels the dual basis covectors.

2. linear independence:
Suppose fiω

i = 0 is the zero covector. Then evaluating each side of this equation on ej
and using linearity

0 = 0(ej) (zero scalar = value of zero linear function)

= (fiω
i)(ej) (expand zero vector in basis)

= fiω
i(ej) (definition of linear combination function value)

= fiδ
i
j (duality)

= fj (Knonecker delta definition)

forces all the coefficients of ωi to vanish, i.e., no nontrivial linear combination of these
covectors exists which equals the zero covector (the existence of which would be a linear
relationship among them) so these covectors are linearly independent. Thus V ∗ is also
an n-dimensional vector space. [A nontrivial linear combination has at least one nonzero
coefficient. If all the coefficients are 0, the linear combination is not very interesting!]
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Figure 1.2: Interpolating between two points via their position vectors.

Example 1.3.2. Cartesian coordinates are the standard dual basis of Rn

The familiar Cartesian coordinates on Rn are defined by

xi((u1, . . . , un)) = ui (value of i-th number in n-tuple).

But this is exactly what the basis {ωi} dual to the natural basis {ei} does—i.e., the set of
Cartesian coordinates {xi}, interpreted as linear functions on the vector space Rn (why are
they linear?), is the dual basis: ωi = xi. A general linear function on Rn has the familiar form
f = fiω

i = fix
i. The components of the linear function (covector) are just its coefficients.

If we return to R3 and calculus notation where a general linear function has the form
f = ax+ by + cz, then all we are doing is abstracting the familiar relationsω1(e1) ω1(e2) ω1(e3)

ω2(e1) ω2(e2) ω2(e3)
ω3(e1) ω3(e2) ω3(e3)

 =

x(1, 0, 0) x(0, 1, 0) x(0, 0, 1)
y(1, 0, 0) y(0, 1, 0) y(0, 0, 1)
z(1, 0, 0) z(0, 1, 0) z(0, 0, 1)

 =

1 0 0
0 1 0
0 0 1


for the values of the Cartesian coordinates on the standard basis unit vectors along the coordi-
nate axes, making the three simple linear functions {x, y, z} a dual basis to the standard basis.
The standard basis vectors {e1.e2, e3} are often designated by {̂i, ĵ, k̂} with or without “hats”
(the physics notation to indicate unit vectors).

Note that linearity of a function can be interpreted in terms of linear interpolation of
intermediate values of the function. Given any two points u, v in Rn, then the set of points
u + t(v − u) = (1 − t)u + t v from t = 0 to t = 1 is the directed line segment between from u
to v. Then the linearity condition f((1 − t)u + t v) = (1 − t)f(u) + t f(v) says that the value
of the function at a certain fraction of the way from u to v is exactly that fraction of the way
between the values of the function at those two points.

�
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Figure 1.3: Vector addition: main diagonal of parallelogram, same as tip to tail in either order.

Vectors and vector addition are best visualized by interpreting points in Rn as directed
line segments from the origin (“arrows”). Fig. 1.3 illustrates the usual parallelogram addition
law for vectors, which shows that putting the two vectors tip to tail in either order yields the
same final point, whose position vector corresponds to the main diagonal of the parallelogram
naturally formed by the two vectors by translating each to the tip of the other.

Functions can instead be visualized in terms of their level surfaces. For linear functions
these level surfaces f(x) = fix

i = t (t, a parameter) are a family of parallel hyperplanes, best
represented by selecting an equally spaced set of such hyperplanes, say by choosing integer
values of the parameter t. However, it is enough to graph two such level surfaces f(x) = 0
and f(x) = 1 to have a mental picture of the entire family since they completely determine the
orientation and separation of all other members of this family. This pair of planes also enables
one to have a geometric interpretation of covector addition on the vector space itself, like the
parallelogram law for vectors. However, instead of the directed main diagonal line segment,
one has the cross diagonal hyperplane for the result. By the way, a hyperplane in Rn is just
the solution of a single linear equation on the space (an (n − 1)-dimensional set of points),
generalizing the planes of R3. In R2 these solution sets reduce to lines since n−1 = 1 for n = 2.

Let’s look at two pairs of such hyperplanes representing f and g but “edge on,” namely in
the 2-plane orthogonal to the (n− 2)-plane of intersection of the two (n− 1)-planes which are
these hyperplanes. The intersection of two nonparallel hyperplanes, each of which represents
the solution of a single linear homogeneous condition on n variables, represents the solution of
two independent conditions on n variables, and hence must be an (n− 2)-dimensional plane.

This is easier to see if we are more concrete. Figs 1.5 and 1.6 illustrate this in three dimen-
sions. The first figure looking at the intersecting planes edge on down the lines of intersection
is actually the two-dimensional example, where it is clear that the cross-diagonal intersection
points of the two pairs of lines must both belong to the line (f + g)(x) = 1 on which the sum
covector has the value 1 = 0 + 1 = 1 + 0. The second line of the pair (f + g)(x) = 0 needed to
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Figure 1.4: Geometric representation of a covector or 1-form f (just a linear function on R3):
the representative planes of function values 0 and 1 are enough to capture its orientation and
magnitude, the latter of which is directly correlated with the density of spacing of these planes
and therefore inversely correlated with the distance between them. The same mental image
works for the corresponding hyperplanes in Rn (lines in R2).
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Figure 1.5: Covector addition seen edge-on in R3. The plane (f + g)(x) = 1 representing the
addition of two covectors is the plane through the lines of intersection of the cross-diagonal of
the parallelogram formed by the intersection of the two pairs of planes when seen edge-on down
the lines of intersection. Moving that plane parallel to itself until it passes through the origin
gives the second plane of the pair representing the sum covector. This same diagram directly
illustrates covector addition in R2.

represent the sum covector is the parallel line passing through the origin. If we now rotate our
point of view away from the edge-on orientation, we get the picture depicted in Fig. 1.6, which
looks like a honeycomb of intersecting planes, with the cross-diagonal plane of intersection
representing the sum covector.

Of course the dual space (Rn)∗ is isomorphic to Rn

f = fiω
i = fix

i ∈ (Rn)∗ ←→ f [ ≡ (fi) = (fi, . . . , fn) ∈ Rn ,

where the flat symbol notation reminds us that a correspondence has been established between
two different objects (effectively lowering the component index), and since (Rn)∗ is a vector
space itself, covector addition is just the usual parallelogram vector addition there. However,
the above hyperplane interpretation of the dual space covector addition occurs on the original
vector space!

These same pictures apply to any finite dimensional vector space. The difference in geomet-
rical interpretation between directed line segments and directed hyperplane pairs is one reason
for carefully distinguishing V from V ∗ by switching index positioning.

For Rn the distinction between n-tuples of numbers which are vectors and (the component
n-tuples of) covectors is still made using matrix notation. Vectors in Rn are identified with
column matrices and covectors in the dual space with row matrices

u = (u1, . . . , un)←→

 u1

...
un

 ,



1.3. The dual space V ∗ 47

Figure 1.6: Covector addition in R3 no longer seen edge-on. One has a honeycomb of inter-
secting planes, with the sum covector represented by the “cross-diagonal” plane of intersection
and its parallel companion through the origin.
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f = fiω
i ←→ f [ ≡ (f1, . . . , fn)←→ (f1 . . . fn) [no commas here] ,

which we will sometimes designate respectively by 〈u1, . . . , un〉 and 〈f1| . . . |fn〉 to emphasize
the vector/covector column/row matrix dual interpretation of the n-tuple of numbers. The
natural evaluation of a covector on a vector then corresponds to matrix multiplication

f(u) = fiu
i = (f1 . . . fn)

 u1

...
un

 .

This evaluation of a covector (represented by a row matrix on the left) on a vector (represented
by a column matrix on the right), which is just the value of the linear function f = fix

i at the
point with position vector u, is a matrix product of two different objects, although it can be
represented in terms of the usual dot product on Rn of two vectors (like objects)

f(u) = fiu
i = f ] · u ≡

n∑
i=1

f ] iui = fT u ,

but the relationship between the covector f ∈ (Rn)∗ and its vector of components f ] =
(f1, . . . , fn) ∈ Rn involves additional mathematical structure, that of an inner product on
Rn, which is associated with the Euclidean geometry we all know and love. We will get to this
later. In terms of matrix notation, this sharp map ] is just the transpose operation, which
converts a covector to a vector by converting a row matrix into a column matrix.

Example 1.3.3. dual basis in the plane
Suppose we consider the basis b1 = 〈1, 1〉, b2 = 〈−1, 2〉 of R2 interpreted as column matrices

and form the 2× 2 matrix using them as the columns in this order, and consider its inverse

B = 〈b1|b2〉 =

(
1 −1
1 2

)
, B−1 =

(
2
3
−1

3
1
3

1
3

)
≡
(
w1T

w2T

)
,

whose two rows define the row vectors w1T = 〈2/3| − 1/3〉, w2T = 〈1/3|1/3〉, which are the
coefficient vectors of two linear functions w1, w2. The defining relation for the inverse matrix
I = B−1B is explicitly(

1 0
0 1

)
=

(
2
3
−1

3
1
3

1
3

)(
1 −1
1 2

)
=

(
w1T b1 w1T b2

w2T b1 w2T b2

)
=

(
w1(b1) w1(b2)
w2(b1) w2(b2)

)
,

which has the interpretation that the matrix of evaluations of these two linear functions on the
two basis vectors is the identity matrix. In other words {w1, w2} is the basis dual to {b1, b2}.

This clearly generalizes to an ordered basis of n linearly independent vectors
in Rn: form the basis matrix B = 〈b1| . . . |bn〉 containing those basis vectors as
columns, then the rows of the inverse matrix B−1 are the components of the
corresponding dual basis.
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Figure 1.7: Illustration of the condition f(u) = 2 for the evaluation of the covector f on the
vector u.

�

The evaluation of a covector on a vector also has a geometrical interpretation. If we imagine
the 1-parameter family of hyperplanes fix

i = f(x) = t, then the parameter value t of the eval-
uation is the “number” of hyperplanes pierced by the arrow representing u, if by “number” we
refer to the integer subfamily and we interpolate between them when the result is not an integer.
It is exactly this natural evaluation operation which is embodied in the Einstein summation
convention for repeated subscript/superscript index pairs, which requires more structure as we
will see below. In the case illustrated in Fig. 1.7, the vector pierces exactly 2 of these parallel
planes.

Scalar multiplication of vectors and covectors also has a geometrical interpretation. Under
scalar multiplication u → cu, a vector’s length is multiplied by |c|, with a direction reversal if
c < 0, but under scalar multiplication of a covector f → cf , the separation between the two
parallel planes representing the covector is divided by |c| since the hyperplane (cf)(x) = 1 is
the plane f(x) = 1/c compared to the original hyperplane f(x) = 1. If c < 0 there is also
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Figure 1.8: Scalar multiplication, assuming c > 1: the vector is stretched, the covector planes
are squeezed (shorter separation but bigger density of planes in the original family of integer
value planes).

a direction reversal in the sense that the hyperplane cf(x) = 1 is on the opposite side of the
hyperplane f(x) = 0 from f(x) = 1. This increases the “number” of planes pierced by a given
vector if |c| > 1, thus increasing the value of the covector on the vector, and decreases the
number if |c| < 1.

Using these geometrical pictures we can give a geometric construction of the dual basis to
a given basis. Suppose we have 3 linearly independent vectors {Ei} in R3. They form a basis.
What is the parallel plane representation of the three dual basis vectors {W i}? The dual basis
is defined by the duality relations{

W i(Ej) = 0 , i 6= j ,

W i(Ei) = 1 , (no sum on i) .

The first (“offdiagonal”) relation says that a given dual basis vector W i should “kill” ( give
zero on) the “other” (j 6= i) basis vectors, and hence on any linear combination of the other
vectors and hence on any vector in the plane (hyperplane in Rn) spanned by the other vectors.
So the plane of the two vectors E1 and E2 is the plane W 3(x) = 0 from the pair used to
represent W 3, and similarly for the others. So we’ve determined the orientations of each of the
dual basis covectors from the “offdiagonal” duality relations. The “magnitude” is determined
by the “diagonal” relations. The “diagonal” relation W 3(E3) = 1 means that the tip of E3 lies
in the plane W 3(x) = 1 which must be parallel to the plane W 3(x) = 0, completely fixing the
former.

Drawing in all 3 pairs of planes makes a 3-dimensional honeycomb structure which I won’t
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Figure 1.9: 3 independent vectors in R3 (noncoplanar): a basis.

attempt to draw. However, the 3 pairs of planes contain the 6 faces of the parallelopiped
formed with the 3 basis vectors as edges from a common vertex at the origin. This “unit
parallelopiped” corresponds to all points which have new coordinates 0 ≤ xi

′ ≤ 1, whose
volume in the Euclidean geometry is the absolute value of the determinant of the matrix of new
basis vectors: V ol(E1, E2, E3) = | det〈E1|E2|E3〉| (the triple scalar product from multivariable
calculus). Tiling R3 with this unit parallelopiped creates the unit coordinate grid associated
with the new coordinates.

Notice that changing E3 for fixed E1, E2 does not change the orientation of W 3 which must
contain the directions of both E1 and E2, only its “magnitude” or separation parameter changes
in order to maintain W 3(E3) = 1. On the other hand changing E3 for fixed E1, E2 does change
W 1 and W 2 so that their planes remain parallel to E3. These “complementary” effects of such a
change reflect the “duality” between vectors and covectors. A vector is represented by a directed
line segment (1-dimensional) while a covector is represented by a directed pair of parallel planes
of dimension 3− 1 = 2 in R3 or hyperplanes (dimension n− 1) in Rn. The “directed” qualifier
refers to the sense in which we start at the 0-value and finish at the 1-value, although there
is no particular direction from the origin (i.e., specific vector) along which we go, unless we
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Figure 1.10: Visualizing dual basis relations in R3. The 3 basis vectors determine a parallel-
ogram whose 3 pairs of faces lie in the three pairs of planes W i(x) = 0, 1 for i = 1, 2, 3. The
zero value plane of W 3 contains E1 and E2, and the tip of E3 touches the unit value plane for
W 3, so the pair of planes representing W 3 contain the two faces of the parallelepiped formed
by the three basis vectors which are connected at one corner by the edge E3.

Figure 1.11: Visualizing dual basis relations in R2. The sides of the parallelogram formed by
the two basis vectors are contained in the pairs of lines W i(x) = 0, 1 for i = 1, 2. The zero
value plane of W 2 contains E1, and the tip of E2 touches the unit value plane for W 2.
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introduce a Euclidean geometry, for example, which picks out the direction orthogonal to the
pair of the planes.

Figure 1.12: Representation of covector as pair of planes: a connecting normal vector captures
its orientation information but not directly the length of the covector (instead it captures the
inverse length).

Suppose n (for “normal”) is the orthogonal vector in R3 from the origin to the second plane
representing the covector f = fix

i, so that it satisfies f(n) = fin
i = 1. In the Euclidean

geometry ni is proportional to fi since index position does not matter, but that means that
their lengths must be inversely proportional from the constraint that their inner product is 1.
More on this later. For now it suffices to say that we can’t pick out a particular direction in
which the level surfaces of a covector increase in their value without additional structure, like
the dot product in our usual approach to geometry in Rn.

All of this is much simpler to visualize in the plane R2 where we only have two basis vectors
E1 and E2, which form a parallelogram whose sides extend to represent in pairs the two dual
basis covectors W 1 and W 2. The Euclidean area of the “unit parallelogram” formed by the two
basis vectors is just the length of the cross-product of the two vectors thought of as vectors in
the plane x1-x2 plane of R3 which in turn is just the absolute value of the determinant of the
matrix containing these vectors as columns: Area(E1, E2) = |E1 × E2| = | det〈E1|E2〉|.

Well, we began with a vector space V and introduced its dual space V ∗ which is itself a
vector space in its own right and so has its own dual space (V ∗)∗ = V ∗∗ of real-valued linear
functions of covectors

F ∈ V ∗∗ means F (af + bg) = aF (f) + bF (g) (linearity condition) .

However, unlike a relationship between a vector space and its dual which requires additional
mathematical structure, there is a “natural” identification of a vector space and the dual of
its dual. Of course they are all n-dimensional vector spaces and therefore isomorphic, but one
has to choose a basis to establish a particular isomorphism which then depends on that choice
of basis (“unnatural,” not independent of the choice of basis). But the relationship between a
basis of V and a corresponding basis of V ∗∗ is natural, independent of basis, and is a result of
the fact that a linear function value f(u) = fiu

i for fixed vector input u is a linear function
of the covector f thought of as a variable. This natural pairing enables us to view this as
a linear function of variable f for fixed u, i.e., switching the interpretation of variables and
coefficients that led us to describe linear combinations of variables that form linear functions
of those variables.
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For each v ∈ V , define a ṽ ∈ V ∗∗ by ṽ(f) = f(v) for any covector f , in other words given
a vector in V , we define the value of a dual space linear function on a covector to be the value
of the covector on the original vector. Then this tilde map association satisfies

(aũ+ bṽ)(f) = aũ(f) + bṽ(f) (def. of linear comb. of functions)

= af(u) + bf(v) (def. of tilde map)

= f(au+ bv) (linearity of covector)

= (ãu+ bv)(f) , (def. of tilde map)

and since this is true for all covectors f , then it is true of the functions themselves (ãu+ bv) =
aũ + bṽ so ∼: V −→ V ∗∗ is a linear map. It is also 1-1 since if ũ = ṽ, then ũ(f) = ṽ(f)
so f(u) = f(v) and f(u − v) = 0 (linearity) for every covector f , which can only be true if
u− v = 0 or u = v. This means it is a vector space isomorphism (1-1 linear map).

So if you start with F ∈ V ∗∗, then

F (f) = F (fiω
i) = fiF (ωi) ≡ fiF

i = fiδ
i
jF

j

= fiω
i(ej)F

j = (fiω
i)(F jej) = f(F jej) ,

where F (ωi) ≡ F i are the “components” of F with respect to the basis {ei}, i.e., evaluation of
F on f is equivalent to evaluation of f on the vector F iei. Furthermore {ẽi} is the basis dual
to the basis {ωi} of V ∗, since ẽi(ω

j) = ωj(ei) = δj i. We can therefore forget about V ∗∗ by using
evaluation of covectors on vectors to produce linear functions of covectors.

Thus the natural evaluation f(v) = fiv
i can be interpreted as a linear function of v for fixed

f or as a linear function of f for fixed v. This puts vectors and covectors on an equal footing
with respect to evaluation, and sometimes this is made explicit (by mathematicians) by using
the notation

f(v) = 〈f, v〉 (“scalar product” of covector and vector)

which eliminates having to write one evaluated on the other as function notation requires. This
scalar product notation also enables one to connect the transpose matrix with a transpose map:

f(Av) = fi(A
i
jv
j) = (fiA

i
j)v

j becomes 〈f, Av〉 = 〈ATf, v〉 ,
namely the action ui → Aiju

j of a linear transformation A on v in this expression can be
transferred to the action of the transpose matrix acting by left multiplication on the components
of the covector f thought of as a column matrix. In other words if fT is the row matrix
representing the covector, then f is the column matrix and fi → fjA

j
i translates in matrix

notation to fT → fTA, the transpose of which is f → ATf . In more transparent language,
any matrix which acts on the vector space by left multiplication of component columns, also
naturally acts on component covectors as rows by right multiplication, which is called the
transpose map associated with the original linear transformation.

Another indication of natural versus unnatural isomorphisms is that each time we go to the
dual space we interchange index positions—after two interchanges they are back in the right
position so one doesn’t need additional structure to get the indices back in the “right position”
F = F iẽi ←→ F iei as is necessary in the relationship between a vector space and its own dual.
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Figure 1.13: Change of basis in the plane R2 from the natural basis {e1, e2} to a new basis
{E1, E2}

Exercise 1.3.2.
change of basis in the plane
Given the new basis E1 = 〈2, 1〉, E2 = 〈1, 1〉 of R2:
a) Find the dual basis {W 1,W 2} to {E1, E2} in terms of the dual basis {ω1, ω2} to the natural
basis {e1, e2} = {〈1, 0〉, 〈0, 1〉}.
Hint: W 1 = aω1 + bω2 , W 2 = cω1 + dω2 , (why?)
so express the 4 conditions W i(Ej) = δij to obtain 4 linear equations to determine the 4 con-
stants a, b, c, d.
b) What are the new coordinates of 〈0, 2〉, namely (W 1(〈0, 2〉),W 2(〈0, 2〉)?
c) Plot the vectors 〈a, b〉 and 〈c, d〉 on the same axes. What do you notice about their relation
to {Ei}?
d) Plot the 4 representative lines W 1(X) = 0, 1 and W 2(X) = 0, 1 and interpret the result of
part b) in terms of the number of such unit tickmark lines associated with W 2 that are pierced
by the vector 〈0, 2〉.
e) Recall Example 1.3.3. Notice that the matrix A = 〈〈a|b〉, 〈c|d〉〉 whose rows are the compo-
nents of the new dual basis covectors is just the inverse of the matrix whose columns are the
components of the new basis vectors 〈E1|E2〉, i.e., show that A = 〈E1|E2〉−1. In other words
there is no need to solve equations for the dual basis since they are equivalent to finding the
inverse matrix of the matrix of basis vectors themselves, which is a trivial task for computer
algebra systems.

�

Affine spaces

When we consider physical problems in the plane or in space, as in calculus when we introduce
a Cartesian coordinate system based on a choice of origin and a set of rectangular axes, we
then make a direct mapping to R2 or R3 respectively of n-tuples of real numbers with n = 2, 3,
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and we work in that environment using the vector space structure of position vectors to locate
points and we deal with relative positions using difference vectors. In fact we really never even
consider this first step and simply work with Cartesian coordinates on these spaces, but it is
understood that we have the freedom to pick another origin and another set of rectangular axes
to describe points in those spaces. When we think of physical space within the framework of
physics, we recognize this freedom in the construction of Cartesian axes. The mathematical
construct that we employ is not a vector space but in contrast, a vector space modulo a choice of
origin, which is called an affine space. The difference vectors (directed line segments) between
points of our affine space belong to the corresponding vector space. Although we utilize the
vector space structure of these Rn spaces, it should be clear that this is a convenience for not
having to worry about the more precise situation of an affine space. In particular, when we
deal with the flat spacetime of special relativity as a vector space with an inertial coordinate
system (t, x1, x2, x3) on R4, we understand that it is really an affine space structure that we
assume and not a vector space.
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1.4 Linear transformations of a vector space V into itself

(and tensors)

Introducing the dual space of covectors is just a way of giving explicit mathematical structure
to the set of real-valued linear functions on a vector space that we usually take for granted
when working with real-valued functions on Rn. Generalizing linear functions from one vector
argument to more than one vector argument to consider multilinear functions leads in a similar
way to tensors, which are real-valued multilinear functions of a number of vector and covector
arguments. Matrix multiplication of vectors in Rn by a square matrix is a familiar operation
that can be easily re-interpreted in this light, thus connecting the idea of linear transformations
of a vector space into itself with an associated multilinear function, or tensor. Finally changing
the basis of Rn from the standard basis by such a linear transformation amounts to matrix
multiplication by an invertible matrix, the columns of which represent the standard components
of the new basis vectors, and whose inverse matrix contains the standard components of the
new dual basis as its rows. We postpone a discussion of basis changes until the next section.

Concrete examples of linear transformations

Example 1.4.1. rotations of the plane
It is important to have a concrete example of a linear transformation. Consider a counter-

clockwise rotation of the plane R2 by an angle θ, shown in Fig. 1.14 as a 30◦ angle, accomplished
by matrix multiplication by the matrix R, i.e., a starting vector X is moved to the new po-
sition R(X) = RX. Multiplying the standard basis vectors e1 = 〈1, 0〉, e2 = 〈0, 1〉 produces
respectively the two columns b1, b2 of the rotation matrix R = 〈b1|b2〉. By simple trigonometry
shown in this figure, this rotation matrix is given by

〈e1|e2〉 = I → R〈e1|e2〉 = 〈Re1|Re2〉 = 〈b1|b2〉
where explicitly

R = 〈b1|b2〉 =

(
cos θ − sin θ
sin θ cos θ

)
.

In terms of the Cartesian coordinates this transformation of the plane into itself takes the form(
x1

x2

)
→
(

cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
=

(
cos θ x1 − sin θ x2

sin θ x1 + cos θ x2

)
,

or
x→ Rx .

This matrix defines a real-valued function of a covector and a vector in the obvious way

fT Rv =
(
f1 f2

)(cos θ − sin θ
sin θ cos θ

)(
v1

v2

)
= f1 cos θ v1 − f1 sin θ v2 + f2 sin θ v1 + f2 cos θ v2 ,

which is simply the value of the linear function f on the rotated vector R(v), namely f(R(v)).
This is linear in both the covector f and the vector v, and so defines a tensor R such that
R(f, v) = f(R(v)).
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Figure 1.14: The effect of a counterclockwise rotation of the plane by the angle θ (shown here
as π/6 or 30◦) acting on the standard basis vectors. The rotated vectors form the columns of
the rotation matrix.

�

Exercise 1.4.1.
rotations and pseudorotations in the plane

a) If we use the notation

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

show that
R(θ1)R(θ2) = R(θ1 + θ2) ,

and that
R(θ)−1 = R(−θ) , R(0) = I .

This corresponds to our intuition that a rotation of the plane by two successive rotations is a
rotation by the sum of the angles of the individual rotations, that we can undo any rotation by
rotating the plane by the negative of its angle, and that a rotation by a zero angle leaves the
plane unchanged. Mathematically this corresponds to the fact that the set of rotations of the
plane about the origin by all possible angles forms what is called an Abelian group.
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A group is any set with a binary group operation (“multiplication”) associating each ordered
pair of elements A,B with another member AB of the set such that the group multiplication
is associative: A(BC) = (AB)C, there is one element I called the identity satisfying AI = IA,
and every element A has an inverse denoted by A−1 such that A−1A = AA−1 = I. For an
Abelian (or “commutative”) group, the order of the factors does not matter: AB = BA; the
two group elements are said to “commute” if this relation is true for a given pair. Since matrix
multiplication is associative, a set of invertible matrices (matrices which have an inverse) is a
matrix group under matrix multiplication if it contains the identity matrix and is closed under
matrix multiplication. Recall a matrix is invertible if its determinant is nonzero, and since the
determinant of a matrix product is the product of the determinants, the product matrix of
two invertible matrices (nonzero determinants) also has a nonzero determinant and is therefore
invertible. Groups are very important in differential geometry.

In this case it is obvious that the inverse of a rotation matrix is just its transpose

R(θ)−1 = R(−θ) = R(θ)T ↔ R(θ)TR(θ) = I ,

This last condition may be interpreted as stating that the dot product of the columns of a
rotation matrix are zero if the columns are distinct, and 1 if the same, so the set of columns of
the matrix form a set of orthonormal vectors in the geometry of the dot product. This group
is called the orthogonal group in 2 dimensions O(2), understood to be real (not complex).

b) Show that the following family of hyperbolic rotations or “boost” matrices

B(β) =

(
cosh β sinh β
sinh β cosh β

)
,

also forms a group by checking thatB(β1)B(β2) = B(β1+β2), using the corresponding identities
for the hyperbolic functions. The hyperbolic angle β is also called the rapidity. This hyperbolic
geometry is explored Appendix C. It is at the heart of the geometry of special relativity and
Lorentz transformations.

c) Evaluate the matrix differentials R−1dR = dRR−1 and B−1dB = dB B−1. Notice that
the result is an antisymmetric matrix in the first case and a symmetric matrix in the second
case, but tracefree in both cases. To interpret this, consider the parametrized curve R(θ)x (a
circle) obtained by rotating a fixed point ~x in the plane, and calculate the tangent

d

dθ
(R(θ)x) =

(
dR

dθ
(θ)R(θ)−1

)
(R(θ)x) .

This means that if we rotate a point by an angle, at each new location the tangent vector is
obtained from the position vector by multiplying the latter by an antisymmetric matrix. In
other words for a very small rotation the tip of the position vector is rotated by multiplying by
an antisymmetric matrix. In the boost case instead this role is played by a symmetric matrix.

�
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Linear transformations and tensors

Remark.
The set of all invertible linear transformations of a vector space V into itself is called the general
linear group GL(V ) for that space. GL(n,R) is the space of invertible n × n matrices, which
acts on Rn as a transformation group GL(Rn) by matrix multiplication. Tensor transformation
laws extend this action to the tensor spaces above Rn, which we will understand only after
we know what a tensor is. Both of the above 1-dimensional matrix groups (one free group
parameter) are subgroups of GL(2,R). In fact both are subgroups of the special linear group
SL(2,R) which consists of all unit determinant invertible matrices. N

Suppose A : V → V is a linear transformation of V into itself, i.e., a V -valued linear function
on V , or equivalently a linear function on V with values in V. For each i, the result A(ei) is
a vector with components defined by Aj i ≡ ωj(A(ei)) (note natural index positions up/down):
A(ei) ≡ Aj iej. By linearity

A(v) = A(viei) = viA(ei) = vi(Aj iej) = (Aj iv
i)ej or [A(v)]j = Aj iv

i .

The j-th component of the image vector is the j-th entry of the matrix product of the matrix A
≡ (Aj i) (the row index j is on the left, the column index i is on the right) with the column vector
v ≡ (vi). Here the underlined symbol A distinguishes the matrix of the linear transformation
from the transformation A itself. This matrix A = (ωj(A(ei))) is referred to as the “matrix of
A with respect to the basis {ei}.” Obviously if you change the basis, the matrix will change.
We’ll get to that later.

Even if we are not working with Rn, any choice of basis {ei} of V establishes an isomorphism
with Rn, namely the n-tuple of components of a vector with respect to this basis is a point in
Rn—this essentially identifies the basis {ei} of V with the standard basis of Rn. Recall the
natural correspondence of quadratic polynomials with R3 explored in the earlier Exercise 1.2.3.

Expressing everything associated with an abstract vector space in terms of components with
respect to a given basis leads us to matrix notation. Vectors in component form become column
matrices, covectors become row matrices, and a linear transformation becomes a square matrix
acting by matrix multiplication on the left, while natural evaluation of a covector on a vector
is the matrix multiplication of the corresponding row (left) and column (right) matrices

v =

 v1

...
vn

 , fT = (f1 · · · fn) , A = (Aij) , →

 [A(v)]1

...
[A(v)]n

 = Av , f(v) = fT v .

Since A(v) is another vector we can evaluate it on the covector f to get a number which has
the triple matrix product representation

f(A(v)) = fT Av . (row × square matrix × column = scalar)

For every linear transformation A, this enables us to define an associated bi-linear real-
valued function A of a pair of arguments consisting of a covector and a vector. Bi-linear simply



1.4. Linear transformations of a vector space V into itself (and tensors) 61

means linear in each of two arguments. This bi-linear function is

A(f, v) ≡ f(A(v)) = (fiω
i)(Ajkv

kej) = fiA
j
kv

kωi(ej)

= fiA
j
kv

kδij = fiA
i
kv

k ,

noting that A(v) is a vector and f(A(v)) is a scalar (real number). For fixed f , A(f, v) is a
real-valued linear function of v, namely the covector with components fiA

i
k (one free down

index). For fixed v, it is a real-valued linear function of f , namely evaluation on the vector
with components Aikv

k (one free up index). This reinterprets the linear transformation A as
a bilinear function A of a covector (first argument) and a vector (second argument), i.e., a
“tensor.” Note the component relation Aij = A(ωi, ej). We will notationally identify A and A
once we are more familiar with these matters. Sometimes one writes the linear transformation
as u → A(u) = A( , u) = CuA, namely as the tensor with only one of its two arguments
evaluated, or sometimes as the “contraction” of the tensor A with the vector u to indicate its
natural evaluation on that argument alone.

In general a (pq)-tensor over V is simply a real-valued multilinear function of p covector
arguments (listed first) and q vector arguments (listed last):

T (f, g, · · ·︸ ︷︷ ︸
p

, v, u, · · ·︸ ︷︷ ︸
q

) ∈ R .

Listing all the covector arguments first and the vector arguments last is just an arbitrary choice,
and later on it will be convenient to allow any ordering. By definition then, a covector is a
(0
1)-tensor over V (1 vector argument, no covector arguments) while a vector is a (1

0)-tensor over
V (1 covector argument, no vector argument) recalling that v(f) ≡ f(v) (the value of a vector
on a covector is the value of the covector on the vector).

Thus a linear transformation A has (naturally) a (1
1)-tensor A over V associated with it. Any

time we have a space of linear functions over a vector space, it has a natural linear structure by
defining linear combinations of functions through linear combination of values, i.e., is itself a
vector space and we can look for a basis. In this case the space of bilinear real-valued functions
on the Cartesian product vector space of pairs (f, v) of covectors and vectors is itself a vector
space and in the same way that a basis of V determined a basis of the dual space V ∗, they
both together determine a basis of this latter vector space.

Let V ⊗ V ∗ denote this space of (1
1)-tensors over V . The symbol ⊗ is called the tensor

product, explained below. The zero element of this vector space is a multilinear function

0(f, v)
zero tensor

= 0
zero number

←→ 0ij
zero matrix

= ωi(0(ej))
zero linear transformation

= 0 ,

whose square matrix of components is the zero matrix (note 0(ej) = 0 is the zero vector).
Another special element in this space is the evaluation tensor associated with the identity
transformation Id(v) = v

EVAL(f, v) = f(v) = fiδ
i
jv
j ←→ (EVAL)ij = ω(Id(ej)) = ωi(ej) = δij
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whose square matrix of components is the unit matrix I , the index symbol for which has been
called the Knonecker delta. EVAL is sometimes called the unit tensor, and the associated linear
transformation of the vector space is just the identity transformation which sends each vector
to itself.

To come up with a basis of V ⊗ V ∗ we need a simple definition. Given a covector and a
vector we produce a (1

1)-tensor by defining

(v ⊗ f)(g, u) ≡ g(v)f(u) = (giv
i)(fju

j) = gi(v
ifj)u

j .

Thus (vifj) is the matrix of components of v⊗f , and is also the result of evaluating this tensor
on the basis vectors and dual basis covectors

(v ⊗ f)ij = (v ⊗ f)(ωi, ej) = ωi(v)f(ej) = vifj .

The symbol ⊗ is called the tensor product and only serves to hold v and f apart until they
acquire arguments to be evaluated on. It simply creates a function taking 2 arguments from
two functions taking single arguments. The component expression shows that v ⊗ f is clearly
bilinear in its arguments g and u, so it is a (1

1)-tensor.

In terms of the corresponding matrix notation, given a column matrix u = 〈u1, . . . , un〉 and
a row matrix fT = 〈f1| . . . |fn〉, then the tensor product corresponds exactly to the other matrix
product (column times row instead of row times column)

(uifj) = u︸︷︷︸
n× 1

fT︸︷︷︸
1× n︸ ︷︷ ︸

n× n

in contrast with fT︸︷︷︸
1× n

u︸︷︷︸
n× 1︸ ︷︷ ︸

1× 1

= f(u) = fiu
i .

Thus the tensor product of a vector and a covector is just an abstract way of representing the
multiplication of a column vector on the left by a row vector on the right to form a square
matrix, a two-index object created out of two one-index objects.

Example 1.4.2. matrix product and linear function evaluation

A concrete example can help. The matrix product on the left below is the usual order of
a row on the left and a column on the right, resulting in a scalar. The rows and columns of
the matrix product on the right below of a column on the left multiplying a row on the right
have only 1 entry each respectively so the row-column products are simply products of those
two entries.

fT u =
(
f1 f2

)(u1

u2

)
= f1u

1 + f2u
2 , u fT =

(
u1

u2

)(
f1 f2

)
=

(
f1u

1 f2u
1

f1u
2 f2u

2

)
The latter matrix product is the matrix of components of the tensor product u ⊗ f of the
vector u with the 1-form f . Its matrix product with a component vector corresponds to a
linear transformation of the vector space.
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�

We can use the tensor product ⊗ to create a basis for V ⊗V ∗ from a basis {ei} and its dual
basis {ωi}, namely the set {ej ⊗ ωi} of n2 = n× n such tensors. By definition

(ej ⊗ ωi)(g, u) = g(ej)ω
i(u) = gju

i = uigj .

We can use this to show the two conditions that they form a basis are satisfied:

1. spanning set:

A(f, v) = · · · = fjA
j
kv

k = Ajkv
kfj = (Ajk ej ⊗ ωk)(f, v)

since vkfj = (ej ⊗ ωk)(f, v), so A = Ajk ej ⊗ ωk holds since the two bi-linear functions
have the same values on all pairs of arguments. The components of the tensor A with
respect to this basis are just the components of the linear transformation A with respect
to {ei} introduced above : Ajk = ωj(A(ek)).

2. linear independence: if Ajk ej⊗ωk = 0 (zero tensor) then evaluating both sides on the
argument pair (ωm, en) leads to

(Ajk ej ⊗ ωk)(ωm, en) = 0(ωm, en) = 0

= Ajk ω
m(ej)ω

k(en) = Ajk δ
m
jδ
k
n

= Amn , (1.1)

so since this is true for all possible values of (m,n), all the coefficients must be zero,
proving linear independence.

Thus V ⊗ V ∗ is the space of linear combinations of tensor products of vectors with covectors,
explaining the notation.

Example 1.4.3. basis of the vector space of m× n matrices
We have no notation for the natural basis of the vector space gl(n,R) of n × n matrices,

namely the standard basis of the corresponding Rn2
we get by listing the entries of the matrix

row by row as a single 1-dimensional array. Let ej i be the matrix whose only nonzero entry
is a 1 in the ith row and jth column. Then A = Aije

j
i is how we represent the matrix in

terms of its entries. The ordering of the indices on ej i allows us to think of this product as
having adjacent indices (the j’s) being summed over and taking the trace of the result (the
is), which are natural matrix kinds of index operations. (The equally acceptable alternative
notation would be instead A = Aijei

j, but for some reason the first index ordering pleases
me more for the interpretational reason I stated.) Then to the matrix A corresponds a tensor
A = Aijei⊗ωj, whose components with respect to this basis are just the corresponding entries
of the matrix, so really the basis {ei⊗ωj} of Rn⊗Rn∗ induced by the standard basis {ei} of Rn

corresponds exactly to the obvious basis {ej i} of the vector space of square matrices. Again we
are taking familiar objects and looking deeper at their mathematical structure, which requires
new notation like the tensor product to make explicit that structure.
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�

Example 1.4.4. projections as linear transformations
Trying to gain intuition about linear transformations A : V → V from a vector space

into itself using the rotations and boosts of the plane is a bit misleading since they only give
us intuition about linear transformations which are 1-1 and do not “lose any points” as they
move them around in the vector space on which they act. Such linear transformations are
represented by nonsingular matrices when expressed in a basis, i.e., matrices with nonzero
determinant detA 6= 0, which means that the only solution to Ax = 0 is the zero solution.
Those matrices with zero determinant also arise naturally.

Suppose we decompose V = V1⊕V2 into a direct sum of two subspaces, which simply means
that any vector can be expressed uniquely as the sum of one vector in V1 and another in V2.
In multivariable calculus, one of the first things we do with vector algebra is project a general
vector in space into a vector component along a given direction and another one orthogonal to
it. If û is a unit vector which picks out a direction in R3, then the projections of another vector
v parallel to and perpendicular to û are

Pu||(v) = (v · û) û , Pu⊥(v) = v − Pu||(v) = v − (v · û) û ,

If v is already along û, then the first projection just reproduces it, while the second gives the
zero vector. If v is orthogonal to û, then the second projection just reproduces it, while the
first gives the zero vector. By definition, the sum of the two projections just reproduces the
original vector.

This is an example of a simple pair of projection maps P and Q which satisfy P 2 = P ,
Q2 = Q,PQ = QP = 0 for a pair (P,Q) which projects onto a pair of subspaces in a direct
sum total space

v 7→ P (v) +Q(v) .

Each acts as the identity on its corresponding subspace, and acts as the zero linear transfor-
mation on the other. This can be extended to a direct sum of any number of subspaces in an
obvious way by iterating these conditions.

The vanishing of the determinant of a matrix A is the condition that the homogeneous
linear system Ax = 0 has nonzero solutions. The space of solutions is called either the null
space or kernel of the matrix. Row reduction of the matrix produces a basis of that subspace
of Rn. However, there is no natural complementary subspace to complete projection into this
subspace to a pair of projections as above without additional structure. The problem is that if
Ax 6= 0 then one can add any element of the null space to x and it will also satisfy the same
condition of x. But in Rn we have the orthogonal complement using the dot product to pick
out a representative subspace we can use to decompose any vector into an element of the null
space and another subspace. This is because the condition Aijx

j = 0 means that the vector x
is orthogonal to each of the rows of the coefficient matrix in the dot product interpretation, so
that the span of the rows of the matrix (called the row space) is the orthogonal complement
of the null space with this natural inner product. Similarly the set of all nonzero vectors Aijx

j
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for all possible xj corresponds to what is called the range of the linear transformation, but by
definition of span, this is simply the span of the set of columns of the matrix, called the column
space of the matrix. This too has no natural complement without an inner product, but of
course the dot product is ready to do the job. The row and column spaces of a matrix were
discussed in detail in Section 1.2.

�

For every linear transformation A : V → V , there is an associated linear transformation
AT : V ∗ → V ∗ called its transpose, defined by

(AT )(f)(u) = f(A(u)) = fiA
i
ju
j → [(AT )(f)]j = fiA

i
j ,

which takes the matrix form
AT (f) = fTA .

Thus with the row vector fT we associate the new row vector

fT 7→ fTA ,

or equivalently taking the matrix transpose of this equation, the corresponding column vector
f is associated with the new column vector

f 7→ ATf .

In words left multiplication of a row matrix fT by the matrix A of the linear transformation A is

equivalent to right multiplication by the transpose matrix AT of the corresponding transposed
column matrix f . The abstract transpose linear transformation therefore corresponds directly
to the transposed matrix acting in the transposed direction by matrix multiplication. In other
words, when we want to think of V ∗ as itself a vector space undergoing a linear transformation,
we then want to think of its elements as column matrices multiplied on the left by a matrix,
and this leads to the transpose matrix of the original transformation acting on V .

This transpose linear transformation corresponds to partial evaluation of the tensor A in
its covector argument

AT : f 7→ A(f, ) ,

resulting in a new covector. Thus the (1
1)-tensor A packages both the linear transformation A

and its transpose AT in the same machine, so we can identify these particular transformations
as two particular ways in which this tensor acts on both the vector space and its dual, and in
fact we might as well use the same kernel symbol A for the tensor as well, letting its partial
evaluation in either argument represent the two respective linear transformations.

Example 1.4.5. dot product as a tensor on Rn

The dot product of two vectors

dot(a, b) = a · b = 〈a1, . . . , an〉 · 〈b1, . . . , bn〉 = a1b1 + . . .+ anbn =
n∑
i=1

aibi = aT b
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is the simplest bilinear scalar function of a pair of vectors in Rn. It is therefore a (0
2)-tensor

“dot.” The standard basis vectors are orthonormal so we need an appropriate symbol for their
dot products, which will be interpreted as the components of the dot product tensor. Numeri-
cally the matrix of these components is the identity matrix but the index positioning must be
covariant, so we introduce a covariant Kronecker delta symbol for these components

dot(ei, ej) = ei · ej = δij ≡
{

1 if i = j ,

0 if i 6= j .
.

Then by bilinearity

dot(a, b) = a · b = (aiei) · (bjej) = aibjei · ej = δij a
ibj = δij ω

i(a)ωj(b) = δij, ω
i ⊗ ωj(a, b) ,

so this tensor is
dot = δijω

i ⊗ ωj .
The dot product on Rn is an example of an inner product on a vector space, named for

its symbolic representation as a raised dot between the vector arguments. An inner product
on any vector space is a “symmetric” (0

2)-tensor which accepts two vector arguments in either
order and produces a real number (and such that the determinant of its symmetric matrix of
components is nonzero, the condition of nondegeneracy). The dot product on Rn is such an
inner product whose matrix of components is the identity matrix with respect to the standard
basis of Rn. The index positioning δij for a (0

2) tensor shows that it is fundamentally different
from the identity (1

1)-tensor with components δij, even though both matrices of components are
the unit matrix. Section 1.6 will explore inner products on both V and its dual space V ∗ and
their interpretation as linear transformations.

�

More than 2 indices: general tensors

So we’ve taken the linear algebra of Rn, as embodied in column matrices (vectors), row matrices
(covectors), both with n entries, and square n×n matrices ((1

1)-tensors), and generalized them
into the mathematical structure of a vector space V , its dual space V ∗ and their tensor product
space V ⊗V ∗. This abstracts from 1 and 2 index objects associated with the elementary linear
algebra of introductory courses to allow us to consider objects in an invariant way (no indices)
that correspond to any number of indices on those objects. Clearly we can play the same game
with any space of tensors over V with arbitrary numbers of arguments of either type.

Tensor products with more than two vector or covector factors are defined in an obvious
way. For example, the tensor product of two covectors and two vectors is defined by

(f(1) ⊗ f(2) ⊗ u(1) ⊗ u(2))(v(1), v(2), g(1), g(2)) = f(1)(v(1)) f(2)(v(2))u(1)(g(1))u(2)(g(2)) ,

remembering the key identification which allows us to equate the value u(g) of a vector on a
covector to be the value g(u) of the covector on the vector.
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If T is a (pq)-tensor over V , then T (f, g, · · · , v, u, · · · ) ∈ R is a scalar. Define its components
with respect to {ei} by

T ij···mn··· = T (ωi, ωj, · · · , em, en, · · · ) (scalars) .

p is the number of upper indices on these components, equal to the number of covector ar-
guments, while q is the number of lower indices, equal to the number of vector arguments,
and it is convenient but not necessary to order all the covector arguments first and the vector
arguments last. Next introduce the np+q basis “vectors,” i.e., (pq)-tensors

{ei ⊗ ej ⊗ · · ·︸ ︷︷ ︸
p factors

⊗ωm ⊗ ωn ⊗ · · ·︸ ︷︷ ︸
q factors

} .

We can then expand any tensor in terms this basis

T = T ij···mn···ei ⊗ ej ⊗ · · · ⊗ ωm ⊗ ωn ⊗ · · · .

This expansion follows from the multilinearity and the various definitions just as in the
previous case of (1

1)-tensors over V . Namely

T (f, g, . . . , u, v, . . .)

= T (fiω
i, gjω

j, . . . , umem, v
nen, . . .) (argument component expansion)

= figj . . . u
mvn . . . T (ωi, ωj, . . . , em, en . . .) (multilinearity),

= T ij...mn...figj . . . u
mvn . . . (definition tensor components)

= T ij...mn...ei(f)ej(g) . . . ωm(u)ωn(v) . . . (definition argument components)

= (T ij...mn...ei ⊗ ej ⊗ . . . ωm ⊗ ωn ⊗ . . .)(f, g, . . . , u, v, . . .) . (definition tensor product)

Thus T and its expansion in parentheses in the last line have the same value on any set of
arguments, so they must be the same multilinear function.

Example 1.4.6. tensor products by multiplication
The simplest tensor products are just multilinear functions of a set of vectors that result

from multiplying together in a certain order linear functions of a single vector. For example,
the product of the values of three linear functions of single vectors defines a multilinear function
of three vectors by

(f ⊗ g ⊗ h)(u, v, w) = f(u)g(v)h(w) .

Expressing this tensor in components leads to

(f ⊗ g ⊗ h) = (f ⊗ g ⊗ h)ijk(ω
i ⊗ ωj ⊗ ωk)

where

(f ⊗ g ⊗ h)ijk = figjhk .
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In other words we have constructed a (0
3)-tensor f⊗g⊗h from the tensor product of 3 covectors f ,

g, and h and in terms of components in index notation, we have just multiplied their components
together.

We can do the same thing with vectors instead of covectors

u⊗ v ⊗ w = (uiei)⊗ (vjej)⊗ (wkek) = uivjwkei ⊗ ej ⊗ ek , (u⊗ v ⊗ w)ijk = uivjwk .

Notice that
(u⊗ v ⊗ w)(f, g, h) = f(u)g(v)h(w) = (f ⊗ g ⊗ h)(u, v, w) .

This is the same duality which allows us to think of a linear function of a single covector as
a vector and vice versa, together sharing a natural pairing to produce the linear combination
which is the value of the linear function.

�

Example 1.4.7. determinant as a tensor
On R3 with the usual dot and cross products, introduce the (0

3)-tensor D by

D(u, v, w) = u · (v × w) = det

 u1 u2 u3

v1 v2 v3

w1 w2 w3


= det

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 (“triple scalar product”)

= det〈u|v|w〉 ,

where we use the property that the determinant is invariant under the transpose operation in
order to keep our vectors associated with column matrices (while students usually see vectors
as rows in the matrix in this context in calculus courses). This is linear in each vector argument
(the determinant is a linear function of each row or column, which should be obvious from its
representation in terms of the linear dot and cross product operations). It therefore has the
expansion

D = Dijkω
i ⊗ ωj ⊗ ωk ,

where

Dijk = D(ei, ej, ek) = ei · (ej × ek) =


1 if (i, j, k) even perm. of (1,2,3)

−1 if (i, j, k) odd perm. of (1,2,3)

0 otherwise

so that

D = ω1 ⊗ ω2 ⊗ ω3 + ω2 ⊗ ω3 ⊗ ω1 + ω3 ⊗ ω1 ⊗ ω2

−ω1 ⊗ ω3 ⊗ ω2 − ω2 ⊗ ω1 ⊗ ω3 − ω3 ⊗ ω2 ⊗ ω1 .
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This corresponds directly to the usual explicit formula

det

 u1 u2 u3

v1 v2 v3

w1 w2 w3

 = u1v2w3 + u2v3w1 + u3v1w2 − u1v3w2 − u2v1w3 − u3v2w1 .

We will soon give this determinant component symbol dijk a new name εijk called the Levi-
Civita symbol or Levi-Civita epsilon, since it is exactly what we need to handle the cross
product in R3 and the easily prove vector identities involving the dot and cross-products, while
generalizing to Rn to provide a terribly useful tool. In this new notation we then have

det〈u|v|w〉 = εijkω
i ⊗ ωj ⊗ ωk(u, v, w) = εijku

ivjwk .
�

Exercise 1.4.2.
determinant as a tensor

a) Continuing the example, convince yourself that the nonzero components of the determi-
nant function εijk = ei · (ej × ek) (which correspond directly to the 3 positive and 3 negative
terms in the expansion of the determinant, respectively the 3 positive cyclic permutations of
123 and the 3 negative cyclic permutations of 123) are

1 = ε123 = ε231 = ε312 = −ε132 = −ε213 = −ε321 .

b) Notice that if we consider the determinant function D(c, a, b) = εijkc
iajbk unevaluated in

its first (or last) vector input slot D( , a, b) = D(a, b, ), we get one free index in the component
representation of the resulting covector f = D( , a, b) = εijka

jbkωi. Show that this covector has
components

〈f1, f2, f3〉 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉 = 〈(a× b)1, (a× b)2, (a× b)3〉 ,

which you recognize as the same components as the cross product vector a× b. To make index
position work out we must introduce a Kronecker delta with both indices up to write this in
index form with our index conventions

(a× b)i = δilεljka
jbk .

Thus we must introduce additional structure to understand this last shift in index position to
take a covector to the corresponding vector with the same components. Let’s wait till after the
next exercise to start tackling that.

�

Exercise 1.4.3.
quadruple scalar product
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On R3 with the usual dot and cross products, introduce the (0
4)-tensor

Q(u, v, w, z) = (u× v) · (w × z)

called the “scalar quadruple product.” It satisfies an identity that we will prove easily in Chapter
4

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) =

∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ .
Its components in the standard basis are Qijmn = (ei × ej) · (em × en), from which one can
immediately evaluate some of its nonzero components: Q2323 = Q3131 = Q1212 = 1. Check these
values.

Notice that interchanging either (i, j) or (m,n) results in a sign change, but exchanging
these pairs of indices does not

Qijkl = −Qjikl = −Qijlk = Qklij .

These “symmetries” are important and will be explored below. Show that this tensor satisfies
one further cyclic identity (first index fixed, last 3 undergo a sum of all cyclic permutations)

Qijkl +Qiklj +Qiljk = 0 .

�

The simplest example of a tensor created with the dot product is a covector: fu(v) = u · v.
For each fixed u, this defines a linear function of v, i.e., a covector fu. It is exactly this
correspondence that allows one to avoid covectors in elementary linear algebra. For a general
inner product on any vector space, the degeneracy condition guarantees that this map from
vectors to covectors is a vector space isomorphism and hence can be used to establish an
identification between the vector space and its dual space. This will prove very useful.

Remark. Tensor product and matrix multiplication

By linearity, the components of the tensor product of a vector and a covector are

v ⊗ f = (viei)⊗ (fjω
j) (expand in bases)

= vifjei ⊗ ωj (factor out scalar coefficients)

≡ (v ⊗ f)ij ei ⊗ ωj (definition of components of tensor)

→ (v ⊗ f)ij = vifj

or equivalently
(v ⊗ f)ij = (v ⊗ f)(ωi, ej) = ωi(v)f(ei) = vifj .

With the representation in component form of a vector and a covector as column and row
matrices respectively, this tensor product is exactly equivalent to matrix multiplication

v fT =

 v1

...
vn


︸ ︷︷ ︸

n×1

(f1 · · · fn)︸ ︷︷ ︸
1×n

=

 v1f1 . . . v
1fn

...
vnf1 . . . v

nfn


︸ ︷︷ ︸

n×n

= (vifj) ,
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(the vector v is a column matrix, the covector fT is a row matrix), but in the opposite order
from the evaluation of a covector on a vector, leading to a matrix rather than a scalar (number).

Thus matrix multiplication of a row matrix by a column matrix on the right represents
the abstract evaluation operation of a covector on a vector or vice versa, while the matrix
multiplication on the left represents the tensor product operation. In this sense the name
“scalar product” for evaluation is more analogous to “tensor product” (the first produces a
“scalar” or real number, the second a tensor).

Example 1.4.8. dual basis vector projections
When such a tensor product matrix product acts by matrix multiplication on a component

vector on the right, it corresponds to evaluating the corresponding (1
1)-tensor on its second

argument
v fT X ↔ (v ⊗ f)( , X) = eiv

ifjX
j = f(X) v .

This is exactly how the dual basis 1-forms project out the scalar components along their cor-
responding basis vectors ωj(X) = Xj. Multiplying the original basis vector by this scalar
component yields the vector component along that basis vector Xjej (no sum on j). The sum
then recovers the original vector by adding all these separate vector components together. For
a new basis ei′ = ej i′ei = Bj

iej, with corresponding dual basis ωi
′

= ωi
′
jω

j = B−1i
jω

j, the
summed tensor product

ei′ ⊗ ωi
′
= Bj

iB
−1i

kej ⊗ ωk = δjkej ⊗ ωk = ej ⊗ ωj

has the matrix representation
ei′ ω

i′T = BB−1 = I

Each term in the matrix product sum over i′ is the projection matrix which picks out the i’
vector component ei′ ⊗ ωi′( , X) = ei′ω

i′(X) = X i′ei′ (no sum on i′) of the component vector
to which it is applied by matrix multiplication, i.e., by evaluation of the corresponding tensor
product on its second argument.

�

Exercise 1.4.4.
transforming a tensor on R2

In Exercise 1.3.2 the dual basis W 1 = ω1 − ω2, W 2 = −ω1 + 2ω2 was found for the new
basis {E1, E2} = {〈2, 1〉, 〈1, 1〉} = {2e1 + 1e2, 1e1 + 1e2} on R2. Find the components of the
(1
1)-tensor T in terms of the standard basis {ei} and {ωi} if T has the following components in

terms of the basis {Ei}:
T (W 1, E1) = 1 , T (W 1, E2) = 2 ,
T (W 2, E1) = −1 , T (W 2, E2) = 0 ,

i.e.
T = 1E1 ⊗W 1 + 2E1 ⊗W 2 − 1E2 ⊗W 1 + 0E2 ⊗W 2 = T ij ei ⊗ ωj .

Do this in two ways.
a) Just substitute into T the new basis vectors and dual basis covectors expressed in terms
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of the old ones and expand out the result to identify the 4 old components as the resulting
coefficients of ei ⊗ ωj.
b) Use the matrix transformation law that will be justified in the next section. With a prime
introduced to distinguish components T i

′
j′ in the new basis Ei = ei′ and dual basis W i = ωi

′

from those T ij in the old basis, then the following matrix product will reproduce our previous
result

(T i
′
j′) =

(
1 2
−1 0

)
, T ′ = AT A−1 → T = A−1T ′A = B T ′B−1 ,

where the basis changing matrix and its inverse are

B−1 = A =

(
1 −1
−1 2

)
= (W i

j) , B = A−1 =

(
2 1
1 1

)
= (Ei

j) .

�

Remark.

Our notation is so compact that certain facts may escape us. For example

v ⊗ f = (viei)⊗ f = vi(ei ⊗ f) = viei ⊗ f

is actually a distributive law for the tensor product. A simpler example shows this

(u+ v)⊗ f = u⊗ f + v ⊗ f .

How do we know this? Well, the only thing we know about the tensor product is how it is
defined in terms of evaluation on its arguments

[(u+ v)⊗ f ](g, w) = g(u+ v)f(w) = [g(u) + g(v)]f(w) (linearity)

= g(u)f(w) + g(v)f(w) (distributive law)

= (u⊗ f)(g, w) + (v ⊗ f)(g, w) (definition of ⊗)

= [u⊗ f + v ⊗ f ](g, w) (linearity)

which is “how one adds functions” to produce the sum function, namely by adding their values
on arguments. But if these functions inside the square brackets on each side of the equation
have the same values on all pairs of arguments, they are the same function (i.e., (1

1)-tensor),
namely (u+ v)⊗ f = u⊗ f + v ⊗ f .

In fact it is easy to show (exercise) that (cv) ⊗ f = c(v ⊗ f) for any constant c, so in fact
the tensor product behaves like a product should with linear combinations.

N
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Figure 1.15: Active linear transformation of points: the point v moves to the point u = A(v).

1.5 Linear transformations of V into itself and a change

of basis

We have developed the description of a vector space V and the tensor spaces that are defined
“over it” (first the dual space and then all of the (pq)-tensor spaces as we add more and more
upper and lower indices to the component symbols) starting from some fixed basis of V which
induces a basis of each of these other tensor spaces in terms of which we can express all tensors
in terms of their components. However, the most interesting thing about this description is
what happens to those components when we change the basis of V . This is accomplished via
the space of (1

1)-tensors, which we have identified with the space of linear transformations of
the vector space V into itself. Partial evaluation of such a tensor on the vector argument leaves
a vector value as the result—this is how one accomplishes a linear transformation: u = uiei →
A( , u) = Aijei ω

j(u) = Aiju
jei.

Suppose A : V → V is a linear transformation of V into itself. If {ei} is a basis of V , then
the matrix of A with respect to {ei} is defined by

A = (Ai j) , Aij = ωi(A(ej)) = i-th component of A(ej) .

where i (left) is the row index and j (right) the column index (first and second indices respec-
tively, although the first is a superscript instead of the usual subscript like the second in the
usual notation of elementary linear algebra). The j-th column of A is the column matrix A(ej)

of components of the vector A(ej) = Aijei with respect to the basis, denoted by underlining

A = (A(e1) A(e2) . . . A(en)) .
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If we expand the equation

u = A(v)→ uiei = A(vjej) = vjA(ej) = vjAijei = (Aijv
j)ei ,

we get the component relation ui = Aijv
j or its matrix form u = Av, where

u =

 u1

...
un

 , v =

 v1

...
vn


are the column matrices of components of u and v with respect to the basis.

Figure 1.16: Active rotation of the plane showing the old and new bases and the old and new
coordinate grids. Notice that the starting vector X has the same relationship to the new axes
as the vector R−1(X) rotated by the inverse rotation has to the original axes. In other words
matrix multiplication by the inverse matrix gives the new components of a fixed vector with
respect to the new rotated basis.

We can interpret this as an “active” linear transformation of the points (vectors) of V to new
points of V . We start with a vector v and end up at the new vector u as shown in Fig. 1.15. The
rotation of the plane illustrated in Example 1.3.1 is a good example to keep in mind. Fig. 1.16
shows an active rotation of the standard basis and its grid by a 30◦ rotation.

We can also use a linear transformation to change the basis of V , provided that it is non-
singular (its matrix has nonzero determinant), just the condition that the n image vectors of
the original basis {ei} are linearly independent so they can be used as a new basis. The point
of view here is that general vectors do not move, but they change their components since they
are expressed in terms of a new basis which is obtained by moving the old basis by the original
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active linear transformation. This mere change of coordinates is sometimes called a passive
linear transformation since vectors remain fixed and are simply re-expressed in terms of a new
basis which is obtained from the old basis by an active linear transformation.

If B : V → V is such a linear transformation, with matrix B = (Bi
j) = (ωi(B(ej))

such that detB 6= 0, then define ei′ = B(ei) = Bj
iej. As discussed above, the columns of

B = (B(e1) · · ·B(en)) are the components of a new basis vectors with respect to the old ones:

Bi
j = ωi(B(ej)) ≡ ωi(ej′) are the old components (i) of the jth new basis vector. Primed

indices will be associated with component expressions in the new basis.
Since B is invertible, we have

ei = B−1(ei′) = B−1j
iej′ ,

which states that the new components (j) of the old basis vectors (i) are the columns (i fixed, j
variable) of the inverse matrix B−1. The new basis {ei′} has its own dual basis {ωi′} satisfying
ωi
′
(ej′) = δij. If we define

ωi
′
= B−1i

jω
j ,

which says that the rows of the inverse matrix (i fixed, j variable) are the old components of
the new dual basis covectors, then

ωi
′
(ej′) = B−1i

kω
k(B`

jel) = B−1i
kB

`
jδ
k
`

= B−1i
kB

k
j = δij (since B−1B = I)

confirms that this is the correct expression for the new dual basis.
Given any vector v, we can express it either in terms of the old basis or the new one

v = viei , v
i = ωi(v) ,

v = vi′ei′ , v
i′ = ωi

′
(v) = B−1i

jω
j(v) = B−1i

jv
j .

In other words, if we actively transform the old basis to a new basis using the linear transfor-
mation B, the new components of any vector are related to the old components of the same
vector by matrix multiplication by the inverse matrix B−1 as is clear from the rotation example
in Fig. 1.16

v′ = B−1v

or equivalently
v = B v′ .

Similarly we can express any covector in terms of the old or new dual basis

f = fiω
i , fi = f(ei) ,

f = fi′ω
i′ , fi′ = f(ei′) = f(Bj

iej) = Bj
if(ej) = fjB

j
i ,

i.e., the covector components transform by the matrix B but multiplying from the right if we
represent covectors as row matrices

(f1′ · · · fn′) = (f1 · · · fn)B ↔ f ′T = fTB
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Figure 1.17: Left: the trigonometry of new basis vectors rotated by an angle θ. Right: a point
u can be rotated actively by the rotation to a new position B u in terms of components with
respect to the old basis, or it can simply be re-expressed passively in terms of the new rotated
basis vectors, with new components u′ = B−1u, which can be visualized by rotating u in the
opposite direction by the angle θ and expressing it with respect to the original basis vectors.

or equivalently

fT = f ′
T
B−1 ,

where the explicit transpose makes it clear that fT and f ′T are row vectors, necessary to
multiply the square matrix on its left. This describes a “passive” transformation of V into
itself or of V ∗ into itself, since the points of these spaces do not change but their components
do change due to the change of basis.

Changing the basis actively by a linear transformation B makes the components of vectors
change by the inverse matrix B−1 of B, while an active transformation of V into itself gives the
components with respect to the unchanged basis of the new vectors as the matrix product by
B with the old components. The active and passive transformations go in opposite directions
so to speak.

Example 1.5.1. rotation as a coordinate transformation

Consider a rotation of the plane by an angle θ, imagined as a small positive acute angle
for purposes of illustration, see Fig. 1.17. The basis vector e1 = 〈1, 0〉 is moved to the new
basis vector e1′ = 〈cos θ, sin θ〉, while the basis vector e2 = 〈0, 1〉 is moved to the new basis
vector e2′ = 〈− sin θ, cos θ〉 by the basic trigonometry shown in that figure, so the matrix whose
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columns are the new basis vectors is

B = 〈e1′ |e2′〉 =

(
cos θ − sin θ
sin θ cos θ

)
.

Any point u = 〈u1, u2〉 in the plane is rotated to its new position B u as shown in the figure,
but we can also re-express the same original vector u with respect to the new basis. Its new
coordinates are related to its old coordinates by the inverse rotation

u′ = 〈u1′ , u2′〉 = B−1u .
�

Figure 1.18: Left: active transformation, points move, basis fixed. Right: passive transforma-
tion, points fixed, basis changes.

If we are more interested in merely changing bases than in active linear transformations,
we can let A = B−1 so that the old components of vectors are multiplied by the matrix rather
than the inverse matrix. Then we have

ωi
′

= Aijω
j −→ vi

′
= Aijv

j ,

ei′ = A−1j
iej −→ fi′ = fjA

−1j
i ,

Thus upper indices associated with vector component labels transform by the matrix A (whose
rows are the old components of the new dual basis covectors), while lower indices associated
with covector component labels transform by the matrix A−1 (whose columns are the old
components of the new basis vectors).

In the jargon of this subject, these upper indices on components are called “contravariant”
while the lower indices on components called “covariant”. Vectors and covectors themselves
are sometimes called “contravariant vectors” and “covariant vectors” respectively. The above
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relations between old and new components of the same object are called “transformation laws”
for contravariant and covariant vector components.

By the linearity of the tensor product, these “transformation laws” can extended to the
components of any tensor. For example, suppose L = Lij ei⊗ωj is the (1

1)-tensor associated with
a linear transformation L : V −→ V , now using the same symbol for the linear transformation
and the tensor. Then

L = Lijei ⊗ ωj , Lij = L(ωi, ej) ,

L = Li
′
j′ei′ ⊗ ωj

′
, Li

′
j′ = L(ωi

′
, ej′) = L(Aikω

k , A−1`
je`) = AikA

−1`
jL(ωk, e`)

= AikA
−1`

jL
k
` .

In other words the contravariant and covariant indices each transform by the appropriate factor
of Aij or A−1i

j

Li
′
j′ = AikA

−1`
jL

k
` or inversely Lij = A−1i

kA
`
jL

k′
`′ .

This generalizes in an obvious way to any (pq)-tensor

T = T i···j...ei ⊗ · · · ⊗ ωj ⊗ · · · , T i...j... = T (ωi, · · · , ej, · · · ) ,
T = T i

′...
j′...ei′ ⊗ · · · ⊗ ωj

′ ⊗ · · · , T i
′...
j′... = T (ωi

′
, . . . , ej′ , . . .)

= Aik · · ·A−1`
j · · ·T k···`··· .

It is just a simple consequence of multilinearity.

Example 1.5.2. transforming the identity tensor
We first defined the Knonecker delta just as a convenient shorthand symbol δij, but then

saw it coincided with the components of the evaluation or identity tensor

Id = δij ei ⊗ ωj = ei ⊗ ωi = e1 ⊗ ω1 + · · ·+ en ⊗ ωn .

Since this must be true in any basis, if we “transform” the Knonecker delta as the components
of a (1

1)-tensor, it should be left unchanged

δi
′
j′ = AikA

−1`
jδ
k
` = AikA

−1k
j = (AA−1)ij = (I)ij = δij .

The new components do equal the old!
�

Matrix form of the “transformation law” for (11)-tensors

The “transformation law” for the (1
1)-tensor L associated with a linear transformation L : V −→

V is
Li
′
j′ = AikA

−1`
jL

k
` = AikL

k
`A
−1`

j = [ALA−1]ij .
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In other words we recover the matrix transformation for a linear transformation under a change
of basis discussed in the eigenvector problem

L′ = ALA−1

which leads to the conjugation operation (just a term for sandwiching a matrix between another
matrix and its inverse), except that in the eigenvector change of basis discussion, this relation
was written in terms of the inverse matrix A−1 = B

L′ = B−1 LB ←− columns of B = old components of new basis vectors

which corresponds to the transformation of vector components

v = B v′ , v′ = B−1v .

Note that when one succeeds in finding a square matrix B = 〈b1| . . . |bn〉 of linearly inde-
pendent eigenvectors of a matrix L (namely L bi = λi bi so that LB = 〈L b1| . . . |L bn〉 =
〈λ1 b1| . . . |λn bn〉), then the new components of the matrix with respect to a basis consisting of
those eigenvectors is diagonal

L′ = B−1 LB =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λn

 ,

with the corresponding eigenvalues λi along the main diagonal. This process is called the
diagonalization of the matrix.

Matrices of symmetric (02)-tensors

In elementary linear algebra, no distinction is made between matrices associated with linear
transformations (namely (1

1)-tensors) and matrices which are associated with bilinear functions
of a pair of vectors (namely (0

2)-tensors). Under general changes of basis, they transform very
differently, although under orthogonal transformations normally considered in that context,
the distinction disappears, as we will see later. So let’s confront this difference up front by
considering bilinear tensors.

A (0
2)-tensor G = Gijω

i⊗ωj takes 2 vector arguments G(u, v) ∈ R. The transformation law
is

Gi′j′ = A−1m
iA
−1n

jGmn = A−1m
iGmnA

−1n
j = [(A−1)T GA−1]ij = [BT GB]ij .

Note that the indices n are adjacent in the second equation product, but the indices m are
not, which requires the transpose to get them into the proper position for the matrix product
between two matrices (the right index of the left factor summed against the left index of the
right factor). Although G also has a matrix representation G = (Gij) in component form, its
matrix transformation law involves the transpose, rather than the inverse as for the (1

1)-tensor.
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The transpose is necessary to represent to summation of the (left upper) row index of A−1

against the (lower left) row index of G in terms of matrix multiplication.

A well known fact from linear algebra is that a symmetric matrix can be diagonalized by
an orthogonal transformation of the basis. The symmetry AT = A for a matrix A makes sense
index-wise only for interchange of two indices at the same level: Aji = Aij and not for the matrix
of a linear transformation where Aj i and Aij cannot really be compared in any meaningful way.
However, if only orthogonal matrixes B are used (the restriction to orthonormal coordinates),
for which the transpose is the inverse: B−1 = BT , then the matrix form of this transformation
law for a (0

2)-tensor is equivalent to the usual one for a (1
1)-tensor of the eigenvector discussion:

A→ B−1AB .

Thus if only orthonormal bases are considered, there is no difference between the transformation
laws for a (1

1) or (0
2) tensor or even a (2

0)-tensor (apart from the switch to the inverse matrix
everywhere), allowing this distinction enforced by upper/lower index positions to remain hidden
in those elementary discussions. But hiding this structure requires the additional operation of
the dot product to identify the vector space and its dual space, a concept which is just avoided
for simplicity at an elementary level.

A 3-index example

We can consider the change in components under a change of basis for any (pq)-tensor, but let’s
wait on that. The determinant is a useful example, however, since it is another major ingredient
of our elementary linear algebra landscape.

Example 1.5.3. determinants and Levi-Civita: tensor densities

As already discussed in Exercise 1.4.7, the triple scalar product on R3 is a multilinear
function on triplets of vectors, namely the determinant function, which is a (0

3)-tensor when
thought of as a function on its columns

D(u, v, w) = u · (v × w) = det

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 = εijku
ivjwk .

The components Dijk = εijk with respect to the standard basis of R3 define the Levi-Civita
symbol.

Suppose we evaluate the new components of the determinant tensor under a change of basis
away from the standard basis.

D = Dijkω
i ⊗ ωj ⊗ ωk = Di′j′k′ω

i′ ⊗ ωj′ ⊗ ωk′ .
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Then from the rules for determinants

Di′j′k′ = A−1m
iA
−1n

jA
−1p

kDmnp = εmnpA
−1m

iA
−1n

jA
−1p

k

=
∑
σ

(−1)sgnσA−1σ(1)
iA
−1σ(2)

jA
−1σ(3)

k

=


detA−1 , if (i, j, k) = (1, 2, 3) by definition ,

detA−1 , if (i, j, k) = positive permutation of (1,2,3) ,

− detA−1 , if (i, j, k) = negative permutation of (1,2,3) ,

0 otherwise (repeated rows) .

= (detA−1)εijk .

In other words the new components of the determinant function differ from the old by the
factor detA−1. So the symbol εijk does not define a tensor in the sense that its components in
any basis have these same values, as does the Kronecker delta symbol δij which represents the
components of the identity tensor. Instead it is similar to the Kronecker delta δij or δij which
do not retain their same numerical component values under a change of basis.

Another way of starting this is that this Levi-Civita symbol εijk (also sometimes called the
“alternating symbol” because of its alternating signed value) defines a different tensor for each
choice of basis

D(e) = εijkω
i ⊗ ωj ⊗ ωk 6= D(e′) = εijkω

i′ ⊗ ωj′ ⊗ ωk′ .
So the important lesson from this example is, if we define an object with indices not by taking
components of some tensor, then it is not necessarily a tensor—but may define a different tensor
in each choice of basis.

Another way of handling this particular problem with the alternating symbol is to generalize
the idea of a tensor (independent of the choice of basis) to a “tensor density” which is a family
of tensors, one in each choice of basis, related by a more general transformation law which not
only changes the components of the tensor but also changes the tensor itself by an overall factor
of some power of the determinant of the transformation.

Dividing through the above equation by the determinant factor gives

εijk = (detA−1)

“weight”︷︸︸︷
−1 A−1m

iA
−1n

jA
−1p

k εmnp ,

where εmnl are the old components of an old tensor, A−1m
iA
−1n

jA
−1p

kεmnp are the new compo-
nents of the old tensor, εijk are the new components of new tensor which is scaled from the old
one by the factor (detA−1)−1 whose power W = −1 of the determinant of the inverse matrix is
called the weight of the tensor density. This then becomes the transformation law for a tensor
density of weight −1, whose old components are εmnl and whose new components are εijk, which
are numerically the same.

Summarizing, the alternating symbol εijk may be interpreted (by definition) as the compo-
nents of an antisymmetric (0

3)-tensor density of weight −1. This tensor density has the form
εijkω

i ⊗ ωj ⊗ ωk in any basis, with numerically constant components, like the Kronecker delta
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identity tensor. This generalizes to an alternating symbol εi1...in on any n-dimensional vector
space V . We will return to this below.

�

Suppose that instead of making the matrix of the linear transformation explicit with its
own kernel symbol A, we introduce the following component notation for the new basis vectors
and covectors

ei′ = A−1j
i ej = ej i′ ej , ωi

′
= Aij ω

j = ωi
′
j ω

j .

Note that the rows of A = 〈(ω1′)T , . . . , (ωn
′
)T 〉 are the old components of the new dual basis

covectors (recall that (ωi)T is a row matrix), while the columns of A−1 = 〈e1′| . . . |en′〉 are the
old components of the new basis vectors.

Duality then just requires that the coefficient matrices be inverse matrices

ωi
′
(ej′) = ωi

′
k e

k
j′ = δij ↔ AA−1 = I .

But the matrix product in the other order is also valid and implies something different

A−1A = I , eik′ ω
k′
j = δij ,

namely, that the identity tensor can be expressed in terms of them in this way, which then
further implies

ei ⊗ ωi = δij ei ⊗ ωj = eik′ ω
k′
j ei ⊗ ωj = ek′ ⊗ ωk

′
.

In other words the identity tensor has the same form in either basis.

Example 1.5.4. eigenvectors in the plane
Consider the matrix A and its matrix of eigenvectors B =

〈
b1|b2

〉
corresponding to the

eigenvalues (λ1, λ2) = (5,−1)

A =

(
1 4
2 3

)
, B =

(
1 −2
1 1

)
, B−1 =

1

3

(
1 2
−1 1

)
.

Introducing new coordinates {y1, y2} ≡ {x1′ , x2′} with respect to the new basis vectors {~b1,~b2} ≡
{e1′ , e2′} = {〈1, 1〉, 〈−2, 1〉}, the unit grid associated with these new coordinates for the ranges
y1 = −2..2, y2 = −2..2 is illustrated in Fig. 1.19. When the two grids intersect at a grid
point, one has vectors with integer coordinates in both systems that are easily read off the grid.
Notice that the point (x1, x2) = (4, 1) has coordinates (y1, y2) = (2,−1), for example. What
are the new components of the point (0, 3)? What are the old components of the point with
(y1, y2) = (2, 2)?

If we make the coordinate transformation and its inverse explicit, one finds

x = B y : y = B−1 x :

x1 = y1 − 2y2 , y1 =
1

3
x1 +

2

3
x2 ,

x2 = y1 + y2 , y2 = −1

3
x1 +

1

3
x2 .
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Figure 1.19: The new coordinate grid associated with a new basis of the plane is obtained as
the image of the old coordinate grid under the active linear transformation ei → Bj

iej under
which a point with old coordinates (u1, u2) goes to a point with new coordinates which are the
same: B(u) = B(uiei) = uiB(ei) = uiei′ = u1b1 + u2b2. Thus to find the new coordinates of a
point on the new grid, one has to apply the inverse linear transformation to its old coordinates
to find the original point from which it came. Under this active deformation of the plane the
basic grid square 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 is actively deformed into the parallelogram formed by
the new basis vectors b1 and b2.
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The pair of lines y1 = 0, y1 = 1 represents the 1-form ω1′ , while the pair of lines y2 = 0, y2 = 1
represents ω2′ . These 2 pairs enclose the basic unit parallelogram of the new coordinate grid
y1 = 0..1, y2 = 0..1. Note that there is a basic symmetry between old and new coordinates.

�

Remark.

Sometimes it is more useful to introduce new “kernel letters” (the letter symbols to which
indices are added) instead of using primed indices as we have done here for the new coordinates.
In Fig. 1.19 we also used boldface letters to distinguish the basis vectors rather than arrow
notation, as well as the more common subscripted variables that are natural in Maple. The
important thing is to be flexible with notation so that more than one common choice can be
made depending on the circumstances.

N

Exercise 1.5.1.
eigenvectors of a matrix of eigenvectors

In Example 1.5.4, analyze the active deformation of the plane by the linear transformation
B with matrix B by finding its eigenvalues and eigenvectors (as opposed to those of the matrix
A for which B is a matrix of eigenvectors). Namely, solve the characteristic equation for
the eigenvalues of B, then back substitute each such eigenvalue into the linear system which
produces the corresponding eigenvector. Look it up if you have forgotten this process or simply
get the result directly from a computer algebra system. Plot them on the grid shown in Fig. 1.20.
Do these directions for the stretch and compression make sense?

�

Exercise 1.5.2.
changing coordinates in the plane

On some unit square grid paper in a field of view x1 = −6..6, x2 = −8..8 (print a blank plot
with grid lines in a computer algebra system), draw in the unit grid for y1 = −2..2, y2 = −2..2
for the new coordinates associated with following matrix and its matrix of eigenvectors

A =

(
7 −4
6 −7

)
, B =

(
2 1
1 3

)
, B−1 =

1

5

(
3 −1
−1 2

)
.

From the grid read off the new components of the point (5, 5). What point has new coordinates
(1,−1)? Use the matrix transformation x = B y with inverse y = B−1 x to confirm your
graphical results.

�
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Figure 1.20: The new grid associated with the new basis vectors 〈2, 1〉, 〈1, 1〉 is obtained by a
deformation of the old coordinate grid. For example the vector 〈2,−1〉 is sent to the vector
2b1− b2 = 〈3, 1〉 under this deformation. Shown also in gray are the two vectors with the same
components as the new dual basis covectors 〈1| − 1〉, 〈−1|2〉, which are each perpendicular to
the coordinate lines of the other coordinate. These two vectors also form a basis of the plane,
called the “reciprocal basis,” and are often used to avoid mention of a distinction between
vectors and covectors.
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Figure 1.21: The new coordinate grid unit parallelopiped (right) associated with a new basis
of space (left), shown together with the original standard basis.

Example 1.5.5. eigenvectors in R3

Consider the upper triangular matrix A and its upper triangular matrix of eigenvectors
B =

〈
b1|b2|b3

〉
corresponding to the eigenvalues (λ1, λ2, λ3) = (3, 1, 1)

A =

3 6 −2
0 1 0
0 0 1

 , B =

1 −3 1
0 1 0
0 0 1

 , B−1 =

1 3 −1
0 1 0
0 0 1


Let {bi} be a new basis of R3, with dual basis {βi}. Then the old and new bases contain one
element b1 = e1 in common. Since the e1-e2 plane coincides with the b1-b2 plane, the third dual
basis covectors must be proportional β3 ∝ ω3 in order that the new one also have this plane as
its zero value surface; in fact they agree β3 = ω3 since b3 has the same height as e3. Figure 1.20
shows the unit parallelopiped formed by the new basis vectors as edges bounded by the sides
composed of the three pairs of representative planes of values 0 and 1 of the new dual basis
covectors, i.e., corresponding to the new coordinate ranges yi = 0..1. This is best viewed in a
computer algebra system where the object can be rotated and viewed with some transparency.

The eigenvectors of the matrix A enable us to interpret the linear transformation xi → Aijx
i.

All points along the first eigenvector are scaled up by a factor of 3 (the eigenvalue), while all
points in the 2-plane spanned by the remaining eigenvectors (namely the eigenspace associated
with the eigenvalue 1) remain fixed. Thus any region of space will be stretched along the first
eigenvector direction, but its cross-sections parallel to the second eigenspace will remain fixed
in shape as they move apart from each other along the first eigenvector direction.
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�

Exercise 1.5.3.
changing coordinates in R3

For the matrices of the previous example and the associated new coordinate system, what
are the new coordinates of the point 〈x1, x2, x3〉 = 〈1, 1, 1〉? What point has new coordinates
〈y1, y2, y3〉 = 〈1, 1, 1〉?

�
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1.6 Linear transformations between V and V ∗

So far we’ve generalized vectors, covectors, and (1
1)-tensors from column matrices, row matrices,

and the square matrices of linear transformations from a vector space into itself (and contrasted
the latter briefly with the symmetric matrices of bilinear forms), but have not considered
the relationship of the square matrices of components of (0

2)-tensors and (2
0)-tensors to linear

transformations. These tensors may in fact be interpreted as defining linear transformations
between the vector space and its dual space going in opposite directions.

For example, suppose ` : V −→ V ∗ is a linear map (“`” for “l”ower), defining a covector
`(v) for each vector v. In component form we can represent this covector by

[`(v)]i = `ijv
j ↔ (`(v))T = (` v)T ,

which can then be evaluated on a vector u to obtain a scalar `(v)(u). Using the same symbol,
define the associated (0

2)-tensor ` = `ij ω
i ⊗ ωj by

`(u, v) ≡ `(v)(u) = (`ijv
j)ui = `iju

ivj ,

where the components of the tensor are defined as usual by

`ij = `(ei, ej) = `(ej)(ei) .

The linear map ` is realized by evaluating the second argument of the corresponding tensor `
on a vector, so that a covector remains waiting for the first argument of the tensor, using the
same symbol for the linear transformation and the corresponding tensor: `( , v) = `(v).

In component form the transformation is again matrix multiplication but because both
matrix indices are down, one is left with a covector, requiring an additional transpose in matrix
form to yield a row matrix as agreed for representing covectors. These linear transformations
LOWER the index position.

In exactly same way a linear map r : V ∗ −→ V (“r” for “r”aise), defining a vector u = r(g)
for each covector g, in component form

rijgj = ui ,

has an associated (2
0)-tensor r = rijei ⊗ ej

r(f, g) ≡ f(r(g)) = fi(r
ijgj) = rijfigi ,

where
rij = r(ωi, ωj) = ωi(r(ωj)) .

In matrix form a transpose is needed to make the covector gT (row matrix) into a column
matrix g for matrix multiplication to produce again a column vector

r(g) = r g .

This linear map is realized by evaluating the second argument of the corresponding tensor,
leaving the first argument of the tensor waiting for a vector to be evaluated on. These linear
transformations RAISE the index position.
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Invertible maps between V and V ∗

The images of the basis or dual basis vectors under such maps are

`(ei) = `ijω
j , r(ωi) = rijej .

The condition that these maps be invertible is just that their corresponding matrices be in-
vertible, i.e., have nonzero determinants so that their inverses exist: det(`ij) 6= 0, det(rij) 6= 0
implies that `−1 ≡ (`ij) and r−1 ≡ (rij) exist such that the corresponding matrix products are
the identity matrix

`ij`jk = δik = `kj`
ji , rijrjk = δik = rkjr

ji .

These are the matrices of linear maps `−1 : V ∗ −→ V and r−1 : V −→ V ∗. Either pair,
consisting of a tensor and its “inverse” tensor (characterized by having component matrices
which are inverses), whether we start with ` or r (set r = `−1 or ` = r−1 for example) establishes
an isomorphism between the vector space and its dual.

Although one can use an arbitrary nonsingular matrix (`ij) and its inverse (`ij) to play
this game, in practice only two special kinds of such matrices are used, either symmetric or
antisymmetric matrices

• symmetric: `ij = `ji or `(v, u) = `(u, v) ,

• antisymmetric: `ij = −`ji or `(v, u) = −`(u, v) .

The corresponding tensors are also called symmetric or antisymmetric. A symmetric tensor
is said to define an inner product, while an antisymmetric tensor defines a symplectic form
over an even dimensional vector space and is also important in spinor algebra (also involving
even-dimensional spaces), both more sophisticated notions that are important in physics. Inner
products are also referred to as metrics in the context of differential geometry.

Remark.
The antisymmetric case of a symplectic form describes the geometry of Hamiltonian mechanics
which is a crucial part of the foundation of classical and quantum mechanics in physics. Unfor-
tunately to appreciate this, one must have an advanced knowledge of mechanics which includes
the variational approach to the equations of motion through Lagrangians and Hamiltonians.
We will pass on that here. N

Inner products

An inner product on a vector space V is just a symmetric bilinear function of its elements,
i.e., it is a symmetric (0

2)-tensor over V , and hence is represented by its symmetric matrix of
components with respect to any basis {ei} of V

G(u, v) = Giju
ivj , G = Gij ω

i ⊗ ωj , Gij = G(ei, ej) = Gji .

In the older language, an inner product is referred to as a quadratic form since the repeated
evaluation on a single vector G(u, u) is a quadratic function of the vector components. Any
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symmetric n × n matrix G with nonzero determinant defines such a “nondegenerate” inner
product on Rn, or on a general vector space V in a given basis.

For a nondegenerate inner product, the determinant of its matrix of components should be
nonzero: detG 6= 0, which if true with respect to one basis, will be true in any other as we will
see below. A nondegenerate inner product establishes a 1-1 map from the vector space V to
its dual space which is therefore a “vector space isomorphism” (any two n-dimensional vector
spaces are isomorphic since the component vector of vectors with respect to any basis acts
like a vector in Rn under linear operations). Since any symmetric matrix can be diagonalized,
one can consider the number of positive and negative signs of the n nonzero eigenvalues of
a nondegenerate inner product component matrix: this turns out to be is an invariant, i.e.,
independent of the basis used to express that matrix. If they are all positive (negative), the
inner product is called positive-definite (negative-definite), otherwise indefinite. The number of
positive signs minus the number of negative signs is called the signature of the inner product.

Given any inner product G on a vector space V we can always use the dot product notation
by defining

G(u, v) ≡ u · v .
The self-dot-product G(v, v) = v · v contains two independent pieces of information: its sign
(the “type”: +,−, 0) and its absolute value. Define the magnitude or length of a vector and
its sign (or “type”) by

||v|| = |v · v|1/2 = |G(u, v)|1/2 ,
sgn v = sgn(v · v) = sgn(G(v, v)) ∈ {+1, 0,−1} .

A vector v with ||v|| = 1 is called a unit vector, while a nonzero vector with ||v|| = 0 is called
a null vector. Dividing a vector with nonzero length by that length products a unit vector,
namely a vector for which the self-inner-product is just the sign ±1 of the vector

v̂ ≡ v/||v|| = v/|G(v, v)|1/2 → G(v̂, v̂) = ±1 .

This process is called normalizing the vector. If a nondegenerate inner product is positive-
definite or negative-definite, then any nonzero vector must have nonzero length, but in the
indefinite case nonzero vectors may have zero length. Such null vectors cannot be normalized.

When the inner product of two vectors is zero G(u, v) = 0, the two vectors are called
orthogonal. A basis {ei} consisting of mutually orthogonal vectors is called an orthogonal
basis. A basis consisting of mutually orthogonal unit vectors is called orthonormal

Gij = ±δij .

The component matrix is diagonal and each diagonal entry is ±1. The difference s = P −M
(Plus/Minus) in the number of positive and negative signs is called the signature and is fixed
for a given inner product (accept as a fact for now; these are just the signs of the eigenvalues
of the symmetric matrix—these signs turn out to be invariant under a change of basis). A
“positive-definite” inner product has all positive signs, i.e., signature s = n, while a “negative-
definite” inner product has all negative signs, i.e., signature s = −n. An “indefinite” inner
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product has a signature s in between these two extreme values. A “Lorentz” inner product has
only one negative sign or only one positive sign (the choice depends on prejudice, motivated
by convenience of competing demands) and so the absolute value of the signature is |s| =
(n−1)−1 = n−2. Since n = P +M , one gets the relation M = (n−s)/2. For a Lorentz inner
product with only 1 negative sign, the determinant of the component matrix is always negative.
For example, the standard basis of Rn with its usual Euclidean inner product is orthonormal.
The standard basis of R4 with the Minkowski inner product is also orthonormal (sometimes
called pseudo-orthonormal). Note that in this case the product of the signs associated with the
basis vectors is negative: (−1)(+1)(+1)(+1) = −1 = sgn detG.

Example 1.6.1. dot product on Rn

On Rn with the standard basis, the dot product defines a particular positive-definite inner
product

G(u, v) = u · v = δiju
ivj = u1v1 + . . .+ unvn ,

where

Gij = G(ei, ej) = ei · ej = δij .

Then

G(x, x) = δijx
ixj = (x1)2 + . . .+ (xn)2

is interpreted as the square of the distance of the point (x1, . . . , xn) from the origin (0, . . . , 0)
or the square of the length of the vector ~x = 〈x1, . . . , xn〉 ≥ 0, which is always positive unless
~x = 0. Sometimes n-dimensional Euclidean space (Rn with the usual dot product) is designated
by En or En to emphasize its geometry.

Note that if you change from the standard basis to an arbitrary basis of Rn, the components
of G will change

Gi′j′ = ei′ · ej′ = A−1m
i δmnA

−1n
j , G′ = A−1T I A−1 = A−1T A−1 .

Only if the new basis is also orthonormal so that (Aij) is an orthogonal matrix satisfying
ATA = I = AAT (just the condition that the columns of the matrix are mutually orthogonal
unit vectors), therefore equivalent to the condition AT = A−1 which in turn implies A−1T A−1 =
I, will the new matrix of components again equal (δij). In other words the symbol δij defines a
different tensor in each basis unless one restricts the change of basis to only orthonormal bases
corresponding to basis-changing matrices which are orthogonal. In a nonorthonormal basis, the
values Gi′i′ 6= 1 break the normality (unit vector) condition, while the values Gi′j′ 6= 0 (i 6= j)
break the orthogonality condition.

�

Remark.
How does one write the matrix equation AT = A−1 with our index conventions? Identifying
the row indices on both sides, which gets switched to the right by the transpose we might write
Aj i = A−1i

j but that breaks our convention. The only way we can respect index position (an
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Figure 1.22: The right hand rule correlates a choice of normal direction with the sense of the
rotation in the orthogonal plane in a simple way, thus characterizing a rotation in Eudlidean
3-space by its unique axis of fixed points (with direction n̂) and the angle θ of rotation about
that axis. The corresponding matrix R(n̂, θ) depends only on these independent parameters
(two for the direction, one for the angle).

index must be at the same level on each side of the equation) is by introducing the identity
matrix with both indices down to bring the upper indices down to the same level

(IA)T = I A−1 ↔ δjkA
k
i = δikA

−1k
j .

N

Orthogonal matrices represent familiar physical operations in ordinary Euclidean 3-space:
rotations and reflections. The group of real orthogonal 3 × 3 matrices is called O(3, R). Note
that the product determinant formula detAB = detA detB applied to AAT = I together
with the identity detAT = detA shows that detA2 = 1, so the determinant of an orthogonal
matrix can only have the values ±1. Those with positive unit determinant form a subgroup
called the special orthogonal group SO(3, R) and represent rotations of space, while the re-
maining negative determinant orthogonal matrices also involve either space reflections or odd
permutations of the axes. The latter do not form a subgroup since their products have unit
positive determinants by the same product formula.

While rotations occur in a family of parallel 2-planes in general in any dimension, three
dimensions are special in that there is a unique orthogonal direction to that family which we
can associate with an axis of rotation, namely the line of fixed points perpendicular to the
family of rotation planes. This gives us a nice physical representation of any rotation, which
can be specified by the angle of rotation about this axis, together with a unit vector giving
the direction of the axis. The right hand rule illustrated in Fig. 1.22 allows us to correlate
the direction of the rotation within the planes with the direction of the axis in a simple way:
with the thumb pointing along the chosen axis direction, the fingers curl in the direction of the
rotation in the orthogonal planes in the direction of the fingertips.

Example 1.6.2. the usual dot product on R3
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Sometimes it is helpful to be more concrete. If on R3 we let Gij = δij be the entries of the
identity matrix

G = (δij) =

1 0 0
0 1 0
0 0 1

 ,

then G = δijω
i⊗ωj in standard Cartesian coordinates labeled (x1, x2, x3) defines the usual dot

product inner product which determines the flat geometry of Euclidean space

a · b = G(〈a1, a2, a3〉, 〈b1, b2, b3〉) = Gija
ibj

= 〈a1, a2, a3〉 · 〈b1, b2, b3〉
= a1b1 + a2b2 + a3b3 = aT b .

Rotations about the origin (linear transformations of the vector space) leave the dot product
invariant.

�

Example 1.6.3. new dot product
We can introduce an example of a more general inner product “•” on Rn starting from

any symmetric matrix M = (Mij) = (Mji) = MT and extending the inner products by
multilinearity from the standard basis vectors {ei} to any other vectors, namely defining
M(u, v) = M(uiei, v

jej) = uivjM(ei, ej) = Miju
ivj, with Mij = M(ei, ej) ≡ ei • ej. Trans-

forming to another basis, this matrix of components will change. However, we don’t need to
consider different inner products on Rn in order to have component matrices which are not the
identity matrix. As soon as we choose a general basis of this space, its matrix of inner products
with the usual dot product can be any symmetric matrix with nonzero determinant.

Using Cartesian coordinates x1, x2 on R2, we can introduce the following new inner product
of two vectors u, v:

M =

(
8 −2
−2 5

)
,

u • v = M(u, v) = uTM v =
(
u1 u2

)( 8 −2
−2 5

)(
v1

v2

)
= Miju

ivj = 8u1v1 − 2(u1v2 + u2v1) + 5u2v2 .

The “unit circle” for this inner product would be described by the curve in the plane: 1 =
x • x = M(x, x) = 8(x1)2 − 4x1x2 + 5(x2)2. We will see below that this is a rotated ellipse as
viewed in the original Euclidean geometry of the plane.

�

Example 1.6.4. the Minkowski inner product on R4
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On R4 let −η00 = η11 = η22 = η33 = 1 and ηij = 0 (i 6= j), so that the component matrix is

η = (ηij) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

If we let Gij = ηij then G = ηijω
i⊗ωj in standard Cartesian coordinates labeled (x0, x1, x2, x3)

defines an inner product, called the Minkowski metric. We can simply reinterpret the dot
product in this context to be

a · b = G(〈a0, a1, a2, a3〉, 〈b0, b1, b2, b3〉) = Gija
ibj

= 〈a0, a1, a2, a3〉 · 〈b0, b1, b2, b3〉
= −a0b0 + a1b1 + a2b2 + a3b3 = aTη b .

This inner product determines the flat geometry of spacetime in special relativity, referred to
as Lorentzian as opposed to Euclidean because of the single minus sign which distinguishes
time directions from spatial directions. This is associated with the clearly different nature of
time compared to spatial dimensions. To emphasize this we put the time coordinate first before
the space coordinates and distinguish it by using the subscript 0: (x0, x1, x2, x3) = (t, x, y, z),
letting i, j, . . . = 0, 1, 2, 3. Then

ηijx
ixj = −t2 + x2 + y2 + z2 =


≡ `2 > 0 spacelike

= 0 lightlike or null

≡ −τ 2 < 0 timelike

is interpreted as the signed squared spacetime distance from the origin or the signed squared
length of the spacetime position vector 〈t, x, y, z〉, often called a 4-vector since we are also
interested in the usual 3 component vectors in space alone when discussing relativity. However,
in contrast with the Euclidean case of the familiar dot product, here this self-inner product
of a vector can be both positive and negative as well as zero even when this vector itself is
nonzero. The square root of the absolute value of the self-inner product is still interpreted
as the length of the vector, but the sign of the self-inner product gives additional information
about the vector.

The hypersurface

x2 + y2 + z2 = t2 or s2 = −t2 + x2 + y2 + z2 = 0

is actually a cone with vertex at the origin in this 4-dimensional space, called the light cone,
consisting of points whose signed squared distance from the origin is 0. The interpretation of
this vanishing value is that in units where the speed of light c = 1 is unity, then after a time
interval t > 0 a light ray starting at the spatial origin at time 0 travels a distance t to reach a
spatial point (x, y, z) which is at the distance (x2 + y2 + z2)1/2 = t. In other words this metric
captures the behavior of light rays by assigning zero spacetime interval to all spacetime points
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which are connected to the origin by a light ray. When the spatial distance (x2 + y2 + z2)1/2 =
of a spatial point is greater than t, then there has not been enough time for any light ray to
reach the point, or if it is less than t,any light ray emitted at time 0 has already passed by that
point. Thus the sign of the signed squared distance is associated with the causality of events in
the spacetime. The point (t, x, y, z) is said to be spacelike separated from the origin (0, 0, 0, 0)
in the positive case ηijx

ixj > 0, lightlike separated when it is zero ηijx
ixj = 0 and timelike

separated when it is negative ηijx
ixj < 0.

In some contexts the opposite overall sign is used for the Lorentz inner product: s2 =
t2 − x2 − y2 − z2 so that the ordinary spatial dimensions are associated with the minus signs
instead of the time dimension. Since length is defined by the square root of the absolute value
of the self inner product, the interpretation of the signs is a matter of choice. Extending the
usual inner product on R3 by one extra dimension with a minus sign seems the most reasonable,
but there are mathematical reasons for adopting the other sign convention in some quantum
mechanical contexts.

R4 with this inner product is called Minkowski spacetime, sometimes designated by M4.
One can consider various dimensions for Minkowski spacetime just like Euclidean space. Mn

is just Rn with the sign reversed on the self-inner product of the first standard basis vector.
The 2-dimensional Minkowski plane M2 is useful for studying 1-dimensional motion along a
single spatial dimension, while 3-dimensional Minkowsi spacetime M3 is useful for studying
motion in a spatial plane, like a planet orbiting a central sun, or “classical” electrons orbiting
a nucleus. Minkowski and Lorentz were the two most important pioneers in advancing the
mathematics underlying special relativity but it was the genius of Einstein who understood the
central concept of spacetime itself. Appendix A explores Minkowski spacetime in a bit more
depth.

�

Exercise 1.6.1.
Euclidean inner product on h(2)

In Exercise 1.2.2 we introduced a set of four 2 × 2 matrices which are the basis of a 4-
dimensional real subspace of the space of complex 2× 2 matrices

E0 =

(
1 0
0 1

)
, E1 =

(
0 1
1 0

)
, E2 =

(
0 −i
i 0

)
, E3 =

(
1 0
0 −1

)
.

The elements of this real vector space h(2) are of the form

X = xiEi =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

where the coefficients (xi) = (x0, x1, x2, x3) are real.
If X = xiEi and Y = yiEi, show that the following inner product is just the Euclidean

inner product on this vector space in this basis

G(X, Y ) ≡ 1

2
TrX Y = x0y0 + x1y1 + x2y2 + x3y3 .
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�

Exercise 1.6.2.
two inner products on gl(2,R)

In Exercise 1.2.1 we introduced a new basis of the set gl(2,R) of all real 2 × 2 matrices
adapted to its tracefree subspace sl(2, R) as well as to its decomposition into a 3-dimensional
subspace of symmetric matrices and a 1-dimensional space of antisymmetric matrices

E0 =

(
1 0
0 1

)
, E1 =

(
1 0
0 −1

)
, E2 =

(
0 1
1 0

)
, E3 =

(
0 −1
1 0

)
.

so that any 2× 2 matrix has the representation

X = xiEi =

(
x0 + x1 x1 − x2

x1 + x2 x0 − x1

)
.

a) If X = xiEi and Y = yiEi, show that the following inner product is just the Lorentzian
inner product on this vector space in this basis

G(X, Y ) ≡ 1

2
TrX Y = x0y0 + x1y1 + x2y2 − x3y3 .

The negative sign is associated with the antisymmetric subspace.
b) Show that this basis is orthogonal with respect to the Euclidean inner product

TrXT Y = 2(x0y0 + x1y1 + x2y2 + x3y3) .

This inner product is the usual Euclidean one on (R)4 interpreting gl(2, R) as R4 by listing its
entries row by row

Tr

(
a1 a2

a3 a4

)T (
b1 b2

b3 b4

)
= a1b1 + a2b2 + a3b3 + a4b4 .

�

Given a general inner product or metric G on a vector space V , invariance of this metric
under a change of basis requires

G = A−1TGA−1 ,

or right multiplying by A and using properties of the transpose and inverse together with
GT = G one transforms this into

GA = A−1TGT = (GA−1)T

from which it follows that

(GA)T = GA−1 , (generalized orthogonality condition)
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which generalizes the orthogonality condition AT = A−1 which holds when G = I, and has the
index form

GkjA
j
i = GijA

−1j
k .

In components, using the index lowering convention Aij = GikA
k
j to be discussed shortly, this

just says that Aji = [A−1]ij, or that the transpose of the index-lowered component matrix is
the index-lowered form of the inverse matrix.

If the starting basis is an orthonormal basis, then this condition describes a change from
one orthonormal basis to another and the matrices which accomplish this are called generalized
orthogonal matrices. The corresponding generalized orthogonal matrix groups are classified by
the signature of the inner product. For an inner product with P positive signs and M minus
signs, this group is designated by O(P,M), with SO(P,M) for its special orthogonal group of
unit determinant matrices. Over the complex numbers, one can always find bases which are
orthonormal in the usual sense (if G(u, u) = −1, then G(iu, iu) = 1), so one does not need
to include R explicitly in the symbol as in GL(n,R). For M4, this group O(3, 1) is sometimes
called the pseudo-orthogonal group or Lorentz group.

Repeating the same argument made for the ordinary orthogonal matrices shows that gen-
eralized orthogonal matrices must have a determinant of value ±1. Using the fact that the
determinant of a matrix product is the product of the determinants, and that the transpose
does not change the determinant, by taking the determinant of the transformation invariance
relation (detG 6= 0 by the nondegeneracy condition)

G = A−1TGA−1 → detG = det(A−1)2 detG = det(A)−2 detG ,

it follows that detA = ±1, so all of the generalized orthogonal groups differ from their special
orthogonal subgroups only by reflections under which one or more of the coordinates change
sign, or by odd permutations of the coordinates. Thus O(3,R) is enlarged from the group of
rotations of ordinary space SO(3,R) by the discrete subgroup of reflections and odd permuta-
tions.

Exercise 1.6.3.
pseudo-orthogonality in the Lorentz plane

Many problems of special relativity only require one space and one time dimension, where
the Minkowski metric with components G11 = −η00 = 1 and G01 = 0 = G10 on R2 with
standard coordinates x0, x1 is relevant. This metric leads to the hyperbolic geometry discussed
in Appendix A. In 2-dimensional “spacetime diagrams” involving this mathematical description,
the time axis is usually plotted vertically and the spatial axis horizontally.

a) Show by direct computation that the matrices

G =

(
−1 0
0 1

)
, A =

(
coshα sinhα
sinhα coshα

)
, A−1 =

(
coshα − sinhα
− sinhα coshα

)
satisfy the pseudo-orthogonality condition for a change of basis.

b) Show that the vectors 〈1, 1〉 and 〈1,−1〉 are both vectors with zero length. How do these
vectors change under matrix multiplication by the matrix A?
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�

Exercise 1.6.4.
Euclidean and Lorentzian dot products

a) In Rn (with usual dot product), what is the value of sgn v for any v 6= 0? (This property
makes Rn Euclidean.)

b) In Rn (with usual dot product), if ||v|| = 0, then what must v be?

c) In R4 with the Minkowski inner product, what is the sign of the vectors 〈0, 1,−1, 1〉,
〈2, 1, 0, 0〉, 〈1, 0, 0, 1〉? What are their magnitudes? Which of these vectors can be “normalized”
to unit vectors by dividing by their lengths?

d) In R4 with the Minkowski inner product, if ||v|| = 0, then what must v satisfy?

�

Index shifting with an inner product

For fixed X the usual dot product X ·Y = δijX
iY j = fX(Y ) is a linear function of the vector Y

in Rn with coefficients (fX)j = δijX
i numerically equal to the components Xj of the vector X

in the standard basis, so it defines a linear function associated with X which we could denote
suggestively by “X· ”. This covector needs a better name. Since effectively the upper vector
index is changed to a lower covector index through this dot product relationship, the index of
X is “lowered” by this process. In music when you lower a note like B slightly, it is referred
to as a flat: B[, so we can denote the index lowered covector by X[. Similarly raising a note
slightly is called a sharp: B], so the inverse process of raising an index from a lower covector
index to an upper vector index can be indicated by a sharp: (X[)] = X. Since by definition
X[(Y ) = X ·Y , if this is zero, Y must be orthogonal toX, so the level surfaceX[(Y ) = 0 consists
of the (hyper)plane through the origin perpendicular to the vector X. On the other hand, the
parallel (hyper)plane through the tip of X corresponds to the value X[(X) = X · X = |X|2,
so one must divide X by |X|2 to locate at its tip the parallel (hyper)plane corresponding to
the value 1 to represent the covector geometrically. Fig. 1.13 illustrates this in the Euclidean
plane.

Since the vector and covector have the same components in the standard basis, they have
the same length, and their orientations are locked together by orthogonality, so it makes sense
to think of the pair as just two different realizations of the same physical vector, which is why
we retain the same kernel letter X to represent them, and only distinguish their components
by the index position, which can be raised or lowered using this dot product relationship which
is symbolized by the Kronecker delta of dot products of the standard basis or its dual basis:
Xi = δijX

j, X i = δijXj. In any other basis, one must use the corresponding matrices of dot
products to do this index lowering and raising, or “shifting.”
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It is natural to extend this discussion to any vector space V with a nondegenerate inner
product G, with inverse G−1, thus satisfying

G−1G = I , GikGkj = δij = GikGjk ,

GG−1 = I , GjkG
ki = δij = GjkG

ik .

Then we can introduce a streamlined notation for the related pair of maps between V and V ∗,
calling them [ from V to V ∗ and ] from V ∗ to V

v[(u) ≡ G(u, v) = Giju
ivj = (Gijv

j)ui → [v[]i = Gijv
j ,

f(g]) ≡ G−1(f, g) = Gijfigj = fi(G
ijgj) → [g]]i = Gijgj ,

where the flat symbol [ stands for “down”, lowering the index, and the sharp symbol ] stands
for “up”, raising the index.

In this way using the metric and its inverse we associate a covector v[ with each vector v
and a vector g] with each covector g. These two maps are inverses of each other

[(v[)]]i = Gij(v[)j = GijGjkv
k = δikv

k = vi ,

[(g])[]i = Gij(g
])j = GijG

jkgk = δkigk = gi .

The inner product provides an “identification map” between a vector space and its dual. This
turns out to be so useful that more shorthand notation is introduced

vi ≡ v[(ei) = Gijv
j (“lowering the index”),

gi ≡ ωi(g]) = Gijgj (“ raising the index”).

In component notation we use the same letter for the corresponding covector or vector (called
the kernel symbol, kernel in the sense that we add sub/superscripts to it) and just put the
index in the right location, while the sharp or flat helps distinguish the two objects in index
free form. One then refers to the “contravariant” (u ∼ ui) or “covariant” form of a vector
(u[ ∼ ui), to distinguish the two, for example.

Furthermore, the inner product of a pair of vectors has the same value as the inner product
of the pair of corresponding covectors

G−1(u[, v[) = Gmnumvn = GmnGmiu
iGnjv

j = δniu
iGnjv

j = Giju
ivj = G(u, v) .

Thus a vector and its corresponding covector have the same self-inner product and the same
length.

Example 1.6.5. linearity becomes geometry
Consider Rn with the standard basis {ei} and the standard (dot) inner product Gij = δij,

Gij = δij. The index shifting maps identify vectors and covectors with the same standard
components

(V [)i ≡ vi = δijv
j (i.e., vi = vi for each i),

(f ])i ≡ f i = δijfj (i.e., f i = fi for each i).
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Thus evaluation of a covector on a vector

f(v) = fiv
i = δijf

jvi = f ] · v

is represented as the standard dot product of the vector with another vector whose components
are the same as the covector.

In this way linearity is converted into geometry and one can ignore the distinction between
the vector space and its dual and thus only use subscript indices. However, there is a catch.
For everything to work, one has to use only orthonormal bases—otherwise things fall apart.
(If the basis is not orthonormal, one no longer has the same components for a vector and its
corresponding covector.) This turns out to be no problem for elementary linear algebra with
its limited goals, but it is a problem if you want to go beyond that.

�

Example 1.6.6. Rn and Mn

Suppose we introduce one minus sign for the self-inner product of the first basis vector in
the previous problem on n-dimensional Euclidean space Rn to get Minkowski spacetime Mn,
with metric matrix η and standard coordinates (x0, x1, . . . , xn−1) and now interpret the dot
as the new inner product. The standard basis is still orthonormal with respect to this new
“Lorentzian” inner product, namely an inner product that only has one direction that has
negative self-inner products (almost, clarification later). These vector spaces are the same but
we use different coordinate labels adapted to the two different standard inner products.

The dual basis is automatically orthonormal and has the same matrix of inner products as
the basis vectors but we need to raise the indices as we did before with the Kronecker delta:
ωi ·ωj = ηij. If we raise an index on the covariant eta, or lower an index on the contravariant eta
using the eta matrix itself, in both cases we get the mixed Kronecker delta which is the matrix
of the identity tensor, or if we raise both indices on the covariant eta we get the contravariant
eta, etc.

ηikη
kj = δj i , ηmnη

miηnj = ηij .

Thus in the Lorentzian geometry we can think of ηij, η
ij and δij as the components of the

three possible forms of the same physical tensor, the identity tensor, as long as we are working
in an orthonormal basis (where we agree to put the negative-signed basis vector first). For
a general inner product we can similarly think of Gij, G

ij and δij as the components of the
various index-shifted forms of the identity tensor.

�

Index shifting conventions

In a situation where an inner product G is available and relevant to the kind of problem being
described mathematically, we can extend the “index shifting” maps to any type of tensor.
A (pq)-tensor is said to have “rank” (p + q) and have p contravariant indices (i.e., p covector
arguments) and q covariant indices (i.e., q vector arguments). For all tensors of a given total
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rank, we can establish a correspondence between tensors with different “index” positions. For
example, if p+ q = 2, the we are dealing with (0

2), (1
1), or (2

0)-tensors.
Suppose T = T ij ei ⊗ ωj. Then we can introduce three other tensors by

T ij ≡ GijT ik , Tij ≡ GijT
k
j , Ti

j ≡ GikT
k
`G

`j .

These are related to each other in turn by

T ij = GimGjnTmn , Tij = GimGinT
mn , etc. .

For a given starting tensor T , we can interpret all four such related tensors as different “rep-
resentations” of the same physical object, but with different index arguments. Of course this
is a convenient fiction since a vector v and covector v[ have completely different geometric
interpretations, but those interpretations are related to each other in an interesting way. We
use the same kernel letter and let the index position distinguish between the different tensors
of this family of related tensors. The last of these four tensors has the representation Ti

jej⊗ωi
if we agree always to list the covector inputs of a tensor first and the vector inputs second,
effectively identifying V ⊗ V ∗ and V ∗ ⊗ V , but we have to suspend our convention to list con-
travariant indices first and covariant indices second in order to distinguish between different
index positions of different arguments of the tensor. This is not a problem since index shifting
turns out to be extremely useful.

For rank 3 tensors there are 23 = 8 different index positions

Tijk︸︷︷︸
(03)

; T ijk , Ti
j
k , Tij

k︸ ︷︷ ︸
(12)

; Ti
jk , T ij

k , T ijk︸ ︷︷ ︸
(21)

; T ijk︸︷︷︸
(30)

,

while for rank 4 tensors there are 24 = 16 different index positions. However, when tensors have
symmetries, this number is then reduced. For example, for symmetric second rank tensors, the
symmetry condition Tij = Tji implies T ij = Tj

i.
Given any (pq)-tensor there are two special members of the family of tensors related to it

by index shifting, namely the “totally covariant” form of the tensor (all indices down) and the
“total contravariant” form of the tensor (all indices up)

T ∼ T i···j··· →
{
T i···j··· ∼ T ]

Ti···j··· ∼ T [
,

where we slide the lower covariant indices over to the right of the upper contravariant indices
before raising them or lowering the upper indices. This extends the ] and [ maps to arbitrary
tensors, meaning respectively “raise all indices” and “lower all indices.”

For the usual dot product on Rn, using the standard basis, all of these tensors have the same
numerical values for corresponding components, so one can always use the totally covariant form
of a tensor accepting only vector arguments to discuss elementary linear algebra. For a general
inner product we can introduce the magnitude and sign of a tensor just like that of a vector in
terms of the totally covariant or contravariant form. Define ||T || ≥ 0 and sgnT ∈ {+, 0,−} by

(sgnT )||T ||2 = GimGjn · · ·Tij···Tmn··· = GimGjn · · ·T ij···Tmn···
= Tij···T

ij··· (with ||T || ≡ sgnT ≡ 0 if this vanishes).
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Since the space of (pq)-tensors for fixed p and q is itself a vector space, it can have an inner
product. This defines such an inner product induced by the inner product on the underlying
vector space, namely

T · S = GimGjn · · ·T ij···Smn··· = T ij···Sij··· .

For tensors over Rn with the usual dot product, this inner product for tensors is very simple
to describe. The sign is always positive, except for the zero tensor of a given valence (specific
values of p and q), and the magnitude is always positive (except for the zero tensor) and equal
to the square root of the sum of the squares of all its components (just like for vectors!). For
example

||T ||2 = δimδjnTijTmn = TijT
ij =

n∑
i=1

n∑
j=1

T ijT ij =
n∑
i=1

n∑
j=1

(T ij)2

= TrT TT ,

since Tij = T ij for each pair of index values (i, j). The last line shows that this is equivalent
to the transpose trace inner product of square matrices when expressed in terms of the corre-
sponding matrix of components, already touched upon in Exercise ??, which is just the usual
dot product on the space of n × n matrices when thought of as Rn2

by listing entries row by
row.

Note that the inverse tensor G−1 = Gijei ⊗ ej defines an inner product on the dual space
V ∗ thought of as a vector space in its own right, and this definition of the magnitude and sign
of a covector is exactly the definition we introduced above for a vector space V , except now
applied to the dual space.

Exercise 1.6.5.
trace inner products of antisymmetric 3× 3 matrices

On Euclidean R3 with the usual dot product, consider the mixed tensor who matrix of
components is

ω = (ωij) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 .

Evaluate
Trω2 = ωijω

j
i = −ωijωij

in terms of the corresponding vector 〈ω1, ω2, ω3〉. Note that this is a negative-definite inner
product on this subspace of gl(3,R).

By multiplying by the factor−1/2, we are back to the usual dot product of the corresponding
vector in R3. By inserting a transpose, we remove the minus sign and get the self-dot product
as a 2 index tensor

TrωTω = ωijω
ij ,

and the remaining factor of two corresponds to the overcounting by the two permutations of
the indices that contribute for each unordered distinct index pair (i, j).
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�

Exercise 1.6.6.
electromagnetic field matrices

On 4-dimensional Minkowski spacetime in coordinates (xα) = (x0, x1, x2, x3) = (x0, xa) with
inner product η = diag(−1, 1, 1, 1), index-shifting is easy. Changing the level of the 0 index
changes the sign of the component, but the remaining components do not change under index
shifting. Consider the matrix

F = (Fα
β) =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 ≡ [[E,B]]

which defines a mixed second rank tensor F = Fα
βω

α ⊗ eα and the dual matrix that we will
explain in Chapter 4

∗F = (∗Fα
β) =


0 −B1 −B2 −B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 = [[−B,E]] .

This combines the electric and magnetic vector fields into a single unified electromagnetic tensor
field on spacetime. [The double square bracket notation just allows us to have a way to refer
to a 4× 4 matrix formed out of two 3-vectors in this way.]
a) Show that the component matrices

(Fij) = (ηikF
k
j) = η F , (∗Fij) = (ηik

∗F k
j) = η ∗F

of the tensors F [ and F ] are antisymmetric matrices, which is the condition discussed in Chap-
ter 2 (see Exercise 2.3.8) that the original matrices are tangents to curves of matrices which
are orthogonal with respect to the Lorentzian inner product. This is not an accident. The
mixed electromagnetic field tensor generates a pseudorotation in spacetime, called a Lorentz
transformation.

b) Use a computer algebra system to evaluate the scalars

TrF = Fα
α , Tr ∗F = ∗Fα

α ,

TrF 2 = Fα
βF

β
α = −FαβFαβ ,

Tr ∗F ∗F = ∗Fα
β
∗F β

α = −∗Fαβ ∗Fαβ ,

TrF ∗F = Fα
β
∗F β

α = −Fαβ ∗Fαβ = Tr ∗F F .

c) Use a computer algebra system to evaluate the so called energy-momentum tensor asso-
ciated with the electromagnetic field tensor

4π(Tαβ) =

(
−Fα

γF
γ
β −

1

4
δαβ FγδF

γδ

)
= −F 2 +

1

4
I TrF 2 ,
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and its trace

4πTrT = 4πTαα .

Then evaluate the matrix of totally contravariant components of this tensor (Tαβ). Recognize
the cross product in the components T 0a = T a0 and the magnitudes of the electric and magnetic
fields in T 00.

d) Use a computer algebra system or hand calculation to evaluate the matrix product
γ−1qF u if

u = γ〈1, v1, v2, v3〉 = γ〈1, ~v〉 .
Show that the result can be written in terms of 3-vectors as

〈q ~E · ~v, q( ~E + ~v × ~B)〉 ,

which is the right hand side of the Lorentz force law

m
du

dt
= γ−1m

du

dτ
= γ−1qF u .

�

Partial evaluation of a tensor and index shifting

If we evaluate the inner product G only on its second argument “G( , v)”, then it still needs
a vector in its first argument to produce a real number. This is a linear function of that
argument, i.e., defines a covector, which is exactly v[. We can write suggestively v[ = G( , v),
for the partial evaluation of G on one argument. Similarly f ] = G−1( , f).

We can partially evaluate any tensor on any number of arguments. For example, if

T = Tijk ω
i ⊗ ωj ⊗ ωk = “ T ( , , ) ”

then

T ( , v, ) ≡ Tijkω
i ⊗ ωkωj(v) = Tijkv

jωi ⊗ ωk

makes sense as a way to represent partial evaluation on a single argument. Iteration of this
extends it to any number of arguments.

Contraction of tensors

For a (pq)-tensor with at least one index each type (p ≥ 1, q ≥ 1), one can select one upper index
and one lower index and sum over them, reducing the number of free indices by 2 leading to a
(p−1
q−1)-tensor. This is called contraction of the tensor on that pair of indices of opposite valence

(one up, one down!). For example, with a (1
2)-tensor T = T ijkei⊗ωj⊗ωk, we get two covectors

T kkiω
i , T kikω

i
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from the two possible contractions of the single contravariant index with the two covariant
indices.

The previous partial evaluation Tijkv
j is then a special case of two consecutive operations,

easiest to depict in terms of index (component) language. First the tensor product tensor Tijkv
`

is formed, and then it is contracted on the index pair (j, `) to yield Tijkv
j. We also say that we

are “contracting the index j of the tensor Tijk with the vector vj in index language.
This can be generalized to any subset of corresponding indices on a pair of tensors, repre-

senting the tensor product of the two tensor factors followed by contractions on all index pairs
associated with this subset. For example, the component relations

Ci
jkD

jk
m , C

i
jkC

k
mi , R

i
jmnA

mn , Rij
mnR

mn
pq , C

i
jmnη

jmnk

are all examples of contractions of a pair of tensors on two or three indices, leading to tensors of
the type indicated by the remaining free indices. This in turn may be extended to any number
of tensor factors.

Most tensors arise with natural index positions, so only certain contractions are possible,
but if we have an inner product tensor with components Gij and inverse Gij, we can use it
to shift index positions and thus contract any pair of indices on any tensors or simultaneously
contract as many pairs as we wish. For example, if we have a 3 index object like Ci

jk we
can do natural contractions with the single upper index and the two lower indices, or a metric
contraction on the last two indices, which can be written in two equivalent ways

Ci
ik , C

i
ji , C

i
jkG

jk = Cik
k = Ci

j
j .

Geometric interpretation of index shifting

Figure 1.23: A vector v is orthogonal to the level surfaces of its corresponding covector v[.

The relation v[(X) = v ·X = 0 shows that the vector v is orthogonal to the level surfaces
of the covector v[. The relation

v[(v) = v · v = ||v||2
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may be interpreted as stating that the vector v pierces ||v||2 “layers” (integer valued level
surfaces) of the covector v[, and hence the unit vector v̂ = v/||v|| pierces ||v|| layers, so each
layer must have a separation of 1/||v||. Thus while v has length ||v||, the “layer thickness” of
the pair of planes representing the covector v[ (namely the distance between the planes) is the
reciprocal of the length of the vector. For vector v which is already a unit vector ||v|| = 1, this
separation is also 1 so the vector pierces exactly one layer of its associated covector.

In R3 we first learn to write an equation for a plane in the form

a(x− x0) + b(y − y0) + c(z − z0) = 0

or using the position vector notation ~r = 〈x, y, z〉 and introducing the normal vector ~N =
〈a, b, c〉 one has

~N · (~r − ~r0) = 0 .

In fact (a, b, c) are the components of the associated covector ( ~N)[, one of whose level surfaces
is being described. This condition is then converted into a geometric statement about points
whose difference vector from a reference point is perpendicular to the vector whose components
are the same as the coefficients of the linear function (components of the covector).

Figure 1.24: Visualizing the covector obtained from a vector by index-lowering from a vector
in the plane using the usual dot product.
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Exercise 1.6.7.
visualizing a covector in the plane

Consider the vector v = 〈3, 4〉 of length 5 =
√

32 + 42 in the plane. Find the coordinates of
the intersection of the line through v with the unit value line associated with the covector with
the same components shown in Fig. 1.24. (Note that the axis intercepts of this latter line are
the reciprocals of those components.) Since the latter line has the negative reciprocal slope, it
is perpendicular to the line through v, and hence the point of intersection is the closest point to
the origin. Show that this distance is in fact 1/5, the reciprocal of the length of v. The number
of times this separation vector fits into v is the ratio of the length of v divided by the length of
this separation vector, namely 5/(1/5) = 25, which must be v[(v) = v · v = ||v||2 = 25 which
is correct. Thus the one geometric length associated with the covector is the reciprocal of the
one geometric length associated with the vector, even though formally the vector and covector
have the same length 5, which is the square root of the sum of their components.

�
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Figure 1.25: In the plane a vector X = 〈−1, 2〉 and its corresponding covector X[ = −ω1 +
2ω2 = −x1 + 2x2. The level lines of the covector X[ are orthogonal to the vector X, while the
tip of X lies in the level line X[ = |X|2. For a unit vector the tip of the vector would lie in the
level line corresponding to the value 1.

Example 1.6.7. non-orthonormal basis and index shifting
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Consider the change of basis from Example 1.5.4, where the new basis is e1′ = b1 = 〈1, 1〉,
e2′ = b2 = 〈−2, 1〉, whose coordinate grid is shown in Fig. 1.19. The matrix of inner products
of these basis vectors is

G′ =

(
b1 · b1 b1 · b2

b2 · b1 b2 · b2

)
= BT I B =

(
1 1
−2 1

)(
1 −2
1 1

)
=

(
2 −1
−1 5

)
As explained in Example 1.3.3, the old components of the new dual basis vectors are the rows
of B−1 = 〈〈1

3
|2
3
〉, 〈−1

2
|1
3
〉〉. The vector X = 〈−3, 0〉 = −3e1 + 0e2 = −b1 + b2 (i.e., has new

components (X1′ , X2′) = (−1, 1)) has corresponding covector X[ = −3ω1 + 0ω2 but we get the
new components of this covector by matrix multiplication by G′

(Xi′)
T = (Gi′j′X

j′) =

(
5 −1
−1 2

)(
−1
1

)
=

(
−3
6

)
→ X[ = −6ω1′ + 3ω2′ = −3y1 + 6y2 ,

To raise the indices back up we need the inverse matrix of our inner product matrix

G′−1 = (BTB)−1 = B−1(BT )−1 = B−1(B−1)T

=
1

3

(
1

3

) (
1 2
−1 1

)(
1 −1
2 1

)
=

1

9

(
5 1
1 2

)
=

(
ω
′1 · ω′1 ω

′1 · ω′2
ω
′2 · ω′1 ω

′2 · ω′2
)
,

which are just the usual dot products of the rows of A = B−1. Thus raising the indices back
up we do

(X i′)T = (Xj′G
j′i′) =

(
−3 6

) 1

9

(
5 1
1 2

)
=
(
−1 1

)
.

�
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Remark.

Raising and lowering indices are linear maps so we can apply them to the basis vectors and
covectors directly

u[ = (uiei)
[ = (Gjiu

i)ωj (component definition)

= ui(ei)
[ , (linearity of map) ,

from which it follows that (ei)
[ = Gijω

j. A similar calculation shows that (ωi)[ = Gijej.
Conversely ωi = Gij(ej)

[. N

Exercise 1.6.8.
transformation of dot products

We consider the change of basis considered in Exercise 1.3.2 and illustrated in Fig. 1.13,
with the associated grid shown as well in Fig. 1.20. The inverse matrix changing the basis has
as its columns the old components of the new basis vectors

A−1 = (E1|E2) =

(
2 1
1 1

)
↔
(
x1

x2

)
= A−1

(
x1′

x2′

)
↔
(
x1′

x2′

)
= A

(
x1

x2

)
.

Let ei′ ≡ Ei for the problem originally discussed above, to follow the change of basis notation.
Let G = δijω

i ⊗ ωj be the standard dot product tensor.
(i) Compute Gi′j′ = ei′ · ej′ directly by evaluating these dot products individually and then

use the matrix transformation law to get the same result.
(ii) Compute G−1′ = (Gi′j′) from its index transformation law re-expressed in matrix form.
(iii) The vector Y = (0, 2) = −2E1 + 4E2 = −2e1′ + 4e2′ has Y [ = 2ω1. Use G′ to “lower”

its indices in the new basis. Verify that the expression for Y [ in terms of ω1′ and ω2′ is 2ω1.
�

Remark.

For a positive-definite inner product where sgnu = sgnG(u, u) is always positive for every
nonzero vector u, the determinant of the component matrix is positive det(Gij) > 0 since it
equals the product of its eigenvalues, which in turn represent the signs of the orthonormal basis
vectors in an orthonormal basis, which are all positive by definition.

Using the symmetry property of our inner product G(X, Y ) = G(Y,X) it follows that

G(X + Y,X + Y ) = G(X,X) +G(Y, Y ) + 2G(X, Y )

from which it follows that

G(X, Y ) =
1

2
(G(X + Y,X + Y )−G(X,X)−G(Y, Y )) ,
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Figure 1.26: The decomposition of a vector into length (magnitude) and direction (unit vector).

so we can determine all inner product values from self-inner-product values, which explains how
the unit sphere G(X,X) = 1 can contain all the information about the inner product, even
angle information.

A given vector u whose magnitude can be represented in terms of its length or magnitude,
and a unit vector û ≡ u/||u|| can be defined by projecting the vector to the unit sphere by divid-
ing the vector by its length, provided it is nonzero: u = ||u||û, a process called normalization of
the vector. Similarly we can evaluate the inner product of two vectors by representing each in
this way, thus projecting the inner product to the unit sphere by this process of normalization
by factoring out the magnitudes. Thus

G(X, Y ) = ||X|| ||Y ||G(X̂, Ŷ )

or

X · Y = ||X|| ||Y || X̂ · Ŷ
using the dot product notation.

For unit vectors the above relation becomes

G(X̂, Ŷ ) =
1

2
[G(X̂ + Ŷ , X̂ + Ŷ )− 1− 1] =

1

2
||X̂ + Ŷ ||2 − 1 ∈ [−1, 1]

since ||X̂ + Ŷ || ∈ [0, 2] by Euclidean geometry: the extreme values are 0 when X = −Y and 2
when X = Y . Thus we can define the result to be the cosine of an angle between two directions

cos θ ≡ X̂ · Ŷ .

For inner products with nonpositive sign values for some vectors, this argument must be revised.
More on this later. N
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Exercise 1.6.9.
inner products on spaces of square matrices and symmetry

In Exercise 1.2.1, we explored two trace inner products which agreed on the subspace of
symmetric matrices but had opposite signs on the subspace of antisymmetric matrices, one
positive-definite and the other indefinite. This generalizes to the n2-dimensional vector space
gl(n,R) of n×n real matrices, which it is said to be the Lie algebra of the general linear group,
but that is another story we will get to in due time.

Example 1.4.3 defined the standard basis of gl(n,R) by A = Aije
j
i where ej i is the n × n

matrix with a single nonzero entry 1 in the i-th row, j-th column, and zeros elsewhere. Then
listing entries by consecutive rows

A = A1
1e

1
1 + A1

2e
2

1 + · · ·+ A1
ne
n

1 = u1E1 + u2E2 + · · ·+ unEn

+ A2
1e

1
2 + A2

2e
2

2 + · · ·+ A2
ne
n

2 + un+1En+1 + un+2En+2 + · · ·+ u2nE2n

...
...

+ An1e
1
n + · · ·+ Anne

n
n + u(n−1)n+1E(n−1)n+1 + · · ·+ un

2

En2

defines an isomorphism
A ∈ V 7−→ (u1, · · · , un2

) ∈ Rn2

from the space of n × n matrices to Rn2
, mapping this basis onto the standard basis of that

space. However, the original matrix notation is more useful because of matrix multiplication.
(i) If the dual basis is defined by ωij(e

m
n) = δinδ

m
j, how are the components Aij related to

them?
(ii) Show that the matrix product law eije

m
n = δine

m
j for the basis matrices extends by

linearity to the usual index formulas for matrix multiplication [AB]ij = AikB
k
j.

(iii) Using the notation for trace Tr(A) = Aii and transpose [AT ]ij = Aj i, and recalling the
properties (rederive them by expressing in component form!)

TrA = TrAT , (AB)T = BTAT , TrAB = TrBA ,

define two inner products on V by

G(A,B) = TrATB = TrABT =
n∑

i,j=1

AijB
i
j ,

G(A,B) = TrAB = AijB
j
i .

If we write [AT ]ij = δjnA
n
mδ

mi in order to respect our index conventions, then

G(A,B) = [AT ]ijB
j
i = δjnδ

miAnmB
j
i ,

and

G(A,B) = δjnδ
miAnmA

j
i =

n∑
i,j=1

(Aj i)
2 = sum of squares of all entries of matrix.
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Thus G corresponds to the usual dot product on Rn2
under the above correspondence. Make

sure you understand this. Note that G(A,B) = G(AT , B).
(iv) Suppose A = AT is symmetric and B = −BT is antisymmetric. Using the Euclidean

property of positive-definiteness G(A,A) ≥ 0, with G(A,A) = 0 iff A = 0, then

G(A,A) = G(AT , A) = G(A,A) ≥ 0

G(B,B) = G(BT , B) = −G(B,B) ≤ 0

shows that sgnA = 1, sgnB = −1 for all nonzero symmetric and antisymmetric matrices
respectively. Use a similar argument to show that A and B are orthogonal with respect to both
inner products.

(v) Is the basis {ej i} of V orthogonal with respect to both inner products? Why?
(vi) The subspaces SYM(V ) and ALT(V ) of symmetric and antisymmetric matrices of V

are each vector subspaces (why?), and every matrix can be written uniquely in terms of its
symmetric and antisymmetric parts

A = SYM(A)︸ ︷︷ ︸
≡ 1

2
(A+ AT )

+ ALT(A)︸ ︷︷ ︸
≡ 1

2
(A− AT )

.

V is said to be a “direct sum” of these two vector subspaces. Their dimensions are

dim(SYM(V )) =
n∑
i=1

i = n(n+ 1)/2 , dim(ALT(V )) =

(
n∑
i=1

i

)
− n = n(n− 1)/2 .

Why?

Figure 1.27: The decomposition of a matrix into its symmetric and antisymmetric parts is
orthogonal with respect to either inner product.

The maps A 7→ SYM(A), A 7→ ALT(A) are projection maps associated with this direct
sum. They are orthogonal with respect to both inner products, in the sense that they project
onto orthogonal subspaces. [Projection maps satisfy P 2 = P , Q2 = Q,PQ = QP = 0 for a pair
(P,Q) which projects onto a pair of subspaces in a direct sum total space.]
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(vii) Make the following definitions using an inverted caret to indicate the antisymmetric
unit vectors and a rounded one for the symmetric unit vectors

Ĕ
i

j =

{
eij , i = j ,
2−1/2(eij + ej i) , i 6= j ,

Ăij =

{
Aij , i = j ,
2−1/2(Aij + Aj i) , i 6= j ,

Ě
i
j = 2−1/2(eij − ej i) , i 6= j , Ǎij = 2−1/2(Aij − Aj i) , i 6= j .

Then
A = Aije

j
i =

∑
i≤j

ĂijĔ
j
i +
∑
i<j

ǍijĚ
j
i

shows that
{Ĕj

i}i≤j ∪ {Ěj
i}i<j

is a basis of V adapted to the “orthogonal” direct sum into symmetric and antisymmetric
matrices.

Evaluate both inner products of the pairs (Ěj
i, Ě

m
n), (Ĕj

i, Ĕ
m
n), (Ěj

i, Ĕ
m
n).

What are the lengths of these basis vectors?
What are their signs with respect to each inner product?
What kind of basis is this with respect to either inner product?
(viii) If we introduce the vector index positioning by

f = f ij ω
j
i , f

i
j = f(eij) , ωij(e

m
n) = δinδ

m
j (duality),

then we can associate a vector F = f ij e
j
i with each such covector. Show that

f(A) = TrF A = G(F ,A),

i.e., F = f ] with respect to G.

[Remark. If we had instead used the notation

f = fi
jωij , ωij(e

m
n) = δinδ

m
j , fi

j = f(ej i)

we would have found instead

f(A) = Tr(F TA) = G(F ,A)

if we let F = fi
jeij. We would have also used the alternate notation A = Aij ei

j from the
beginning, which would have resulted in further changes. It is important to realize that a choice
of notation implies certain implicit choice not obvious at first. Even other choices A = Aije

ij

or A = Aijeij are possible.]
(ix) Suppose we define

H = H i
j
m
n ω

i
i ⊗ ωnm , H i

j
m
n = H(eij, e

m
n)

for any (0
2)-tensor over V . What are the components of G and G using this notation?
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(x) G(A,B) = TrAB defines a (0
2)-tensor. Why?

For the same reason, for each positive integer p, the following defines a (0
p)-tensor over V

T (p)(A,B, · · · , C︸ ︷︷ ︸
p vector arguments

) = Tr(A B · · · C︸ ︷︷ ︸
p factors

) .

T (1) is a covector. Express it in terms of the dual basis. Note that the cyclic property of the
trace TrAB · · ·C D = TrB · · ·C DA = · · · implies certain symmetries of these tensors. This
makes T (2) = G symmetric.

(xi) If we define
D(p)(A,B, · · · , C) = det(A B · · · C) ,

is this a tensor? Why or why not?
(xii) Sketchy remark for your mathematical interest (just read for pleasure).
The “deWitt” inner product (Google it, or “deWitt metric”)

GdW(A,B) = TrAB − TrA TrB

only differs from G = TrAB on the symmetric matrices since antisymmetric matrices have zero
trace. (Why?) The symmetric matrices themselves may be decomposed into an offdiagonal
subspace (again zero trace) and a diagonal subspace, while the diagonal subspace itself can
be decomposed into the tracefree subspace and the 1-dimensional “pure trace” subspace of
multiples of the identity matrix

A =

(
1

n
TrA

)
I︸ ︷︷ ︸+

[
A−

(
1

n
TrA

)
I

]
︸ ︷︷ ︸ =

∑
i=j

Aije
j
i︸ ︷︷ ︸+
∑
i 6=j

Aije
j
i︸ ︷︷ ︸

(1)
= Atrace + Atracefree, sym (2)

= Adiagonal + Aoffdiagonal, sym

(3)
= Atrace + Atracefree,diagonal︸ ︷︷ ︸ + Aoffdiagonal, sym .

(4) Adiagonal

Each of these three decompositions (1), (2), (3) and the restriction (4) of the tracefree
decomposition (1) to the diagonal matrices are orthogonal decompositions of the subspace of
symmetric matrices with respect to G (which coincides with G for symmetric matrices, but
differs only in sign for the antisymmetric matrices), while the symmetric and antisymmetric
matrices are orthogonal with respect to both G and G so it extends to an orthogonal decom-
position of V itself. Anyway the new inner product GdW only differs from G and G on the
1-dimensional subspace of pure trace matrices, which has a negative sign with respect to G. (G
and G have all positive signs for symmetric matrices.) The basis

{I} ∪ {eii − 1
n
I}i=1,··· ,n−1

is an orthogonal basis of the diagonal subspace adapted to this pure trace/tracefree decompo-
sition, which has only one basis vector with a negative sign. Such inner products where the
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orthonormal bases have only one negative sign are called Lorentzian (like 4-dimensional flat
Minkowski spacetime).

Without pursuing the details, you can see that just pushing on some simple familiar proper-
ties of matrices leads to an extremely rich structure complete with geometry. In fact the space
of symmetric matrices with a nonzero determinant is an open subspace of the set of all sym-
metric matrices and may be interpreted as a “curved space” of all possible (symmetric) inner
products on Rn. This turns out to play a key role in the structure of the complicated nonlinear
couple partial differential equations of general relativity called Einstein’s equations, since the
metric (inner product on the tangent space at each spacetime point) is the field variable that
must be determined by those equations.

�

If you really like mathematics, you can see that by properly recognizing mathematical struc-
ture and adapting notation to it, one can create out of nothing a beautiful area of geometry—
which in fact is not just idle games playing but often has important applications in physical
science. On the other hand, sweeping the structure under the rug in order to arrive immediately
at calculational algorithms (as unfortunately we must in a one semester linear algebra course)
completely hides this structure and the “beauty.” Our goal is simply to begin to appreciate
how this can be uncovered and see how it applies to the geometry of “curved spaces,” which
itself has enormous importance in the physical sciences.

Exercise 1.6.10.
projections in R3 and M4

a) Let n = (na) be a fixed unit vector in R3: δabn
anb = (n1)2 + (n2)2 + (n3)2 = 1, with

nT = (na) and na = δabn
b = na. Define the projection matrix P || = (nanb) along this direction,

and the orthogonal projection P⊥ = I − P || = (δab − nanb). Show that P || and P⊥ separately
satisfy the projection property and that their product in either order is the zero matrix. Then

v = P || v︸︷︷︸
v||

+P⊥ v︸︷︷︸
v⊥

= (v · n)n+ (v − (v · n)n)

represents the orthogonal decomposition of any vector parallel to and perpendicular to the
given direction specified by the unit vector n.

b) Clearly these formulas apply to any Rn with the usual dot product. They can be gener-
alized to any signature inner product by including the sign of the self-dot product nknk = ±1
of the unit vector specifying the direction. Show that

(P ||)ij =
ninj
nknk

(P⊥)ij = δij −
ninj
nknk

are the components of mutually orthogonal projection operators.
c) For a Lorentzian spacetime timelike directions have a negative sign in these formulas.

Given a unit timelike vector u · u = −1, its parallel projection picks out the timelike part of
a vector with respect to an observer whose world line is aligned with u, while its orthogonal
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complement projection projects out the spacelike part belonging to what is called the “local
rest space” associated with this observer. The projection matrices then become

(P ||)ij = −uiuj (P⊥)ij = δij + uiuj .

For a unit vector in M4 of the form u = 〈coshα, sinhαna〉, a = 1, 2, 3, where n ·n = δabn
anb = 1

is a spacelike unit vector, evaluate the two projections of a general vector X = 〈X0, Xa〉.
�

Exercise 1.6.11.
Gram Schmidt diagonalization

The orthogonal projection process with respect to a single direction can be iterated to
achieve an orthogonal direct sum of 1-dimensional subspaces and an associated orthonormal
basis. For any nondegenerate inner product on a vector space V , given a basis consisting of
vectors with nonzero length, one can always construct an orthogonal basis with respect to
that inner product by a simple algorithmic procedure called the Gram-Schmidt procedure of
orthogonalization, which can then be normalized to make an orthonormal basis. This procedure
depends on the order of the vectors.

One keeps the first vector in the set, and then projects the second vector orthogonally to
the first vector to get an orthogonal vector to replace the second vector, but the span of the
two vectors is still the same. Next one takes the third vector and projects it orthogonally to
the plane of the first two vectors by removing its vector projections along each of the first
two vectors already obtained to obtain a third vector orthogonal to the plane of the first two
as the third vector in the new set. One continues until the last vector has been replaced in
this manner. The result is a set of linearly independent orthogonal vectors since at each step
we took linearly independent combinations of the previous vectors to obtain the next vector.
Provided all these vectors have nonzero lengths, we can normalize them by dividing each by its
length. In the indefinite-case we have some complications, but then we also get something new
when we encounter null vectors in this process.

To illustrate this procedure consider the three columns of the upper triangular matrix

M =

1 1 1
0 1 1
0 0 1

 = 〈m1,m2,m3〉 ,

considered as (obviously linearly independent) vectors in R3, first ordered left to right, then
ordered right to left. Their inner products are

(mi ·mj) = MTM =

1 1 1
1 2 2
1 2 3

 .

Using the notation

projuv = (v · û)û =
(v · u)

(u · u)
u
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for the projection of v along u, then v − projuv is the projection orthogonal to u. We start by
keeping e1′ = m1 = 〈1, 0, 0〉, which is already a unit vector. Then we calculate

e2′ = m2 − proje1′m2 = 〈1, 1, 0〉 − (〈1, 1, 0〉 · 〈1, 0, 0〉)〈1, 0, 0〉 = 〈0, 1, 0〉 .
Finally we calculate

e3′ = m3 − proje1′m3 − proje2′m3

= 〈1, 1, 1〉 − (〈1, 1, 1〉 · 〈1, 0, 0〉)〈1, 0, 0〉 − (〈1, 1, 1〉 · 〈0, 1, 0〉)〈0, 1, 0〉 = 〈0, 0, 1〉 .
Well, this was too simple: the vectors ended up already unit vectors, and in fact we returned
to the standard orthonormal basis of R3.

a) Now try it in the reverse order: 〈1, 1, 1〉, 〈1, 1, 0〉, 〈1, 0, 0〉. Then let ei′ = Bj
iej be the

resulting orthogonal vectors, and let ei′′ = P j
iej be the resulting orthonormal vectors, expressed

in terms of the standard basis. Since both {ei} and {ei′′} are orthonormal bases, the matrix P
must be an orthogonal matrix. We already know that its columns are mutually orthogonal unit
vectors. Check that its rows are also mutually orthogonal unit vectors by evaluating P P T = I.

b) Evaluate the relatively simple looking matrix G = MT I M of inner products of the basis
mi. What happens when you try to find the exact eigenvectors of G with technology in order
to diagonalize this matrix? You quickly see that you must numerically approximate them, and
you can show that the numerical approximations to the eigenvectors are orthogonal to a high
degree of approximation, the error due to the numerics in the approximation process of finite
digit math (and hence these eigenvectors can be normalized to make the choice of eigenvectors
orthonormal). If G were the matrix of some other interesting quantity like a moment of inertia
tensor, then we would be limited to using orthogonal transformations to diagonalize it (in
order to apply laws of physics which are simple in orthonormal Cartesian coordinates) and
these would be the unique principal axes associated with that tensor. However, if we are only
trying to find an orthonormal basis of the space starting from the original non-orthonormal
basis, then the Gram-Schmidt process applied to all six orderings of the original three vectors
easily leads to orthonormal bases which not only diagonalize the matrix G of inner products but
make it equal to the identity matrix. The big difference is that the eigenvalue problem treats
the matrix M as the components of a (1

1)-tensor, while the orthonormalization of the original
vectors treats it as a (0

2)-tensor. This tells us that in the eigenvalue problem with a symmetric
matrix, there is more going on, since it requires the usual dot product to rethink it as the
components of a mixed tensor and therefore of a linear transformation. In fact the symmetric
moment of inertial tensor in the rigid body problem we will encounter later, is actually the
matrix of a linear transformation from the angular velocity vector to the angular momentum
vector. In other words a symmetric linear transformation requires both a linear transformation
and an inner product to describe.

�

Fact

Any real symmetric matrix can (in principle) be diagonalized by the eigenvector approach with
all real eigenvalues and orthogonal eigenvectors, which can be chosen to be normalized and
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therefore orthonormal. When the eigenvalues are distinct, the diagonalizing transformation is
unique up to reflections and permutations of the orthogonal axes.

Explanation

A simple derivation shows that the eigenvalues have to be real. Letting x be the complex
conjugate of an eigenvector x, and using the symmetry AT = A and reality A = A properties,
one sees from the eigenvalue condition and its complex conjugate

xT [Ax = λx]→ λxTx = xTAx ,[
Ax = λx

]T
x→ λxTx = (Ax)Tx = xTATx = xTAx ,

and by subtraction

0 = (λ− λ)xTx = (λ− λ)δijx
ixj = (λ− λ)

n∑
i=1

|xi|2 ,

which forces λ = λ since x must be a nonzero vector. Orthogonality of eigenvectors x1, x2

associated with distinct eigenvalues λ1 6= λ2 is a similar short computation

xT2 [Ax1 = λ1x1]→ λ1 x
T
2 x1 = xT2Ax1 ,

[Ax2 = λ2x2]T x1 → λ2 x
T
2 x1 = (Ax2)Tx1 = xT2A

Tx1 = xT2Ax1 ,

and again by subtraction

0 = (λ1 − λ2)xT2 x1 = (λ1 − λ2)x2 · x1

but since the eigenvalues are distinct it follows that the dot product of the eigenvectors must be
zero, i.e., the eigenvectors must be orthogonal. Here we introduced the standard dot product
on Rn, which defines the orthogonality properties.

For degenerate eigenvalues, one can choose an orthogonal basis of the eigenspace, so that one
can get an orthogonal basis of eigenvectors, which can then be normalized to an orthonormal
basis, and hence can be obtained from the standard basis by an orthogonal matrix.

If the eigenvalues of the original matrix are unique, then the orthonormal frame of eigenvec-
tors is fixed up to reflections of each eigenvector. When an eigenvalue is repeated, its eigenspace
allows any choice of orthonormal frame in that subspace.

Exercise 1.6.12.
second derivative test

Consider the function

f(x1, x2) =
1

2

(
8(x1)2 − 4x1x2 + 5(x2)2

)
=

1

2
Mijx

ixj , M =

(
8 −2
−2 5

)
,
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Figure 1.28: Left: the gradient of a quadratic form function is a linear vector field whose
directionfield is perpendicular to the level curves of the function in the plane. Right: a plot of
the graph rotated so that its principal axes (the eigenvectors of the quadratic form coefficient
matrix, rotated from the Cartesian axes) are aligned with the Cartesian coordinate axes. The
elliptical and parabolic cross-sections are shown through its representation as a parametrized
surface.

which is a quadratic form in the two variables x1, x2 with an obvious critical point at the origin.
Figure 1.18 shows the contour plot of this function, together with its gradient vector field, and
the plot of the function with respect to rotated axes aligned with the semiaxes of its elliptical
level curves.

a) Confirm that M is the constant symmetric second derivative matrix for this function.
b) Find the eigenvalues λ1, λ2 and eigenvectors of this matrix, normalize the eigenvectors

to obtain an orthonormal basis {b1, b2} (order them so the second is obtained from the first
by a 90 degree rotation in the counterclockwise direction) with associated orthogonal matrix
B = 〈b1|b2〉, and use this new basis to change to new orthonormal coordinates in which the
second derivative matrix is diagonal. What is the angle of rotation of the axes? Re-express the
function in terms of the new coordinates confirming that it takes the form

f(x1, x2) = g(x1′ , x2′) =
1

2
[λ1(x1′)2 + λ2(x2′)2]

and re-evaluate the new second derivative matrix directly and also by the transformation law
M ′ = BTM B, which implies detM ′ = (detB)2 detM = detM (since for an orthogonal matrix,
(detB)2 = det(BBT ) = det I = 1). Expressed in terms of partial derivatives in multivariable
calculus notation using (x, y, z), this says that fxxfyy − f 2

xy = gx′x′gy′y′ . In the new axes both
these second partial derivatives (the eigenvalues) are positive indicating a local minimum at
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the origin in each new coordinate direction, so since gx′y′ = 0, it is easy to see that this must
be a local minimum in all directions.

c) Now let’s simplify the problem by working in the new coordinates, dropping primes, and
reverting to the multivariable calculus notation

g(x, y) =
1

2

(
9x2 + 4y2

)
.

The right hand side of Figure 1.18 shows the graph of this function with respect to the rotated
axes. Each vertical cross-section of the graph of g by a vertical plane through the z axis is a
parabola, while each horizontal plane cross-section is an ellipse, so this is an elliptic paraboloid.
We can make a clever parametrization of both the parabolas and ellipses at once by introducing
deformed polar coordinates in the new axes by substituting (x, y) = (2ρ cosφ, 3ρ sinφ) into g
to get the graph z = g(2ρ cosφ, 3ρ sinφ) = 36ρ2, so the position vector of a point on the graph
of g can be represented in the form

~r(ρ, φ) = 〈2ρ cosφ, 3ρ sinφ, 18ρ2〉 .
Notice that if we compare the horizontal part of this position vector with polar coordinates in
the plane

(r cos θ, r sin θ) = (2ρ cosφ, 3ρ sinφ)

one finds
y

x
= tan θ =

3

2
tanφ ,

so φ does not agree with the polar coordinate angle θ of the projection to the x-y plane (or
the cylindrical coordinate angle φ) except where the tangent is zero or plus or minus infinity,
which occurs along the x and y axes where either angle is some integer multiple of π/2.

This is an example of a parametrized surface. Varying independently the two parameters ρ
and φ sweeps out the surface. Varying one at a time traces out the elliptical and parabolic cross-
sectional curves. In particular, letting ρ = ρ0, φ = t parametrizes the elliptical cross-sectional
curves at constant z0 = 18ρ2

0, while ρ = t, φ = φ0 parametrizes the parabolic cross-sections in
the direction making an angle θ with the x axis satisfying tan θ = 3/2 tanφ0.

We can use the following formula from multivariable calculus to calculate the curvature of a
parametrized space curve applied to each of these parametrized curves (here the prime denotes
differentiation)

κ(t) =
||~r ′(t)× ~r ′′(t)||
||~r ′(t)||3 .

Use this for the ellipses first and the parabolas second. For the ellipses, plot the curvature as a
function t, 0 ≤ t ≤ 2π for ρ0 = 1/3, noting extrema at the minor and major axes of the ellipse.
For the parabolas, plot the curvature as a function φ0, 0 ≤ φ0 ≤ 2π for t = 0, 1/3, again noting
extrema at the minor and major axes of the ellipse.

d) The two tangent vectors r′(t) for each such parametrized ellipse and parabola are just
the partial derivatives of the position vector:

~r1(ρ, φ) =
∂~r

∂ρ
(ρ, φ) , ~r2(ρ, φ) =

∂~r

∂φ
(ρ, φ) .
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Evaluate the matrix of their inner products and show that these two tangent vectors are or-
thogonal only along the minor and major axes of the ellipses.

e) Evaluate the normal vector ~N(ρ, φ) = ~r1(ρ, φ)×~r2(ρ, φ) = | ~N(ρ, φ)|n̂(ρ, φ) and its length

| ~N(ρ, φ)| and direction n̂(ρ, φ). Evaluate numerically the double integral of the length for the
parameter range 0 ≤ ρ ≤ 1/3, 0 ≤ φ ≤ 2π. Later we will see that this is the surface area of
this surface below the plane z = 2.

�

Cute fact (an aside for your reading pleasure): geometric interpreta-
tion of index lowering on vectors

The relationship between a vector and covector determined by the Euclidean metric has a cute
geometric interpretation. Consider the case of R2. The unit circle (all vectors of length 1)
tells us everything we need to know about the Euclidean geometry of the metric tensor. The
following identity tells us self-inner products are enough to recover all inner products

G(X + Y,X + Y ) = G(X,X) +G(Y, Y ) + 2G(X, Y )

→ G(X, Y ) =
1

2
[G(X + Y,X + Y )−G(X,X)−G(Y, Y )] .

The self-inner product is a “quadratic form” in the same language that calls a linear function
(covector) a “linear form.” Thus if we know the set of all vectors with unit length, we can
determine the length of all multiples of these unit vectors. The unit circle (or the unit sphere
in higher dimensions) is therefore the nonlinear analogue of the line (or plane or hyperplane
plane in higher dimensions) of vectors X satisfying f(X) = 1 for a covector f , which can be
taken as a representative set in the vector space to visualize the quadratic form. This geometry
can be extended to visualize geometrically the relationship between a covector and a vector.

Suppose v =
−→
OA is a vector with length bigger than 1 as in Fig. 1.29. Draw in the tangents

AB and AC to the unit circle and connect the points of tangency B and C, letting D be
the intersection of BC with OA. By symmetry the line segment OA is the angle bisector of
angle BAC and the bisector of the opposite side of the isoceles triangle 4ABC, to which it is
perpendicular. Note that the right triangles 4ABO and 4BDO are similar. Then from the
right triangle 4ABO, since the hypotenuse has length ||v||, one has sin θ = 1/||v||, and from
the right triangle 4BDO, since the side has unit length, one has sin θ = |OD|/1. Equating
this shows that the |OD| = 1/||v||, namely the line BC is the level curve v[(x) = 1 associated
with the index-lowered covector v[ with the same components as the original vector according
to our general discussion above. Draw a line parallel to BC through the origin. Then these
two parallel lines represent the covector v[ = G( , v), since their separation is the reciprocal of
the length of v, and they are orthogonal to v. If we have another vector u, then the value of
the metric on the pair

G(u, v) = v[(u) = v · u
is the number of “layers” of v[ pierced by u, which is about 2.5 in the diagram. This picture
can be extended to the case ||v|| < 1 by inversion. Thus we get a nice geometrical way to
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Figure 1.29: The geometric construction in the plane R2 showing how the pair of lines rep-
resenting the covector v[ associated with a vector v are determined geometrically by the unit
circle of the dot product. Revolving this diagram around the vector v (while leaving the vector
u fixed) leads to a tangent cone about the unit sphere, with their intersection now a circle con-
tained in a plane which is the plane v[(x) = 1 corresponding to the line segment BC revolved
around v. The parallel plane through the origin completes the pair of planes to represent the
covector v[ geometrically.

associate v[ with v and with its evaluation on another vector u using the geometry associated
with the usual dot product.

Remark.
Does the same scheme work for any “positive definite” inner product on R2? Such an inner
product has the following form

G = A︸︷︷︸
G11

ω1 ⊗ ω1 + B︸︷︷︸
G12 = G21

(ω1 ⊗ ω2 + ω2 ⊗ ω1) + C︸︷︷︸
G22

ω2 ⊗ ω2 ,

where positive-definiteness requires that

A > 0, C > 0, AC −B2 = detG > 0 .

Letting X = 〈x, y〉, the “unit circle” for this metric of all vectors with length 1

1 = G(X,X) = Ax2 + 2Bxy + Cy2
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Figure 1.30: The same construction with an ellipse determines the pair of lines representing
the index-lowered covector v[ = G( , v) associated with a vector v in a general positive-definite
inner product.

is now an ellipse centered at the origin. The condition AC − B2 > 0 guarantees that this
is indeed an ellipse. However, exactly the same tangent construction shown in Fig. 1.30 con-
tinues to determine the 2 lines which represent the index lowered vector v[ in terms of the
original vector v. Thus the “unit circle” in the new geometry continues to contain all the
geometrical information contained in the corresponding inner product. For higher dimensions
the corresponding “unit sphere” or “unit hypersphere” construction of the usual dot product
becomes an ellipsoidal surface for a more general positive-definite inner product, which again
contains all the geometrical information necessary to determine the inner product with which
it is associated. N

This also works with the unit “hypersphere” in Rn with the usual dot product except
one has a tangent “hypercone” with an (n − 2)-sphere of tangency through which passes a
hyperplane orthogonal to v. Together with the parallel hyperplane through the center of the
hypersphere (the origin O), we get the representation of the covector v[ and its value on
another vector u in terms of the number of layers pierced. Thus the unit hypersphere can
“represent” an inner product, which is a symmetric positive-definite (0

2)-tensor. For an indefinite
inner product, spheres become “pseudo-spheres” (some kind of higher dimensional hyperbolic
hypersurfaces). The “degenerate” (zero determinant component matrix) symmetric (0

2)-tensors
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Figure 1.31: The same construction with an sphere in R3 (revolve the circle construction
around the axis from the tip of the vector to the center of the circle to justify it).

have hypercylinder representations, etc. We don’t need these geometric interpretations, but
sometimes they can be useful, and it is important to realize that the abstraction of tensors and
their mathematics is very closely connected to concrete visualizable geometry.

Exercise 1.6.13.
visualizing positive-definite inner products for the plane

The orthogonal matrix B =
1√
2

(
1 −1
1 1

)
represents an active counterclockwise rotation of

the plane by 45◦. Its inverse A = B−1 = BT =
1√
2

(
1 1
−1 1

)
is the matrix of the associated

coordinate transformation for the components of vectors with respect to the new basis vectors
〈e1′ , e2′〉 = 〈b1, b2〉 = B which result from the active rotation of the standard basis vectors.

The Cartesian coordinates are the standard dual basis x = ω1, y = ω2, so the change of
basis

ωi
′

= Aij ω
j ←→

(
ω1′

ω2′

)
= A

(
ω1

ω2

)
=

1√
2

(
1 1
−1 1

)(
ω1

ω2

)
=

(
(ω1 + ω2)/

√
2

(−ω1 + ω2)/
√

2

)
ei′ = ejA

−1 j
i ←→

(
e1′ e2′

)
=
(
e1 e2

)
A−1 =

(
e1 e2

) 1√
2

(
1 −1
1 1

)
=

(
(e1 + e2)√

2

(e1 − e2)√
2

)
corresponds to the Cartesian coordinate change(

x′

y′

)
= A

(
x
y

)
=

(
(x+ y)/

√
2

(−x+ y)/
√

2

)
.
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Figure 1.32: Left: a rotation of the natural basis of R2 counterclockwise by 45 degrees. Right:
the principal axes of the ellipse associated with H are rotated by 45 degrees with respect to
the Cartesian axes associated with the natural basis.

Consider the symmetric tensor H = Hij ω
i ⊗ ωj and the mixed tensor L = Lijei ⊗ ωj with

the same matrix of components H =

(
3/2 1/2
1/2 3/2

)
= L .

(i) Verify that the change of basis leads to

H ′ = A−1TH A−1 =

(
2 0
0 1

)
, L′ = AH A−1 =

(
2 0
0 1

)
,

i.e., diagonalizes H = L, while not changing the Euclidean inner product G :

G′ = A−1T I A−1 = AA−1 = I ,

which are consequences of the orthogonality condition A−1 = AT or equivalently A−1T = A.
(ii) Compute the magnitude of H in each basis (computing the magnitude with G).
(iii) H may itself define an inner product. Its “unit circle” is an ellipse defined by the

equation

1 = H(〈x, y〉, 〈x, y〉) =
1

2
(3x2 + 3y2 + 2xy) = 2(x′)2 + (y′)2 ,

whose semiaxes are 1 and 1/
√

2. Note that we can introduce orthonormal coordinates with
respect to this new inner product by scaling the new basis by the diagonal scaling matrix

(
x′′

y′′

)
=

(√
2 0

0 1

)(
x′

y′

)
, H ′′ =

 1√
2

0

0 1

H ′

 1√
2

0

0 1

 = I ,
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which then leads to the standard equation of a unit circle in the new coordinates. This can
be used to check the geometric construction that interprets the covector related to the original
vector by index lowering, but with respect to the new inner product. If you had more time,
maybe you would do this.

iv) Note that the final change of basis has no effect on the matrix L′ since diagonal matrices
commute

L′′ =

 1√
2

0

0 1

−1

L′

 1√
2

0

0 1

 = L′ .

Thus different geometrical interpretations of the same symmetric matrix to which we apply the
eigenvector algorithm leads to different final outcomes because the matrix transforms differ-
ently because of those different geometrical interpretations, once we go beyond the orthogonal
transformations which are sufficient to diagonalize it.

�
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1.7 Matrix groups

Unavoidably tangled up with differential geometry is the theory of continuous groups, called
Lie groups after the mathematician who made gigantic first steps in their understanding. The
rotations and translations of ordinary flat space are imbedded in our thinking about geometry,
and many interesting curved spaces have symmetries that are useful to understand in studying
their geometry. But the general theory of such groups is another can of worms, so we need to
confine our attention to the simpler subset of matrix groups and translation groups here or we
will get bogged down in too many details. However, the group of linear transformations of a
vector space V into itself has already been a fundamental tool needed to consider changes of
bases and the resulting transformation laws for the components of tensors, which involves the
general linear group GL(n,Rn) acting first on Rn, and then on the tensor spaces over Rn. This
important matrix group contains subgroups which are important for geometry, so we need to
pay a bit more attention to its mathematical structure.

We are already familiar with some groups and their properties in the very number system
we use every day. The set of real numbers R is an “Abelian” group under the operation of
addition. Abelian just means that the group law which assigns a third member of the group
to an ordered pair of group elements does not depend on the order of the two elements, as
indeed addition works: a + b = b + a = c (closure of the group operation means that the
result of the group law is contained in the same set). The number zero 0 is the additive identity
element of the group, so called since adding 0 to any other element does not change the element:
a+ 0 = 0 + a = a. Each element a in the group of real numbers under addition has an additive
inverse −a such that a + (−a) = 0: their sum is the additive identity. Finally addition is
associative: (a+ b)+ c = a+(b+ c). Usually the group law is called a product, which is exactly
what it is in the group of nonzero real numbers under multiplication, another Abelian group:
ab = ba. Here the multiplicative identity is the number 1: 1a = a1 = a, while the multiplicative
inverse of every positive number is its reciprocal a−1 = 1/a. Of course multiplication of real
numbers is associative: (ab)c = a(bc).

In general a group G is a set of elements with a group product: (a, b) ∈ G × G 7→ ab =
P (a, b) ∈ G, where P is some function of a and b, and which has an identity element I
such that Ia = aI = a for every element, and every element a has an inverse a−1 such that
a−1a = I = aa−1, and finally it is associative: (ab)c = a(bc). The set of positive numbers is
clearly a subgroup of the group of nonzero numbers since the product of two positive numbers
is again positive and the inverse of every positive number is positive, while the number 1 is
positive, so it is a group in its own right, but a subset of the larger group of all nonzero real
numbers, which has two disjoint subsets: the positive numbers and the negative numbers.

Every real vector space V is an Abelian group under vector addition. In particular Rn is
an n-dimensional real group. If we let one element of the group “multiply” the entire group,
every point moves to a new point in general. With these Abelian groups, adding a given vector
to all points in the space (thought of as position vectors) is said to “translate” all the points
of space. We can think of Rn as acting on itself by translation, which in fact is a symmetry of
the Euclidean geometry we associate with these spaces as encoded in the usual dot product.
Translation does not affect dot products. It is said to be a symmetry of the dot product or
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metric. Of course another symmetry of the geometry that we take for granted in the cases
n = 2, 3 are the rotations. The rotations together with the translations form a larger group of
symmetries of the Euclidean geometry of Rn. The rotations of Euclidean 3-space are the most
familiar example of a matrix group, a group which acts on R3 by matrix multiplication to move
the points around on spheres of constant distance from the origin.

The set of points onto which a given point is moved by matrix multiplication by all members
of the group is called the orbit of the point under the action of the group. The spheres centered
at the origin are the orbits of the rotation group alone acting on ordinary space. Or consider
any fixed point in Rn. It can be translated to any other location by a translation of all points
of space by the difference vector, so the orbit of any point is the whole space. Such a group
action is called transitive, otherwise intransitive, like the spherical orbits of the rotation group
within R3. Take the group consisting of the rotations about the z axis of R3 together with all
translations along that axis. The orbits of any point not on the axis are cylinders: the rotation
sweeps out a circle around the axis while the translations sweep out lines parallel to the axis,
and together, cylinders result. The action of this 2-dimensional subgroup of the 6-dimensional
Euclidean group of rotations (3-dimensions) plus translations (3 dimensions) is intransitive.
The translational symmetry alone describes the homogeneity of the geometry of R3 in that any
point is equivalent to any other point under the action of this group which keeps all lengths
and angles between vectors at any given point unchanged. This is called a symmetry of the
Euclidean geometry. Similarly the rotations about any fixed point describe the isotropy of that
geometry, all directions are equivalent and rotations preserve the lengths and angles between
vectors at any other point. The mathematical name for such a group is isometry group. We are
interested in the isometry groups of flat space and of Lorentz Minkowski spacetimes of various
dimensions.

The set of all n× n real matrices is designated by gl(n,R). We have already seen that this
is an n2-dimensional vector space. The subset of matrices for which the determinant is nonzero
is designated by GL(n,R), which stands for the general linear group of the given dimension.
Any square matrix with nonzero determinant has an inverse, and the identity matrix is the
multiplicative identity for matrix multiplication, which is associative, so this is a group, clearly
of the same dimension as the set of all n × n matrices. Any subset of the group which is
closed under matrix multiplication is also a group in its own right, and hence a subgroup.
The matrix groups are all the possible subgroups of GL(n,R), including GL(n,R) itself. Since
the determinant of a product is the product of the determinants, the set SL(n,R) of unit
determinant matrices is closed under matrix multiplication and hence a natural subgroup. If
we have an inner product, the condition that inner products of pairs of vectors be invariant
under matrix multiplication determines a subgroup, called the orthogonal group O(n,R) for
the usual dot product. This was already explored for R2 in Exercise 1.4.1 with the rotations of
the Euclidean plane and the boosts of Minkowski 2-spacetime.

Like the real numbers under addition or nonzero real numbers under multiplication the
rotations and boosts in 2 dimensions, these rotations and boosts are 1-parameter groups, de-
pending on the trigonometric angle or hyperbolic angle parameter respectively which are both
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additive parameters:

R(θ1)R(θ2) = R(θ1 + θ2) , B(θ1)B(θ2) = B(θ1 + θ2) .

A fact that we will simply state is that all 1-parameter continuous groups can be “reparametrized”
so that the new parameter which describes the set of group elements is additive in the group
multiplication, which makes them all Abelian. For example, the positive real numbers under
multiplication can be made additive in a new logarithmic parameter t = lnx:

x1 = et1 , x2 = et2 : x1x2 = et1et2 = et1+t2 .

This exponential representation is more general and can be repeated in matrix form for the
matrix groups. Exercise 1.4.1 showed that the differential of the rotation/boost matrix has the
form

dA(λ)A(λ)−1 = K dλ↔ dA

dλ
= K A

where A(0) = I and

(λ,A,K) =

(
θ, R,

(
0 −1
1 0

))
,

(
β,B,

(
0 1
1 0

))
.

By introducing the matrix exponential defined in the same way as the ordinary exponential by
its Taylor series

eP = Σ∞n=0

1

n!
P n , P 0 = I ,

so that

e0 = I ,

one sees by differentiation

d

dλ
eλK =

d

dλ

∞∑
n=0

λn

n!
Kn =

∞∑
n=1

λn−1

(n− 1)!
Kn = K

(
∞∑
n=1

λn−1

(n− 1)!
Kn−1

)

= K

(
∞∑
n=0

λn

n!
Kn

)
= KeλK

= eλKK (order does not matter here, powers of K)

and hence if C is a constant square matrix

d

dλ

(
eλKC

)
= K

(
eλKC

)
.

This is the general solution of dA/dλ = K A and the initial condition A(0) = I sets C = I, so
we can conclude that

A(λ) = eλK
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for the rotation/boost matrix. In fact one can easily sum the series to verify this. As we already
have shown for this explicit case for the resulting 2 × 2 matrices of a rotation or hyperbolic
rotation in the plane, this parametrization has the additive property

eλ1Keλ2K = e(λ1+λ2)K .

This is indeed true for the matrix exponential of any matrix, for the same reason that it is true
for the scalar exponential, following from its power series representation.

Another way to sum the exponential series is by the diagonalization technique, since it is
easy to exponentiate a diagonal matrix—the result is just a new diagonal matrix whose entries
are the exponentials of the original entries

exp(diagKD) = exp(diag(k1, . . . , kn)) = diag(ek1 , . . . , eλkn) ,

adopting the obvious notation for a diagonal matrix with entries ki along the main diagonal
and zeros elsewhere

diag(k1, . . . , kn) =

k1 . . . 0
...

...
0 . . . kn

 .

Since matrix multiplication of such matrices is just scalar multiplication of the corresponding
diagonal entries, powers of a diagonal matrix just raise the diagonal entries to the power, and
the exponential of the matrix just reduces to the diagonal matrix of the exponentials of its
diagonal entries.

Suppose K = BKD B
−1 (equivalent to KD = B−1K B) diagonalizes K in terms of such a

diagonal matrix KD, where B is the corresponding matrix of eigenvectors of K. Then

eK = eBKD B
−1

=
∞∑
j=0

1

j!

(
BKD B

−1
)j

=
∞∑
j=0

1

j!
BKj

D B
−1

= B

(
∞∑
j=0

1

j!
Kj
D

)
B−1

= B

(
∞∑
j=0

1

j!
diag(kj1, . . . , k

j
n)

)
B−1

= B

(
diag

(
∞∑
j=0

1

j!
k1
j, . . . ,

∞∑
j=0

1

j!
kn

j

))
B−1

= B
(
diag

(
ek1 , . . . , ekn

))
B−1 .

The crucial step in the second equality follows from the fact that the factors of B and B−1

cancel each other in powers of BKD B
−1, for example,

BKD B
−1BKD B

−1 = BKDKD B
−1 = BK2

D B
−1 .
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Thus one can simply exponentiate the eigenvalues and carry out the final multiplication above
to obtain the entries of the exponential matrix.

Remark.
Recall x = B y, y = B−1x expresses the old coordinates x in Rn in terms of the new coordinates

y in a basis of eigenvectors which form the columns of B. The combination KD y = B−1K B y
working from right to left takes the new coordinates to the old coordinates, multiplies the
old coordinates by K, the takes the old coordinates of that new point to its new coordinates,
but the final new coordinates are simply rescaled by the eigenvalues so the result has to be a
diagonal matrix.

A constant coefficient linear system of differential equations, usually written

dx

dt
= K x ,

when transformed to the new coordinates become uncoupled first order differential equations
for them

dy

dt
= KD y ↔

dyi

dt
= kiy

i (no sum on i) ,

with exponential solutions

yi = etkiCi → y = diag(etk1 , . . . , etkn)C , C = y(0) = B−1x(0) .

Going back to the old coordinates

x = B etKDy(0) = B etKDB−1x(0) = etB KDB
−1

x(0) = etK x(0) .

Thus we were only one step from the matrix exponential (back substituting the constant vector
C in terms of the initial value of x) when we arrived at our eigenvector solution algorithm for
such systems of differential equations.

If we can find a way to directly sum the matrix exponential series in terms of scalar power
series we recognize, we can avoid that technique altogether. This proves to be possible when
exponentiating matrices whose index-lowered form is antisymmetric.

While we are discussing the properties of the matrix exponential via diagonalization, let’s
derive a very useful relation between the determinant, the trace and the exponential. Using the
invariance of the trace Tr (AB C) = Tr (C AB) to remove the factors of B and its inverse, and
using the fact that the determinant of a diagonal matrix is the product of its diagonal values,
we find for 2× 2 matrices

det eK = det e(BKD B
−1) = det

(
B eKD B−1

)
(B comes out of exponential)

= detB det(eKD) det(B−1) (determinant factors)

= det eKD (determinant of inverse = inverse of determinant)

= det ediag(k1,k2) = det diag(ek1 , ek2) = ek1ek2 (product of diagonal values)

= ek1+k2 = eTrKD = eTr(B−1BKD) = eTr(BKDB
−1) (cyclic property of trace)

= eTrK .
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This clearly holds for any dimension n. N

Exercise 1.7.1.
2× 2 matrix exponentials

a) Show that if K = 〈〈0|ε〉, 〈1|0〉〉, where ε = ±1, then K2 = εI.
b) Use this to separate the Taylor series for the matrix exponential eλK into even and

odd series which are the scalar coefficients of I and K. Recognize the Taylor series of the
trigonometric/hyperbolic cosine and sine functions to recover the original definition of R(λ) for
ε = −1 and B(λ) for ε = 1.

c) Carry out the diagonalization approach to evaluate the boost exponential eλk with ε = −1.
If you feel motivated, wade through a bit more complex arithmetic to do the same for the
rotation exponential, which leads to complex eigenvalues and eigenvectors. This is actually
useful, since it shows how the eigenvector approach for rotations naturally leads to complex
exponentials.

�

What we have also shown in these two examples of rotations and pseudo-rotations in the
plane is that the tangent to these two curves A(λ) in the space of 2 × 2 matrices when they
pass through the identity matrix, namely dA/dλ(0) = K, lie in the span of the matrix K, each
a 1-dimensional subspace of the space of 2× 2 matrices. Had we parametrized these curves in
other ways, the tangents at the identity matrix would have still been multiples of K. In other
words this subspace contains all possible tangents to parametrized curves in the given matrix
subgroup.

Suppose we have an n× n matrix subgroup and consider a curve A(t) in the group passing
through the identity matrix I = A(0). Consider the subspace of the tangent space at the
identity corresponding to the tangents to all such possible curves in the subgroup:

dA

dt
(0) .

This subspace characterizes the group and is called the Lie algebra of the matrix group. gl(n,R)
plays this role for GL(n,R), since the derivative of a curve of matrices with nonzero determinant
is simply a matrix without any special properties. The symmetry groups of inner products are
important for geometry, so we need to consider them. If we take any matrix K and consider
the curve eλK , then under matrix multiplication we will find

eλ1Keλ2K = e(λ1+λ2)K .

This closure of the matrix multiplication makes this a 1-parameter subgroup of GL(n,R),
coupled with the fact that the matrix exponential satisfies the identity (see the preceding
remark discussion with K → λK)

det eλK = eλTrK

which guarantees that this curve which starts at the identity matrix remains invertible. The
inverse of eλK is just e−λK . In general, the matrices of a matrix group close enough to the
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identity matrix can be obtained by the matrix exponential of the matrices in their Lie algebra.
This identity relating the determinant and trace through the matrix exponential can be proven
for diagonalizable matrices as we showed above for 2 × 2 matrices, and is in fact true for all
matrices, but we will simply accept this latter fact without a proof. A direct consequence of
this relation between the trace, the exponential and the determinant is that unit determinant
matrices result from the matrix exponential of tracefree matrices, so the Lie algebra sl(n,R) of
the special linear group is just the subspace of tracefree matrices.

We are primarily interested in the matrix groups associated with invariance of inner prod-
ucts, the so called orthogonal groups. As described in section 1.6 the matrix of components
G = (Gij) of an inner product on Rn transforms back to itself (therefore remaining invariant)
under a linear transformation of the natural basis with matrix A according to the generalized
orthogonality condition

(GA)T = GA−1 ↔ GkjA
j
i = GijA

−1j
k

↔ Aki = A−1
ik .

This says that if we use our index-lowering convention to lower the contravariant indices on the
matrix and its inverse, they are related by the ordinary transpose operation. If A belongs to a
matrix group, we can infer from this by differentiation a condition on its Lie algebra. We need
a preliminary result for this.

Exercise 1.7.2.
differential of a family of matrices preserving an inner product

a) Show by differentiating A−1A = I and multiplying the result on the right by A−1 that

dA−1 = −A−1dAA−1 ,

or in components
dA−1i

j = −A−1i
mdA

m
nA
−1n

j .

b) Convince yourself of the steps in the following derivation, recalling that (AB C)T =

CT BT AT and
(
AT
)T

= A

A−1TGA−1 = G → dA−1TGA−1 + A−1TGdA−1 = 0

→ −
(
A−1TdAA−1

)T
GA−1 − A−1TG

(
A−1dAA−1

)
= 0

→ A−1TdAT
(
A−1GA−1

)
= −

(
A−1TGA−1

)
dAA−1

→ A−1TdAT G = −GdAA−1

→
(
GdAA−1

)T
= −GdAA−1 .

Translating this back into index notation and using the index-lowering convention on the con-
travariant index yields [

dAA−1
]
ji

= −
[
dAA−1

]
ij
.

This just says that the fully covariant component matrix
[
dAA−1

][
is antisymmetric, indepen-

dent of the inner product matrix (Gij). Thus antisymmetric matrices will play a key role in
inner product geometry.
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�

If we go further with this calculation, passing from the differential to the derivative along a
curve A(λ) through the identity A(0) = I, then we get

dAij
dλ

(0) = −dAji
dλ

(0) .

By definition the Lie algebra of a matrix group consists of the set of all matrices which result
from this tangent operation at the identity matrix, so this condition says that the Lie algebra of
these generalized orthogonal matrix groups consists of matrices which are antisymmetric after
the first index is lowered with the metric matrix

Kij = −Kji or more explicitly GikK
k
j = −GjkK

k
i .

If we examine this condition in an orthonormal basis in which G is diagonal and Gii = ±1, then
this forces K to be an off-diagonal matrix since i = j implies Kii = 0 so Ki

i = 0 (no sum on
i). If i 6= j and Gii and Gjj have the same sign, K is antisymmetric in the index pair (i, j) and
the matrix ej i− ejj generates an ordinary rotation in the xi-xj plane, while if Gii and Gjj have
the opposite sign, K is symmetric in the index pair (i, j) and the matrix ej i + ejj generates a
hyperbolic rotation in the xi-xj plane.

This result tells us that the set of matrices whose index lowered form is antisymmetric
exponentiate to orthogonal matrices with respect to the given inner product, i.e., this inner
product defined antisymmetry condition on matrices defines the Lie algebra of the corresponding
orthogonal group. To be more concrete, let SO(P,M) be the special generalized orthogonal
group of unit determinant n×n matrices which leave invariant the diagonal metric component
matrix

G = diag(−1, . . . ,−1︸ ︷︷ ︸
M

, 1, . . . , 1︸ ︷︷ ︸
P

) n = P +M

with P positive signs and M of negative signs. We can assume P > M without loss of
generality since the overall sign has no influence on the corresponding matrix group, and we
can order an orthonormal basis so that the negative signs are all first. The corresponding
Lie algebra is denoted by so(P,M). The ordinary orthogonal group O(n,R), including its
unit determinant subgroup called the special orthogonal group SO(n,R), has the Lie algebra
so(n,R) of antisymmetric matrices. O(n− 1, 1) is the Lorentz group, while SO(n− 1, 1) is the
proper Lorentz group of unit determinant Lorentz matrices.

The matrices K for the Lie algebras of these various orthogonal groups, also called the
generating matrices since they exponentiate to matrices in the group itself, are interpreted as
limiting small transformations in the sense

d

dλ

[
eλK x

]
= K

[
eλK x

]
→ d

dλ

[
eλK x

]∣∣∣∣
λ=0

= K x .

These Lie algebra matrices K give the direction and amount by which a point x in Rn begins to
move under an orthogonal transformation eλK associated with the given inner product. In fact
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the right hand side of the vector differential equation is a column matrix linear function of the
coordinates x representing the components of a vector field whose flow lines are the solutions
of the equation.

Transformation groups

Of course we are not interested in groups for their own sake here, but in how they act on other
spaces (including themselves) as transformation groups. A transformation of a space into itself
is a 1-1 map of the space into itself which moves its points around (without losing any, this is
the 1-1 condition!). A group G is said to act on a space M if there is a map ρ from the group
into the set of transformations of M into itself which respects the group multiplication law

x ∈M 7→ ρa(x) , ρa ◦ ρb = ρab .

However, the map itself ρ itself may not be 1-1 in the sense that more than one group element
may be sent to the same transformation of M into itself. For example, suppose we consider the
group GL(n,R) acting on the whole real line by multiplying numbers by the matrix determinant

x→ ρ(A)(x) = (detA)x .

Because of the product law for determinants, this satisfies the above condition, but the image
of the entire group is GL(1,R), the 1-dimensional Abelian scale and reflection group of the real
line (multiplication by positive numbers is said to scale the real line, while multiplication by
−1 is a reflection). Thus we really have a map from one group into another which respects the
group law, which is called a homomorphism. When it is instead 1-1, it is called an isomorphism,
which means the groups are essentially the same.

Exercise 1.7.3.
linear transformations plus translations: the inhomogeneous linear group

Suppose we consider both the general linear group GL(n,R) and the translation group
acting together as a combined group on Rn called the inhomogeneous general linear group
IGL(n,R)

x ∈ Rn 7→ ρ (A, b) (x) = Ax+ b .

If we add one more row and column to the matrices of GL(n,R) such that the bottom row is
all zeros except for a 1 in the final entry, but the entries above that 1 in the last column are n
arbitrary numbers, then the new matrix is also invertible and so belongs to GL(n + 1,R). Its
action on n+ 1 component vectors of the form 〈x1, . . . , xn, 1〉 exactly mirrors the action of the
combined linear transformations and translations of Rn.

Consider the case n = 2 for concreteness and let

A =

(
a b
c d

)
, b =

(
b1

b2

)
, (A, b) 7→

a b b1

c d b2

0 0 1

 .
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a) Show that the product of two matrices of this type is again of this type. Use a computer
algebra system to make this calculation less boring.

b) Show that left multiplication of 〈x1, x2, 1〉 by such a matrix exactly mirrors the combined
linear transformations plus translations of R2, so the inhomogeneous general linear group on
R2 is really just an isomorphic matrix subgroup of GL(3,R). This is true in general.

c) From the matrix product of two such matrices derive the group multiplication law for
the combined linear transformations and translations

ρ(A2, b2) ◦ ρ(A1, b1) = ρ(A2A1, A2b1 + b2) .

This is said to be a semi-direct product group, since the linear transformation matrix subgroup
retains its own group law uninfluenced by the translations, but the translations are acted on
by this subgroup.

�

Exercise 1.7.4.
U(1), unit complex numbers

The unitary group U(1) consists of complex numbers U (1 × 1 matrices!) such that their
complex conjugate is their inverse: Ū = U−1 or ŪU = 1, which is the “unitary condition” that
U have unit magnitude. Expressing U = x + iy in terms of its real and imaginary parts, then
we get the equation of the unit circle in the complex plane

1 = (x− iy)(x+ iy) = x2 + y2 .

Pretending we don’t know how to parametrize the unit circle S1 in the complex plane for a
moment through its identification with the real plane, consider the following.

a) If we represent U = eu in terms of the exponential of a complex number u, then show that
the unitary condition implies that u be pure imaginary: u = iθ, where θ is any real number.
Thus U = eiθ and hence we have a canonical Abelian parametrization of this 1-dimensional
(over the real numbers) group whose group manifold is S1 which reduces the group law to
addition of the group parameter

eiθ1eiθ2 = ei(θ1+θ2) .

b) Evaluate eiθ using the exponential power series by separating the even and odd power
terms and recognizing the cosine and sine power series to obtain

eiθ = cos θ + i sin θ .

c) Show that if this group acts on the complex vector space C (the complex plane!) by mul-
tiplication, Ψ → eiθΨ, then the magnitude of Ψ is invariant. If |Ψ|2 = Ψ̄Ψ ≤ 1 is interpreted
as a probability, then this action of U(1) leaves the probability invariant. If instead we have
a function Ψ defined on R3 whose squared magnitude |Ψ|2 is interpreted as a quantum field
probability distribution, then eiθΨ for any real function θ gives the same probability distribu-
tion. If only the probability matters, i.e, is measurable, then the “quantum wave function” Ψ
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can undergo a unitary change at each point without affecting outcomes. This is called a gauge
transformation.

d) Evaluate the real and imaginary parts of the product eiθ0(x+iy) to show that this complex
rotation of the complex plane corresponds exactly to an active rotation of the corresponding
real plane. If instead we use the polar representation of x + iy = reiθ, then eiθ0reiθ = rei(θ+θ0)

makes this obvious.

�

Remark.
The Lie algebra of the group of positive numbers under multiplication is the set of all real
numbers, related by the exponential function: x = eθ. The Lie algebra of the unitary group
U(1) of unit complex numbers is the set of all purely imaginary numbers, again related by the
exponential: U = eiθ. They have the same group multiplication law, which is addition of the
real parameter θ in each case, but although they are locally the same (homomorphic) near the
identity θ = 0, there are an infinite number of values of θ for the first group that correspond
to each distinct point on the circle of the second group. We can also introduce the real group
S)(2,R) of rotations in the plane, whose Lie algebra consists of the 1-dimensional vector space
of all antisymmetric 2 × 2 matrices, in terms of which the matrix exponential allows one to
represent any 2× 2 orthogonal matrix. This group is isomorphic to U(1) since there is a clear
1-1 relationship between the two (same group manifold S1 which corresponds to the possible
distinct rotations of the plane). The Lie algebra of a group determines its local structure near
the identity, but globally one may have very different realizations of that local structure. N

Non-Abelian groups

The 1-parameter continuous matrix subgroups etK are all Abelian for fixed K and variable t,
with an additive law for the parameter t in the composition of two such matrices, but it is the
non-Abelian nature of continuous groups of higher dimension that is the most interesting. The
translations of R3 are the typical prototype of a 3-dimensional Abelian group, but the rotations
are clearly not Abelian as we will see shortly in an example below.

For non-Abelian groups the order of the factors in the group multiplication law matters, so
we can define three different ways in which we can use that group law to allow the group to
act on itself as a transformation group

A→ LB(A) = BA , (left translation by A)

A→ RB(A) = AB , (right translation by A)

A→ ADB(A) = BAB−1 = LB ◦RB−1(A) = RB−1 ◦ LB(A) . (conjugation by A)

Under translation, the any matrix A can be moved to any other point B in the matrix group
simply by left translating all points of the group by the matrix BA−1 or right translating all
points of the group by the matrix A−1B so it is a transitive action: the orbit of any point



138 Chapter 1. Foundations of tensor algebra

under this action is the whole space on which the group acts (itself). A given pair of left and
right translations clearly commute when performed in succession

RC ◦ LB(A) = LB ◦RC(A) = BAC .

When the pair of left and right translations are by inverse matrices, their combined action is a
conjugation. The action of the group on itself by conjugation is called the adjoint action, and
the identity matrix is a fixed point of this action since it does not move, so this is an intransitive
action (its orbits are not the whole space) and is more like the rotation group action on R3,
which leaves the origin fixed, and the orbits of all other points are spheres. For an Abelian
group the adjoint action is trivial, that is, it acts as the identity transformation since the matrix
and its inverse “cancel each other out,” so every point is a fixed point. The size (dimension)
of the adjoint group is in some sense a measure of how non-Abelian a group is. Its maximum
dimension is the dimension of the group itself.

Exercise 1.7.5.
left and right translations and the adjoint action of a group

a) Establish the following relations

LA ◦ LB = LAB , RA ◦RB = RBA , ADA ◦ ADB = ADAB .

b) Show that right translation by the inverse satisfies the group composition rule in the
order required for the action of a group

RA−1 ◦RB−1 = R(AB)−1 .

Since the left and right translation actions of the group onto itself are 1-1 (why?), the two
group actions are isomorphic to each other.

�

Successive rotations of the unit vectors î, ĵ, k̂ illustrate the non-Abelian nature of the rota-
tion group. Suppose we rotate ĵ by 90 degrees around î to end up at k̂, and then rotate k̂ by
90 degrees around ĵ to end up at î, using the right hand rule to determine the direction of each
rotation about an axis. If instead we first rotate ĵ around itself by 90 degrees so that it does
not change, and then apply to it a rotation by 90 degrees around î, it ends up at k̂ instead of
at î. Thus reversing the order of the two rotations leads to very different results.

Suppose we try this in the limit of very small rotations. A counterclockwise rotation by a
small angle θ of a position vector ~r = rr̂ about an axis with direction unit vector n̂ moves the
tip of the position vector along the cross-product direction n̂× r̂ by approximately an amount
equal to the arc s = rθ, namely by the change in position rθ n̂× r̂ = ~θ×~r, where ~θ = θ n̂. Thus
the effect of a limitingly small rotation on the position vector is that

~r 7→ ~r + ~θ × ~r .
We saw in Exercise 1.2.4 that the matrix form of taking a cross product with a fixed vector θ
on the left is

r 7→ θiLi r
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so that under a small rotation we have

r 7→
(
I + θiLi

)
r ≈ eθ

iLir ,

which is just the linear approximation to the matrix exponential power series. If we do two
small rotations in succession, then

r 7→
(
I + θi2Li

) (
I + θi1Li

)
r .

If we do them in the opposite order the difference between the two to lowest order measures
the failure of the two rotations to commute, and gives the extra rotation necessary to make one
agree with the other. Ignoring terms higher than second order in products of the two angular
vectors, one finds

[eθ
i
1Li , eθ

j
2Lj ] ≡ eθ

i
1Li eθ

j
2Lj − eθj2Lj eθi1Li

≈
(
I + θi1Li

) (
I + θi2Li

)
−
(
I + θi2Li

) (
I + θi1Li

)
= . . .

= (θi1Li)(θ
j
2Lj)− (θj2Lj)(θ

j
1Li)

= [θi1Li, θ
j
2Lj]

= [~θ1 × ~θ2]kLk .

where the last equality follows from that same Exercise. This is only zero if both rotations are
along the same axis so the cross product vanishes. From the next to last equality, we see that
the matrix commutator arises naturally. The commutator of any two matrices is simply the
difference of their products in both orders: [A,B] = AB −BA.

Exercise 1.7.6.
commutators of antisymmetric 3× 3 matrices

a) Fill in the dots in the previous derivation by expanding the products (maintaining the
order of the matrix factors!) and simplifying.

b) If we let θj1δ
1
j for j = 1, 2, aligning these two vectors with the standard basis vectors so

that their cross product is the third basis vector, then show that this gives the cyclic commutator
relations

[Li, Lj] = εijkLk (sum over k) .

We could have drawn this conclusion directly from Exercise 1.2.4.
�

Notice that the commutator of the finite rotations in the limit of small rotations equals the
commutator of the corresponding matrix logarithms, the corresponding Lie algebra matrices.
Thus the failure of the finite rotations to commute but which instead leads to a further rotation
is quantified by the commutator of the corresponding Lie algebra matrices. The commutators
of any two rotation generators is again some rotation generator. The Lie algebra is said to be
closed under this operation. One of the fundamental results of group theory is that
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if a linear subspace of matrices is closed under the matrix commutator, it is the
Lie algebra of a matrix subgroup whose elements near the identity matrix may be
obtained by exponentiating the elements of the Lie algebra. In general a Lie algebra
is a vector space with a commutator product defined on it which has all the properties of the
matrix commutator, namely antisymmetry

[A,B] = AB −BA = −(BA− AB) = −[B,A]

and the so called Jacobi identity

[A, [B,C]] + [B, [C,A] + [C, [A,B]]

= A (B C − C B)− (B C − C B)A

+B (C A− AC)− (C A− AC)B

+ C (AB −BA)− (AB −BA)C

= . . . = 0

since the 12 terms cancel in pairs due to the associativity of the matrix product. This square
bracket operation is called the Lie bracket of the Lie algebra elements. This is our first associ-
ation of the square bracket delimiters with antisymmetry—we will see this notation in a more
general context in the next chapter.

Exercise 1.7.7.
commutator of small rotations

Fill in the dots in the previous derivation by expanding the products (maintaining the order
of the matrix factors!) and simplifying.

�

Exercise 1.7.8.
matrix Lie algebra commutators

If we have a basis {Ea} (a, b = 1 . . . r) of an r-dimensional matrix Lie algebra, then we
can expand the components of the commutator in terms of this basis since by definition the
commutator is a closed operation on such a Lie algebra

[Ea, Eb] = Cc
abEc .

The coefficients Ca
bc = −Ca

cb are not only antisymmetric by definition but satisfy the compo-
nent form of the Jacobi identity

Cd
eaC

e
bc + Cd

ebC
e
ca + Cd

ecC
e
ab = 0 .

These constants are called the structure constants of the group, or the components of the
structure constant tensor C of the Lie algebra, a (1

2)-tensor and completely determine the
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local properties of the matrix group itself near the identity matrix. Under a change of basis
Ea′ = EbA

−1b
c it transforms as

Ca′
b′c′ = AapC

p
mnA

−1m
bA
−1n

c .

a) Verify the above cyclic quadratic identity satisfied by these constants by evaluating the
Jacobi identity on the triplet Ea, Eb, Ec.

b) By defining the matrices (ka)
b
c = Cb

ac, show that the Jacobi identity can be rewritten
in matrix form as

[ka, kb] = Cc
ab kc .

This means that the span of these matrices (they are not necessarily linearly independent, and
in fact vanish for Abelian groups) generates another matrix group called the adjoint group of
the original Lie algebra. Note that if the matrices ka are linearly independent, this says that
in turn that the adjoint group of the Lie algebra adjoint group is the same matrix group, since
it has the same structure constant tensor.

c) Define the linear transformation ad(X) of the Lie algebra into itself by

ad(X)Y = [X, Y ] .

Show that the matrix of ad(X) for X = XaEa is

ad(X) = Xaka .

This is called the adjoint action of the matrix Lie algebra on itself.
d) Defining Z(λ) = AD

(
eλX
)
Y = eλXY e−λX show successively that

Z ′(λ) = AD
(
eλX
)

ad(X)Y ,

Z(n)(λ) = AD
(
eλX
)

ad(X)n Y ,

Z(n)(0) = ad(X)n Y ,

Z(λ) = AD
(
eλX
)
Y = eλ ad(X) Y ,

using a power series representation of the matrix-valued function.
e) Express this in terms of the basis to show that

AD
(
eλX
)
Y = Ea

(
eλX

aka
)a

b Y
b ,

[
Ad
(
eλX
)]a

b =
(
eλX

aka
)a

b .

When the matrix group acts on its own Lie algebra by conjugation, it leads to the action of the
“linear adjoint matrix group” Ad(G) generated by the matrices {ka} according to this result
we have just demonstrated.

f) Remark.
Recall that the standard basis of the Lie algebra so(3,R) is (Lk)

i
j = εikj, but the commutators

are [Li, Lj] = εijkLk, so

(ki)
k
j = Ck

ij = εijk = εkij = (Li)
k
j .

In other words the adjoint matrices of the rotation group are again the same matrices, so the
linear adjoint group is just the same rotation group, with the identity representation.
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�

Exercise 1.7.9.
exponential parametrizations of matrix groups

For any matrix group G one can introduce a local parametrization of the matrices which
belong to the group using the matrix exponential. Near the identity matrix this exponential
is a 1-1 map from the matrix Lie algebra to the group manifold within GL(n,R). This allows
a coordinate system in the Lie algebra based on a basis {Ea} of that vector space to be
exponentiated to a coordinate system on the group to “parametrize” the elements of this matrix
group by the parameters θa

θaEa → exp(θaEa) .

In other words where this exponential map is 1-1 near the identity matrix, one can invert it with
the matrix logarithm so that for a point in the matrix group, we define coordinate functions θa

by assigning the coordinates of the logarithm of that matrix with respect to the basis of the Lie
algebra, so that the “parameters” can be turned around into actual functions on that region of
the matrix group. This maps the origin of the Lie algebra to the identity matrix. These are
called canonical coordinates of the first kind, as opposed to those of the second kind which are
a product of the individual exponentials of each of the basis matrices in turn

eθ
1E1 · · · eθeEr .

In Exercise 1.7.1 we saw how to sum the series representing the matrix exponential of a
multiple of a single matrix using an iteration formula for the powers of that matrix, in order to
evaluate an exponential parametrization for the 1-dimensional matrix groups of rotations and
boosts in the plane. Now we generalize that approach to the matrix exponential of a linear
combination of matrices for rotations in space.

a) For the rotation group SO(3,R) with the standard basis of its Lie algebra of antisym-
metric matrices [La]

b
c = εbac, we can easily evaluate the exponential map by first showing with

a computer algebra system the following identity for a unit vector δabn
anb = 1

(ncLc)
3 = −ncLc .

Note as well that
(ncLc)

2 = I − (nanb) = (δab − nanb) ,
where the second term is the square matrix with those components, namely nnT , which as
explored in Exercise 1.6.10 is the projection along the direction na (the axis of the rotation),
while the whole expression is the projection into the plane perpendicular to that direction,
which is the plane where the rotation takes place

(δab − nanb)Xb = [X − (X · n̂)n̂]a .

It acts as the identity transformation in this plane.
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b) Now consider the exponential power series

eθ
cLc = eθ n

cLc = I + θ ncLc +
1

2!
(θ ncLc)

2 +
1

3!
(θ ncLc)

3 + . . . .

After the first three terms show that the above identity can simplify each of the odd terms to a
multiple of ncLc from which the odd series of the sine function is recognizable, while the even
terms after the first can be recognized as the even series of the cosine function minus its first
term 1, so that one obtains the identity

eθ n
cLc = I + sin θ ncLc + (cos θ − 1)(ncLc)

2

= I − (ncLc)
2︸ ︷︷ ︸

axis identity

+ sin θ ncLc + cos θ (ncLc)
2︸ ︷︷ ︸

2-identity

.

The first term with an underbrace represents the identity along the axis of the rotation where
vectors are not changed by the rotation, while the second underbrace term represents the
identity on the plane of the rotation orthogonal to the axis.

c) Show that if na = δa3 this reduces to the usual matrix of a rotation by the angle θ in the
x-y plane.

d) Check out Rodriguez’ rotation formula in Wikipedia to see how this formula can be used
to rotate another vector, remembering Exercise 1.2.4 which showed that naLa x = n̂× x.

�

Exercise 1.7.10.
rotations and rotating bodies

The rotation group becomes a bit complicated when we try to parametrize all possible
rotations by successive rotations about various axes, the angles of which are called Euler angles,
but there are many choices for how to do this. The most interesting application of this is
the problem of the motion of a rigid body, where the orientation of a basis of orthonormal
vectors fixed in the rotating body (referred to as body-fixed axes) with respect to the standard
orthonormal basis of R3 (referred to as space-fixed axes) is all that is needed to describe the
orientation of the body about its center of mass. If we let {ê1, ê2, ê3} be the standard basis of
R3, and {ê1′ , ê2′ , ê3′} the body-fixed axes, they are related to each other by a time-dependent
rotation matrix whose inverse transforms the coordinates with respect to those bases

~x = xiêi = xi
′
êi′ ,

xi = R(θ)ijx
j′ = S(θ)−1i

jx
j′ , xi

′
= S(θ)ijx

j′ = R(θ)−1i
jx
j ,

êi′ = êjR(θ)j i = ej′S(θ)−1j
i .

The rotation matrix R(θ) actively rotates the old space-fixed basis by a rotation about those
axes to the new axes, while its inverse matrix S(θ) is said to accomplish the corresponding
“passive” coordinate transformation between the old and new coordinate systems. Depending
on whether we consider R(θ) or S(θ) the primary rotation, we adopt the so-called “active” and
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“passive” points of view on how the group of rotation matrices act on R3. They are related to
each other by the group inverse map, which leaves the identity matrix invariant, and so is some
kind of group generalization of a reflection through the origin, which is exactly what happens
to the logarithms of these rotation matrices in their Lie algebra: eK → (eK)−1 = e−K . If we
left multiply the active group matrix by a fixed rotation R(θ)→ R(θ0)R(θ), then

S(θ)→ (R(θ0)R(θ))−1 = R(θ)−1R(θ0)−1 = S(θ)S(θ0) ,

which corresponds to right multiplication of the passive group matrix by the fixed matrix.
These are called left and right translations of the group into itself, and clearly the inverse map
exchanges these two kinds of point transformations of the group into itself, thus interchanging
the idea of left and right.

These left and right actions are physically distinct in this problem. If we change the body-
fixed axes by a constant rotation R(θ0), then R(θ)→ R(θ)R(θ0) undergoes a right translation,
but if we change the space-fixed axes by a constant rotation R(θ0), then R(θ) → R(θ0)R(θ)
undergoes a right translation. Rotations of the space-fixed axes are symmetries of the space,
so these lead to conserved angular momenta of a rigid body without any applied torques. For a
typical spinning top with a fixed point in which gravity is an applied vertical torque, the angular
momentum about the vertical axis is still conserved. Conserved momentum components in the
space-fixed axes enable one to more easily solve for the actual motion (Euler’s equations).

One can represent a general rotation matrix in terms of three successive rotations

S(θ) = e−θ
2L3e−θ1L1e−θ

3L3 ↔ R(θ) = S(θ)−1 = eθ
3L3eθ1L1eθ

2L3 ≡ R3(θ3)R2(θ1)R1(θ2) .

The active rotations of the basis are easiest to visualize

êi → êjR1(θ2)j i → êkR2(θ1)kjR1(θ2)j i → êlR3(θ3)ljR2(θ1)kjR1(θ2)j i = êlR(θ)li ,

which shows that they multiply from right to left as they are performed successively about the
space-fixed axes.

We first rotate the first two basis vectors about the z-axis by an angle θ3, then perform
a rotation of those axes about the x-axis by an angle θ1, and finally rotate those three axes
about z-again by the angle θ3. The key angle is θ1 which tilts the original vertical axis down
the polar angle from the vertical of the new third axis, which does not change when we rotate
all the vectors about that z-axis, while θ3 − π/2 is the azimuthal angle of the direction along
the new third axis, i.e., (θ1, θ2) = (θ, φ) are the usual physicist spherical coordinate angles of
the vector ê3′ , while θ2 = ψ makes (θ1, θ2, θ3) = (θ, ψ, φ) the Goldstein Classical Mechanics
textbook choice of Euler angles parametrizing a rotation matrix.

Note that if we consider a parametrization R(θ) = eθ
1Laeθ

2Lbeθ
3Lc for a triplet (a, b, c) of

indices taken from 1, 2, 3, then since no two consecutive indices can the the same without
collapsing the 3-parameter family of rotations into a 2-parameter family (why?), there are
12 = 6 · 2 different possibilities for such choices of coordinates on the rotation group. When
(a, b, c) all distinct, then {θa} are called canonical coordinates of the second kind on the group,
while R(θ) = eθ

aLa leads instead to the simpler canonical coordinates of the first kind, merely
exponentiating coordinates on the matrix Lie algebra to coordinates on the matrix Lie group.
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Such coordinate systems do not always reach every matrix in the group. See Wikipedia: “Euler
angles” to see all the possible variations on parametrizing a rotation matrix by three successive
rotations, each one about one of the coordinate axes.

a) Using a computer algebra system, evaluate the matrix product of these three rotations
R(θ) = eθ

1Laeθ
2Lbeθ

3Lc and its inverse S(θ).
b) Evaluate

R−1dR = ωaLa .

Read off the three differential expressions from the coefficients of La.
c) Repeat for

dRR−1 = ω̃aLa .

Read off the three differential expressions from the coefficients of La.
d) The body-fixed coordinates of points in the rotating rigid body are constant since the

axes are fixed in the body, so the space-fixed coordinates of these points undergo a rotation,
and we can compute their velocities in the space-fixed or body-fixed axes.

~x = R~x ′ → d~x

dt
=
d

dt
(R~x ′) =

(
d

dt
R

)
R−1R~x ′ =

(
d

dt
R

)
R−1~x =

ω̃a

dt
La ~x =

~̃ω

dt
× ~x

or in terms of the body-fixed coordinates

R−1 d

dt
(R~x ′) = R−1

(
d

dt
R

)
~x ′ =

ωa

dt
La ~x

′ =
~ω

dt
× ~x ′ .

Thus

Ωa =
ωa

dt
= ωab

dθb

dt
ka

are the body-fixed components of the angular velocity of the body, while

Ω̃
a

=
ω̃a

dt
= ω̃ab

dθb

dt
ka

are the space-fixed components of the angular velocity of the body.
�

This detour takes us a bit astray from our primary objective: to get an overall sense of
differential geometry without getting bogged down in interesting detours. The commutator on
the Lie algebra is very important and completely determines the group law of composition. One
can search on “Campbell Baker Haussdorf” to find more about the deviation of a non-Abelian
group from the additive group law when written in exponential form. For example, for an
Abelian matrix group one has simply vector addition of the logarithms, that is, vector addition
of the exponential exponent matrices

eXeY = eX+Y ,
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but a complicated formula like a series expansion shows that for a non-Abelian group, the
matrix product of two matrices in the group can be written

eXeY = eX+Y+ 1
2

[X,Y ]+... ,

where all the higher order terms are nested commutators, and hence reduce to matrices in the
Lie algebra of the matrix group since the Lie algebra is closed under the commutator operation.
This is more than we want to deal with at our elementary introduction. However, in order to
handle these antisymmetric properties that arise in considering linear transformations which
preserve inner products as well as how we extend those inner products to measure area, volume,
etc., we need to develop a few more mathematical tools that make live easier when dealing with
antisymmetric linear operations.

Representations of Lie groups

When a matrix group G acts as a transformation group on a vector space V rather than a
more general space, life is nicer because of the additional structure of the points being moved
around, provided that action respects their nature as vectors. This just means that the matrix
group has to act on the vectors as linear transformations, so the action is governed by a map
ρ : G → GL(V ) into the general linear group of the vector space which is a homomorphism,
i.e., respects the group law

ρ(A) ◦ ρ(B) = ρ(AB) .

For example, every matrix group acts on its own Lie algebra through conjugation which is
called the adjoint representation of the group: A 7→ Ad(A). The derivative of the map Σ at the
identity matrix leads to a corresponding representation of the Lie algebra, namely a map from
the Lie algebra to the Lie algebra of the group of linear transformations of the vector space on
which the matrix group acts. The adjoint representation of the Lie algebra is X 7→ ad(X).

The general linear group acts on all the tensor spaces above Rn as a linear transformation
group through the transformation laws for the components of tensors under a change of basis
ei 7→ ei′ = ejA

−1j
i. These are called the tensor representations. For the (pq)-tensor introduce

the notation

T i···j··· 7→ [ρ(p,q)(A)T ]i···j···

= Aim · · ·A−1n
j · · ·Tm···n··· .

By construction this map ρ(p,q) for successive changes of basis satisfies the key composition
condition that a change of basis by A followed by a change of basis by B is equivalent to a
direct change of basis by AB.

Now consider a curve A(λ) through the identity matrix A(0) = I with tangent vector
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B = A′(0) and evaluate its derivative there

d

dλ

∣∣∣∣
λ=0

[ρ(p,q)(A(λ))T ]i···j··· =

(
d

dλ
Aim

)∣∣∣∣
λ=0

· · ·A−1n
j · · ·Tm···n··· + . . .

+Aim · · ·
(
d

dλ
A−1n

j

)∣∣∣∣
λ=0

· · ·Tm···n··· + . . .

= Bi
m · · ·Tm···j··· + . . .−Bn

j · · ·T i···n··· − . . .
≡ [σ(p,q)(B)T ]i···j··· .

Here we have used the fact that A−1′(0) = I and that from Exercise 1.7.2 where we showed
that dA−1 = −A−1dAA−1, it follows that A−1′(0) = −B.

Exercise 1.7.11.
tensor representation Lie algebra

It seems clear that σ(p,q) is a linear map from the Lie algebra of the general linear group to
the Lie algebra of the linear transformations of the space of (pq)-tensors. Convince yourself that
this satisfies the Lie algebra compatibility condition

[σ(p,q)(A) ◦ σ(p,q)(B)− σ(p,q)(B) ◦ σ(p,q)(A)]T = σ(p,q)([A ,B])T .

(Examine the case with only 1 contravariant index.)
�

This notation will prove useful in Part 2 when we start differentiating tensor fields in various
ways. For now we can use this relationship to understand the idea of spin.

Exercise 1.7.12.
spin and rotations

Consider the rotation group SO(3,R) and its Lie algebra so(3,R) with basis La acting on
R3 and its tensor spaces. For each space of (pq)-tensors, define the linear maps (spin operator
along a-axis)

T 7→ σ(p,q)(La)T ≡ SaT ,

and their quadratic combination (total spin operator)

T 7→ S2T ≡ δabSaSbT = δabσ(p,q)(La)σ
(p,q)(Lb)T .

When a tensor satisfies S2T = −s(s+ 1)T it is said to have spin s.
a) Consider the action of the rotation group on R3, the so called identity representation

σ(1,0) since it acts as a subgroup of the group of linear transformations of R3 into itself. The
elements of R3 are contravariant vectors, or (1

0)-tensors T with components T i. The rotation
group simply multiplies its components by matrix multiplication [ρ(1,0)(A)T ]i = AijT

j. Here
one has [SaT ]i = [σ(1,0)(La)T ]i = [La T ]i, the identity representation of its Lie algebra. Show
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that δabLa Lb = −2I, so S2T = −1(1 + 1)T for every vector identically, i.e., vectors have spin
1.

b) Consider the action of the rotation group on (0
2)-tensors over R3. Any such tensor has

a matrix of components which can be decomposed into its symmetric and antisymmetric parts
first, then its symmetric part can be decomposed into its tracefree part and it pure trace part
(a multiple of the identity matrix)

Tij = T(ij) + T[ij]

=
1

3
δmnTmnδij︸ ︷︷ ︸
Ttrace

+ [T(ij) −
1

3
δmnTmnδij]︸ ︷︷ ︸

Tsym,tracefree

+ T[ij]︸︷︷︸
Tantisym

.

Use a computer algebra system to show by explicit multiplication that

S2Ttrace = 0 , S2Tantisym = −1(1 + 1)T , S2Tsym,tracefree = −2(2 + 1)T ,

or S2T = −s(s+ 1)T for s = 0, 1, 2. These parts of the total tensor are referred to as its spin s
parts. Note that any multiple of δij, a pure trace tensor, has spin 0. An antisymmetric second
rank tensor has spin 1, and in fact can be represented in terms of a vector T[ij] = εijkT

k as
explored in Exercise 1.2.4.
Maple hint:

(SiT )mn = −(Si)
k
mTkn − Tmk(Si)kn = (−STi T − T Si)mn

= (Si T − T Si)mn
which is the same result as for the mixed tensor matrix (Tmn), since index position does not
matter in an orthonormal frame. Thus one can use matrix multiplication to iterate this

S2T = SiSi T = S1 (S1 T ) + S2 (S2 T ) + S3 (S3 T )

Then make a generic matrix: M:=Matrix(3,3,symbol=T),
and define its pure trace part: Mtrace:=1

3
Trace(M) IdentityMatrix(3,3),

its tracefree symmetric part: Msymtf:=1
2

(M+Transpose(M)),
and antisymmetric part: Masym:=1

2
(M-Transpose(M)).

Then evaluate S2 Mtrace, S2 Masym+2 Masym, and S2 Msymtf+6 Msymtf
to show they are all zero.

c) The property [S2δ]ij = 0 is a consequence of the fact that δij is invariant under rotations.
Since index raising and lowering is also invariant under rotations, then δij should have [S2δ]ij =
0 [in fact SiI = Si I − I Si = 0], and therefore δijmn ≡ δimδ

j
n − δinδjm should have S2δ(2) = 0

(we will study this tensor in the next chapter). Show that applying this operator S2 to the
tensor with components εijk which is invariant under rotations also yields 0. Any multiples of
these tensors are said to have spin 0.

d) Define the Pauli matrices

σ 1 =

(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.
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The basis Sa = Ea = i
2
σa of the Lie algebra su(2) of the special unitary group SU(2) has the

same commutation relations as the basis La of SO(3,R) given in Exercise 1.7.6

[Sa, Sb] = εabcSc (sum over c) .

Verify this with a computer algebra system. SU(2) and its Lie algebra act on 2-complex-
dimensional vector space C2 of pairs of complex numbers as its identity representation. Show
that δabSa Sb = −1

2

(
1
2

+ 1
)
I. Thus the elements of C2 have total spin 1

2
, if we extend the notion

of total spin to this group, whose adjoint representation is the rotation group. These elements
are called spinors, and play a fundamental role in quantum mechanics, needed to describe the
class of elementary particles called fermions, which have spin 1/2. We will study this group in
Chapter 4 when the meaning of unitary will be explained.

e) We can exponentiate the matrices of this Lie algebra as easily as we did the rotations and
pseudorotations of the real plane, except compared to the real rotations of the plane, here there
is an extra factor of 1/2 that finds its way into the cosine and sine of the angle of rotation,
making dramatically clear what half integer spin means compared to the rotations of a real
vector (spin 1). If θi = θn̂i, where n̂i is a unit vector, show that

(θiSi)
2 = −θ

2

4
I , (θiSi)

3 = −θ
3

8
2n̂iSi ,

[hint: only the symmetric terms contribute to the sum: θiθjSi Sj =
∑3

i=1(θi)2S2
i , why?] so that

separating the even and odd powers of the power series leads to

eθ
iSi = cos

(
θ

2

)
I + i sin

(
θ

2

)
σi .

Thus a rotation by of a vector by an angle θ corresponds to a rotation of a spinor by θ/2, so a
spinor has to be revolved two revolutions to return to its original state compared to a vector.
When one similarly examines the action of a rotation on a tracefree symmetric tensor (spin 2)
under such a rotation one instead finds cosines and sines of 2θ. This is the meaning of this
positive half-integer/integer spin parameter s.

�

Remark.
The topic we have to sweep under the rug is that of group representation theory which turns
out to be very interesting and underlies how we classify electron states in atoms as well as
electromagnetic radiation and other states whose description involves directional information
parametrized by the unit sphere. But why not a few lines explanation.

Vector spaces may be decomposed into direct sums of subspaces so that a vector can be
uniquely represented as a sum of vectors, one in each of those subspaces. Consider the simplest
case of two subspaces: V = V1⊕ V2, so every vector is of the form v = v1 + v2, v1 ∈ V1, v2 ∈ V2.
Projections are defined for each subspace: P1(v) = v1, P2(v) = v2, so clearly P1 ◦ P1 = P1,
P2 ◦ P2 = P2, P1 ◦ P2 = P2 ◦ P1 = 0 (the zero vector, the only vector which belongs to both
subspaces). When there is an inner product on V such that these subspaces are orthogonal,
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these are called orthogonal projections, and we are familiar with these from R3 when we project
vectors along a line through the origin (1-dimensional subspace) and orthogonal to it, to a plane
through the origin (2-dimensional subspace). In fact we can project along all three coordinate
axes to decompose a vector into 3 vector components, one along each axis. This is what we do
when we express a vector in any vector space in terms of any basis: v = vaea, deoomposing it
into n vectors each of which is a multiple of a basis vector. This is an orthogonal decomposition
when the basis itself is orthogonal.

When a matrix group acts on a vector space through a representation, one can often de-
compose that vector space into a series of subspaces, each of which alone is a representation
of the group, thus simplifying how one sees the action of the group on that space. When a
reprsentation can no longer be decomposed further into subspace representations, it is called
“irreducible.” For the rotation group acting on (1

1)-tensors over R3, we saw that their component
matrices decomposed into three separate orthogonal subspaces with respect to the trace inner
product: the pure trace matrices (multiples of the identity matrix, s = 0), the tracefree sym-
metric matrices (s = 2, and the antisymmetric matrices (s = 1), which we classified through
the integer s parametrizing the eigenvalues −s(s + 1) of the total angular momentum matrix
operator L2 for that representation. These matrices can be further classified by the eigenvalues
of the matrix L3 in that representation, which amounts to choosing a new basis of these spaces
of matrices which behave in a certain way under rotations. Each subspace of a given spin s is
an irreducible representation of the rotation group.

Later, when we consider how functions on R3 behave under rotations, we could (but won’t
here) do something similar on the infinite-dimensional vector space of functions, which can be
decomposed into an infinite direct sum of vector subspaces of functions which are character-
ized by all the integer and half-integer values of the orbital angular momentum parameter `
corresponding to s in the finite-dimensional case. A basis can be adapted to their behavior
under rotations. This leads to the spherical harmonics, which are used to describe functions on
the unit sphere which behave in simple ways under rotations. These ideas are fundamental for
quantum mechanics and electromagnetic theory.

N

Exercise 1.7.13.
a) Consider the set of all matrices of the form

A =

(
a −b
b a

)
= aE0 + bE1 ,

where

E0 =

(
1 0
0 1

)
, E1 =

(
0 −1
1 0

)
Use a computer algebra system to show that this set is closed under matrix multiplication.

Show that only the zero matrix in this set is not invertible (has zero determinant), so that the
2-parameter family of nonzero matrices of this form is actually a subgroup of the general linear
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group in 2 dimensions. Show that this group is abelian, i.e., the order of the factors in the
matrix product does not matter.

b) Use a computer algebra system to exponentiate a general matrix in the Lie algebra of
this group (which is the entire matrix group plus the zero matrix). We can already foresee
the result from the factoring of the exponential to a scaling by the exponential factor of the
rotation matrix

eθ
0E0+θ1E1 = eθ

0E0 eθ
1E1 .

c) Note that if we compare the multiplication properties of 1 and i in the complex plane
with E0 and E1, we find the same relations. In fact the map

aE0 + bE1 7→ a+ ib

is a faithful real representation of the complex number field which incorporates the rotation and
conformal rescaling properties of the real plane into the algebra of the complex numbers. The
special subgroup of unit determinant matrices corresponds to the xponentials of the tracefree
Lie subalgebra, i.e., to the exponentials of E1. Notice that complex conjugation corresponds
to the matrix transpose.

e) Clearly one can take the identity matrix and any other matrix and form a 2-dimensional
abelian Lie subalgebra whose exponential will give an Abelian subgroup of the general lin-
ear group. Picking the second matrix to be antisymmetric, or symmetric, or to have only 1
nonvanishing entry leads to rotations, boosts and null rotations of the plane. Let

E1 =

(
0 0
1 0

)
.

Show that this group combines multiplicaton in one group parameter with addition in the other.
�
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Chapter 2

Symmetry properties of tensors

We have already seen that symmetric (0
2)-tensors are associated with the important notion of

inner products from which the ideas of lengths and angles spring forth. We will see next that
antisymmetric tensors of any rank, characterized by a change in sign of their components under
a permutation of the index values as is the case for an antisymmetric matrix, are connected
with the notion of area and volume as well as orientation (directional information) of planes
and higher dimensional subspaces of Rn. Antisymmetric (0

2)-tensors turn out to be fundamental
to the symmetry groups of inner products as well, and so have tremendous importance in the
differential geometry of curvature.

153
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2.1 Measure motivation and determinants

The determinant of a matrix A = 〈u(1)| · · · |u(n)〉 whose columns are the column matrices
corresponding to vectors u(i) ∈ Rn may be thought of as an antisymmetric multilinear real-
valued function of n vector arguments, i.e., a (0

n)-tensor on Rn

detA = det(〈u(1)| · · · |u(n)〉) ≡ det(u(1), · · · , u(n)) .

Figure 2.1: 3 vectors in R3 form a parallelepiped whose volume is the absolute value of the
determinant of the matrix in which they are either rows or columns.

In multivariable calculus we learn that the triple scalar product of three linearly independent
vectors in R3 is evaluated as the determinant of the matrix whose rows are those three vectors
(the same as if they are the columns since the transpose does not change the determinant)

(u(1) × u(2)) · u(3) = det〈uT(1), u
T
(2), u

T
(3)〉 = det〈u(1)|u(2)|u(3)〉

and that its value up to sign is the volume of the parallelepiped they determine. The sign itself
is positive when the three vectors are ordered so that the third vector is on the side of the
plane of the first two vectors determined by the right hand rule (u(1) × u(2) points on this side
of the plane), since then its component along the cross-product of the first two will be positive.
Such an ordered set of vectors is referred to as a right-handed set, like the standard basis of
R3. When the sign is negative, they are then a left handed set.

The length of the cross-product of two vectors alone is interpreted as the area of the paral-
lelogram that they determine. For two vectors in the x-y plane within R3

a× b =

∣∣∣∣∣∣
i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k .
The magnitude of the cross product is just the absolute value of the 2x2 determinant formed
by these two vectors, i.e., the area of the parallelogram they form, while the sign is positive if
the right hand rule moving from the first to the second by a counterclockwise rotation by less
than 180 degrees aligns the thumb with the positive z axis. Such an ordered pair of vectors is
called right handed, like the standard basis is, and otherwise left handed.
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This generalizes to Rn, namely

Vol (u(1), · · · , u(n)) = | det(u(1), · · · , u(n))|

has the interpretation as the volume of the n-parallelepiped formed with these vectors as the
edges from the corner at the origin, while the sign of det(u(1), · · · , u(n)) indicates whether or
not the vectors have the same “orientation” as the standard basis. The standard basis is said
to have the positive orientation, while a basis with the opposite sign of the determinant is said
to be negatively oriented. We’ll return to the orientation later after concentrating first on the
area/volume/measure properties of the determinant.

Figure 2.2: An orientation of the plane is a choice of clockwise (left handed, negative ori-
entation) or counterclockwise (right handed, positive orientation) motion from the first to the
second vector in an ordered set by an angle less than π. Here {u(1), u(2)} are positively oriented,
like the standard basis.

Our notion of measure (n = 1: length, n = 2: area, n = 3: volume, etc.) given a way
to measure lengths in 1 dimension generalizes to higher dimensional rectangular objects as
the product of the lengths of the mutually orthogonal edges: area = length times width, 3-
volume = area times height, 4-volume = 3-volume times height in the 4th direction, etc. For
nonrectangular objects like parallelograms and parallelepipeds, only the height of the last edge
or face of the object from the base matters as one adds the last dimension.

The connection of this basic notion of measure/volume with determinants comes from the
way in which the following three elementary column operation properties characterize volume,
modulo signs, which is the content of the fourth property

1. Invariance under adding multiples of other columns:

det(u(1), · · · , u(i) + au(j)︸ ︷︷ ︸
ith argument

. · · · , u(j), · · ·u(n)) = det(u(1), · · · , u(i), · · · , u(j), · · ·u(n))

[Iteration of this property leads to the property that adding any linear combination of
the other vectors to a given vector in the determinant does not change its value.]

2. Scalar multiple factor from columns:

det(u(1), . . . , au(i), . . . u(n)) = a det(u(1), . . . , u(i), . . . , u(n)) .
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3. Unit value on identity matrix:
det(e1, . . . , en) = 1, true for any orthonormal basis with the same orientation as the
standard basis.

4. Changes sign when any two columns are swapped (interchanged in position):

det(u(1), . . . , u(i), . . . , u(j), . . . u(n)) = − det(u(1), . . . , u(j), . . . , u(i), . . . u(n)) .

Properties (1) and (2) are independent of the Euclidean inner product and remain valid in
defining volume with respect to any inner product. Property (3) basically fixes the scale of
the volume function in terms of the choice of inner product, in this case, the Euclidean one,
by assigning its values to be 1 or −1 on the set of all orthonormal bases of Rn. The final
property helps us keep track of some minimal information about the ordering of the vectors in
the determinant.

Recall that we define the volume of a rectangular solid with perpendicular edges to be the
product of the lengths of its orthogonal edges from any corner. This is then extended to a
n-parallelepiped by that noticing one can always chop it up and re-assemble into a rectangular
solid with the same volume. In the plane, for example, this property of volume is exactly
equivalent to property (1). In figure 2.3 one has to add a multiple of the base vector to the
second vector to make it orthogonal to the base yet have the same height, and in so doing,
move the triangular piece from one side of the parallelogram to the other to form a rectangle
with the same area.

Figure 2.3: A parallelogram has the same area as the rectangle with the same height and
base. Similarly a parallelepiped in R3 has the same volume as long as the height and base area
remain the same. In each case we are free to add any linear combination of the previous vectors
to the tip of the last vector without changing the height and thus the measure of the figure.

Correspondingly in R3, as shown again in Fig. 2.3 we can move u(3) around anywhere in
the plane through its tip parallel to the plane of u(1) and u(2) without changing the “height”
relative to that plane and therefore not changing the volume of parallelepiped. In particular
we can always move u(3) so that it is perpendicular to the plane of u(1) and u(2). Then by
adding multiples of u(1) to u(2) we can make u(2) perpendicular to u(1) resulting in a rectangular
solid. Such an iterative process can be used in Rn to reduce any n-tuple of vectors to an
orthogonal n-tuple with the same volume (closely related to the so called Gram-Schmidt process
of orthogonalizing a set of vectors). Property (2) allows us to pull out the factors of the lengths
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of the orthogonal edges, leaving the scale of the volume to be set by condition (3), that an
orthonormal set of vectors has unit volume.

Property (1) is a direct result of the antisymmetry of the determinant, since antisymmetriza-
tion in a pair of identical or proportional objects always gives zero. It determines an equivalence
relation on the ordered n-tuples of vectors which corresponds to having the same volume. Any
orthogonal representative of such an equivalence class (i.e., any set of orthogonal vectors in it)
then sets the value of the volume through properties (2) and (3) together. We will see that an-
tisymmetrization of vectors is somehow equivalent to establishing a volume (or more generally
measure) equivalence relation, while an inner product merely sets the scale.

Figure 2.4: The cross product of two vectors in R3.

We are also interested in the measure of p-dimensional objects in Rn, like parallelograms in
R3. These turn out to be connected to subdeterminants. For example, an ordered pair of vectors
(u(1), u(2)) in R3 determines a parallelogram with a certain orientation in space. Consider the
3 × 2 matrix 〈u(1)|u(2)〉. It has three 2 × 2 subdeterminants obtained by eliminating the first,
second, and the third rows respectively, and then alternating the sign to define the corresponding
“minors” of the determinant. These define the components of the cross product of u(1) and
u(2) whose magnitude gives the desired area information, and whose direction specifies the
orientation of the plane of u(1) and u(2) within space as well as the relative orientation of the
two vectors within their plane

u(1) × u(2) =

(∣∣∣∣u(1)
2 u(2)

2

u(1)
3 u(2)

3

∣∣∣∣ , − ∣∣∣∣u(1)
1 u(2)

1

u(1)
3 u(2)

3

∣∣∣∣ , ∣∣∣∣u(1)
1 u(2)

1

u(1)
2 u(2)

2

∣∣∣∣)
The sign in the second component will be explained later.

You also know that
det(u(1), u(2), u(3)) = (u(1) × u(2)) · u(3) ,

i.e., the vector u(1)×u(2) is basically the partial evaluation of the determinant tensor leaving one
vector argument free, i.e., a covector, which is then identified with a vector by the Euclidean
inner product

det(u(1), u(2), u) = [u(1) × u(2)]
[(u) .
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To summarize, the properties of the determinant function and of “antisymmetrization” in
general characterize both p-measure in Rn up to a setting of scale which is accomplished via
an inner product as well as the orientation of a set of ordered vectors within any subspace. We
need to develop a notation that can more easily handle this kind of information.
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2.2 Tensor symmetry properties

We have already used a symmetry condition for the class of inner products we have been
considering, namely the order of the inner product G(Y,X) = G(X, Y ) of two vectors X, Y
does not matter, and we have mentioned antisymmetric inner products which we will not
pursue here. The determinant function, which is a multilinear function of the columns of a
matrix, changes sign under swapping any two columns, so it is an antisymmetric tensor which
is important for describing measure and orientation of subspaces of Rn, the details of which we
will learn below. Symmetry properties of tensors turn out to be extremely important for many
reasons, so we need to develop a notation to handle them.

Symmetry properties involve the behavior of a tensor under the interchange of two or more
arguments. Of course to even consider the value of a tensor after the permutation of some of
its arguments, the arguments must be of the same type, i.e., covectors have to go in covector
arguments and vectors in vectors arguments and no other combinations are allowed.

The simplest case to consider are tensors with only 2 arguments of the same type. For
vector arguments we have (0

2)-tensors. For such a tensor T introduce the following terminology:

T (Y,X) = T (X, Y ) , T is symmetric in X and Y ,

T (Y,X) = −T (X, Y ) , T is antisymmetric or “alternating” in X and Y .

Letting (X, Y ) = (ei, ej) and using the definition of components, we get a corresponding con-
dition on the components

Tji = Tij , T is symmetric in the index pair (i, j),

Tji = −Tij , T is antisymmetric (alternating) in the index pair (i, j).

For an antisymmetric tensor, the last condition immediately implies that no index can be
repeated without the corresponding component being zero

Tji = −Tij → Tii = 0 .

Any (0
2)-tensor can be decomposed into symmetric and antisymmetric parts by defining

[SYM(T )](X, Y ) =
1

2
[T (X, Y ) + T (Y,X)] , (“the symmetric part of T”),

[ALT(T )](X, Y ) =
1

2
[T (X, Y )− T (Y,X)] , (“the antisymmetric part of T”),

T = SYM(T ) + ALT(T ) .

The last equality holds since evaluating it on the pair (X, Y ) immediately leads to an identity.
[Check.]

Again letting (X, Y ) = (ei, ej) leads to corresponding component formulas

[SYM(T )]ij =
1

2
(Tij + Tji) ≡ T(ij) , (n(n+ 1)/2 independent components),

[ALT(T )]ij =
1

2
(Tij − Tji) ≡ T[ij] , (n(n− 1)/2 independent components),

Tij = T(ij) + T[ij] , (n2 = n(n+ 1)/2 + n(n− 1)/2 independent components).
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Round brackets around a pair of indices denote the symmetrization operation, while square
brackets denote antisymmetrization. This is a very convenient shorthand. All of this can
be repeated for (2

0)-tensors and just reflects what we already know about the symmetric and
antisymmetric parts of matrices.

Exercise 2.2.1.
counting independent components

The component matrix (Tij) of a (0
2)-tensor or (T ij) of a (2

0)-tensor, with the left index i
denoting the rows and the right index j the columns, has diagonal entries (i = j), offdiagonal
entries (i 6= j), and upper (i < j) and lower (i > j) offdiagonal entries, and upper (i ≤ j) and
lower (i ≥ j) triangular entries. Derive the number of independent components of a symmetric
tensor, namely the number of diagonal plus upper offdiagonal entries of the corresponding
matrix, i.e., the number of upper triangular entries, and an antisymmetric tensor, i.e., the
number of upper offdiagonal entries of the corresponding matrix. Recall the identity

∑n
j=1 j =

n(n+ 1)/2.
�

Exercise 2.2.2.
trace inner products and symmetry

a) Consider a tensor A whose matrix of components is

A =

1 2 3
4 5 6
7 8 9


and evaluate the matrices of its symmetric and antisymmetric parts SYM(A) = 1

2
(A+AT ) and

ALT(A) = 1
2
(A− AT ) and show that there sum equals the original matrix.

b) Since the trace of a matrix product obeys the cyclic property TrAB = TrBA = G(B,A)

TrAB = AijB
j
i = Bj

iA
i
j = TrBA ,

this defines a symmetric bilinear function G on pairs of square matrices and hence defines an
inner product on the space of square matrices of a given dimension. The same statement applies
to TrATB = TrBTA = G(B,A), which defines a different inner product G. Evaluate each of
these on the pair SYM(A), ALT(A) to show that these two matrices are orthogonal with respect
to either of these two inner products. Thus the decomposition of the original matrix into its
symmetric and antisymmetric parts is orthogonal with respect to both inner products.

c) What are the self-inner products of these two matrices under each such inner product?
Notice their signs. Finally for the both inner products notice that the sum of the self-inner
products of the two matrices equals the self-inner product of the original matrix, a Pythagorean
theorem but with a sign change in the first case. This can be explored in general for arbitrary
matrices, as the extended Exercise 1.6.9 of the previous chapter does, but it is not essential for
us at this first pass through differential geometry.
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�

In order to consider symmetries for more than a pair of indices we need to discuss the
so called “symmetric group” Sn of permutations of the integers from 1 to n which maps the
ordered integers from 1 to n to a reordering (rearrangement, permutation) of those integers

(1, 2, ..., n) 7−→ (σ(1), σ(2), . . . , σ(n)) .

This may also be written in a more suggestive form(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
which indicates the integer σ(i) which replaces i in a two row matrix, where the ordering of the
columns clearly doesn’t matter. For example

σ ∼
(

1 2 3
2 3 1

)
∼
(

2 3 1
3 1 2

)
∼
(

3 1 2
1 2 3

)
all mean

(1, 2, 3) 7−→ (σ(1), σ(2), σ(3)) = (2, 3, 1) .

The composition of two permutations

(1, 2, · · · , n) 7−→ (π ◦ σ)(1, 2, 3, · · · , n) = π(σ(1), · · · , σ(n)) = (π(σ(1)), · · · , π(σ(n)))

is easily performed using the matrix algorithm: line up the upper rows of π below with lower row
of σ on top, then erase these two rows to get the two rows of the “product” of two permutations

σ ∼
(

1 2 3
2 3 1

)
, π ∼

(
2 3 1
3 1 2

)
∼
(

3 1 2
1 2 3

)
,

π ∼
(

2 3 1
1 3 2

)
,

π ◦ σ ∼
(

1 2 3
1 3 2

) .

Fact.
Every permutation can be represented as a certain number N of transpositions (only two
integers interchanged, all others fixed), the evenness or oddness of which is an invariant. One
can therefore define the sign of a permutation to be

(−1)N =

{
1, even N ,

−1, odd N ,

and the permutations are correspondingly referred to as even or odd.
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There are n! permutations in Sn, half even, half odd (except for n = 1). For example the
signs of the following permutations are

n = 1 :

(
1

1

)
+

, n = 2 :

(
12

12

)
+

,

(
12

21

)
−

,

n = 3 :

(
123

123

)
+

,

(
123

231

)
+

,

(
123

312

)
+

,

(
123

132

)
−

,

(
123

213

)
−

,

(
123

321

)
−

.

This permutation group itself has a rich structure which also has extremely important physical
applications but we have enough information for our present purposes.

Exercise 2.2.3.
counting transpositions

A cute extra piece of information about the sign of a permutation is that if you connect
each integer in the top row by a straight line to its position in the bottom row (avoid multiple
simultaneous intersections), the number of intersections of all these lines has the same parity
(permutation sign) as the minimum number of transpositions necessary to obtain that permu-
tation. Convince yourself this is true by imagining these lines as flexible strings, and one by
one, begin untangling all the strings until they are all untangled, i.e., no longer crossing.

�

Suppose we have a (0
3)-tensor T. For (0

2)-tensors we defined the symmetric and antisymmetric
parts by summing over all permutations of their arguments/indices, including the sign for the
antisymmetric part, and dividing by the total number (2) of such permutations. For a (0

3)-tensor
the analogous definitions are

[

(
SYM

ALT

)
(T )](X, Y, Z) =

1

3!
[T (X, Y, Z) + T (Y, Z,X) + T (Z,X, Y )

± T (X,Z, Y )± T (Y,X,Z)± T (Z, Y,X)] ,

where the upper sign (lower sign) applies for the symmetric (antisymmetric) part. Clearly
under any permutation of arguments, SYM(T ) is unchanged while ALT(T ) changes by the sign
of the permutation. Letting (X, Y, Z) = (ei, ej, ek) leads to the component form

[

(
SYM

ALT

)
(T )]ijk =

1

3!
(Tijk + Tjki + Tkij ± Tikj ± Tjik ± Tkji) ≡

(
T(ijk)

T[ijk]

)
.

It is important to note this crucial convention that putting rounded parentheses around a
group of indices indicates the symmetrization over those indices, while square brackets indicates
antisymmetrization, and a pair of vertical bars are placed around an index if it is not to
be included in the group of indices being symmetrized or antisymmetrized. Thus T[i|j|k] =
1
2
(Tijk − Tkji) antisymmetrizes only the pair of indices (i, k).
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However, now in addition to the completely symmetric and completely antisymmetric parts
of T , there are also mixed symmetries which were not possible with only two arguments

T = SYM(T ) + ALT (T ) + · · · , Tijk = T(ijk) + T[ijk] + · · · .

This question has to do with the representations of the symmetric group and belongs in a course
on group theory.

A third rank tensor T is called symmetric if it equals its symmetric part, and antisymmetric
if it equals its antisymmetric part

T = SYM(T )↔ Tijk = T(ijk) , (symmetric)

T = ALT(T )↔ Tijk = T[ijk] . (antisymmetric)

We can extend this to totally covariant or totally contravariant tensors of any number of indices,
or to a particular group of such indices on a tensor and say that the tensor is symmetric or
antisymmetric in those particular indices or its corresponding arguments.

In general for a (0
p)-tensor we define

[SYM(T )](X(1), · · · , X(p)) =
1

p!

∑
σ∈Sp

T (Xσ(1) · · · Xσ(p)) ,

[ALT(T )](X(1), · · · , X(p)) =
1

p!

∑
σ∈Sp

(sgnσ)T (Xσ(1) · · · Xσ(p)) ,

where we use the parenthesis surrounded index in {X(i)}i=1,··· ,n to list a set of n vectors
to distinguish from the symbol Xi for the components of a single covector. Then letting
(X(1), · · · , X(p)) = (ei1 , · · · , eip) gives the component version

[SYM(T )]i1···ip ≡ T(i1···ip) =
1

p!

∑
σ∈Sp

Tiσ(1)···iσ(p) ,

[ALT(T )]i1···ip ≡ T[i1···ip] =
1

p!

∑
σ∈Sp

(sgnσ)Tiσ(1)···iσ(p) .

What we need now is a more efficient way of summing in these formulas using our index
summation conventions. Remember, the sigma summation notation is something we suppressed
once. We have to bury it again.
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2.3 Epsilons and deltas

WARNING! FASTEN YOUR SEAT BELTS! or “epsilons and deltas, oh no!”

No fear, these are not the epsilons and deltas of advanced calculus.
The formal definition of a determinant of an n × n matrix A = (Aij) is a sum of products

of elements, one taken from each column or row, preceded by a sign factor equal to the sign of
the permutation

detA =
∑
σ∈Sp

sgn(σ)Aσ(1)
1A

σ(2)
2 . . . A

σ(n)
n (one from each column)

= p!A[1
1A

2
2 . . . A

n]
n

=
∑
σ∈Sp

sgn(σ)A1
σ(1)A

2
σ(2) . . . A

n
σ(n) (one from each row)

= p!A1
[1A

2
2 . . . A

n
n] .

However, the
∑

-notation is bad news—we introduced the summation convention to elimi-
nate the summation notation for contracted indices, and this is an even more complicated sum-
mation. By making some convenient definitions, we can also eliminate this explicit

∑
-notation

for determinants and for antisymmetrization, and which allow us to write down many associ-
ated identities that would be difficult to state in that former notation. The bracket notation
is not sufficient by itself as a shorthand, since it is only an abbreviation for the corresponding
sum over permutations. We can do better.

Generalized Kronecker Deltas

For 1 ≤ p ≤ n define

δ
i1···ip
j1···jp ≡ p!δi1 [j1δ

i2
j2 · · · δipjp] ≡ p!δ[i1

j1δ
i2
j2 · · · δip]

jp .

or equivalently and more simply

δi1···inj1···jn =

sgn

(
i1 · · · in

j1 · · · jn

)
if no repeated indices at either level,

0 otherwise.

Once antisymmetrized on either the upper or lower indices, the result is automatically antisym-
metric at both levels. [Check for p = 2 below!] Explicitly for p = 1, 2, 3 the antisymmetrized
delta formulas are

p = 1 : δi1j1 ,

p = 2 : δi1i2j1j2 = δi1j1δ
i2
j2
− δi1j2δ

i2
j1

= δi1j1δ
i2
j2
− δi2j1δ

i1
j2
,

p = 3 : δi1i2i3j1j2j3
= δi1j1δ

i2
j2
δi3j3 + δi1j2δ

i2
j3
δi3j1 + δi1j3δ

i2
j1
δi3j2

− δi1j1δ
i2
j3
δi3j2 − δ

i1
j2
δi1j1δ

i3
j3
− δi1j3δ

i2
j2
δi3j1 ,
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In fact each generalized Kronecker delta is a determinant of a matrix whose entries are
Kronecker deltas

δ
i1···ip
j1···ip =

∣∣∣∣∣∣∣
δi1j1 · · · δi1jp

...

δ
ip
j1
· · · δ

ip
jp

∣∣∣∣∣∣∣ =
∑
σ∈Sp

(sgnσ)δi1σ(j1)δ
i2
σ(j2) · · · δipσ(jp) .

Then
1

p!
δ
j1···jp
i1···ipTj1···jp = δj1 [i1δ

j2
i2 · · · δjp ip]Tj1···jp = T[i1···ip] = [ALT(T )]i1···ip

since each Kronecker delta contraction replaces a j-index by an i-index. Alternatively going
backwards, we can think of shifting the antisymmetrization from the tensor indices to the
indices of the tensor product of p Kronecker deltas

Ti1···ip = δj1 i1δ
j2
i2 · · · δjp ipTj1···jp , (identity)

T[i1···ip] = δj1 [i1δ
j2
i2 · · · δjp ip]Tj1···jp (antisymmetrize over free indices)

≡ 1

p!
δ
j1···jp
i1···ipTj1···jp . (definition of generalized Kronecker delta)

Note that if a tensor is already antisymmetric, antisymmetrization does not change it (it is
equal to its antisymmetric part), or

ALT(ALT(T )) = ALT(T )

equivalent to
1

p!
δ
j1···jp
i1···ip

(
1

p!
δ
k1···kp
j1···jp Tk1···kp

)
=

1

p!
δ
k1···kp
i1···ip Tk1···kp

or
δ
j1···jp
i1···ipδ

k1···kp
j1···jp = p! δ

k1···kp
i1···ip .

If a tensor is already antisymmetric, its component values change by the sign of a permutation
applied to its indices

Tσ(i1)···σ(ip) = sgn(σ)Ti1···ip ,

as long as the index values are all distinct, but if any two indices have the same value, then the
component must be zero since interchanging them must change the sign of the component, but
interchanging the indices does not change the component

T122 = −T122 → T122 = 0.

Antisymmetrizing an antisymmetric tensor leads to a sum of p! identical terms (changing the
sign of the component is compensated by the change in sign of the Kronecker delta) which
collapse to the original value once the factorial factor is divided out

T[i1···ip] =
1

p!
δ
j1···jp
i1···ipTj1···jp =

1

p!
(p!Ti1···ip) = Ti1···ip .
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What exactly are these generalized Kronecker deltas?

Each term in the expansion of a generalized Kronecker delta is a product of Kronecker deltas,
which represent the components of certain tensor products of the Kronecker delta tensor (or
unit tensor) with itself and so are themselves tensors, as is the entire sum of such terms.

Thus δ
i1···ip
j1···jp are the components of a (pp)-tensor δ(p) on our vector space V which has the same

numerical values of its components in any basis

δ(p) = δ
i1···ip
j1···jpei1 ⊗ · · · ⊗ eip ⊗ ωi1 ⊗ · · ·ωip .

Its value on p-vector arguments and p-covector arguments is just the determinant of the matrix
of all possible evaluations of a covector on a vector

δ(p)(f (1), · · · , f (p), u(1), · · · , u(p)) = |f (i)(u(j))| ,

where the vertical bar delimiters are the standard notation for the determinant of the array of
numbers between them.

It is useful to look explicitly at the p = 2 case to make this discussion more concrete. The
components satisfy

δijmn =

∣∣∣∣ δim δin
δjm δjn

∣∣∣∣ = δimδ
j
n − δinδjm

and the tensor is therefore

δ(2) = δijmnei⊗ej⊗ωm⊗ωn = (δimδ
j
n−δinδjm)ei⊗ej⊗ωm⊗ωn = ei⊗ej⊗ωi⊗ωj−ei⊗ej⊗ωj⊗ωi ,

which implies

δ(2)(f, g,X, Y ) = figjδ
ij
mnX

mY n = fiX
igjY

j − fiY igjX
j = f(X)g(Y )− f(Y )g(X) .

Example 2.3.1. For R3 with the dot product, this is just the scalar quadruple product of the
corresponding vector fields

δ(2)(f, g,X, Y ) = f ] ·X g] · Y − f ] · Y g] ·X = (f ] × g]) · (X × Y ) = Q(f ], g], X, Y ) .

Q = δ(2)[ is in fact the index lowered form of δ(2). We will prove this identity for Q easily in a
subsequent exercise. This tensor is useful for the following reason

Q(X, Y,X, Y ) = (X ·X)(Y · Y )− (X · Y )2 = |X|2|Y |2 − (|X||Y | cos θ)2

= |X|2|Y |2(1− cos2 θ) = |X|2|Y |2 sin2 θ = (|X||Y | sin θ)2

= |X × Y |2 = (X × Y ) · (X × Y ) = Area(X, Y )2 .

This is the square of the area of the parallelogram formed by the two vectors X and Y as sides,
which is the interpretation of the magnitude of the cross product of two vectors.

�
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Exercise 2.3.1.
quadruple scalar product

On Rn with any inner product G(X, Y ) = GijX
iY j ≡ X •Y define the corresponding scalar

quadruple product by

Q(U, V,X, Y ) = (U •X)(V • Y )− (U • Y )(V •X)

= δ(2)[(U, V,X, Y ) = δij,klU
iV jXkY l

= δ(2)(U [, V [, X, Y ) = δijklUiVjX
kY l ,

where
δij,kl = GimGjnδ

mn
kl .

is the totally covariant form of this mixed tensor with respect to the metric, obtained by
lowering the first two contravariant indices with the metric.

a) Using the definition δijkl = δikδ
j
l−δilδjk, show that the final line in the above equivalent

definitions of the scalar quadruple product is equivalent to the previous lines.
b) Convince yourself that this tensor has the same symmetries as previously found for Q

defined on R3 for the ordinary dot product, namely

δij,kl = −δji,kl = −δij,lk (antisymmetry in each pair)

= δkl,ij , (symmetry in pair interchange)

0 = 3δi[j,kl] = δij,kl + δik,lj + δil,jk . (cyclic symmetry)

�

Exercise 2.3.2.
higher dimension contractions of the p = 2 generalized Kronecker delta

This tensor plays an important role in curvature in any dimension, where its contractions
have direct application. Derive the following formulas for Rn

δijkj = (n− 1)δik , δij ij = n(n− 1) .

�

Exercise 2.3.3.
Jacobian matrix

a) On R2 for the new basis B = 〈b1|b2〉 = 〈〈1, 1〉|〈−2, 1〉〉 with dual basis B−1 = A =
〈Ω1,Ω2〉 = 1

3
〈〈1|2〉, 〈−1|1〉〉, evaluate δ(2)(ω1, ω2, E1, E2) = ω1(E1)ω2(E2) − ω1(E2)ω2(E1) =

detB.
b) Letting {y1, y2} = {Ω1,Ω2} denote the new coordinate functions, then show by partial
differentiation of xi = Bi

jy
j that this same result represents the so called Jacobian determinant

det

(
∂xi

∂yj

)
= detB .
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The absolute value of this represents the area of the parallelogram formed the new basis vectors
which is the unit parallelogram associated with the new coordinate grid. This is the “amplifi-
cation factor” of grid box areas going from the old to new coordinates.

�

Finally define the alternating or permutation or Levi-Civita symbols by

εi1···in = δ1···n
i1···in , εi1···in = δi1···in1··· n .

These do not define the components of a single tensor but a different tensor for each choice of
basis. For example δ1

i are the components of δ1
i ω

i = ω1, which is just the first dual basis vector
in a dual basis. Similarly εi1···in are the components of δ1···n

i1···inω
i1⊗· · ·⊗ωin = p!ω[1⊗· · ·⊗ωn] ≡

ω1...n. We will return to these antisymmetric tensors later.
Meanwhile these alternating symbols are useful in representing determinants without ex-

plicit summation notation. Notice that from the definition of the determinant of a matrix

detA =
∑
σ∈Sp

(sgnσ)Aσ(1)
1 · · ·Aσ(n)

n︸ ︷︷ ︸
rearrange factors so
top order is 1,2,...,n

=
∑
σ∈Sp

(sgnσ)A1
σ−1(1) · · ·Anσ−1(n)

=
∑
σ∈Sp

(sgnσ)A1
σ(1) · · ·Anσ(n) ,

where the inverse appears when you re-order the lower row of the permutation above since

σ ∼
(

1 · · · n
σ(1) · · · σ(n)

)
∼
(
σ−1(1) · · · σ−1(n)

1 · · · n

)
and the sum over σ−1 for all σ ∈ Sp is a sum over every permutation without the inverse since
every permutation can be represented as the inverse of another permutation (group property)
and since sgnσ−1 = sgnσ, the inverse can simply be dropped above. Thus we have just proven
the equivalence of permuting either the rows or the columns in evaluating the determinant
from this definition. But the alternating symbols provide the sign and allow one to sum over
all permutations using our summation convention, permuting either the row indices or column
indices, so the above formulas can be rewritten as

detA = εi1···in A
i1

1 · · ·Ainn = εi1···in A1
i1 · · ·Anin .

Also since a permutation of the columns of A changes detA by its sign

(detA) εj1···jn = εi1···in A
i1
j1 · · ·Ainjn ,

with a similar result for the rows

(detA) εj1···jn = εi1···in Aj1 i1 · · ·Aj1 in ,
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or replacing A by A−1 in the first and not in the second (recall detA−1 = (detA)−1) and
dividing both sides by the determinant leads to

εj1···jn = (detA−1)−1 εi1···in A
−1i1

j1 · · ·A−1in
jn︸ ︷︷ ︸ (weight W = −1)

εj1···jn = (detA−1) εi1···in Aj1 i1 · · ·Ajn in︸ ︷︷ ︸ (weight W = 1)

We can interpret these identities in the following way. The underbraced quantity is the correct
transformation law for the tensor with components εi1···in or εi1···in respectively in the starting
basis, under the change of basis ei′ = A−1j

i ej, but the transformed component values are no
longer 1,−1, 0 in the new basis. The additional “weight W” scaling factor of the (inverse
matrix) determinant (detA−1)W restores these numerical values by changing to a new tensor
in the new basis whose components have the same numerical values as the old tensor in the old
basis.

So in fact these alternating symbols define the components of a 1-parameter family of
proportional

(
0
p

)
-tensors and

(
p
0

)
-tensors respectively which together are referred to as a “tensor

density of weight W = −1 and W = 1” respectively (detA 6= 0 for a change of basis, but it
can assume all nonzero values). In fact these are not so unfamiliar. For any basis {ei} of our
vector space V we can identify the components of vectors with column matrices

u = ujei −→ u =

u
1

...
un


and the value of the tensor εi1···inω

i1 ⊗ · · · ⊗ ωin on n vector arguments is just the determinant
of the matrix whose columns are these column matrices

εi1···inω
i1 ⊗ · · · ⊗ ωin(u(1), · · · , u(n)) = εi1···inu

i1
(1) · · ·uin(n) = det〈u(1)| · · · |u(n)〉 .

But under a change of basis

ui′ = Aiju
j , u′ = Au

one finds

det(u′(1) · · ·u′(n)) = det〈Au(1)| · · · |Au(n)〉
= det[A〈u(1)| · · · |u(n)〉] (definition of matrix product)

= (detA) det〈u(1)| · · · |u(n)〉 , (product rule for matrix determinant)

where we have used the fact that the matrix product A〈u(1)| · · · |u(n)〉 is equivalent to multiplying
each column by A. Thus the determinant of the new column matrices differs from that of the
old ones by the determinant of the transformation itself, explaining why one gets a different
(but proportional) tensor for different choices of basis. One can look at the determinant in this
context as the volume amplification factor (contraction if its absolute value is a proper fraction)
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describing how the volume of the basic parallelepiped formed by the basis vectors changes under
the change of basis, independent of what its value actually is (and which depends on having an
inner product to set the scale).

Now I have to admit I have a sick love for lots of indices, but I wouldn’t drag you through
this index jungle if it weren’t true that the algebra of antisymmetric tensors did not play
a fundamental role in differential geometry.1 Questions of measure for p-dimensional surfaces
necessary for generalizing line integrals and surface integrals of vector fields and volume integrals
of functions all involve this algebra in a way that will turn out to be very beautiful. Trust me.

What happened to symmetric tensors? Except for inner products they turn out not to
be as important, so we don’t need to develop machinery for them, which anyway involves the
symmetric group in a much more nontrivial way. But we’re not finished. First an easy formula

δi1···inj1···jn = εi1···inεj1···jn ,

which is true since the sign of the permutation of the upper indices relative to the lower indices
of the left hand side is just the product of the signs of the permutation from the upper indices
to (1 · · ·n) and then from (1 · · ·n) to the lower indices.

Next we state a hard formula (hard only because we have to do a counting game with the
permutations, just accept it for now) and an easy consequence of it (the second formula follows
from the previous easy formula) for index pair contractions of the generalized Kronecker deltas
and hence for contractions of the product of the two Levi-Civita symbols

δ
i1···ip
j1···jp =

1

(n− p)!δ
i1···ipkp+1···kn
j1···jpkp+1···kn

=
1

(n− p)!ε
i1···ipkp+1···knεj1···jpkp+1···kn

that finishes the foundation. Next we build the house.

Remark.

By iteration of this ugly formula you can get

δ
i1···ip
j1···jp =

(n− q)!
(n− p)!δ

i1···ipkp+1···kq
j1···jpkp+1···kq 1 ≤ p < q ≤ n .

I had to sneak that in. I am not sure this is ever needed, but you can find it in books. We can
extend this to p = 0 if by the Kronecker delta with no indices we mean the number 1.

Note that for q = 2 and p = 1 this reduces to the first result of Exercise 2.3.2

δi1j1 =
(n− 2)!

(n− 1)!
δi1kj1k =

1

(n− 1)
δi1kj1k ,

while its trace immediately leads to the second result of that exercise.

1Maybe I would. . .
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N

It helps to look at the case n = 3 to have a more concrete idea of what all this means, where
there are 6 permutations and the signs are

ε123 = ε213 = ε312 = 1 , ε132 = ε231 = ε321 = −1 .

Then the following identities hold for the definition of the generalized Kronecker deltas

δijk` =

∣∣∣∣δik δi`
δjk δj`

∣∣∣∣ = δikδ
j
` − δi`δjk = 2δi[kδ

j
`] = 2δ[i

kδ
j]
` ,

δijkmn` =

∣∣∣∣∣∣
δim δin δi`
δjm δjn δj`
δkm δkn δk`

∣∣∣∣∣∣ = δimδ
j
nδ

k
` + δinδ

j
`δ
k
m + δi`δ

j
mδ

k
n

−δimδj`δkn − δinδjmδk` − δi`δjnδkm ,
and for various their contractions

δijkmnk = δimδ
j
nδ

k
k + δinδ

j
kδ
k
m + δikδ

j
mδ

k
n

−δimδjkδkn − δinδjmδkk − δikδjnδkm
= (3− 1− 1)δimδ

j
n − (3− 1− 1)δinδ

j
m = δimδ

j
n − δinδjm = δijnm ,

δijkmjk = δij mj = δimδ
j
j − δijδjm = (3− 1)δim = 2δim ,

δijkijk = 2δii = 2 · 3 = 6 .

Whew! Comparing with our previous contraction formula, we see that the final coefficient
is as it should be just (n − p)!, where p is the number of uncontracted index pairs, namely
(3− 2)! = 1! = 1, (3− 1)! = 2! = 2, and (3− 0)! = 3! = 6 respectively.

Remark.

This Kronecker delta business is just a shorthand for giving compact expressions in tensor
notation for 3 × 3 determinants and subdeterminants (and cofactors and minors, minors of
minors, etc.). For example, we have the determinant

δ123
mnpX

mY nZp = X1Y 2Z3 +X2Y 3Z1 +X3Y 1Z2

−X1Y 3Z2 −X2Y 1Z3 −X3Y 2Z1

=

∣∣∣∣∣∣
X1 Y 1 Z1

X2 Y 2 Z2

X3 Y 3 Z3

∣∣∣∣∣∣
and one of the “minors” of the previous determinant, namely the determinant of the 2 × 2
matrix obtained by deleting the last row and column of the previous matrix

δ12
mnX

mY n = X1Y 2 −X2Y 1 =

∣∣∣∣X1 Y 1

X2 Y 2

∣∣∣∣ .
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Minors and cofactors, etc., used to be important in evaluating determinants by hand, but not
any more since technology is at our fingertips. However, the mathematics they represent still
remains important in integration theory where these generalized Kronecker deltas reign.

N

For the case in which A = 〈u(1)| · · · |u(u)〉 we get on R3

det(〈u(1)| · · · |u(u)〉) = εi1···in A
i1

1 · · ·Ainn
= δ1···n

i1···in u
i1

(1) · · ·uin (n)

= n!u[1
(1) · · ·un]

(n) .

This is the single independent component of the antisymmetrized tensor product of the n
vectors

n![ALT(u(1) ⊗ · · · ⊗ u(1))]
i1···in = δi1···inj1···jn u

j1
(1) · · ·ujn (n)

= εi1···inε j1···jn u
j1

(1) · · ·ujn (n)

= εi1···in det(〈u(1)| · · · |u(u)〉) .
The generalized Kronecker delta with p upper and p lower indices arises in a very simple

way as the antisymmetrizer operator modulo the factorial factor

ui1 (1) · · ·uip (p) = δi1j1 · · · δ
ip
jp
uj1(1) · · ·u

jp
(p)

p!u
[i1
(1) · · ·u

ip]

(p) = p! δ
[i1
j1
· · · δin]

jp
uj1(1) · · ·u

jp
(p)

= δi1···inj1···jpu
j1
(1) · · ·u

jp
(p) .

The antisymmetrized tensor product of p vectors in an n-dimensional vector space contains both
information about the p-measure of the p-parallelopiped they form as well as its orientation
within the space just like the cross product does in R3 (almost). An inner product merely sets
the scale of the p-measure.

Example 2.3.2. On R3 with the usual dot product and using only positively oriented or-
thonormal frames for components, the triple scalar product is X · (Y × Z) = εijkX

iY jZk. It
evidently does not need the dot product for its evaluation since it is just the determinant of the
matrix whose rows or columns are the components of the three vector factors. The dot product
cancels out from the combination of the cross product and dot product, since the cross product
itself involves the index raising on the first index

[Y × Z]i = δimεmjkY
jZk

so
X · (Y × Z) = Xnδni[Y × Z]i = Xnδniδ

imεmjkY
jZk = XnδmnεmjkY

jZk

= XnεnjkY
jZk .

From the obvious properties of the determinant encoded in the Levi-Civita permutation symbol,
one gets the usual identities for the cyclic and anticyclic permutations of the vector factors

X · (Y × Z) = Y · (Z ×X) = Z · (X × Y )

=−X · (Z × Y ) = −Y · (X × Z) = −Z · (Y ×X) .
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Classical vector analysis has a set of identities involving other combinations of at least two
vector operations which can be described in this way.

�

Exercise 2.3.4.
quadruple scalar product again

a) The n = 3 summation formula εijkεmnk = δijmn = δimδ
j
n − δinδ

j
m in classical vector

analysis underlies the quadruple scalar product identity

Q(X, Y, Z,W ) = (X × Y ) · (Z ×W ) = (X · Z)(Y ·W )− (X ·W )(Y · Z) .

Show that the component form for these two expressions agree expressing the cross product
and dot product in terms of the Levi-Civita permutation symbol and the Kronecker delta and
then using the summation identity stated at the beginning of this problem, ignoring upper and
lower index positions but maintaining our repeated index summation convention, possible only
if we are working in an orthonormal basis. [Explicitly just make sure all contracted indices are
an up/down pair and use the all up, all down epsilons to make all the other contractions agree
in index position, like: (X × Y ) · (Z ×W ) = εijkX

jY k εimnZmWn = Qmn
ijZmWnX

jY k. What
does this tell you the mixed (2

2)-components of Q are? Thus the quadruple scalar product is
really the 2 index pair Kronecker delta tensor!]

b) Now write the component form of the above identity with the Kronecker deltas in the
right places to respect our index positioning conventions corresponding to lowering indices on
δ(2).

c) The double cross product, also called the triple vector product (it has two crosses, three
vectors), satisfies a well known identity

X × (Y × Z) = (X · Z)Y − (X · Y )Z .

Use the same component technique and the same summation identity to establish that the
component formulas of the left and right hand sides of this equation agree.

d) Show that
W · (X × (Y × Z)) = Q(X, Y, Z,W ) .

Thus the double cross product is really just the tensor Q with its last argument left unevaluated.
We already saw in Example 2.3.1 that the (0

4)-tensorQijmn is really the (2
2) generalized Kronecker

delta tensor δijmn with its first two indices lowered. In short these generalized Kronecker deltas
are lying just below the surface of traditional vector analysis.

�

It would be a shame to move on from this point without deriving an important identity for
the derivative of the determinant of a matrix with respect to one of its entries. Let’s recap
the story of the determinant and epsilons and deltas from the beginning. We introduced the
Levi-Civita epsilon to extend our summation convention to the sum over permutations with
signs

detA = εi1···in A
i1

1 · · ·Ainn
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and since a permutation of the columns of A changes detA by its sign we get

(detA) εj1···jn = εi1···in A
i1
j1 · · ·Ainjn ,

so if we now contract this with another Levi-Civita epsilon we get

(detA) εj1···jn ε
j1···jn = εi1···inεj1···jn A

j1
i1 · · ·Ajn in = δi1···inj1···jnA

j1
i1 · · ·Aj1 in ,

since the delta is defined as the product of the upper and lower epsilons. But εj1···jn ε
j1···jn = n!

since we are summing 1 over n! permutations so finally

detA =
1

n!
δi1···inj1···jnA

j1
i1 · · ·Ajn in =

1

n

(
1

(n− 1)!
δi1···inj1···jnA

j1
i1 · · ·Ajn−1

in−1

)
Aj1 in

≡ 1

n
∆(A)injnA

jn
in ,

which enables us to define the cofactor ∆(A)j i associated with the entry Aij as the determinant
of the matrix obtained by eliminating its row and column. In fact the index positioning means
that the matrix (∆(A)j i) is already the transpose of the usual matrix of cofactors, so all we
need to do is divide it by the determinant to get the inverse matrix according to the well known
formula which we can verify

A−1i
j =

1

det(A)
∆(A)ij .

Using this formula for the moment we get from the previous relation

detA =
1

n
A−1in

jnA
jn
in =

1

n
δin in = 1 ,

which is consistent with the previous definition of the inverse matrix but not a proof that the
formula is justified. Using this formula it follows (using the various definitions) that

A−1in
jnA

jn
k =

1

det(A)
∆(A)injnA

jn
k

=
1

det(A)

1

(n− 1)!
δi1···inj1···jnA

j1
i1 · · ·Ajn−1

in−1A
jn
k

=
1

det(A)

1

(n− 1)!
εi1···inεj1···jnA

j1
i1 · · ·Ajn−1

in−1A
jn
k

=
1

det(A)

1

(n− 1)!
εi1···in

(
εi1...in−1k det(A)

)
=

1

(n− 1)!
δi1···ini1...in−1k

= δink ,

justifying the classic formula.
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Now consider the differential using the product rule

d(det(A)) = d

(
1

n!
δi1···inj1···jnA

j1
i1 · · ·Ajn in

)
=

1

n!

(
δi1···inj1···jndA

j1
i1 · · ·Ajn in + . . .+ δi1···inj1···jnA

j1
i1 · · · dAjn in

)
=

1

(n− 1)!
δi1···inj1···jnA

j1
i1 · · ·Ajn−1

in−1dA
jn
in

= ∆(A)injndA
jn
in

= det(A)A−1in
jndA

jn
in ,

so that in terms of the logarithmic determinant we have finally

d ln | det(A)| = A−1i
jdA

j
i = TrA−1dA = Tr dAA−1 ,

where the last equality follows from the cyclic symmetry property of the trace of a natrix
product. This means that as long as the trace of the matrix differential A−1dA is zero, the
determinant of the matrix A remains constant, which is a useful relation for matrix groups
whose determinant is 1, called unimodular matrix groups. The other famous application of this
formula applies to a symmetric matrix g = (gij) = (gji) with inverse matrix g−1 = (gij) where
this becomes

d ln | det(g)| = gijdgij .

It is a crucial formula needed for deriving the Einstein equations from the Hilbert Lagrangian.
Hilbert Lagrangian? Google it.

Exercise 2.3.5.
differential of the determinant

Justify each of the lines in the above derivation.
�

Exercise 2.3.6.
inverse matrix differential

a) Derive one further identity involving the inverse matrix by evaluating the differential of
the identity

A−1A = I

using the product rule and then right multiplying by A−1 to then solve for

dA−1 = −A−1dAA−1

b) If we apply this to a symmetric matrix g of components of an inner product, show that
this becomes

dgij = −gimdgmngnj = −gimgindgmn .
This is a second crucial formula for deriving the Einstein equations.
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�

Exercise 2.3.7.
relative differential rotations and boosts

In exercise 1.4.1 we evaluated the differentials of the rotation and boost matrices in the
plane. Here we evaluate the differential rotation and boost relative to the image point.

a) Consider the rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Evaluate R−1dR and show that its trace is zero, as it should be since the determinant of this
matrix is identically 1.

b) Consider the hyperbolic rotation matrix

B(α) =

(
coshα sinhα
sinhα coshα

)
.

Evaluate B−1dB and show that its trace is zero, as it should be since the determinant of this
matrix is identically 1.

�

Exercise 2.3.8.
antisymmetry of the electromagnetic field tensor

Recall Exercise 1.6.6 introducing the electromagnetic field tensor matrix F = (F i
j). Evalu-

ate the index lowered matrix Fij = ηikF
k
j and verify that it is an antisymmetric matrix. This

is the condition that F lie in the Lie algebra of the Lorentz group. The electric part of this
matrix generates a boost while the magnetic part generates a rotation.

�
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2.4 Antisymmetric tensors

We need names for the vector spaces of tensors of given types over an n-dimensional vector
space V with basis ei and dual basis ωi. Let T (p,q)(V ) be the vector space of (pq)-tensors over
V . Each tensor S in this space is of the form

S = S
i1···ip
j1···iq ei1 ⊗ · · · ⊗ eip ⊗ ωj1 ⊗ · · · ⊗ ωjq︸ ︷︷ ︸

basis tensors

, where S
i1···ip
j1···iq = S(ωi1 , . . . , ωip , ej1 , . . . , ejq)

are its components with respect to the basis of V . The underbraced factor is a basis of T (p,q)(V ),
labeled by p+ q indices, each taking n values, so the dimension of this space of tensors is np+q,
and the components of S with respect to this basis are what we refer to as components with
respect to ei.

The original vector space and its dual space are just V = T (1,0)(V ) and V ∗ = T (0,1)(V ) in
this notation. For 0 ≤ g ≤ n, let Λ(p)(V ) = ALT T (p,0)(V ) and Λ(p)(V )∗ = ALT T (0,p)(V ) be the
linear subspaces of antisymmetric (p0)-tensors (called p-vectors) and antisymmetric (0

p)-tensors
(called p-covectors or p-forms) respectively. These tensors are of the form

T = T i1···ip ei1 ⊗ · · · ⊗ eip , T i1···ip = T [i1···ip] ,
S = Si1···ip ω

i1 ⊗ · · · ⊗ ωip , Si1···ip = S[i1···ip] .

Antisymmetric tensors cannot have nonzero components with any repeated indices, since in-
terchanging any pair of indices must change the sign of the result, but an interchange of an
identical pair does change the component so it can only be zero. For example

Sijk = −Sjik −→ S112 = −S112 −→ S112 = 0 .

Thus an antisymmetric tensor can have at most n indices without being identically zero. The
no-repeat condition tells us the dimension of the space of antisymmetric tensors of a given
“rank” p, or equivalently the number of “independent components” of such a tensor. The
number of p-tuples of distinct integers chosen from the set of integers (1, . . . , n) is by definition
the number of combinations of n things taken r at a time

dim Λ(p)(V ) = dim Λ(p)(V )∗ =

(
n

p

)
=

n!

p!(n− p)! .

If we define Λ(0)(V ) = Λ(0)(V )∗ = R, i.e. the (0
0)-tensors or scalars are identified with antisym-

metric tensors with no indices (1 index tensors are antisymmetric by default), then we have
(n+ 1) such spaces for the contravariant and covariant cases which pair off by dimension since(

n

p

)
=

(
n

n− p

)
.

So from the symmetries of these binomial coefficients, the cases p = 0 and p = n are both
1-dimensional, p = 1 and p = n − 1 are both n-dimensional, p = 2 and p = n − 2 are both
n(n− 1)/2-dimensional, etc.
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Example 2.4.1. Consider the case n = 3. A scalar S has a single independent “component.” A
vector Siei has 3 independent components (S1, S2, S3). A 2-vector Sijei⊗ ej has 3 independent
components (S23, S31, S12). A 3-vector Sijkei ⊗ ej has single independent component S123.

�

Any time we get our hands on a vector space, we try to find a convenient basis. We can do
the same here. Consider the p-vector case, where we make the definition

δ
i1···ip
j1···jpei1 ⊗ · · · ⊗ eip ≡ ei1···ip ≡ p! e[i1 ⊗ · · · ⊗ eip] .

Using the antisymmetry condition

Si1···ip = S[i1···ip] =
1

p!
δ
i1···ip
j1···jpS

j1···jp ,

then substituting it into the expression for the tensor yields

S = Si1···ipei1 ⊗ · · · ⊗ eip =
1

p!
Sj1···jpδ

i1···ip
j1···jpei1 ⊗ · · · ⊗ eip

=
1

p!
Sj1···jpej1···jp =

∑
i1<···<ip

Sj1···jpej1···jp ,

since each distinct permutation in the sum is repeated p! times with the same value, so it is
enough to sum only over ordered p-tuplets of indices, without the p! factor. For example

1
6
Si1i2i3ei1i2i3 = 1

6
(S123e123 + S231e231 + S312e312 − S132e132 − S213e213 − S321e321) = S123e123 ,

since both factors in each term only change sign with each permutation, leading to no change
in their product.

The set {ei1···ip}i1<···<ip is a basis for p-vectors since any p-vector can be expressed as a linear
combination of them and they are linearly independent.

Exercise 2.4.1.
linear independence of basis p-vectors

We have only shown that any p-vector is a linear combination of these basis p-vectors. How
do we show linear independence, i.e., that∑

i1<···<jp

Sj1···jpej1···jp = 0 −→ Sj1···jp = 0

holds for all possible index values? Hint: evaluate this equation on (ωi1 , . . . , ωip).

�
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Example 2.4.2. Consider the case n = 3, p = 2.

S = Sijei ⊗ ej
= S12e1 ⊗ e2 + S21e2 ⊗ e1 + S13e1 ⊗ e3 + S31e3 ⊗ e1 + S23e2 ⊗ e3 + S32e3 ⊗ e2

= S12 (e1 ⊗ e2 − e2 ⊗ e1)︸ ︷︷ ︸
e12

+S13 (e1 ⊗ e3 − e3 ⊗ e1)︸ ︷︷ ︸
e13

+S23 (e2 ⊗ e3 − e3 ⊗ e2)︸ ︷︷ ︸
e23

= S12e12 + S13e13 + S12e12 = S23e23 + S31e31 + S12e12

For this case it turns out that the ordered basis {e23, e31, e12} is more useful because of its cyclic
properties, as we will see later.

�

Well, rather than write
∑

i1<···<ip (
∑

-notation is bad, remember) we just sum over all
orderings and divide by p! when we represent a p-vector abstractly, or we introduce more
notation

S =
1

p!
Si1···ipei1···ip =

∑
i1<···<ip

Si1···ipei1···ip ≡ Si1···ipe|i1···ip| ≡ S|i1···ip|ei1···ip .

Vertical bars enclosing a p-tuple of antisymmetric indices mean sum only over ordered p-tuple
values and it clearly does not matter which set of indices is enclosed.

Exercise 2.4.2.
p-vectors in R4

For the case n = 4, write out explicitly the following sums

S = Sije|ij| (6 terms) , T = T ijke|ijk| (4 terms) .

It is helpful to organize the terms in an order that groups them first by whether or not 4 is
present as an index, and next by which member of the triplet (1, 2, 3) is missing.

�
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2.5 Symmetric tensors and multivariable Taylor series

While symmetric tensors are not quite as important as antisymmetric tensors, they still merit
some attention! Multivariable Taylor series involve symmetric tensor coefficients and turn
out to be quite useful for many reasons, one particularly physically interesting one of which
is the theory of multipole moments (monopole, dipole, quadrupole, etc.) which characterize a
distribution of mass or charge in some finite region around the origin of coordinates with respect
to their long distance gravitational or electromagnetic effects. In studying curved surfaces, a
multivariable Taylor series about a point of interest helps us analyze the local curvature, so it
is a useful tool even for pure geometry.

Consider an infinitely differentiable function f of the Cartesian coordinates xi on Rn. We
can represent it by a power series at the origin. It is almost as easy to establish a formula for
a multivariable Taylor series as for the single variable case

f(x) =
∞∑
p=0

Ti1···ipx
i1 · · · xip = T + Tix

i +
1

2!
Tijx

ixj +
1

3!
Tijkx

ixjxk + · · ·

where the Taylor coefficients are the components of symmetric tensors

Ti1···ip = ∂i1 · · · ∂ipf(0) =
∂pf

∂xi1 · · · ∂xip (0) = T(i1···ip)

because the order of the partial derivatives does not matter. Clearly under linear transforma-
tions of the coordinates xi, these must transform as the components of (0

p) tensors so that their
contraction with the p factors of the coordinate position vector is a scalar so that the Taylor
expansion produces the same values of the function at a given position.

Establishing this formula for the Taylor coefficients is a simple calculation using the basic
partial derivative formula ∂jx

i = ∂xi/∂xj = δij and the symmetry of the coefficients. The first
few derivatives of the Taylor expansion are

∂mf(x) = Tiδ
i
m +

1

2!
Tij(δ

i
mx

j + xiδjm) +
1

3!
Tijk(δ

i
mx

jxk + xiδjmx
k + xixjδkm) + · · ·

= Tm +
1

2!
(Tmjx

j + Timx
i) +

1

3!
(Tmjkx

jxk + Timkx
ixk + Tijmx

ixj) + · · ·

= Tm +
1

1!
Tmjx

j +
1

2!
Tmjkx

jxk + · · ·

∂n∂mf(x) =
1

1!
Tmjδ

j
n +

1

2!
Tmjk(δ

j
nx

k + xjδkn) + · · ·

= Tmn +
1

2!
Tmjk(Tmnkx

k + Tmjnx
j) + · · ·

= Tmn + Tmnkx
k + · · ·

Evaluating these at x = 0 leads to

T = f(0) , Tm = ∂mf(0) , Tmn = ∂m∂nf(0) , . . . , Ti1···ip = ∂i1 · · · ∂ipf(0) , . . . .
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Exercise 2.5.1.
multivariable Taylor series example

Using a computer algebra system, evaluate the multivariable Taylor series approximation
to f(x, y) = sin(x + 2y + x2 + 4y2) up through the third order terms. Compare the plots of
the function and its approximation up to various orders on the rectangle x = −2..2, y = −1..1.
Try deriving the coefficients up to the quadratic terms by hand.

�

Exercise 2.5.2.
Quadratic function graph approximation to sphere, ellipsoid at a pole

a) Displacing a sphere of radius a > 0 from the origin a units up the z-axis makes it pass
through the origin where its tangent plane is horizontal: x2 + y2 + (z − a)2 = a2. Solving
this equation for the value of z on the lower hemisphere yields the function f(x, y) = a −√
a2 − x2 − y2, for which the value of the function and its first derivatives are zero at the

origin, so that its Taylor series there starts at the quadratic terms. The quadratic coefficients
define the symmetric matrix T = (Tij) as above (factor of 1/2 removed). Find this matrix.
What are its eigenvalues? What is the value of the trace and determinant of this matrix? Use
your computer algebra system Help to find the multivariable Taylor approximation command
and check your hand results.

b) Repeat for the underside of the ellipsoid

x2

a2
+
y2

b2
+

(z − c)2

c2
= 1

at the origin, assuming a > 0, b > 0, c > 0.
c) Now we rotate the horizontal axes by 45 degrees in an explicit ellipsoid

((x− y)/
√

2))2

4
+

((x+ y)/
√

2))2

9
+ (z − 1)2 = 1

and solve for the underside value of z to define the function f

z = 1− 1

12

√
144− 26x2 + 20xy − 26y2 = f(x, y) .

Evaluate the Taylor approximation to this function at the origin (use technology!) and identify
the quadratic coefficient matrix (Tij), and find its eigenvalues and eigenvectors and use them
to “find” the orthogonal transformation

x′ = (x− y)/
√

2 , y′ = (x+ y)/
√

2

which diagonalizes it to read off its diagonal values. Recall that this matrix is the matrix of
second derivatives at the origin. The diagonalized values of the second derivative matrix at a
point where the first derivatives are zero are called the principal curvatures of the surface in
this context and their product (the determinant of the matrix) is called the Gaussian curvature.
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When not at a critical point of the function whose graph is the surface, the tangent plane is
tilted rather than horizontal and a normalization factor must be taken into account as in the
formula for the curvature of a plane curve at a point where the tangent line is not horizontal:
κ(x) = |f ′′(x)|/(1 + f ′(x)2)1/2. We’ll get to this in Part 2.

�

Symmetric tensors and multipole moments in physics

This section can be safely ignored if you are not a physics student. It just shows that totally
symmetric tensors do play some useful role in a limited number of applications but not as
universal as antisymmetric tensors which are intimately tied to notions of linear independence
and measure.

A distribution of mass or charge in a finite region of space creates a force field around it
which is an integral of all the inverse square forces from each differential element of the source.
This conservative force field outside the source can be obtained from the gradient of a potential
function. By convention a sign change for the gradient is included so that the force points
in the direction of decreasing potential. The actual distribution of the mass or charge can be
replaced by an equivalent point source with an infinite tower of multipole moments which lead
to the same force field as the actual distribution, in a way similar to the way in which the value
of a function and all of its derivatives at a point can be used to reconstruct the whole function
away from the point as an infinite series. For concreteness, consider the gravitational case.

The inverse square force per unit mass on a point particle of mass m at position ~a by a
point particle of mass M at position ~r points from ~a back towards ~r along the unit vector n̂

~F (~a)

m
= GMn̂

1

|~r − ~a|2 = GM
~r − ~a
|~r − ~a|3 = −~∇Φ(~a) ,

where the potential function is Φ(~a) = −GM/|~r − ~a|. This is easily extended to a distribution
of mass with a density function (mass per unit volume) ρ(~r) by applying these formulas to each
differential of mass dM = ρ(~r)dV and integrating them over the whole distribution. Clearly it
is easier to integrate up the scalar potential than the vector force field

Φ(~a)/G = −
∫
ρ(~r)dV

|~r − ~a| .

Next we expand the inverse factor of the relative distance in a Taylor series in ~r about the
origin and integrate the infinite series term by term. The Taylor expansion

1

R
≡ 1

|~r − ~a| =
∞∑
p=0

1

p!

(
∂i1 · · · ∂ip

1

R

)∣∣∣∣
~r=0

xi1 · · ·xip

requires repeated differentiation involving the relation

∂iR = ∂i[δmn(xm − am)(xn − an)]1/2 = [δmn(xm − am)(xn − an)]−1/2δin(xn − an) = R−1(xi − ai)
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so the first two derivatives are

∂iR
−1 = −R−2∂iR = −R−3(xi − ai)

and

∂j∂iR
−1 = −∂j

(
xi − ai
R3

)
= · · · = 3(xi − ai)(xj − aj)− δijR2

R5
,

which has the property

∇2R−1 = δij∂i∂jR
−1 = R−5δij(3(xi − ai)(xj − aj)− δijR2) = R−5(3R2 − 3R2) = 0 .

Evaluating these at the origin leads to R|~r=0 = |~a|−1 and

∂iR
−1|~r=0 = |~a|−3ai , ∂j∂iR

−1|~r=0 =
3aiaj − δij|~a|2

|~a|5 , where δij∂j∂iR
−1|~r=0 = 0 .

Thus

−Φ(~a)/G =

∫
ρ(~r)

∞∑
p=0

1

p!

(
∂i1 · · · ∂ip

1

R

)∣∣∣∣
~r=0

xi1 · · ·xipdV .

=
∞∑
p=0

1

p!

(
∂i1 · · · ∂ip

1

R

)∣∣∣∣
~r=0

∫
ρ(~r)xi1 · · · xipdV︸ ︷︷ ︸
≡M i1···ip

=
M

|~a| +
Mia

i

|~a|3 +
Mij(3a

iaj − δij|~a|2)

2|~a|5 + · · · .

defines an infinite family of symmetric tensors M i1···ip = M (i1···ip) called the multipole moments
of the mass distribution. The first multipole moment M =

∫
ρdV called the monopole is just

the total mass. The second multipole moment M i =
∫
ρxidV called the dipole defines the

center of mass through xiCM = M i/M , since the dipole vanishes with respect to the new origin
at that point:

∫
ρ(xi − xiCM)dV = 0. The third multipole moment M ij =

∫
ρxixjdV is called

the quadrupole and is contracted with the tracefree coefficient ∂i∂jR
−1 in the Taylor series, so

only its tracefree part contributes

MijN
ij = (Mij −

1

3
δijδ

mnMmn +
1

3
δijδ

mnMmn)N ij

= (Mij −
1

3
δijδ

mnMmn)N ij +
1

3
δijδ

mnMmnN
ij

= (Mij −
1

3
δijδ

mnMmn)N ij

if N ij is tracefree: δijN
ij = 0. This tracefree part of the second multipole is what is referred to

as the quadrupole tensor

Qij = Mij −
1

3
δijδ

mnMmn , δijQ
ij = 0 ,



184 Chapter 2. Symmetry properties of tensors

and in fact the same is true of higher moments, for which only the tracefree part contributes
to the potential expansion since their coefficients are tracefree, a consequence of the fact that
the function R−1 satisfies the Laplacian equation δij∂i∂jR

−1 = 0.
Correspondingly the monopole term in the expansion of the potential is exactly the potential

due to a point particle of mass M at the origin, while the dipole term is the additional part of
the field which would result if one divided the mass into two equal parts M/2 displaced a small
distance equidistant from the origin separated by the difference position vector M i/M . The
quadrupole term would instead result from dividing the mass into four equal parts equidistant
from the origin such that the dipole moment is zero, etc. In this way the gravitational field of
the entire actual continuous distribution of mass outside that distribution is represented by an
equivalent point particle at the origin with complex limiting structure residing in the infinite set
of multipole moments. It turns out that most significant contribution to gravitational radiation
from a time-dependent mass distribution is proportional to the second time derivative of the
quadrupole moment.

Our interest here is not in the details but only to see the context in which a large family of
(tracefree) symmetric tensors play an important physical role in physical interactions. The same
discussion applies to the electromagnetic field, where elementary particles are characterized by
electric or magnetic monopole charge and electric or magnetic dipole moments, etc. In this
case one can have a neutral particle (zero charge) with a dipole field since one has positive and
negative charge and so can balance them, as in a water molecule, where the dipole moment of
the electric field gives water many of its wonderful properties that sustain life.

Remark.
In the preceding derivation we essentially showed that the set of all functions

r−(2n+1)

(
xi1 · · ·xin − r2

3
δ(i1i2xi3 · · ·xin)

)
= r−(n+1)Y i1...in

are solutions of Laplace’s equation, which by definition are called harmonic functions. If express
the position vector in spherical coordinates 〈x1, x2, x3〉 = 〈r sin θ cosφ, r sin θ sinφ, r cosφ〉, then
xi/r is only a function of the angles (θ, φ), i.e., is a function on the unit sphere, so the functions
functions Y i1...in are only functions on the unit sphere as well. Once we are familiar with
spherical coordinates, we will return to this example to see the connection of these so called
Cartesian harmonics with the spherical harmonics.

N

Moments of inertia?

What are those crazy moment of inertia functions from multivariable calculus that were never
explained? You just had to practice integration using their formulas perhaps, or that section
was just completely ignored. Well, this is easy to explain and returns us to one of our familiar
tensor examples.

In elementary physics you learn that the kinetic energy function is just one half the mass
times the square of the speed K = 1

2
mv2 = 1

2
m~v · ~v. This energy function is crucial in
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understanding and solving the equations of motion for a body. Suppose our point mass body is
rotating about a fixed axis with vector angular velocity ~Ω. If its position vector is ~r = 〈x1, x2, x3〉
then you also learn that the velocity of the body is just the cross product ~v = ~Ω × ~r, so the
kinetic energy function is just the quadruple scalar product

K =
1

2
m(~Ω× ~v) · (~Ω× ~v) =

1

2
m(~Ω · ~Ω~r · ~r − ~Ω · ~r ~Ω · ~r)

=
1

2
m
(
δijδmnx

mxn − xixj
)

ΩiΩj .

Now suppose instead of a single point particle of mass m, we have localized rigidly rotating
distribution of mass with density function ρ so that dm = ρdV represents a differential of mass.
We must then integrate over the mass distribution to get the total kinetic energy

T =
1

2

(∫
ρ(δijδmnx

mxn − xixj)dV
)

ΩiΩj ≡
1

2
I ijΩiΩj ≡

1

2
Ii′j′Ω̃

iΩ̃j .

Thus the kinetic energy is a quadratic form in the angular velocity whose coefficient matrix
defines the components of the symmetric moment of inertia tensor. Reverting back to the more
familiar notation (x, y, z) and r = |~r| = (x2 + y2 + z2)1/2, we have

I33 =

∫
ρ(r2 − z2)dV =

∫
ρ(x2 + y2)dV ,

I11 =

∫
ρ(r2 − x2)dV =

∫
ρ(y2 + z2)dV ,

I22 =

∫
ρ(r2 − y2)dV =

∫
ρ(x2 + z2)dV ,

I12 =

∫
ρ(−xy)dV , I13 =

∫
ρ(−xz)dV , I23 =

∫
ρ(−yz)dV . .

For a homogeneous solid the density is constant: ρ = ρ0 = M/V , where M is the total mass of
the body and V is the total volume.

The diagonal components of this tensor are the integral against the square of the distance
from the axis corresponding to the repeated index: I33 integrates the density against the square
of the distance from the z-axis, etc. The offdiagonal components contain information necessary
for axes not aligned with the coordinate axes in the same way that the offdiagonal components of
the matrix of second partial derivatives are necessary to calculate the second partial derivative
in a direction not aligned with the coordinate axes. However, for any surface of revolution about
the z-axis, the off-diagonal components are zero by the reflection symmetry through the origin
in the x-y plane, leaving only the diagonal components nonzero. When the moment of inertia
tensor is diagonalized (which is always possible through a rotation since it is a symmetric
matrix), the axes are referred to as the principal axes of the body. Thus for a surface of
revolution about the vertical axis, the usual Cartesian axes are principal axes for the body.
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Exercise 2.5.3.
moments of inertia of hemisphere

Consider the upper hemisphere x2 + y2 + z2 = a2, z ≥ 0 with a constant (homogenous)
mass density ρ0 = M/V and volume V = 2

3
πa3. Because of its rotational symmetry about the

z axis, the x and y directions are equivalent, so I11 = I22 and I31 = I32, leaving only I33 and
I12 remaining for a total of only 4 independent components of the 6 component matrix to be
evaluated.

a) Use a computer algebra system to evaluate first the easier integral I33 in terms of M and
a. (It would be smart to use cylindrical coordinates to iterate the integral.)

b) Now evaluate the harder one I11.
c) While we are playing around, find the center of mass of the hemisphere by calculating

the ratio of the dipole (along the z axis by symmetry) and the monopole (total mass) moments.
d) If you are only interested in a quickie, find the single independent component of the

moment of inertial tensor for a whole sphere of mass M , a result found in any introductory
physics textbook or at Wikipedia: I = 2

5
Ma2 = I11 = I22 = I33, where all the off-diagonal

components are zero by symmetry. (Careful, now the mass M is twice the previous one, or
the density is half the previous one.) Can you think why this result should be the same as the
result for a hemisphere alone?

e) If we rotate the hemisphere by tilting the vertical axis, it would be difficult to evaluate
these integrals to get the corresponding components of the moment of inertia tensor, but we
don’t need to since we can simple transform the components by the rotation to get its new
more complicated matrix of components. Let’s not do any calculation here and call it a day. (If
you really insist, suppose we rotate by 45 degrees from the positive z-axis towards the positive
x-axis. Calculate the new components of the tensor using an appropriate rotation matrix.)

�

Exercise 2.5.4.
moment of inertia for snow cone

a) Use a computer algebra system to evaluate the moments of inertia tensor for a homo-
geneous snow cone of total mass M and volume V with vertex at the origin whose axis of
symmetry is the z-axis, with base radius a and height h and lateral side length R =

√
a2 + h2,

topped off by part of the sphere of radius R at the origin, namely the solid region inside the
sphere of radius R above the plane z = 0 and inside the cone z = (h/a)

√
x2 + y2. The conical

lateral surface can be described in cylindrical coordinates (ρ, φ, z) = (
√
x2 + y2, arctan(y, x), z),

where arctan(y, x) is a piecewise function

arctan(y, x) =


arctan(y/x) x > 0 first, fourth quadrants

arctan(y/x) + π x < 0, y > 0 second quadrant

arctan(y/x)− π x < 0, y > 0 second quadrant

by z = ρ, 0 ≤ φ ≤ 2π with 0 ≤ ρ ≤ a, 0 ≤ φ ≤ 2π, or in spherical coordinates (r, θ, φ) =
(
√
x2 + y2 + z2, arccos z/r, φ) simply by θ = arctan(h/a), 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π. The cap can
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be described in cylindrical coordinates by z =
√
R2 − ρ2, 0 ≤ φ ≤ 2π, 0 ≤ ρ ≤ a and in spherical

coordinates by r = R, 0 ≤ θ ≤ arctan(h/a), 0 ≤ φ ≤ 2π. We will study these coordinates in
detail in chapter 4, but based on your knowledge of multivariable calculus, evaluate the nonzero
components I11 = I22 and I33. This can serve as a rotating top for a later problem.

b) Show that the result for the flat topped cone alone (a right circular cone) is

I11 = I22 =
3

5
M

(
a2

4
+ h2

)
, I33 =

3

10
Ma2

where M is the total mass.
c) Google “spinning top” for images of possible shapes for this old fashioned toy, which is

described by the dynamics of a rigid body with one point fixed, as we will study once we have
the appropriate tools.

�
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3.1 Whoa! Review of what we’ve done so far

Whoa! (This is a western movie cowboy expression for “stop,” usually directed at horses by
their riders. Don’t take my word for it, google the term.)

Okay, before going on, let’s see what we’ve done so far to reassure ourselves that we have a
general idea what we have done. Just let V = Rn. We have been expanding on the following
structure

• (Rn, “·”, det)
where

– the vector space Rn has the standard basis {ei},
– “·” is the standard Euclidean dot product with components: ei · ej = δij,

– det is the multilinear determinant function, whose absolute value gives the volume of
n-parallelepipeds, and whose vanishing or nonvanishing tests the linear independence
of a set of vectors, and whose sign tests the ordering of a set of vectors.

• We started down the road to tensors with the key notions

– the dual space (Rn)∗,

– the dual basis {ωi}: just the “Cartesian coordinate functions” {xi},
– duality ωi(ej) = δij : just the definition of the components of the standard basis

vectors, equivalent to xi(0, . . . , 0, 1, 0 . . . , 0) = 0 or 1, the Cartesian components of
the unit vectors along the axes: the ith component of ei is 1, the rest 0,

– the dual of the dual space identification with the identity map

u(f) ≡ f(u) = fiu
i , ej(ω

i) ≡ ωi(ej) = δij .

So we know how to evaluate vectors on forms and vice versa, and the index pair contraction
(summation) just symbolizes evaluation of a real-valued linear function of a vector or a
covector when expressed in terms of its components

u = uiei , ui = ωi(u) ,

f = fiω
i , fi = ei(f) = f(ei) .

• We then generalize to multilinear real-valued functions accepting p covector arguments
and q vector arguments

T (p,q)(Rn) 3 T = T
i1···ip
j1···jqei1 ⊗ · · · ⊗ eip ⊗ ωj1 ⊗ · · · ⊗ ωjq ,

where the tensor product just holds the vectors and covectors apart in a certain order
until they acquire arguments to be evaluated on, which results in a real number. The
value of T is

T (f, g, · · · , u, v, · · · ) = T
i1i2···ip
j1j2···jqei1(f)ei2(g) · · ·ωj1(u)ωj2(v) · · ·

≡ T
i1i2···ip
j1j2···jpfi1gi2 · · ·uj1vj2 · · · .
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The value of T on basis vectors and covectors defines its components

T (ωi1 , ωi2 , · · · , ej1 , ej2 , · · · ) = Tm1m2···mp
n1n2···nq [ωi1 ]m1 [ω

i2 ]m2 · · · [ej1 ]n1 [ej2 ]
n2 · · · = T

i1i2···ip
j1j2···jq ,

where
[ωi1 ]m1 = δi1m1 , [ej1 ]

n1 = δn1
j1

define the components of the basis and dual basis vectors with respect to the same basis.

We agree to keep the covariant arguments first and the vector arguments last unless it is
convenient to retain mixed positioning, as can occur with index raising and lowering. So
for example

(S ⊗ T )ij klei ⊗ ej ⊗ ωk ⊗ ωl = (Sikei ⊗ ωk)⊗ (T j lej ⊗ ωl) = SikT
j
l ei ⊗ ej ⊗ ωk ⊗ ωl .

• The Kronecker delta δij is the component matrix of the identity tensor I = δj iej ⊗ ωi =
ei⊗ωi, which accepts a covector and vector argument and evaluates one against the other
(in either order, since they are defined to be the same). This is just the natural evaluation
of a covector on a vector to produce the value of a linear function, called contraction of
the one up, one down index pair. This contraction operation can be extended to any
pair of upper and lower indices on the same tensor or on tensor products of tensors. For
example, the following contraction of the tensor product of two (1

1)-tensors corresponds
to matrix multiplication of their component matrices

SikT
j
l ei ⊗ ej ⊗ ωk ⊗ ωl 7→ SikT

j
l ei ⊗ ωk(ej)ωl

= SikT
j
l δ
k
j ei ⊗ ωl = SikT

k
l ei ⊗ ωl .

These tensors describe linear transformations of Rn into itself, with the identity tensor
describing the identity transformation.

• The dot product

“·” = G = Gij ω
i ⊗ ωj = δij ω

i ⊗ ωj =
n∑
i=1

ωi ⊗ ωi

is a symmetric tensor whose components in the standard basis numerically equal the
Kronecker delta

Gij = G(ei, ej) = ei · ej = δij

so the self-inner product is a sum of squares

u · u = G(u, u) =
n∑
i=1

[ωi(u)]2 =
n∑
i=1

(ui)2

while the value on two vectors is the usual sum of products of like components

u · v = G(u, v) = Gij ω
i(u)⊗ ωi(v) = Giju

ivj = δiju
ivj =

n∑
i=1

uivi .
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We interpret the dot product as a (0
2)-tensor whose matrix of components in the standard

basis equals the unit matrix, i.e., the standard basis is orthonormal. Rn equipped with
this natural inner product makes it into Euclidean space with its geometry of lengths and
angles. We also considered more general inner products and in particular the Lorentz
inner product on Rn with diagonal metric matrix (ηij) of all unit entries except the first
which is −1, extending the discussion to Minkowski spacetimes of any dimension. In our
enthusiasm we also examined in Exercises two trace inner products on each space of n×n
matrices, one of which is the Euclidean standard dot product on the equivalent Rn2

space,
and the other of which makes the symmetric subspace orthogonal to the antisymmetric
subspace with positive self-inner products for the former space and negative self-inner
products for the latter space. The latter inner product is actually important in the
context of linear transformations.

• Determinants and antisymmetric tensors.
By linearity we can expand the determinant as a multilinear function of n vectors in Rn

det(u, v, · · · , w)

= det(ei1 , ei2 , . . . , ein)︸ ︷︷ ︸
≡ εi1i2···in ≡ δ12···n

i1i2···in

ui1vi2 · · ·win (convenient definitions)

= εi1i2···inu
i1vi2 · · ·win =

∑
σ∈Sn

(sgnσ)uσ(1)vσ(2) · · ·wσ(n) (permutation definition of det)

= δ1···n
i1···inu

i1vi2 · · ·win = n!u[1v2 · · ·wn] (definition of antisymmetrization)

so the determinant is the tensor

det = εi1···inω
i1 ⊗ · · · ⊗ ωin = n!ω[1 ⊗ · · · ⊗ ωn] .

This led to the introduction of the Levi-Civita permutation sign symbol εi1...in and the
generalized Kronecker delta symbols.

Any antisymmetric (0
n)-tensor T on Rn (which just means it changes sign under the inter-

change of any two arguments) is completely determined by a single nonzero component

Ti1···in = tεi1···in , t = T12···n .

These are called n-forms, generalizing the single index 1-forms which are covectors. Pos-
itively (negatively) oriented n-forms are those for which t > 0 (t < 0). Correspondingly a
basis {ei′} is called positively (negatively) oriented if det(e1′ , e2′ , · · · , en′) > 0 ( < 0). In
R3 we refer to right-handed (+ orientation) and left-handed (− orientation) bases.

In fact
ui1vi2 · · ·win︸ ︷︷ ︸

n factors

≡ T i1i2···in

is a (n0 )-tensor with antisymmetric part [ALT(T )]i1i2···in = u[i1vi2 · · ·win] which has a single
independent component

[ALT(T )]1···n = u[1v2 · · ·wn] =
1

n!
det(u, v, · · · , w) .



3.1. Whoa! Review of what we’ve done so far 193

The antisymmetric tensor product turns out to be very useful. We’ll get to it next.
But notice that to get back to our useful determinant function we have to multiply the
antisymmetric part by n!.

• Matrix notation.

We did all this stuff first in matrix notation. Let’s go back to it to remind ourselves. The
basic index suppression mechanism is the introduction of row and column matrices and
matrix multiplication of adjacent column (left) and row (right) matrices

u ∈ Rn 7→ u = (ui) , (vector = column matrix)

f ∈ [Rn]∗ 7→ fT = (fi) , (covector = row matrix)

f(u) = fiu
i = fT u , (matrix product gives evaluation)

u⊗ f 7→ u fT = (uifj) (tensor product)

where to keep indices correctly positioned without indices, we need the transpose opera-
tion

ui ≡ δiju
j = components of u[ ∈ [Rn]∗ 7→ uT , (column to row matrix)

ui = δijuj uT 7→ (uT )T = u . (row to column matrix)

The transpose corresponds to raising and lowering indices in this correspondence. The
dot product is then

G(u, v) ≡ u · v = δiju
ivj = uiδijv

j = uT I v = uTv

and the multilinear determinant function is

det(u, v, · · · , w) = det(〈u|v| · · · |w〉︸ ︷︷ ︸
matrix

) . (in the original matrix determinant sense)

• Change of basis.

Let A = B−1 be an active (invertible) linear transformation of Rn, under which all the
points of the space u move to new positions ū = A(u), namely ūi = Aiju

j. If instead we
apply its inverse B to the basis vectors to define new basis vectors with primed indices:
ei′ = A−1 j

iej = Bj
iej, we obtain a passive coordinate transformation in which the points

u = uiei = ui
′
ei′ remain fixed but their components with respect to the basis change since

the basis changes: ui
′
= Aiju

j.

Thus the components of u with respect to {ei′} equal the components of ū with respect
to {ei} as should be clear from Fig. 3.1: ui

′
= ūi. In words, the components of a given

vector with respect to the new basis are the same as the components of the new actively
transformed vector with respect to the old basis. We can work through the basis and dual
basis point of view for any vectors space V to see how the components behave this way.
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u fixed but express in new basis {ei′}
obtained by active linear transformation
of standard basis—new components ui

′

passive transformation

basis {ei} fixed but vector u changes to
new vector ū with new components ūi

with respect to the old basis

active transformation

Figure 3.1: The idea of a passive linear transformation versus an active linear transformation.

Consider the transformation and its inverse for both V and V ∗ interpreted as a change
of the basis.

ei′ = Bj
iej = A−1j

iej , ei = B−1j
iej′ = Aj iej′ ,

ωi
′
= B−1i

jω
j = Aijω

j , ωi = Bi
jω

j′ = A−1i
jω

j′ .

Notice the row-column symmetry in these relations. The columns of B are the old com-
ponents of the new basis vectors, while the rows of its inverse A are the old components
of the new dual basis. Similarly the columns of A are the new components of the old
basis vectors, while the rows of B are the new components of the old dual basis.

Then evaluating the transformation of dual basis relation on u

ωi
′
(u) = ui

′
, ωj(u) = uj

gives the transformation of its components under the change of basis

ui
′
= Aiju

j

or in matrix form

u′ = Au or u = A−1 u′ .

But by definition Aiju
j are the components of the active linear transformation of u by A,

i.e., ui
′
= ūi.

We can use these relations to re-express the dot product on Rn

u · v = uT I v = (A−1 u′)T I (A−1 v′) = (u′)T (A−1)T I A−1 v′ = (u′)TG′ v′ ,

Gi′j′ = A−1m
i δmnA

−1n
j = A−1m

iA
−1n

j δmn ,

which is the “tensor transformation law” for a (0
2)-tensor. Alternatively, one has

Gi′j′ = ei′ · ej′ = A−1m
iA
−1n

j em · en = A−1m
iA
−1n

j δmn .
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The orthogonal matrices leave the components of the dot product unchanged, taking the
orthonormal standard basis of Rn into new orthonormal bases. For other inner prod-
ucts this defines the associated orthogonal matrix group, like the Lorentz group for the
Minkowski spacetimes. We saw that the Lie algebra of these matrix groups satisfied a
simply condition, that the index-lowered matrices were just antisymmetric.

• The determinant as a tensor rather than a function on matrices.

From its ordinary interpretation in terms of components of vectors with respect to the
standard basis of Rn, the determinant defines a (0

n)-tensor

det(u, v, · · · , w) = det(〈u|v| · · · |w〉)
= det(〈A−1u′|A−1v′| · · · |A−1w′〉)
= det

(
A−1〈u′|v′| · · · |w′〉

)
= det(A−1) det(〈u′|v′| · · · |w′〉)
= [det(A−1)εi1···in ]ui1

′ · · ·win′

so as a tensor it has components εi1···in with respect to the standard basis but not in
general

det = (detA−1)εi1···inω
i1′ ⊗ · · · ⊗ ωin′ = εi1···inω

i1 ⊗ · · · ⊗ ωin

= (detA−1)n!ω[1′ ⊗ · · · ⊗ ωn′]︸ ︷︷ ︸
takes det of new component matrix

= n!ω[1 ⊗ · · · ⊗ ωn] .

Thus the factor detA−1 = detB corrects the value of the determinant of the matrix of
new components to give the value of the determinant tensor on Rn, which is independent
of basis. Another way of looking at this is that the determinant of the new matrix
gives the volume of the n-parallelepiped associated with the n vectors relative to the
n-parallelepiped of the new basis vectors, but they already have volume amplified by
the factor detA−1 = detB relative to the standard basis vectors, so the product of the
correction factor and the determinant of the matrix of new components gives the absolute
volume of the former parallelepiped with respect to the Euclidean geometry of Rn (modulo
sign changes that come from the sign of detA−1).

Example 3.1.1. Consider the vectors u1 = 〈−1, 2〉 = b1 + b2, u2 = 〈−3, 0〉 = −b1 + b2

which form the parallelogram shown in Fig. 3.2, where b1 = 〈1, 1〉 and b2 = 〈−2, 1〉. The
factoring law for determinants leads to the following relationship between the determi-
nants of the matrices of old and new components of the pair of vectors

det〈u1|u2〉 =

∣∣∣∣ −1 −3
2 0

∣∣∣∣︸ ︷︷ ︸
6

= |〈B u′1|B u′2〉| = |B〈u′1|u′2〉|

= det(B)|〈u′1|u′2〉| =
∣∣∣∣ 1 −2

1 1

∣∣∣∣︸ ︷︷ ︸
3

∣∣∣∣ 1 −1
1 1

∣∣∣∣︸ ︷︷ ︸
2

.
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Figure 3.2: The new coordinate grid of the basis b1 = 〈1, 1〉 and b2 = 〈−2, 1〉. Modulo
signs the true area of the parallelogram shown (just the determinant of the matrix of its old
components) is its area with respect to the new grid (just the determinant of the matrix of its
new components), times the determinant of the matrix of new basis vectors, which is the area of
the unit parallelogram of the new grid with respect to the old grid which defines area in terms
of its orthonormal coordinates. This is the geometric interpretation of the determinant product
rule: the determinant of a product of two matrices is the product of the determinants. The
components with respect to either the original or new grid of the vectors u1 = 〈−1, 2〉 = b1 +b2,
u2 = 〈−3, 0〉 = −b1 + b2, u3 = 〈4, 1〉 = 2b1 − b2 are easily read off from these grids.



3.1. Whoa! Review of what we’ve done so far 197

The factor detB = (detA)−1 = 3 is the area amplification factor between the grids.

Similarly to calculate the dot product of the two vectors u1 · u2 = (u1)Tu2 we must take
into account the dot products of the new basis vectors

3 = 〈−1, 2〉T 〈−3, 0〉 = (u1)Tu2 = (B u′1)T (B u′2) = (u′1)T (BTB)u′2 = (u′1)TG′u′2

=
(
1 1

)( 2 −1
−1 5

)(
−1
1

)
= 3 .

Thus one has the new matrix of inner products

G′ = BT I B =

(
2 −1
−1 5

)
of the nonorthonormal basis, which is the matrix form of the transformation law for the
(0
2)-tensor G whose matrix G = I is the unit matrix with respect to the standard basis.

The connection between this and the area amplification factor is the relation

detG′ = det(BTB) = (detB)2 → | detG′|1/2 = | detB| = | detA−1| | detG| ,

namely the square root of the absolute value of the metric determinant (9 in this case)
is the area amplification factor (3 in this case). In fact this last relationship can be
interpreted as the transformation law of a weight 1 scalar density, with an extra wrinkle
since it is the absolute value of determinant of the basis changing matrix rather than the
determinant itself, so we invent a new name: oriented weight 1 scalar density. [This just
means that it has an extra sign factor in the transformation law equal to the sign of the
determinant of the transformation matrix, in order to make the new component come out
positive when that determinant is negative.]

The new matrix G′ of components of the dot product is necessary to lower indices in the
new coordinates, namely (u′) → G′(u′). For example lowering the index on the vectors
u1 and u2 leads to(

2 −1
−1 5

)(
1
1

)(
−1
1

)
=
(
1 4

)
,

(
2 −1
−1 5

)(
−1
1

)
=

(
−3
6

)
.

In other words the covector index-lowered from the vector u2 = 〈−3, 0〉 is −3x1 =
−3y1 + 6y2, while the covector index-lowered from u1 = 〈−1, 2〉 is −x1 + 2x2 = y1 + 4y2.
Obtaining these from the transformation law instead of by index lowering from the vector
components we have the same component results of course

vi′ = vjB
j
i :

(
−1 2

)(1 −2
1 1

)
=
(
1 4

)
,

(
−3 0

)(1 −2
1 1

)
=
(
−3 6

)
.

�
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Figure 3.3: Grid for use in drawing in the representative line for the covector corresponding
to the vector u1 = 〈−3, 0〉 = −2b1 + b2 and building up the same covector representative line
3x1 = 1 = 3(−y1 + 2y2) in the new grid as described in the text.

Exercise 3.1.1.
covector addition

Using the grid in Fig. 3.3, first draw in the representative covector lines −3x1 = 1, 0.
Next draw in the covector lines −y1 = 1, 0 and 2y2 = 1, 0. Next using the covector cross-
diagonal parallelogram addition, draw in the covector lines −y1 + 2y2 = 1, 0 and finally
scale it up by a factor of 3 using the geometric interpretation of scalar multiplication for
covectors to obtain the lines 3(−y1 + 2y2) = 1, 0 which should agree with the starting
covector line pair.

�

• Linear transformations.

Suppose we have any linear transformation L of Rn into itself. In the various notations

u 7→ L(u) , ui 7→ Liju
j , u 7→ Lu ,

where Lij = ωi(L(ej)) or equivalently L(ej) = Lijei. However, a vector-valued linear
function of vectors can be identified with a (1

1)-tensor in a natural way simply by adding
an extra covector argument to the linear function L: define L by

L(f, u) = fiL
i
ju
j = f Lu

so that L = L( , u) is the partial evaluation of L (thinking of the vector L(u) as waiting
for a covector argument). Then

L = Lijei ⊗ ωj , Lij = L(ωi, ej)
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so multiplying both u and L(u) by A to obtain their new components

A(u 7→ Lu) −→ A u︸︷︷︸
u′

7→ AL u︸︷︷︸
A−1u′

so
u′ 7→ (AL A−1)u′ , Li

′
j′ = AimL

m
nA
−1n

j = AimA
−1n

jL
m
n

so we get the “tensor-transformation” law for a (1
1)-tensor.

Both inner products (which are (0
2)-tensors) and linear transformations (which are (1

1)-
tensors) are represented by matrices, but their different mathematical structure is reflected
in the different matrix transformation laws. Our index notation makes these differences
explicit. To go beyond objects with two indices, we need index notation to handle them
intelligently.

Remark.
What is the difference between δij and δij?

It depends on the interpretation. The values for each index pair (i, j) are identical BUT
we interpret δij as the components

δij = EVAL(ωi, ej) = IDENTITY (ωi, ej)

of a tensor ei ⊗ ωi which does not depend on the choice of basis, i.e., has the same
components no matter what basis we choose, while δij = G(ei, ej) are the components in
a special basis of a given tensor G (independent of the choice of basis) but which change
under a general change of basis—alternatively the component values δij in every choice
of basis do not define a single tensor but a family of different tensors. In each frame this
tensor is δijω

i ⊗ ωj = ω1 ⊗ ω1 + . . . ωn ⊗ ωn, which of course represents a different tensor
in different bases unless the two are related by an orthogonal matrix change of basis. The
same interpretation applies to εi1...in . It defines a different tensor εi1···inω

i1 ⊗ · · · ⊗ ωin in
each basis.

Are δ1
i the components of a covector?

Again it depends. Since ω1 = δ1
iω

i , these are the components of the first covector in
our chosen basis, so if we change the basis, the covector ω1 will no longer (in general)
have such simple components in terms of the new basis, but still it defines a unique
tensor, namely ω1. On the other hand the numerical values δ1

i define different covectors
in different bases. One really needs to qualify our opening question so that one of these
two interpretations is clear. Then we can answer the question.

N

• The dot product, duality, and index shifting.

These operations can be extended in a natural way to each space T (p,q)(Rn) which is itself
a Euclidean vector space isomorphic to ( Rnp+q , “ · ”). Such tensors have p+q indices, and
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n choices for each index value so there are np+q independent components. Listing them
in a certain order establishes an isomorphism with Rnp+q , which has its own dot product.
This dot product and index shifting correspond exactly to the ones we have established
for (pq)-tensors.

For example, let U = T (2,0)(Rn), with basis {ei⊗ej} ≡ {Eij}, and T = T ijei⊗ej = T ijEij.
Instead of using an index, say A,B,C, . . . which runs from 1 to n2, we can use n2 index
pairs (i, j) to label the distinct basis vectors in U and also the components of vectors in
U .

I claim the dual basis can be identified with W ij ≡ ωi ⊗ ωj and the dual space with
U∗ = T (0,2)(Rn)

W ij(Emn) = [ωi ⊗ ωj](em ⊗ en) ≡ ωi(em)ωj(en) = δimδ
j
n ≡ I ijmn .

I ijmn are the components of the Kronecker delta on U in this notation

I ijmn =

{
1 , if (i, j) = (m,n) ,

0 , otherwise.

So F = FijW ij is a “covector” with the evaluation given by

F(T ) = FijT ij .

Let us define

Eij · Emn = δimδjn ≡ δij,mn ≡ Gij,mn .
Then this corresponds to an inner product tensor

G = Gij,mnW ij ⊗Wmn

G(T, u) = Gij,mn T ijumn = δimδjnT
ijumn = T ijuij

which is how we defined the inner product previously.

Note that the “⊗” in G = Gij,mnW ij⊗Wmn is the tensor product for U , not Rn, since it is
holding the “covectors” (with respect to U) W ij and Wmn apart until they accept “vector”
(with respect to U) arguments, but this distinction doesn’t matter. The (0

4)-tensor

G = Gij,mnωi ⊗ ωj ⊗ ωm ⊗ ωn

can be contracted against two (2
0)-tensors to yield a real number which is exactly G(T, u) =

Gij,mn T ijumn. Our notation identifies these different interpretations. We just need to
allow for “contraction” of any number of indices of a tensor with those of another.

For example, what “contractions” are allowed between T ijk`m and Spqr? First define

[T ⊗ S]ijpqk`mn = T ijk`mS
pq
r .
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We can then contract any subset of contravariant indices with any subset of covariant
indices of the same number, to yield tensors of various ranks less than 5 + 3

T ikj`mS
`m

k ∼ (1
1)-tensor,

for example. Furthermore index-shifting on U corresponds to index-shifting of pairs of
indices with the inner product G on Rn

T = T ijEij −→ T [ = TijW
ij

where
Tij = Gij,mn Tmn = δimδjnT

mn

as was already defined above. Generalizations of this inner product on the space of
symmetric 2-index tensors turns out to be extremely important in understanding the
dynamics of general relativity. Exercise 3.1.2 explores this.

We can repeat this discussion for all the tensor spaces and their “dual” tensor spaces

U = T (p,q)(Rn) ∈ T
and

U∗ = T (q,p)(Rn) ∈ S
with natural evaluation of one on the other defined by

T (S) = T
i1···ip
j1···jqS

j1···jq
i1···ip , etc.

Looks like I snuck in a few new thoughts on you in this review of our progress so far.
Anyway, our extended Exercise 1.6.9 with the vector space V = gl(n,Rn) of n× n matrices at
the end of Chapter 1 develops matrix operations relevant to both linear transformations which
are (1

1)-tensors and to (0
2)-tensors and (2

0)-tensors interpreted as linear maps between Rn and
its dual space. In that discussion, our starting vector space V has the natural basis eij such
that A = Aije

j
i. Here we have component indices associated with V which are “1 up, 1 down”

index pairs taken from the integers from 1 to n instead of single indices taken from the integers
from 1 to n2. The correspondence

A = Aije
j
i −→ A = Aijei ⊗ ωj

maps the standard matrix basis {ej i} onto the basis

{Ej
i} = {ei ⊗ ωj} of T (1,1)(Rn) ,

which is a natural identification. The moral of the story is to stay flexible with notation to
allow it to fit the circumstances.

Looking ahead for applications to differential geometry, once we have iden tified any starting
basis {ei} of each tangent space to a curved space M , i.e., a field of bases, one defined at each
point of M , we can then carry over all the tensor algebra we have developed for Rn in the
standard basis to each such tangent space. This will lead to tensor fields over the curved
space itself whose interpretation at each tangent space derives from our preceding discussion
of tensors over a single vector space.
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Exercise 3.1.2.
deWitt inner product for symmetric tensors

Inner products on the space of 6-dimensional space of symmetric 2-index tensors over R3

turns out to be of physical interest for time-dependent gravitational fields and quantum gravity.
Suppose we have a positive-definite inner product G = Gijω

i ⊗ ωj on R3 that is used to raise
and lower indices. Define the de Witt inner product of J = Jijω

i ⊗ ωj and K = Jijω
i ⊗ ωj by

GdW(J,K) = Tr(J K)− Tr(J) Tr(K) = GdS
ijklJijKkl .

a) Express the components GdS
ijkl in terms of Gij.

b) Show that if we decompose the (0
2)-tensors into their pure trace and tracefree parts with

respect to the inner product G by

Ktr
ij =

1

3
Kk

kGij , Ktrfree
ij = Kij −

1

3
Kk

kGij

which corresponds exactly to multiples of the identity matrix and tracefree matrices when the
indices are raised to the mixed position Ki

j. Show that self-inner products are negative for
the pure trace tensors but positive for the remaining tracefree tensors, thus defining a Lorentz
inner product on the space of symmetric tensors.

c) Show that for Gij = δij so that index raising and lowering does not change the component
values, the tensors with the following component matrices form an orthogonal basis of the
diagonal subspace space with the same self-inner products apart from sign1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −2

 ,
√

3

1 0 0
0 −1 0
0 0 0

 ,
√

3

0 0 0
0 0 1
1 0 0

 ,
√

3

0 0 1
0 0 0
1 0 0

 ,
√

3

0 1 0
1 0 0
0 0 0

 .

Use a computer algebra system to do the trace product evaluations. What is the common factor
we have to divide these matrices by to normalize them and arrive at an orthonormal basis?

d) Show that the contravariant inner product for symmetric (2
0)-tensors corresponds to

G−1
dW(J,K) = Tr(J K)− 1

2
Tr(J) Tr(K) = G−1

dW
ijklJ ijKkl ,

namely
G−1

dW
ijmnGdWmnkl = δi(kδ

j
l) .

e) Show that index lowering from (0
2)-tensors to (2

0)-tensors with this inner product has the
following action

J ij = GdW
ijklKkl = Kij −Kk

kG
ij .

This is “index lowering” in the sense that (0
2)-tensors are a vector space whose contravariant up

index is instead represented by a covariant symmetric index pair, which would become a single
contravariant index if we listed the basis tensors in the usual single index format

�



Chapter 4

Antisymmetric tensors, subspaces and
measure

Antisymmetric tensors play a fundamental role not only in how we measure area, volume, and
higher dimensional analogs of these quantities but in symmetry properties of the geometry of
lengths and angles. Determinant theory quantifies the former, giving a geometric interpretation
to arbitrary rank antisymmetric tensors, while providing a tool to characterize subspaces of
vector spaces associated with these measures. In a completely different context differential
rotations and pseudo-rotations which characterize the symmetry properties of flat Euclidean or
non-Euclidean geometries are intimately associated with second rank antisymmetric tensors.
In this chapter we delve into both topics in some detail.

203
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4.1 Determinants gone wild

The theory of determinants is a classic area of mathematics which even I did not appreciate until
writing this book. In modern applied mathematics with determinants so easily evaluated with
technology, it is enough to understand how to evaluate determinants through row reduction
operations, which then explain why the determinant being zero or nonzero is important to
solving a linear system with a given square coefficient matrix. However, in pre-technology
days cofactor expansions of the determinant were used for evaluation purposes. Minors of a
determinant are introduced in which one deletes a row and column to get a determinant of one
order less with a certain alternating sign which is associated with it according to its position
in the matrix, the product of the minor and this sign being called the associated cofactor. As
we will see, all of this structure in modern language will define the wedge product algebra on
the spaces of p-vectors for all 0 ≤ p ≤ n that is essential for integration over regions of an
n-dimensional space where these antisymmetric tensors are called differential forms. We have
already encountered these in line integrals in multivariable calculus where we learned how to
integrate differentials of functions and linear combinations of the differentials of the Cartesian
coordinates over curves. A serious multivariable calculus course would also introduce surface
integrals. We will get to these issues in Part 2.

It helps to start with a familiar concrete example in R3 to motivate the discussion for any
dimension.

Example 4.1.1. Consider the following string of equalities which define the minors and cofac-
tors a a 3× 3 matrix

det(A) =

∣∣∣∣∣∣
A1

1 A1
2 A1

3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3

∣∣∣∣∣∣ = det(〈A1|A2|A3〉)

= det(A1, A2, A3) (as a linear function on column matrices)

= A1
1(A2

2A
3

3 − A3
2A

2
3) + A2

1(A3
2A

1
3 − A1

2A
3

3) + A3
1(A1

2A
2

3 − A2
2A

1
3)

= A1
1M

1
1 − A2

1M
1

2 + A3
1M

1
3 = A1

1C
1

1 + A2
1C

1
2 + A3

1C
1

3 ,

where the minor M j
i of entry Aij is the 2 × 2 determinant obtained by crossing out the jth

column and ith row of the full determinant array |A| (note the transposition of index position
from matrix to minor) and the cofactor Cj

i = (−1)i+jM j
i of that entry Aij differs only by a sign

which alternates between 1 and −1 as one goes along any row or column. The last line called
the expansion of the determinant along the first column is the linear combination of the entries
of the first column with the corresponding vector of cofactors. One can easily write the original
6 terms of the determinant in 2 more such column expansions along the remaining columns
and as 3 corresponding such row expansions, all equal to the same determinant. Continuing in
this fashion, each of the minors can be evaluated in terms of similar column or row expansions
in terms of 1× 1 determinants (now just the entries themselves which are left after removing a
row and column from the 2× 2 submatrices).

Now look at the last equality of the above displayed equation. It says that the determinant
function, unevaluated on the first column matrix argument so that it becomes a covector:
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det( , A2, A3), is represented by the component covector 〈C1
1|C1

2|C1
3〉 since these are the

corresponding coefficients of the entries of the first column when one evaluates that covector
on it. Now consider the matrix with the first column removed and delete one row at a time
from top to bottom to obtain three 2 × 2 determinants and alternate the sign to obtain the
cofactors of the original matrix along the first columnA1

2 A1
3

A2
2 A2

3

A3
2 A3

3

→ ∣∣∣∣ A2
2 A2

3

A3
2 A3

3

∣∣∣∣ ,− ∣∣∣∣ A1
2 A1

3

A3
2 A3

3

∣∣∣∣ , ∣∣∣∣ A1
2 A1

3

A2
2 A2

3

∣∣∣∣ = C1
1, C

1
2, C

1
3

However, if we start with a 3 × 2 matrix, there is no original 3 × 3 matrix to identify these
determinants as cofactors. Instead they represent the cofactors of any matrix we obtain by
inserting another column at the beginning. So taking cofactors of a matrix of two three-
entry columns is equivalent to dealing with the determinant tensor with its first argument
left unevaluated. If all these 2 × 2 determinants vanish, it means no matter what column we
insert at the beginning, the set of columns is linearly dependent because the resulting 3 × 3
determinant must be zero, so at least one such 2× 2 determinant must be nonzero to establish
linear independence of those two column matrices. If we remove another column, we are down
to a single column, where at least one entry must be nonzero for it to be linearly independent
(nonzero).

Note that to find the equation of the plane spanned by the final two columns we can simply
evaluate the unevaluated argument on a variable vector 〈x1, x2, x3〉

0 =

∣∣∣∣∣∣
x1 A1

2 A1
3

x2 A2
2 A2

3

x3 A3
2 A3

3

∣∣∣∣∣∣ = C1
1x

1 + C1
2x

2 + C1
3x

3 .

Recall that this equals the triple scalar product of the 3 columns, interpreted as the signed
volume of the parallelopiped formed by the 3 column vectors, so the covector 〈C1

1|C1
2|C1

3〉 =
A2×A3 has a magnitude with respect to the dot product which is equal to the area spanned by
the two column vectors spanning the subspace. This follows since the signed volume reduces to
the signed area of the parallelogram formed by these two vectors if the third column is a unit
vector.

We can go one further step to examine the case of two unevaluated arguments of the
determinant

0 =

∣∣∣∣∣∣
y1 x1 A1

3

y2 x2 A2
3

y3 x3 A3
3

∣∣∣∣∣∣ = y1

∣∣∣∣ x2 A2
3

x3 A3
3

∣∣∣∣− y1

∣∣∣∣ x1 A1
3

x3 A3
3

∣∣∣∣+ y1

∣∣∣∣ x1 A1
3

x2 A2
3

∣∣∣∣ .
Since this must be zero for any yi, the three coefficients must all be zero if this is to be zero for
a given xi

0 =

∣∣∣∣ x2 A2
3

x3 A3
3

∣∣∣∣ =

∣∣∣∣ x1 A1
3

x3 A3
3

∣∣∣∣ =

∣∣∣∣ x1 A1
3

x2 A2
3

∣∣∣∣ .
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Introducing the abbreviated notation for the last remaining vector argument 〈a1, a2, a3〉 =
〈A1

3, A
2

3, A
3

3〉, these 3 equations can be written in matrix form 0 a3 −a2

−a3 0 a1

a2 −a1 0

x1

x2

x3

 =

0
0
0

 ,

which is equivalent to the familiar condition a× x = 0, which forces x to be proportional to a.
The Levi-Civita notation enables us to see this immediately. The determinant unevaluated on
its first argument defines a covector, which must vanish for any vector x, namely

εijkx
jAk3 = 0 .

The relation between the vector Ak3 and the antisymmetric tensor Aij = εijkA
k

3 is exactly what
we explored in Exercise 1.2.4. It is this antisymmetric tensor which determines the plane—
the corresponding vector just helps us interpret it in terms of a normal vector using the dot
product to raise and lower indices to achieve this interpretation. The antisymmetric tensor
itself can be realized at the antisymmetrized tensor product of any two vectors in that plane.
Antisymmetrization as well as going from a vector to an antisymmetric 2-tensor and back, are
the key tools we need to develop in general to describe all the p-planes through the origin of
Rn.

If we add one more dimension to consider R4, then starting from 4×4 matrices of 4 column
vectors, if we unevaluate the determinant on one vector argument, we determine the hyperplane
spanned by the remaining 3 vectors. If we unevaluate on two vector arguments, we determine an
ordinary plane spanned by the remaining two vector arguments, and finally if we unevaluate the
determinant on 3 vector arguments, we determine a line spanned by the single vector argument
remaining. At each step at least one of all the possible subdeterminants must be nonzero for
the set of remaining columns to be linearly independent.

In practice we are primarily interested in at most 4-dimensions for the elementary ap-
plications we have in mind so the following generic dimension discussion just allows us to
understand the general structure of this antisymmetric algebra, which consists of two parts:
antisymmetrized tensor products and a duality of complementary indices that comes out of the
all the possible unevaluated determinant tensors, which in 3 dimensions is simple

S = εijka
ibjck , Si = εijkb

jck , Sij = εijkc
k ,

and one level more complicated in 4 dimensions

S = εijkla
ibjckdl , Si = εijkb

jckdl , Sij = εijkc
kdl , Sijk = εijkld

l .
�

Now go to the corresponding discussion for Rn.
Start with an n × n matrix whose columns represent n vectors in Rn. The determinant of

this matrix is nonzero if the n vectors are linearly independent and zero otherwise. Remove one
column from the matrix to get an n × (n − 1) matrix representing (n − 1) vectors. Are these
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linearly independent? The only way the determinant function can enter into the discussion is
by deleting one row of this matrix (which can be done in n different ways), which corresponds
to projecting the set of (n − 1) vectors down to Rn−1, where one can test for their linear
independence by taking the determinant. At least one such subdeterminant must be nonzero
for the original (n−1) vectors in Rn to be linearly independent; otherwise it is straightforward to
show that those original vectors are linearly dependent. Arranging these n minor determinants
in a column, each entry multiplied by its appropriate alternating sign to make it into the
associated cofactor, the original n×n determinant is obtained as the dot product of the omitted
column with the column of cofactors, called the expansion of the determinant along the omitted
column. The transpose of the column vector of cofactors is the row vector which simply
represents the determinant as a linear function of the last column vector (having fixed the first
(n− 1) columns), which is a covector.

Suppose one starts with n − 1 vectors in Rn arranged as the columns of a matrix. Form
the row vector of its n sequential (n − 1) × (n − 1) subdeterminants (obtained by deleting
each row in succession) multiplied by an alternating sign to become the cofactors of an n × n
matrix with an additional final column (okay, there is also an overall sign (−1)n since it is
the last column). This row vector acts as the set of coefficients of a linear function of an nth
vector which produces the determinant of the n × n matrix in which that last column vector
is augmented to the original n × (n − 1) matrix as an extra column, whose interpretation is
the signed volume of the n-parallelepiped formed by the n vectors. If the last vector is a linear
combination of the remaining vectors, the volume is zero, so requiring this linear function (if
nonzero, which means that the n − 1 vectors are linearly independent) to be zero defines the
linear condition that defines the hyperplane through the origin (subspace) determined by the
span of those n− 1 linearly independent vectors. In this way the row of cofactors determines a
linear function of a single vector which determines hyperplanes through the origin. Interpreting
the value of the linear function on the vector as the dot product of the coefficient vector with
the input vector, the zero value of this dot product gives the coefficient vector the geometric
interpretation as a normal to that hyperplane.

Continue iterating this process. Delete another column from the n × n matrix to obtain
an n × (n − 2) matrix. For these n − 2 columns to be linearly independent and determine
an (n − 2)-plane through the origin, at least one of the n(n − 1) distinct subdeterminants
obtained by deleting two rows from the n × (n − 2) matrix must be nonzero. One can then
interpret these determinants with an appropriate sign as the components of an antisymmetric
bilinear function of two additional vectors which complete the set to n vectors to give the value
of the determinant of the full set of vectors. If the partial evaluation of this 2-covector on
a single vector is a zero covector, that additional vector must lie in the (n − 2) plane of the
remaining vectors. In this way the determinant function, a multilinear function of n vectors,
if only partially evaluated on n − 1 vectors, determines the subspace spanned by those n − 1
vectors, and if only partially evaluated on n − 2 vectors, determines the subspace spanned
by those n − 2 vectors, and so on. This method of determining subspaces of Rn directly in
terms of a span of a set of vectors {Na} is an alternative to the complementary approach of
specifying what vectors (called normals Na, a = 1..r) its elements should be orthogonal to
in the usual dot product, which requires determining the null space of a matrix with rank r
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linearly independent rows (namely just the solution space of 〈NT
1 , . . . , N

T
r 〉x = 0 which defines

the subspace as the subspace orthogonal to the span of the subspace spanned by the set of
normals). The determinant approach instead directly uses the vectors which span the subspace
to find the condition that any other vector lie in that subspace.

In this way the determinant function through partial evaluation determines a series of
multilinear functions of p vectors for 1 ≤ p ≤ n which determine all the p-dimensional sub-
spaces. These multiforms, that is, antisymmetric (0

p)-tensors, also determine the p-measure of
p-parallelepipeds in those subspaces in a way that we still must flush out. The multiforms
arise from the antisymmetrization of the (n− p) remaining columns in the n× n determinant.
Thus antisymmetrizing a tensor product of p vectors or covectors amounts to this family of
successive determinants of submatrices of components with appropriate signs tossed in. This
iterative evaluation process for determinants will define the wedge product which captures the
orientation and measure information about subspaces and bases for those subspaces.

Example 4.1.2. The cross product ~a ×~b of two vectors ~a = 〈a1, a2, a3〉 and ~b = 〈b1, b2, b3〉 in
R3 has two uses. Its direction determines uniquely the orientation of the plane through the
origin containing both vectors, while its magnitude |~a×~b| equals the area of the parallelogram
formed with the two vectors as edges from the common vertex at the origin. Form the 3 × 2
matrix 〈~a|~b〉 whose columns are the standard basis components, and augment this matrix with
an additional column whose entries are the symbols for the standard basis vectors to form a
3× 3 matrix which has a determinant. The components of their cross product vector consists
of the three subdeterminants of this matrix 〈~a|~b〉 (called minors of the 3× 3 matrix) multiplied
by an alternating sign (to form the corresponding cofactors of the 3× 3 matrix), which can be
expressed as the abovementioned 3×3 determinant (although traditionally one uses rows rather
than columns in order to only have to deal with row reduction techniques, but the determinant
is invariant under interchanging rows and columns)

~a×~b =

∣∣∣∣∣∣
a1 b1 ~e1

a2 b2 ~e2

a3 b3 ~e3

∣∣∣∣∣∣ =

∣∣∣∣a2 b2

a3 b3

∣∣∣∣~e1 −
∣∣∣∣a1 b1

a3 b3

∣∣∣∣~e2 +

∣∣∣∣a1 b1

a2 b2

∣∣∣∣~e3 . (4.1)

These cofactors are obtained by deleting each row in turn from the 3× 2 matrix to form square
2 × 2 matrices which have a determinant. Clearly at least one of these determinants must
be nonzero or it will imply that all three projections of the pair of vectors onto the three
coordinate planes are proportional, implying that the vectors themselves are proportional and
hence determine a degenerate parallelogram of zero area. Thus the nonzero value of the cross
product guarantees the linear independence of the two vectors.

The magnitude of this cross product is the area of the parallelogram formed by the two
vectors.

|~a×~b|2 = |~a|2|~b|2 sin2 θ = |~a|2|~b|2(1− cos2 θ) = (~a · ~a)(~b ·~b)− (~a ·~b)2 =

∣∣∣∣∣~a · ~a ~a ·~b
~b · ~a ~b ·~b

∣∣∣∣∣ . (4.2)

In the vector space R3, the subspaces are lines and planes through the origin and the whole
space, of dimensions 1, 2 and 3. The measure of the rectangular objects of these dimensions



4.1. Determinants gone wild 209

are length, area and volume, which in Rn we have to generalize to p-measure for p = 1, 2, ...n.
Each p-dimensional subspace can be characterized by a linear independent set of p vectors
which span the subspace, which make n × p matrices 〈~a(1)| . . . |~a(p)〉. This matrix determines
the orientation of the p-plane through the origin containing these vectors, and the magnitude
of the p-parallellopiped formed by the vectors. To capture these two pieces of information
we need to generalize the cross product to the wedge product, and introduce a magnitude for
that wedge product to give the p-measure of that parallelopiped. Looking ahead to differential
geometry, once we can evaluate p-measures of p-parallelopipeds in the tangent space, we can
integrate up differential p-measures: arclength, surface area and volume of curves, surfaces and
solid regions in R3, for example.

One can write an equation for the plane of these two vectors as

(~a×~b) · ~x = 0 . (4.3)

This also generalizes with the wedge product to give an equation for the p-subspaces in Rn.
Here in this example the triple scalar product of 3 vectors has the interpretation as the signed
volume of the corresponding parallelopiped, so if the third vector lies in the plane of the first 2,
then one gets zero for this volume, hence this condition forces the variable ~x to lie in that plane.
Thus determinants are key to both orientation and measure for subspaces in this example, and
we just need to play a little bit with its generalization.

�
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11
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Figure 4.1: The parallelogram formed by two vectors ~a and ~b together with their cross product
vector ~a×~b.
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4.2 The wedge product

We are now ready to introduce the wedge product “∧”. This is the “obvious” antisymmetrized
tensor product, but it only becomes obvious after you understand it. For each integer value
0 ≤ p ≤ n, we have p-vectors (antisymmetric (p0)-tensors) and p-covectors (antisymmetric (0

p)-
tensors) also called p-forms, where (0

0)-tensors are just scalars, i.e., real numbers. We will also
consider scalars as both 0-forms and 0-vectors for completeness. If we consider the tensor prod-
uct of two antisymmetric tensors of the same index level (both covariant or both contravariant),
the resulting tensor will not be antisymmetric, but we can take its antisymmetric part. This is
essentially the wedge product but we must take into account overcounting issues which leads
to an at first mysterious factorial factor in the definition but which later becomes clear.

We will be continually using the fact that when a group of indices is contracted with a group
of antisymmetric indices only the antisymmetric part contributes to the sum. For example, if
T ij = T [ij] is antisymmetric then

SijT
ij = SijT

[ij] (antisymmetry of T )

= Sij

(
1

2
δijmnT

mn

)
(definition of antisymmetric part)

=

(
1

2
δijmnSij

)
Tmn (reapplication to S)

= S[ij]T
ij , (antisymmetrization of S)

where the parentheses are not needed but show how the antisymmetrizer is transferred to the
other set of indices. Thus in any contraction with an antisymmetric group of indices, only the
antisymmetric part of the contracting factor contributes.

Consider covariant antisymmetric tensors, i.e., ALT(T ) = T or in component form: T[i1...ip] =
Ti1...ip . A component can be nonzero only when all indices are distinct, and any two components
with the same set of index values differ by the sign of the permutation which takes one to the
other. By making the convenient definition

δ
j1···jp
i1···ipω

i1 ⊗ · · · ⊗ ωip = p!ω[j1 ⊗ · · · ⊗ ωjp] ≡ ωj1···jp = ω[j1···jp] ,

then any such tensor can be expressed as a linear combination of the p-forms ωj1···jp

T = Ti1...ip ω
i1 ⊗ · · · ⊗ ωip = T[i1...ip] ω

i1 ⊗ · · · ⊗ ωip (antisymmetric tensor)

=
1

p!
Tj1...jp δ

j1···jp
i1···ip ω

i1 ⊗ · · · ⊗ ωip (definition of antisymmetric part)

= Ti1...ip ω
[i1 ⊗ · · · ⊗ ωip] (reapplied to omega indices)

=
1

p!
Ti1...ip ω

i1···ip (definition of antisymmetric basis)

=
∑

i1<···<ip

Ti1...ip ω
i1···ip ≡ T|i1...ip| ω

i1···ip . (sum over independent components)
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Notice how antisymmetrizing on the lower indices is equivalent to antisymmetrizing on the
upper indices. The tensors {ωi1···ip}i1<···<ip are a basis for the space of p-forms, but since ordered
sums are inconvenient (more notation), we sum over all indices and divide by p! to compensate
for including p! terms in the sum which repeat each other. Alternatively we can introduce the
convention that surrounding a set of antisymmetric indices with vertical bars in a summation
indicates restriction of the sum to the index ordered summation. The choice of ordered indices
is not essential, it is enough to pick one ordering of each set of possible indices, as we do in
3-dimensions where the cyclic order 23, 31, 12 is more useful than 23, 13, 12 because of the cyclic
properties and the signs associated with them, as we will learn below.

Now ωi1···ip is itself on antisymmetrized tensor product of covectors, multiplied by a counting
factor. Why is the counting factor (namely p!) included? Well, if V = Rn and p = n, then we
saw above that

det = εi1···inω
i1 ⊗ · · · ⊗ ωin = εi1···inω

[i1 ⊗ · · · ⊗ ωin] =
1

n!
εi1···inω

i1···in = ω1···n ,

i.e., the single independent n-form ω1···n of this family {ωi1···in} is exactly the determinant
function, which is more interesting than the determinant function divided by n!, which is
instead equal to the antisymmetrized tensor product with no counting factor modifying it.

It turns out to be useful to introduce an antisymmetrized tensor product, modified by some
counting factor coefficient, of any number of factors which are themselves antisymmetric tensors
of the same index level (all covariant or all contravariant so that we can take the antisymmetric
part).

For example, Sijk = Tijfk are the components of S = T ⊗f which are clearly antisymmetric
in (i, j) if T is antisymmetric but not in all three indices. However, ALT(S) = ALT(T ⊗ f)
with components S[ijk] = T[ijfk] is antisymmetric. We would like to introduce a new product
“∧” called the wedge product (since the symbol visually resembles a wedge) so that we can
write T ∧ f =(some factor) ALT(T ⊗ f), where the factor is chosen conveniently.

Suppose we make the definition

(I) ωi1 ∧ · · · ∧ ωip ≡ p!ω[i1 ⊗ · · · ⊗ ωip] = δ
i1···ip
j1···jp ω

j1 ⊗ · · · ⊗ ωjp = ωi1···ip

and extend this by linearity to the wedge product of p covectors

f (1) ∧ · · · ∧ f (p) = (f
(1)
i1
ωi1) ∧ · · · ∧ (f

(p)
ip
ωip)

= f
(1)
i1
· · · f (p)

ip
ωi1 ∧ · · · ∧ ωip = f

(1)
i1
· · · f (p)

ip
ωi1···ip = f

(1)
i1
· · · f (p)

ip
ω[i1···ip]

= f
(1)
i1
· · · f (p)

ip

1

p!
δ
i1···ip
j1···jpω

i1···ip = f
(1)
[j1
· · · f (p)

jp]ω
j1···jp

=
1

p!

{
p! f

(1)
[j1
· · · f (p)

jp]

}
ωj1···jp

where we have used the antisymmetry property ωi1···ip = ω[i1···ip] and the last line enables us to
identify the components of the resulting antisymmetric tensor

[f (1) ∧ · · · ∧ f (p)]i1...ip = p! f (1)
[i1 · · · f (p)

ip] = δ
j1···jp
i1···ipf

(1)
j1 · · · f (p)

jp .
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With this definition, then for the case p = n, the single independent component

[f (1) · · · f (n)]1...n = n! f (1)
[1 · · · f (n)

n]

= det

 f (1)

...

f (n)


is just the determinant of the matrix whose rows are the components of the covectors in this
set. For the case p < n, these are the possible subdeterminants of size p × p taken from the
p× n matrix f (i)

j, 1 ≤ i ≤ p, 1 ≤ j ≤ n whose rows are the components of the p 1-forms, i.e.,
the determinants of the matrices consisting of all possible subsets of p columns taken from the
original matrix.

Similarly for p-vectors we can define a basis by ei1···ip ≡ ei1 ∧ · · · ∧ eip and find that

[u(1) ∧ ... ∧ u(n)]
1...n = det(u(1) . . . u(n)) ,

which is the determinant of the matrix (uj(i)) whose columns are the components of the vectors.
For V = Rn with the usual Euclidean geometry, this is just the volume of the parallelepiped
they form. So in each case the factorial factor eliminates an ugly counting factor to give
something more interesting, namely the determinant. For the case p < n, these are the possible
subdeterminants of size p × p taken from the n × p matrix ej(i), 1 ≤ i ≤ p, 1 ≤ j ≤ n whose
columns are the components of the p vectors, i.e., the determinants of the matrices consisting
of all possible subsets of p rows taken from the original matrix.

However, we still don’t know to take the wedge product of higher rank antisymmetric
tensors. Our notation implicitly tells us how to do this since as long as we assume the wedge
product is associative, then

ωi1...ipj1...jq = ωi1 ∧ . . . ∧ ωip ∧ ωj1 ∧ . . . ∧ ωjq = ωi1...ip ∧ ωj1...jq

suggests how to wedge two basis tensors together in a way consistent with the notation. This
can then be extended by linearity to any two antisymmetric tensors

T ∧ S = (
1

p!
Ti1...ipω

i1···ip) ∧ (
1

q!
Sj1...jqω

j1···jq)

=
1

p!q!
Ti1...ipSj1...jqω

i1···ip ∧ ωj1···jq

=
1

p!q!
T[i1...ipSj1...jq ]ω

i1···ipj1···jq

=
1

(p+ q)!

[
(p+ q)!

p!q!
T[i1...ipSj1...jq ]

]
ωi1···ipj1···jq ,

where in the third line, only the antisymmetric part of the tensor product contributes to the sum
since ωi1···ipj1···jq = ω[i1···ipj1···jq ] is antisymmetric. Identifying the components of the (p+q)-form
from the identity

T ∧ S =
1

(p+ q)!
[T ∧ S]i1...ip+qω

i1...ip+q = [T ∧ S]i1...ip+qω
|i1...ip+q | ,
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this leads to the definition

(II) [T ∧ S]i1...ipj1...jq =
(p+ q)!

p!q!
T[i1...ipSj1...jq ] or T ∧ S =

(p+ q)!

p!q!
ALT(T ⊗ S) .

In exactly the same way we could have partitioned the indices into 3 (or more) subsets and
found

T ∧ S ∧R =
(p+ q + r)!

p!q!r!
ALT(T ⊗ S ⊗R)

(T is a p-form, S is a q-form, R is an r-form) and so on (the pattern is clear). The extreme
case of this is the wedge product of n 1-forms

f (1) ∧ · · · ∧ f (n) = n! ALT(f (1) ⊗ · · · ⊗ f (n)) .

Example 4.2.1. only for the brave:
generalized Kronecker delta formula manipulation

Our notation assumes the wedge product is associative since no parentheses are necessary
to evaluate T ∧ S ∧R. Is this consistent? Do we have

(III) T ∧ S ∧R = (T ∧ S) ∧R = T ∧ (S ∧R) ?

Yes, we’ve defined it to be true, but let’s check as an exercise. First we factor out the
common numerical factors, letting T , S and R be p, q, and r-forms respectively. Using the
definition (II) for each wedge product

(T ∧ S) ∧R =
((p+ q) + r)!

(p+ q)!r!
ALT((T ∧ S)⊗R) =

(p+ q + r)!

p!q!r!
ALT(ALT(T ⊗ S)⊗R) ,

T ∧ (S ∧R) =
(p+ (q + r))!

p!(q + r)!
ALT(T ⊗ (S ∧R)) =

(p+ q + r)!

p!q!r!
ALT(T ⊗ ALT(S ⊗R)) .

Thus the second equality of (III), is equivalent to

(IV ) ALT(ALT(T ⊗ S)⊗R) = ALT(T ⊗ ALT (S ⊗R)) .

If we had defined the wedge product by (II) as is usually done, then we would need to verify
(IV ) in order to show that it is an associative operation, i.e., to prove (III). Let’s just check
that (IV ) is indeed true.

{ALT(ALT(T ⊗ S)⊗R)}i1...ipj1...iqk1...kr
=

1

(p+ q + r)!
δ
m1···mpn1···nql1···lq
i1···ipj1···jqk1···kr [ALT(T ⊗ S)]m1...mpn1...nqRl1...lr

=
1

(p+ q + r)!
δ
m1···mpn1···nql1···lq
i1···ipj1···jqk1···kr

1

(q + r)!
δa1···apb1···bqm1...mpn1...nq

Ta1···apSb1···bqRl1...lr

=
1

(p+ q + r)!
δ

[a1···apb1···bq ]l1···lr
i1···ipj1···jqk1···kr Ta1...apSb1...bqRl1...lr

=
1

(p+ q + r)!
δ
a1···apb1···bql1···lr
i1···ipj1···jqk1···krTa1...apSb1...bqRl1...lr ,
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where the last equality follows since the Kronecker delta is already antisymmetric, so antisym-
metrizing has no effect. Similarly the right hand side of (IV ) reduces to the same expression,
showing their equivalence.

�

Exercise 4.2.1.
successive antisymmetrization and the wedge product

Only if you feel up to the task, repeat for the right hand side of (IV ) to obtain the same
expression.

�

These factorials are really a nuisance right? Right. They come from summing over all indices
rather than ordered indices. If we agree only to sum over ordered indices, they disappear! Recall
our double vertical bar notation

T =
1

p!
Ti1 . . .ip ω

i1...ip =
∑

i1<...<ip

Ti1 . . .ip ω
i1...ip ≡ Ti1 . . .ip ω

|i1...ip| ≡ T|i1 . . .ip| ω
i1...ip

This just tells us to only sum over those p-tuplets (i1,. . . ,ip) whose values are ordered. Using
this notation

[T ∧ S]i1...ipj1...jq =
(p+ q)!

p!q!
T[i1...ipSj1...jq ] =

1

p!q!
δ
m1···mpn1···nq
i1···ipj1···jq Tm1...mpSn1...nq

= δ
m1···mpn1···nq
i1···ipj1···jq T|m1...mp|S|n1...nq |

and similarly

[T ∧ S ∧R]i1...ipj1...jqk1...kr = δ
m1···mpn1···nql1···lq
i1···ipj1···jqk1···kq T|m1...mp|S|n1...nq |R|l1...lr| .

There are no factorials if you don’t overcount redundant terms in sums over
antisymmetric indices!

Example 4.2.2. The index formulas for the wedge product look scary but in practice one
does not really need them when actually taking the wedge product of concrete p-forms (as
opposed to doing a derivation of general properties)! Consider the following calculation not
with components but with the invariant p-forms. Let E = E1 ω

1 + E2 ω
2 + E3 ω

3 be a 1-form
and B = B1 ω

2 ∧ ω3 + B2 ω
3 ∧ ω1 + B3 ω

1 ∧ ω2 be a 2-form on R3. Then all we have to do is
expand out the product using associativity of the wedge product and its antisymmetry to set
terms with repeated indices to zero

E ∧B = (E1 ω
1 + E2 ω

2 + E3 ω
3) ∧ (B1 ω

2 ∧ ω3 +B2 ω
3 ∧ ω1 +B3 ω

1 ∧ ω2)

= E1B1 ω
1 ∧ ω2 ∧ ω3 + E2B2 ω

2 ∧ ω3 ∧ ω1 + E3B3 ω
3 ∧ ω1 ∧ ω2

= (E1B1 + E2B2 + E3B3)ω1 ∧ ω2 ∧ ω3 .

Simple, no? Notice what looks like a dot product. This is no accident and will be explored
below.
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�

Example 4.2.3. Let’s repeat the above problem using index notation

[E ∧B]ijk = δmnlijkEmB|nl| = δ123
ijkE1B23 + δ213

ijkE2B13 + δ312
ijkE3B12

and

[E ∧B]123 = E1B23 − E2B13 + E3B12 (“ordered sum” has alternating sign”)

= E1B23 + E2B31 + E3B12 . (“cyclic sum” has positive signs”)

Notice that in the previous example we made the identification (B1, B2, B3) = (B23, B31, B12).
This too will be explored below. We need the complications of the component formulas for the
wedge product in order to see how it fits into other mathematical contexts, but for computation
purposes, doing the wedge product of the representation of the p-form or p-vector factors in
terms of the basis-wedged forms or vectors as in the previous example is easy and more efficient.

�

Exercise 4.2.2.
wedges in R3

Suppose u = 〈1, 2, 3〉 = uiei and v = 〈−1, 1, 2〉 = viei on R3.
a) What are the three independent components (u ∧ v)23, (u ∧ v)31,(u ∧ v)12 ?

How are these related to the cross product u× v?
b) If w = 〈1, 1, 1〉, what is the single independent component of u ∧ v ∧ w?

How is this related to their triple scalar product?
c) Suppose B = B1e23 +B2e31 +B3e12 and E = E1e1 + E2e2 + E3e3.

What is [B ∧ E]123 ?
�

Exercise 4.2.3.
wedges in R4

On R4:
a) Evaluate F ∧ F and F ∧H for

F = E1e14 + E2e24 + E3e34 +B1e23 +B2e31 +B3e12 ,

H = −B1e14 −B2e24 −B3e34 + E1e23 + E2e31 + E3e12 .

b) Simplify (B1e234 +B2e314 +B3e124) ∧ (E1e1 + E2e2 + E3e3).
�
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Exercise 4.2.4.
wedges in R5

On R5 simplify the following, expressing each as a linear combination of ordered basis tensors
(a) e3 ∧ e5 ∧ e24,
(b) e2 ∧ e3 ∧ e62,
(c) e1 ∧ (e14 + e64),
(d) (e+ 3e4 − e6) ∧ (2e23 + e36) ∧ e45,
(e) (e12 + e13) ∧ (e34 + e25) ∧ (e56 + e46).

�
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Figure 4.2: A line through the origin of R3 can be viewed either as the span of a nonzero vector
or the intersection of two distinct planes (zero value surfaces of two independent covectors). A
plane through the origin may be viewed as the span of two independent vectors or the set of
vectors perpendicular to a given vector (zero value surface of one covector).

4.3 Subspace orientation and a new star duality

If {u(1), · · · , u(p)} is a collection of p vectors in V , then span {u(1), · · · , u(p)} is the set of all
possible linear combinations of these vectors—yielding a vector or linear subspace of V , whose
dimension is p if the set is linearly independent. We can think of such a subspace as a “p-plane”
through the origin. We would like to describe the orientation or “direction” of the p-plane.

In R3 there are three ways to do this: two involve only linearity, while the third uses the
Euclidean inner product. The nontrivial subspaces are lines (p = 1) and planes (p = 2) through
the origin.

A subspace can be specified explicitly by giving a basis, which may be used to parametrize
it, i.e., represent a point in the subspace as an arbitrary linear combination of the basis vectors,
or implicitly as the simultaneous solution of a system of linear equations, i.e., the intersection of
the zero value level surfaces of a set of linearly independent covectors. These relationships are
complementary—a p-subspace is determined directly by p linearly independent vectors through
their span or by n− p covectors indirectly through their zero value sets. This is the substance
of a new star duality (named for its superscript symbol) between p-subspaces of vectors and
(n − p)-subspaces of covectors, in contrast to our existing duality between a vector space and
its dual space of the same dimension.

Consider the case of a plane through the origin in R3 (a 2-dimensional subspace) deter-
mined by a set of two linearly independent vectors {u(1), u(2)}. Any two linearly independent
combinations of this basis are just as good as the original two—either set specifies the same
plane. The 2-vector u(1) ∧ u(2) at most changes by a scalar multiple under such a change of
basis. Letting a, b = 1, 2, one uses the antisymmetry properties to simplify the transformed
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wedge product

u(1)′ = Abau(b) −→ u(1)′ ∧ u(2)′ = Aa1A
b
2 u(i) ∧ u(j) = A

[a
1A

b]
2 u(i) ∧ u(j)

= 2!A
[1
1A

2]
2 u(1) ∧ u(2) = detAu(1) ∧ u(2) .

In fact it just changes by the determinant of the matrix of the change of basis, which is nonzero
if the new vectors are linearly independent as assumed. The condition that a vector X belong
to the plane is equivalent to

X = c1u(1) + c2u(2) −→ u(1) ∧ u(2) ∧X = u(1) ∧ u(2) ∧ (c1u(1) + c2u(2)) = 0

since any wedge product with repeated factors vanishes. In index notation this condition is

u
[i
(1)u

j
(2)X

k] = 0↔ δijkmnqu
m
(1)u

n
(2)X

q = 0 ,

or since we are in R3 where there is only a single independent component 123 of three antisym-
metric indices, and δ123

mnq = εmnq, we can write instead

εijku
i
(1)u

j
(2)X

k = 0 ,

which leads us to introduce the covector f (1) for which this plane is the zero value surface
f (1)

kX
k = 0, namely

f (1)
k ≡ εijku

i
(1)u

j
(2) ≡ [(∗)(u(1) ∧ u(2))]k =

1

2
εkij[u(1) ∧ u(2)]

ij ,

where for convenience we have permuted the indices of the Levi-Civita symbol by two transpo-
sitions which does not change its value εijk = εkij. This component formula defines a covector
which specifies the same plane implicitly and a natural star duality operation (∗) from 2-vectors
to 1-forms. One can go backwards from the covector f (1) = (∗)(u(1) ∧ u(2)) to the 2-vector
u(1) ∧ u(2) = (∗)f (1), which extends the operation (∗) in the opposite direction

[(∗)f (1)]mn ≡ f (1)
kε
kmn = εijku

i
(1)u

j
(2)ε

kmn = εmnkεijku
i
(1)u

j
(2) = δmnij u

i
(1)u

j
(2) = [u(1) ∧ u(2)]

mn ,

where we have used the identity

εmnkεijk = δmnkijk = δmnij

as well as permuted the indices of the Levi-Civita symbol again, with no sign change, showing
that in this instance (∗)(∗) = Id.

The map (∗) from a 2-vector to a covector or from a covector to a 2-vector is called (at least
by me) the “natural dual” operation since it does not rely on the existence of an inner product
at all, and in fact it extends the natural duality of covectors and vectors which exists in the
relationship between a basis of the vector space and its dual basis. However, since its definition
involves the Levi-Civita symbol which “transforms” as a tensor density, this operation depends
on the choice of basis leading from a given 2-vector to a covector differing by the determinant
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of the basis changing matrix in a new basis, but this does not affect its zero value surface.
For example, vectors x = x3e3 in the 1-dimensional subspace spanned by e3 in R3 satisfy
ω1(x) = 0 = ω2(x) according to the duality relations. If we change the other two basis vectors
in the basis, the new basis vectors ω1′ , ω2′ must still satisfy ω1′(x) = 0 = ω2′(x) by duality. The
two proportional 2-forms ω1 ∧ ω2 ∝ ω1′ ∧ ω2′ both determine the same 1-dimensional subspace
of vectors which give zero upon evaluation of those 2-forms on x in either argument. The first
2-form is the dual (∗)e3 of e3 with respect to the first basis and the second 2-form is the dual of
e3 with respect to the new basis.

For the case of a line through the origin of R3 (a 1-dimensional subspace), by the same
reasoning two linearly independent covectors {f (1), f (2)} are required to specify it implicitly as
the intersection of their zero value planes: f (1)(X) = 0 = f (2)(X), and only their wedge product
f (1) ∧ f (2) is needed to specify the orientation of the line, since any two linearly independent
covectors which specify the line will have a wedge product differing only by a nonzero multiple
of f (1) ∧ f (2). The natural dual of this 2-covector defines a vector

ui(1) =
1

2
εimn[f (1) ∧ f (2)]mn = εimnf (1)

mf
(2)
n = [(∗)(f (1) ∧ f (2))]i

which lies along the line since

[f (1) ∧ f (2)]mn = εmniu
i
(1) = [(∗)u(1)]mn

but [f (1) ∧ f (2)]mnX
n = 0 for X along the line (since the contraction of X with either factor

vanishes), hence

0 = [f (1) ∧ f (2)]mnX
nεmij = εmn`u

`
(1)X

nεmij = δijn`u
`
(1)X

n = −[u(1) ∧X]ij .

The wedge product of 2 vectors being zero means that they are linearly dependent, i.e., they
lie along the same direction.

Thus in R3, a p-plane through the origin for p = 1, 2 (the nontrivial linear subspaces of R3)
is specified by the wedge product of a basis of p-vectors or by the wedge product of (n − p)-
linearly independent covectors which implicitly give the p-plane. The natural dual map “ (∗) ”
relates the p-vector and (n− p)-covector to each other.

By “raising” the indices on the covectors with the Euclidean metric one makes the change

0 = f (i)(X) = f (i)] ·X

converting the zero evaluation of the covector on the vector to a vanishing dot product with
the vector corresponding to the covector instead. Thus X is orthogonal to each of the vectors
obtained from the covectors in this way and to the entire (n− p)-plane they determine—which
in turn is specified by the (n− p)-covector which is the wedge product of these vectors. This is
the third way of specifying the orientation of a p-plane—by giving its orthogonal (n− p)-plane.

This also leads to a “metric dual” operation which is the natural dual followed by shifting
all the indices to the opposite level, i.e., the same level as before the natural dual changed the
index level. Thus from the vector specifying a line, we get the 2-vector specifying the orthogonal
plane, while from the 2-vector specifying a plane we get a vector orthogonal to the plane.
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The same statement applies to the various covectors and p-covectors. For the case of a line
in R3, from the 2-covector one gets a vector along the line by the natural dual and a covector
by lowering its index. For a plane in R3, from the covector specifying the plane one gets the
2-vector by the natural dual and finally a 2-covector by lowering its indices.

The natural dual takes p-vectors into (n−p)-covectors and vice versa, while the metric dual
takes p-vectors into (n − p)-vectors and p-covectors into (n − p)-covectors. Note that because
εijk are not the components of a tensor, the natural dual depends on the choice of basis and
changes by a scalar factor under a change of basis. This is okay since the overall scale of any of
these tensors is irrelevant to the orientation of the subspaces. However, using the metric we can
convert this to a duality operation “ ∗” where the overall scale is fixed so that the magnitude
of the p-vector determines its p-measure. Instead of using εijk for the duality operation in R3,
i.e.,

1

3!
εijkω

ijk = ω123 ,

namely the basis 3-covector which of course changes with a change of basis, one can use the
“unit” 3-vector which reduces to ω123 for any (oriented) orthonormal basis—in particular, for
the standard basis of R3. In other words we fix η = ω123 in the standard basis of R3 and then
one can express the fixed 3-covector η in any other basis by the tensor transformation law which
will involve the determinant of the transformation for a 3-covector

ηi′j′k′ = A−1m
iA
−1n

jA
−1`

k ηmn`︸︷︷︸
= εmn` in the
standard basis

= εijk(detA−1) ,

using the definition of the determinant. As long as detA = 1, one will have

ηi′j′k′ = εijk or η = ω1′2′3′ = ω1′ ∧ ω2′ ∧ ω3′ ,

otherwise there will be a correction factor.
Suppose one takes an orthonormal basis of R3 (oriented as well) adapted to a subspace,

i.e., {e1, e2, e3} where {e1} is basis for a 1-dimensional subspace, or {e1, e2} is a basis for a
2-dimensional subspace. For the latter case e1 ∧ e2 specifies the plane and the metric dual
∗(e1 ∧ e2) = e3 (we’ll see this more easily below) will give a unit normal to the plane. For the
line, ∗e1 = e2 ∧ e3 will give the 2-vector which specifies the orthogonal 2-plane. In each case
the “magnitude” of these tensors, divided by the usual overcounting factorial factor, will give
the p-measure of the p-parallelepiped formed by the basis vectors. The same will extend by
linearity to any adapted basis.

The preceding discussion is just motivation for giving the formulas for the general case. For
p-vectors and p-covectors, 0 ≤ p ≤ n, define the natural dual by

[(∗)T ]ip+1···in =
1

p!
T i1···ipεi1···ipip+1···in (contraction of T with first p indices of ω1···n divided by p!)

= T |i1···ip|εi1···ipip+1···in ,

[(∗)S]ip+1···in =
1

p!
Si1···ipε

i1···ipip+1···in (contraction of S with first p indices of e1···n divided by p!)

= S|i1···ip|ε
i1···ipip+1···in ,
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where recalling the identities

ω1···n = ω1 ∧ · · · ∧ ωn = εi1···inω
i1 ⊗ · · · ⊗ ωin ,

e1···n = e1 ∧ · · · ∧ en = εi1···inei1 ⊗ · · · ⊗ ein
explain the comments about contraction, namely the components of the n-form ω1 ∧ · · · ∧ ωn
as a tensor are εi1···in and similarly for the n-vector. The factorial factor avoids overcounting
repeated terms in the sum.

Exercise 4.3.1.
double natural dual sign

a) Use the identity

δ
i1···ipjp+1···jn
j1···jpjp+1···jn = εi1···ipjp+1···jnεj1···jpjp+1···jn = (n− p)!δi1···ipj1···jp

and the permutation result

εjp+n···jni1···ip = (−1)p(n−p)εi1···ipjp+1···jn

(where the sign comes from the (n − p) transpositions needed to move one j index across the
group of indices i1 · · · ip, but there are p indices to move across this group for a total of p(n−p)
transpositions) to show that

(∗)(∗)T = (−1)p(n−p)T

for a p-vector T.
b) What is (−1)p(3−p) for all values of p: 0 ≤ p ≤ 3? What is (−1)p(4−p) for all values of p:

0 ≤ p ≤ 4?
�

Note that if T =
1

p!
T i1···ipei1···ip and

(∗)T =
1

(n− p)!
∗Tip+1···inω

ip+1···in =
1

p!

1

(n− p)!T
i1···ıpεi1···ipip+1···inω

ip+1···in ,

then by the linearity of the natural dual one has

(∗)T =
1

p!
T i1···ıp (∗)ei1···ip ,

so equating the two expressions for (∗)T one gets

(∗)ei1···ip =
1

(n− p)!εi1···ipip+1···inω
ip+1···in = εi1···ipip+1···inω

|ip+1···in|

Similarly one finds
(∗)ωi1···ip = εi1···ipip+1···ine|ip+1···in| .
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Exercise 4.3.2.
natural dual index approach

Verify the formula for (∗)ei1···ip using the component relations

[ei1···ip ]
j1···jp = δ

j1···jp
i1···ip , [ω1···n]j1···jn = δ1···n

j1···jn = εj1···jn

and the component formula for (∗)T .

�

Like the wedge product in practice, the natural dual in practice is simple. Table 4.1 lists of
all the natural duals of the bases of the various p-vector/covector spaces for any 3-dimensional
vector space once a basis and its dual basis are given. Note how the cyclic permutations of
(1,2,3) dominate every formula.

p-vectors to (n− p)-covectors p-covectors to (n− p)-vectors

(∗) : Λ(p)(V ) −→ Λ(n−p)(V ∗) (∗) : Λ(p)(V ∗) −→ Λ(n−p)(V )

p = 0 (∗)1 = ε123ω
123 = ω123 (∗)1 = ε123e123 = e123

p = 1 (∗)e1 = ε123ω
23 = ω23 (∗)ω1 = ε123e23 = e23

(∗)e2 = ε231ω
31 = ω31 (∗)ω2 = ε231e31 = e31

(∗)e3 = ε312ω
12 = ω12 (∗)ω3 = ε312e12 = e12

p = 2 (∗)e23 = ε231ω
1 = ω1 (∗)ω23 = ε231e1 = e1

(∗)e31 = ε312ω
2 = ω2 (∗)ω31 = ε312e2 = e2

(∗)e12 = ε123ω
3 = ω3 (∗)ω12 = ε123e3 = e3

p = 3 (∗)e123 = ε123 = 1 (∗)ω123 = ε123 = 1

Table 4.1: The table of natural duals on the standard basis and dual basis of V = R3 or for
any 3-dimensional vector space V in a given basis {ei}.

Exercise 4.3.3.
natural duals

(i) If n = 3 and B = B23ω
23 +B31ω

31 +B12ω
12, what is (∗)B? If E = Eiei, what is E ∧ (∗)B?

(ii) If n = 4, what is (∗)[ω12 + ω34]?

What is

(2e12 + 3e13 − e23) ∧ (∗)[ω12 + ω34]?

What is (∗)[e123 − e412 + 2e431]?

(iii) Repeat (i) for n = 4.
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Figure 4.3: If the basis vector e3 changes, then ω3 cannot change its orientation (direction)
since the plane of e1 and e2 does not change, so only its magnitude can change (to maintain
the relation ω3(e3) = 1).

�

A decomposable p-vector or p-covector is one which can be represented as the wedge product
of p vectors or covectors. An adapted basis of a vector space V , adapted to a p-dimensional
subspace W , is a basis of V such that the first p basis vectors are a basis of W . Each adapted
basis determines a direct sum of V into W and a complementary subspace which is the span of
the last (n − p) basis vectors. Although this changes with a change of adapted basis, the last
(n− p) dual basis covectors still determine the given subspace W .
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In the R3 example in this diagram the plane of e1 and e2 is determined by ω3(X) = 0 . If e3

is changed to e3′ , keeping e1 and e2 fixed, then ω3 can at most change to ω3′ = c ω3 to preserve
ω3′(e3′) = 1, but its orientation (direction) must stay the same to maintain ω3′(e1) = ω3′(e2) =
0.

In general if {e1, · · · , ep} determine a p-dimensional subspace, then (∗){e1∧· · ·∧ep} = ωp+1···n

can at most change by a determinant factor since {ωp+1′, · · · , ωn′} must be linearly independent
linear combinations of {ωp+1, · · · , ωn} alone so that the duality relations giving zero along
{e1
′, · · · , ep′} are preserved (these must only be linear combinations of {e1, · · · , ep} to be an

adapted basis).

Exercise 4.3.4.
dual of decomposable p-vector

Using the idea of an adapted basis, explain why the natural dual of a decomposable p-vector
must itself be decomposable.

�

Rescaled inner product for antisymmetric tensors

In our motivating example, the cross product of two vectors in R3 determines the orientation of
the plane of the two vectors, and its magnitude gives the area of the parallelogram they form.
Now we have p-vectors which determine the orientation of the p-planes that they determine. It
remains only to introduce their length in a natural way, which will then give the p-measure of
the p-parallelopiped they form.

If we have an inner product on V , we have shown how to get an inner product on any of the
tensor spaces over V . If T and S are both (pq)-tensors, then their inner product is the scalar

Gim · · ·Gjn · · ·T i···j···Sm···n··· = Tm···j···S
m···j··· = T i···n···Si···n··· .

For antisymmetric tensors this overcounts the number of independent component terms in these
sums, so it is natural to divide by the number of repetitions in the sum. For p-vectors and
p-covectors, define

p-vectors:

〈T, S〉 =
1

p!
Gi1j1···Gipjp···T

i1···ipSj1···jp = Tj1···pS
|j1···jp| ,

p-covectors:

〈T, S〉 =
1

p!
Gi1j1···Gipjp···Ti1···ipSj1···jp = T |j1···p|Sj1···jp .

For the Euclidean metric, the self inner product of a p-vector is just the sum of the squares of
its ordered-indexed components.

Exercise 4.3.5.
self-inner products of p-vectors
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What is the self-inner product on R3 (Euclidean metric) of the following p-vectors?
(i) E1e1 + E2e2 + E3e3.
(ii) B1e23 +B2e31 +B3e12.
(iii) 3e123.
(iv) F = 1

2
F ijeij.

�

Exercise 4.3.6.
quadruple scalar product and area

In Exercise 2.3.4 we saw that the quadruple scalar product definition was easily shown to
correspond to the index-shifted component formula and resulting identity

Q(U, V,X, Y ) = δijmnUiVjX
mY n = (U ·X)(V · Y )− (U · Y )(V ·X) ,

where we shift indices as convenient in the standard basis of R3.
a) Show that this the scalar quadruple product is just the full evaluation of the index-shifted

wedge product of two vectors, index-lowered of course to be able evaluate them on the final
pair of vectors

Q(U, V,X, Y ) = (U ∧ V )[(X, Y ) = Q(X, Y, U, V ) .

As a (0
4)-tensor, its pair exchange symmetry together with is antisymmetry in the first and

second index pairs makes it a symmetric bilinear form on the space of 2-vectors, often called
bi-vectors because of their importance in geometry in capturing not only the orientation in-
formation about 2-planes but also the area associated with the parallelogram formed by 2
vectors.

b) Show that

Q(X, Y,X, Y ) =
1

2
||X ∧ Y ||2 = 〈X ∧ Y,X ∧ Y 〉 .

The factor of two avoids overcounting because of the antisymmetry repetition in the sum.
c) Convince yourself that

|〈X ∧ Y,X ∧ Y 〉| = Area(X, Y )2

not only holds for the usual R3 dot product case but for any inner product • with component
matrix (Gij)

Q(X, Y,X, Y ) = (X •X)(Y • Y )− (X • Y )2 .

For example the area in 2-dimensional Minkowski spacetime formed by the two parallelograms
formed by the vector pairs 〈1, 0〉, 〈1, 2〉 and 〈0, 1〉, 〈1, 2〉 which have area 2 and 1 respectively in
the corresponding Euclidean geometry have the same areas for the Minkowski geometry using
this formula.

�
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The unit n-form on an oriented vector space with inner product

We first used the Levi-Civita symbols to give a compact expression for the determinant of any
matrix A

detA = εi1···in A
i1
1 · · ·Ainn or detA εj1···jn = εi1···in A

i1
1 A

i1
j1
· · ·Ainjn .

The index level (up or down) of the alternating symbol is just a convenience here to use our
summation convention. If we apply these to the matrix G = (Gij) of components of an inner
product, we can write

detG εj1···jn = εi1···in Gi1j1 · · ·Ginjn

detG−1 εj1···jn = εi1···in G
i1j1 · · ·Ginjn

Obviously we get into trouble if we try to extend our index-shifting convention to the pair of
Levi-Civita symbols themselves, since the results of index-raising or lowering either one differs
from the other by the determinant factors on the left hand side in these relations.

However, suppose we have an oriented vector space and define an indexed object

ηi1···in = ± | detG| 12 εi1···in

{
+ sign for an oriented basis

− sign for oppositely oriented basis

and define all other index positions for the object to be obtained from this fully covariant form
of the object by the usual rules for index raising. In particular

ηi1···in = Gi1···j1 · · ·Ginjn ηj1···jn = Gi1···j1 · · ·Ginjn εi1···in (±|detG| 12 )

= (detG−1) εi1···in (±|detG| 12 ) = ±(sgn detG)|detG|−1/2 εi1···in . (4.4)

I claim that

η = ηi1···inω
|i1···in| = η1···nω

1···n

is a uniquely defined tensor, independent of which particular basis we use to define it.
First recall

Gi′j′ = A−1m
i A−1n

j Gmn ←→ G′ = (A−1)TGA−1

so

G′ = (detA−1)2 detG .

(Why?) Furthermore

| detG′|1/2 = (sgn detA) detA−1 | detG|1/2 .

According our discussion of scalar densities, detG acts like a scalar density of weight W = 2,
while | detG|1/2 acts like a scalar density of weight W = 1 except that it changes sign under a
change of orientation (detA < 0), so it is called an “oriented” scalar density.
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Next using the previous relation, evaluate

A−1j1
i1 · · ·A−1jn

in ηj1···jn = (±)| detG|1/2 εj1···jnA−1j1
i1 · · ·A−1jn

in︸ ︷︷ ︸
εi1···in detA−1

= (sgn detA)(±)︸ ︷︷ ︸
appropriate sign for new basis

| detG′|1/2εi1···in ≡ ηi′1···i′n .

If detA < 0 this switches the orientation sign as it should, so in fact the transformation law for
a (0

n)-tensor holds, i.e., the above component definition defines the same tensor for every choice
of basis

η =
1

n!
ηi1···inω

i1···in = η1···nω
1···n .

This is called the unit n-form for the oriented inner product vector space. It does two things:

1. It carries the orientation information, with c η positively oriented if c > 0 and negatively
oriented if c < 0.

2. It measures n-volume by setting the scale as explained above.

Note that independent of the orientation of the frame, the product satisfies

ηi1···inηj1···jn = sgn(detG) εi1···inε j1···jn = sgn(detG)︸ ︷︷ ︸
≡ (−1)M

δi1···inj1···jn .

An orthonormal basis {ei} with respect to a given inner product G is one for which each
basis vector is a unit vector (with sign ± : Gij = G(ei, ej) = ±1) orthogonal to the rest
(Gij = 0, i 6= j). The difference s = P − M (Plus/Minus) in the number of positive and
negative signs is called the signature and is fixed for a given inner product (accept as a fact
for now; these are just the signs of the eigenvalues). A “positive-definite” inner product has all
positive signs, i.e., signature s = n, while a “negative-definite” inner product has all negative
signs, i.e., signature s = −n. An “indefinite” inner product has a signature s in between these
two extreme values. A “Lorentz” inner product has only one negative sign or only one positive
sign (the choice depends on prejudice, motivated by convenience of competing demands) and
so the absolute value of the signature is |s| = (n− 1)− 1 = n− 2. Since n = P +M , one gets
the relation M = (n− s)/2.

Remark.
Useful observation

For an orthonormal basis, | detG|1/2 = 1, so η = ω1···n if the basis is positively-oriented
(i.e., has the same orientation as the chosen one) and η = −ω1···n otherwise. [On Rn with the
standard inner product and orientation, then η = ω1···n.] Thus η is the n-covector which assigns
unit volume to a unit hypercube—the parallelepiped formed by an orthonormal basis.

In an oriented orthonormal frame the sign of the metric determinant is detG = (−1)M =
detG−1 so starting from ηi1···in = εi1···in and raising all its indices leads to ηi1···in = (−1)Mεi1···in .
However, in any frame the following relation holds

ηi1···inηj1···jn = (−1)M εi1···inεj1···jn = (−1)M δi1···inj1···jn .
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So what?
Well, now we can define a metric duality operation that has tensor character by using

ηi1···in instead of εi1···in . We will obtain a unique tensor by taking the metric dual, independent
of the choice of basis. This will automatically tell us both about p-measure’s orientation that
generalizes our “counterclockwise” orientation in a plane and its connection to the right handed
normal in R3 (inner and outer orientations).

N

The metric dual

We are now in a position to define the metric duality operation associated with an inner product
(metric) on our vector space, taking p-vectors to (n − p)-vectors and p-covectors to (n − p)-
covectors

∗ : Λ(p)(V ) −→ Λ(n−p)(V ) ,
∗ : Λ(p)(V ∗) −→ Λ(n−p)(V ∗) .

We modify the natural dual using ηi1···in in place of ei1···in and then shift all the indices back to
their original level using our inner product (metric). In both cases we contract the unit n-form
η or unit n-vector η] on the left with the components of the p-form or p-vector whose dual is
being taken

for p-covectors: [∗T ]ip+1···in =
1

p!
Ti1···ipη

i1···ip
ip+1···in = Ti1···ipη

|i1···ip|
ip+1···in

for p-vectors: [∗T ]ip+1···in =
1

p!
T i1···ipηi1···ip

ip+1···in = T i1···ipη|i1···ip|
ip+1···in ,

which is equivalent to the following relations on the basis p-vectors and p-covectors

∗ei1···ip = ηi1···ip
ip+1···ipe|ip+1···in|

∗ωi1···ip = ηi1···ip ip+1···ipω
|ip+1···in| .

These latter relations simply follow from linearity of this operation, for example,

∗T = ∗(T i1···ipe|i1···ip|) = T i1···ip ∗e|i1···ip| (linearity of dual)

= [∗T ]ip+1···ine|ip+1···in| (components of dual)

= T i1···ipηi1···ip
ip+1···ine|ip+1···in| (component definition of dual) ,

so comparing the first and last lines, we can equate the coefficients of T i1···ip to get the desired
relation.

To extend the dual map to 0-forms and 0-vectors when we are working with p-forms or p-
vectors (but not both at the same time since then this becomes ambiguous), we can set ∗1 = η
or ∗1 = η] respectively.
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Exercise 4.3.7.
dual of the unit n-form

Show that ∗η = (−1)M and that ∗(η]) = (−1)M .
�

Exercise 4.3.8.
duals in R3: self wedge with dual in R3

On R3 with the standard basis, inner-product and orientation, we can make the following
Table 4.2 of the duals of all the basis tensors.

p-vectors to (n− p)-vectors p-covectors to (n− p)-covectors

∗ : Λ(p)(V ) −→ Λ(n−p)(V ) ∗ : Λ(p)(V ∗) −→ Λ(n−p)(V ∗)

p = 0 ∗1 = e123
∗1 = ω123

p = 1 ∗e1 = e23
∗ω1 = ω23

∗e2 = e31
∗ω2 = ω31

∗e3 = e12
∗ω3 = ω12

p = 2 ∗e23 = e1
∗ω23 = ω1

∗e31 = e2
∗ω31 = ω2

∗e12 = e3
∗ω12 = ω3

p = 3 ∗e123 = 1 ∗ω123 = 1

Table 4.2: The duals of the basis multivectors and multicovectors for R3 with the usual dot
product for which η123 = η123 = 1.

Note that each of the basis tensors T in the Table 4.2 satisfies T ∧ ∗T = e123. This is no
accident. Check.

�

Exercise 4.3.9.
duals for M3

How do the signs in Table 4.2 change for 3-dimensional Minkowski spacetime M3 with
−G00 = G11 = G22 = 1 and η012 = −η012 = 1. How does T ∧ ∗T depend on p?

�

Exercise 4.3.10.
cross product on R3 and M3
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We can define a cross product for any 3-dimensional vector space with an inner product G

X × Y = ∗(X ∧ Y )↔ [X × Y ]i = GimηmjkX
jY k ≡ ηijkX

jY k .

This is just the usual cross-product for R3 with its dot product in an orthonormal basis like
the standard basis where it is simply [X × Y ]i = εijkX

jY k.
This cross product is also useful on 3-dimensional Minkowski spacetime M3 with the inner

product matrix G = diag(−1, 1, 1) = G−1, where the span of any two spacelike vectors defines
a local rest space for an observer moving orthogonally to them in spacetime. Their cross
product necessarily defines a timelike vector which defines the local time line for this local rest
space, namely a normal to the 2-plane they form. The unit normal reversed in sign defines the
corresponding future-pointing spacetime-velocity.

To be more concrete since η012 = 1 sets the unit-volume 3-form, raising the indices in an
orthonormal basis leads to η012 = −1 = η0

23, so [X ×Y ]i = ηijkX
jY k has a timelike component

[X × Y ]0 = η0
12(X1Y 2 −X2Y 1). Thus for spacelike vectors X, Y which in the Euclidean case

have an upward cross-product in that order, the Minkowski cross-product will point downward
because η0

12 = −1, so to re-establish the right hand rule giving an upward future-pointing
normal to the plane of these two vectors in this order, one has to reverse the overall vector:
−X × Y satisfies the right hand rule.

Show this by considering orientation by considering −〈0, 1, 0〉 × 〈0, 0, 1〉 and seeing that its
first component is positive, i.e., points in the future time direction. The index raising of the
natural dual simply changes the sign of the first component of the Euclidean cross product,
so changing the overall sign of all the components restores the right hand rule. This is not
necessary for the cross product of a timelike and a spacelike vector since the result is spacelike.
Check this with the standard basis vectors, say 〈1, 0, 0〉 and 〈0, 1, 0〉.

�

Example 4.3.1. On R4 with the standard basis and standard orientation, consider instead the
special relativity inner product G = diag(1, 1, 1,−1), i.e., e4 has a negative sign. Then

η1234 = 1 = η1
234 = η12

34 = −η123
4 = −η12

34

etc. since G is diagonal, so
η123

4 = −η1234G
44 = −η1234

etc.
�

Exercise 4.3.11.
double dual sign

Starting from Exercise 4.2.1 for the double natural dual and the definition of ηi1···in , show
that in an oriented frame, the double dual of a p-form T satisfies

∗∗T = (−1)M+p(n−p)T ,
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where (−1)M = sgn detG.

From this one can introduce the inverse dual map ∗
−1

by ∗
−1∗T = T = ∗∗−1

T and conclude
by comparing the second of these equalities with the double dual identity that

∗−1

T = (−1)M+p(n−p)∗T .

�

The variable part of this sign can be rewritten as (−1)p(n−p) = (−1)pn(−1)p
2

but (−1)p
2

has
the same sign as (−1)p (since if p is even it is positive, but if p is odd, so is p2, and the sign is
negative) so (−1)p(n−p) = (−1)pn(−1)p = (−1)(n−1)p. Thus if n is odd like n = 3, this sign is
positive, independent of p. If n is even like n = 4, then the sign is (−1)p, which alternates as p
is increased from 0 to 4.

Exercise 4.3.12.
inverse of dual

If S is a 1-form and T is a p-form, simplify the expression ∗−1
(S ∧ ∗T ), i.e., what is the

appropriate sign factor needed to replace ∗
−1

by ∗ here? What is the degree q of the resulting
q-form? This sign formula will return when we discuss the codifferential in Part 2.

�

Exercise 4.3.13.
double dual sign for n = 4

The metric dual is a map from p-vectors (-covectors) to (n−p)-vectors (-covectors) so when
n is even, the dual maps (n/2)-vectors (-covectors) to (n/2)-vectors (-covectors) and is thus
a linear transformation of this space into itself which preserves inner products. For R2 then
the dual of vectors are again (orthogonal) vectors, while for R4, the dual of 2-vectors are again
(orthogonal) 2-vectors. The double dual on these objects satisfies ∗∗ = (−1)M+n/2. One can
then consider the eigenvalue problem ∗X = λX for such objects, with λ2 = (−1)M+n/2.

a) For n = 4 and M = 0, the case of the usual Euclidean inner product on R4, then for
2-vectors, λ2 = 1, so λ = ±1. Find a basis of the space of 2-vectors which are eigenvectors of
the duality operation. The two eigenspaces of opposite signed eigenvalues are called self-dual
and anti-self dual 2-vectors.

b) For n = 4 and M = 1, the case of the Lorentian inner product on R4, then for 2-vectors,
λ2 = −11, so λ = ±i. Find a basis of the space of complex 2-vectors which are eigenvectors
of the duality operation. The two eigenspaces of opposite signed eigenvalues are called self-
dual and anti-self dual 2-vectors, although here the overall sign correlation depends on other
conventions.

�
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Inner product, duality and wedge product relations

Suppose V is an n-dimensional vector space with basis {ei}i=1,··· ,n and W is an m-dimensional
vector space with basis {Eα}α=1,··· ,m. Let {ωi} and {Wα} be the respective dual basis. Let
A : V −→ W be a linear map. Then by linearity

A(v) = A(viei) = viA(ei) ,

i.e., the map is completely determined by its values on the basis vectors. For each i, A(ei) ∈ W
can be expressed in terms of its components with respect to {Eα}

A(ei) = AαiEα , Aαi = Wα(A(ei)) .

Thus
w = A(v) = viAαiEα = [Aαiv

i]Eα

becomes
wα = Aαiv

i in components, equivalent to

A(ei) = AαiEα on the basis vectors.

The matrix A = (Aαi) is called the matrix representation of A with respect to the bases {ei} and
{Eα} of V and W respectively. If either basis changes, the matrix will change in an “obvious”
way (obvious when you see it). Consider the following changes of basis on both spaces

ei′ = B−1j
iej′ , ωi

′
= Bi

jω
j ,

Eα′ = C−1β
iEβ , Wα′ = Cα

βW
β .

Then

Aα
′
i′ = Wα′(A(ei′)) = Cα

βW
β(A(ejB

−1j
i))

= Cα
βW

β(A(ej))B
−1j

i = Cα
βA

β
jB
−1j

i

or
A′ = C AB−1 .

When V = W are ei = Ei, this reduces to the more familiar result

A′ = C AC−1 .

For a given vector space V each space T (p,q)(V ) of tensors of a given “index type,” or subspaces
with certain symmetries like Λ(p)(V ) and Λ(p)(V ∗), is a vector space in its own right. However,
instead of labeling the basis vectors in these spaces by a subscript label taking values between 1
and the dimension of the space, we use collections of indices associated with the underlying space
V . The linear operations we have introduced all correspond to various linear maps between
these spaces which can be expressed either in “component” form or as a relation between the
new and old basis vectors, which defines the “matrix” of the linear transformation—but matrix
in this generalized sense of one index corresponding to a collection of indices.
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The “index-shifting” maps associated with an inner product or “metric” G are a perfect
example. Considering the “lowering” map on V

[ : V −→ V ∗ [X[]i ≡ Xi = GijX
j (component relation)

or evaluating the index lowering in two different ways

X[ = Xiω
i = GijX

jωi

= (Xjej)
[ = Xjej

[ (by linearity)

one finds that
ej
[ = Gijω

i (basis relation).

Similarly
] : V ∗ −→ V [f ]]i = f i = Gijfj (component relation),

ωj] = Gijej (basis relation).

Exercise 4.3.14.
index shifting

Verify this as above.
�

The index shifting maps can be extended to any collection of indices for any space of tensors
of a given type. The [ and ] notation will always indicate shifting all the indices down and
up respectively. In particular for p-vectors and p-covectors one can translate the component
relations

Ti1···ip = Gi1j1 · · ·GipjpT
i1···ip ,

T i1···ip = Gi1j1 · · ·GipjpTi1···ip

into the basis relations

ei1···ip
[ = Gi1j1 · · ·Gipjpω

i1···ip ,

ωi1···ip ] = Gi1j1 · · ·Gipjpei1···ip (Exercise: verify these)

for the maps
[ : Λ(p)(V ) −→ Λ(p)(V ∗) , ] : Λ(p)(V ∗) −→ Λ(p)(V ) .

In fact it is natural to interpret Λ(p)(V ∗) as the dual space to Λ(p)(V ) since the natural
contraction

Ti1···ipS
|i1···ip| =

1

p!
Ti1···ipS

i1···ip

is linear both in the p-vector S and the p-covector T , so fixing either factor produces a real-
valued linear function of the other.
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{ω|i1···ip|} is the basis dual to {e|i1···ip|}, and their duality relation is that ω|i1···ip| contracted

on e|i1···ip| equals δ
|i1···ip|
|j1···jp| (which is just the Kronecker delta for these two spaces).

The inner product on Λ(p)(V )

〈T, S〉 =
1

p!
T i1···ipGi1j1 · · ·GipjpS

j1···jp ≡ 1

p!
Tj1···jpS

j1···jp

induces the inner product on Λ(p)(V ∗)

〈T, S〉 =
1

p!
Ti1···ipG

i1j1 · · ·GipjpSj1···jp ≡
1

p!
T j1···jpSj1···jp

for which the above relations are the component and basis relations for the two index shifting
maps between these two spaces (for each p). The “matrix” of this inner product is

〈ei1···ip , ej1···jp〉 = δ
k1···kp
i1···ipGk1j1 · · ·Gkpjp .

Both the natural dual and the metric dual are linear maps among these spaces which are
completely determined by their values on the basis tensors

(∗)ei1···ip = εi1···ipip+1···inω
|ip+1···in| ,

∗ei1···ip = η i1···ipip+1···inω
|ip+1···in|# = η i1···ip

ip+1···ine|ip+1···in|

= η i1···ipip+1···inG
ip+1jp+1 · · ·Ginjne|jp+1···jn| ,

∗ωi1···ip = η i1···ip ip+1···inω
|ip+1···in|

= η i1···ipip+1···inGip+1jp+1 · · ·Ginjnω
|jp+1···jn| .

In an oriented orthonormal frame, the natural and metric duals are very closely related, with
only the diagonal components of the metric nonzero and equal to Gii = ei · ei = ±1 = Gii and
η1...n = 1 = (−1)Mη1...n, where (−1)M = G11 · · ·Gnn. The metric dual then simplifies to

∗ei1···ip = η i1···ip
ip+1···ine|ip+1···in| = η i1···ipip+1···inG

ip+1ip+1 · · ·Ginine|ip+1···in| ,
∗ωi1···ip = η i1···ip ip+1···inω

|ip+1···in| = η i1···ipip+1···inGip+1ip+1 · · ·Gininω
|ip+1···in| ,

which only has sign changes relative to the Euclidean inner product for other signature inner
products.

Exercise 4.3.15.
2-vector duals in R4

For a 4-dimensional vector space, 2-vectors are mapped into 2-vectors by the metric dual
associated with any inner product. This is a linear transformation of the space of 2-vectors into
itself, so if we specify a basis, we can find the matrix of this linear transformation.

On R4 with the standard orthonormal basis with respect to the Euclidean dot product,
introduce the following ordered basis of the space of 2-vectors

{E1, E2, E3, E4, E5, E6} = {e23, e31, e12, e14, e24, e34} .
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a) Show that the matrix of the metric dual on this vector space defined by ∗Eα = Dβ
αEβ,

α, β = 1, 2, 3, 4, 5, 6 is

D =

(
03,3 I3

I3 03,3

)
,

where 03,3 is the 3× 3 zero matrix and I3 is the 3× 3 identity matrix.
b) Show that this basis is orthonormal: Eα · Eβ = δαβ.
c) Suppose we change to the Lorentzian inner product where ei ·ej = ηij, with −η00 = η11 =

η22 = η33 = 1. Show that

D =

(
03,3 −I3

I3 03,3

)
,

and that the basis Eα is orthonormal, with self-dot products

E1 · E1 = E2 · E2 = E3 · E3 = 1 , E4 · E4 = E5 · E5 = E6 · E6 = −1 .

�

The metric dual turns out to be very closely related to the inner product for p-vectors and
p-covectors. The following calculation establishes that simple relationship. If T and S are both
p-covectors, then ∗S is an (n−p)-covector, so T ∧∗S is an n-covector, with only one independent
component, which is in turn its dual, a real number, thus defining an inner product. Using the
contraction identity for a pair of alternating symbols in the second line, one has

T ∧ ∗S =

(
1

p!
Ti1···ipω

i1···ip
)
∧
(

1

(n− p)!p! S
j1···jpη j1···jpip+1···inω

ip+1···in
)

=

(
1

p!

)2

Ti1···ipS
j1···jp η j1···jpip+1···in︸ ︷︷ ︸

η1···nεj1···jpip+1···in

1

(n− p)!ω
i1···ipip+1···in︸ ︷︷ ︸

εi1···inω1···n

=

(
1

p!

)2

Ti1···ipS
j1···jp 1

(n− p)!δ
i1···in
j1···jpip+1···in︸ ︷︷ ︸

δ
i1···ip
j1···jp︸ ︷︷ ︸(

1

p!

)
Ti1···ipS

i1···ip = 〈T, S〉

η i1···inω
1···n︸ ︷︷ ︸

η

= 〈T, S〉 η

Thus we get the natural inner product we already have defined, but now defined without indices
in terms of the wedge product and duality operation

T ∧ ∗S = 〈T, S〉η ,

The same formula holds for p-vectors with η] in place of η.
In terms of the basis tensors, in an oriented orthonormal frame, one has

ei1···ip ∧ ∗ei1···ip = 〈ei1···ip , ei1···ip〉 η] ,
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where the left factor is the product of the signs of the basis vectors

〈ei1···ip , ei1···ip〉 = (ei1 · ei1) · · · (eip · eip)

and
η] = G11 · · ·Gnne1...n = (−1)Me1...n

is the product of all possible such signs times e1...n, while ∗ei1···ip is the (n− p)-covector needed
to wedge into ei1···ip from the right to get the product of signs associated with “complementary
indices” times e1···n, namely the product of signs (eip+1 · eip+1) · · · (ein · ein).

Exercise 4.3.16.
inner product of two duals for a general inner product; EDIT THIS

(i) Why “complementary indices”?
(ii) Use the component definitions to show that 〈∗T, ∗S〉 = (−1)M〈T, S〉 for two p-vectors T

and S.
(iii) On R3 define the cross product by ∗(X ∧ Y ) = X × Y , for any two vectors X and Y .

What are the components [X × Y ]i? (Verify that they are what you expect.)
�

Exercise 4.3.17.
M4 duals with indices 0,1,2,3

For n = 4 with the Lorentz inner product (metric) −η00 = η11 = η22 = η33 = 1, and
η0123 = 1 = −η0123, one has the following table 4.3 of all the metric duals of the bases of the
various p-vector/covector spaces, where again the cyclic permutations of (1,2,3) dominate many
formulas which are naturally categorized by having 0 or 1 index values which are 0.

a) Verify the relation ∗∗T = (−1)1+p(4−p)T = (−1)p−1T for all the multivector or multiform
basis tensors.

b) For a 1-form
U = U0ω

0 + Uaω
a , (a = 1, 2, 3)

evaluate ∗U .
c) For a 2-form

F [ = Eaω
a0 +B1ω

23 +B2ω
31 +B3ω

12 ,

evaluate ∗F [, F [ ∧ ∗F [, and F [ ∧F [. Evaluate the matrix of mixed components F = (Fα
β) and

∗F = (∗Fα
β) and compare with Exercise 1.6.6.

d) For a 3-form
J = J0ω123 − J1ω023 + J2ω031 − J3ω012 ,

evaluate ∗J .
e) Evaluate U ∧ J .

�
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p-vectors to (n− p)-covectors p-covectors to (n− p)-vectors

∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗) ∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗)

p = 0 ∗1 = η0123e0123 = −e0123
∗1 = η0123ω

0123 = ω0123

p = 1 ∗e1 = η1
023e023 = e023

∗ω1 = η1
023ω

023 = −ω023

∗e2 = η2
031e031 = e031

∗ω2 = η2
031ω

031 = −ω031

∗e3 = η3
012e012 = e012

∗ω3 = η3
012ω

012 = −ω012

∗e0 = η0
123e123 = e123

∗ω0 = η0
123ω

123 = −ω123

p = 2 ∗e23 = η23
01e01 = −e01

∗ω23 = η23
01ω

01 = ω01

∗e31 = η31
02e02 = −e02

∗ω31 = η31
02ω

02 = ω02

∗e12 = η12
03e03 = −e03

∗ω12 = η12
03ω

03 = ω03

∗e01 = η01
23e23 = e23

∗ω01 = η01
23ω

23 = −ω23

∗e02 = η02
31e31 = e31

∗ω02 = η02
31ω

31 = −ω31

∗e03 = η03
12e12 = e12

∗ω03 = η03
12ω

12 = −ω12

p = 3 ∗e123 = η123
0e0 = −e0

∗ω123 = η123
0ω

0 = ω0

∗e023 = η023
1e1 = −e1

∗ω023 = η023
1ω

1 = ω1

∗e031 = η031
2e2 = −e2

∗ω031 = η031
2ω

2 = ω2

∗e012 = η012
3e3 = −e3

∗ω012 = η012
3ω

3 = ω3

p = 4 ∗e0123 = η0123 = 1 ∗ω0123 = η0123 = −1

Table 4.3: The table of metric duals for the Lorentz inner product on M4 with −G00 = 1 =
G11 = G22 = G33 and η0123 = −η0123 = 1. Notice that ∗∗ = (−1)p−1.

Exercise 4.3.18.
M4 duals with indices 1,2,3,4

For n = 4 with the Lorentz metric η11 = η22 = η33 = 1 = −η44, and η1234 = 1 = −η1234, one
has the following table 4.4 of all the natural duals of the bases of the various p-vector/covector
spaces, where again the cyclic permutations of (1,2,3) dominate many formulas which are
naturally categorized by having 0 or 1 index values which are 4.

a) Verify the relation ∗∗T = (−1)1+p(4−p)T = (−1)p−1T for all the multivector or multiform
basis tensors.

b) For a 1-form
U = Uaω

a + U4ω
4 , (a = 1, 2, 3)

evaluate ∗U .
c) For a 2-form

F [ = Eaω
a4 +B1ω

23 +B2ω
31 +B3ω

12 ,
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p-vectors to (n− p)-covectors p-covectors to (n− p)-vectors

∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗) ∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗)

p = 0 ∗1 = η1234e1234 = −e1234
∗1 = η1234ω

1234 = ω1234

p = 1 ∗e1 = η1
234e234 = −e234

∗ω1 = η1
234ω

234 = ω234

∗e2 = η2
314e314 = −e314

∗ω2 = η2
314ω

314 = ω314

∗e3 = η3
124e124 = −e124

∗ω3 = η3
124ω

124 = ω124

∗e4 = η4
123e123 = −e123

∗ω4 = η4
123ω

123 = ω123

p = 2 ∗e23 = η23
14e14 = −e14

∗ω23 = η23
14ω

14 = ω14

∗e31 = η31
24e24 = −e24

∗ω31 = η31
24ω

24 = ω24

∗e12 = η12
34e34 = −e34

∗ω12 = η12
34ω

34 = ω34

∗e14 = η14
23e23 = e23

∗ω14 = η14
23ω

23 = −ω23

∗e24 = η24
31e31 = e31

∗ω24 = η24
31ω

31 = −ω31

∗e34 = η34
12e12 = e12

∗ω34 = η34
12ω

12 = −ω12

p = 3 ∗e123 = η123
4e4 = −e4

∗ω123 = η123
4ω

4 = ω4

∗e234 = η234
1e1 = −e1

∗ω234 = η234
1ω

1 = ω1

∗e314 = η314
2e2 = −e2

∗ω314 = η314
2ω

2 = ω2

∗e124 = η124
3e3 = −e3

∗ω124 = η124
3ω

3 = ω3

p = 4 ∗e1234 = η1234 = 1 ∗ω1234 = η1234 = −1

Table 4.4: The table of metric duals for the Lorentz inner product on R4 with 1 = G11 =
G22 = G33 = −G44 and η1234 = −η1234. Notice that ∗∗ = (−1)p−1.

evaluate ∗F [, F [ ∧ ∗F [, and F [ ∧F [. Evaluate the matrix of mixed components F = (Fα
β) and

∗F = (∗Fα
β) and compare with Exercise 1.6.6.

d) For a 3-form
J = J1ω

234 + J2ω
314 + J3ω

124 + J4ω
123 ,

evaluate ∗J .
e) Evaluate U ∧ J .

�

Exercise 4.3.19.
Euclidean R4 duals

How do the signs in table 4.3 change if instead of the Lorentian inner product on R4, we
use the usual Euclidean inner product? This changes η1234 = −1 to η1234 = 1 and G44 = −1 to



4.3. Subspace orientation and a new star duality 239

δ44 = 1. Check the signs in Table 4.5.
�

p-vectors to (n− p)-covectors p-covectors to (n− p)-vectors

∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗) ∗ : Λ(p)(V ) −→ Λ(n−p)(V ∗)

p = 0 ∗1 = η1234e1234 = e1234
∗1 = η1234ω

1234 = ω1234

p = 1 ∗e1 = η1
234e234 = e234

∗ω1 = η1
234ω

234 = ω234

∗e2 = η2
314e314 = e314

∗ω2 = η2
314ω

314 = ω314

∗e3 = η3
124e124 = e124

∗ω3 = η3
124ω

124 = ω124

∗e4 = η4
123e123 = −e123

∗ω4 = η4
123ω

123 = −ω123

p = 2 ∗e23 = η23
14e14 = e14

∗ω23 = η23
14ω

14 = ω14

∗e31 = η31
24e24 = e24

∗ω31 = η31
24ω

24 = ω24

∗e12 = η12
34e34 = e34

∗ω12 = η12
34ω

34 = ω34

∗e14 = η14
23e23 = e23

∗ω14 = η14
23ω

23 = ω23

∗e24 = η24
31e31 = e31

∗ω24 = η24
31ω

31 = ω31

∗e34 = η34
12e12 = e12

∗ω34 = η34
12ω

12 = ω12

p = 3 ∗e123 = η123
4e4 = e4

∗ω123 = η123
4ω

4 = ω4

∗e234 = η234
1e1 = −e1

∗ω234 = η234
1ω

1 = −ω1

∗e314 = η314
2e2 = −e2

∗ω314 = η314
2ω

2 = −ω2

∗e124 = η124
3e3 = −e3

∗ω124 = η124
3ω

3 = −ω3

p = 4 ∗e1234 = η1234 = 1 ∗ω1234 = η1234 = 1

Table 4.5: The table of metric duals for the Euclidean inner product on R4, where η1234 = η1234

in the standard orthonormal basis. Notice that now ∗∗ = (−1)p.

Exercise 4.3.20.
complex plane and real wedge products

The field C of complex numbers is a 2-dimensional real vector space isomorphic to R2

through the isomorphism z = x+iy ↔ (x, y) which associates the basis {1, i} with the standard
basis {e1 = (1, 0), e2 = (0, 1)}. Let C(u) = C((u1, u2)) = u1 + iu2 be the explicit isomorphism,
and denote the complex conjugate by z = x− iy.

a) Show that complex multiplication encodes both the dot product and determinant func-
tions nicely by showing that

C(u)C(v) = u · v + i ∗(u ∧ v) ,
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where u · v = u1v1 + u2v2 and

∗(u ∧ v) = det(u, v) =

∣∣∣∣ u1 v1

u2 v2

∣∣∣∣ = u1v2 − u2v1 .

Thus the imaginary part of the product of the complex conjugate of one complex number with
another complex number is just the signed area of the parallelogram formed by the correspond-
ing vectors in R2, while the real part is just their dot product.

b) For a unit vector û, C(û) is a unit complex number: |C(u)| = (C(u)C(u))1/2 = 1.
Show that by introducing polar coordinates of points in R2: u1 = r cos θ, u2 = r sin θ, the
corresponding complex number is put into polar form with its magnitude given by r and its
“argument” given by θ: C(u) = reiθ. Thus the unit circle in R2 corresponds to the unit circle
of unit complex numbers in the complex plane.

c) For two unit vectors û, v̂, introduce a signed angle θ ∈ [−π, π] between them measured
in the counterclockwise direction from u to v. Then û · v̂ = cos θ while ∗(u ∧ v) = sin θ, so this
becomes

C(û)C(v̂) = cos θ + i sin θ = eiθ

so by linearity
C(u)C(v) = |u||v|(cos θ + i sin θ) = |u||v|eiθ .

Cute. To justify this verify that if u = |u|(cos θ1, sin θ1) and v = |v|(cos θ2, sin θ2), then

∗(u ∧ v) = det(u, v) =

∣∣∣∣ u1 v1

u2 v2

∣∣∣∣ = |u||v| sin(θ2 − θ1) ≡ |u||v| sin θ .

�

Remark.

This stuff is too good to let slide. The idea generalizes in various ways. Quaternions are
the simplest next step in which one considers a product on R4

u = uiei + u4e4 ≡ ~u+ u4e4 , v = viei + v4e4 ≡ ~v + v4e4 ,

uv = ∗(3)(~u ∧ ~v) + u4~v + v4~u+ (u4v4 − ~u · ~v)e4

where ∗(3)~u ∧ ~v = ~u × ~v involves the 3-dimensional duality operation on 3-vectors to get the
cross product and i = 1, 2, 3. In analogy with the complex numbers quaternions are usually
written

Q(u) = u1i+ u2j + u3k + u41

under which one has the isomorphism which sends the standard basis of R4 to {i, j, k, 1},
putting the “real part” last so we can take advantage of the (1, 2, 3) indices correlating with
i, j, k. Introduce the conjugate of u and Q(u) by u = −uiei + u4e4,

Q(u) = Q(u) = −u1i− u2j − u3k + u41 .
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The magnitude of a quaternion is just the magnitude of the corresponding vector with the usual
Euclidean dot product on R4

|Q(u)| = (Q(u)Q(u))1/2 = (uu)1/2 = (u · u)1/2 = |u| ,

so unit quaternions correspond to the unit sphere S3 in R4.
Another possible next step is “geometric algebra” in which you don’t take the dual of u∧ v

but work with a linear combination of multivectors of different rank. You can easily find
information about either quaternions or geometric algebra on the web. Both approaches turn
out to be extremely efficient in describing the mathematics of the rotation group, and so are not
just mathematical games playing. Remember, computer graphics relies heavily on being able
to rotate objects around in space freely, so even computer animated films and the computer
gaming industry need this stuff.

For example, one can calculate that the unit quaternion

q(θ, n̂) = cos θ/2 + sin θ/2 (n1 i+ n2 j + n3 k)

has the effect
q(x1 i+ x2 j + x3 k)q = (Rx)1 i+ (Rx)2 j + (Rx)3 k ,

where R is an active rotation by the angle θ about the direction n̂. Thus rotations become part
of the quaternion arithmetic. N

Determining subspaces

All this symbol manipulation seems like a big waste of time, right? Let’s pull it together with
the basic problem of how to represent the subspaces of V = Rn, namely the p-planes through
the origin. The same discussion will apply to any vector space once we establish a basis.

A p-plane is clearly determined by a basis for the subspace consisting of n linearly indepen-
dent vectors which span the subspace: {u(1), . . . , u(p)}. Let U = 〈u(1)| · · · |u(p)〉 be the p × n
matrix of component column vectors. This matrix has rank p since its columns are linearly
independent so it row reduces to the first p columns of the identity matrix. Any vector lying in
this p-plane can be expressed uniquely as a linear combination of the basis vectors: x = cAu(A),
A = 1, . . . , p.

The wedge product of the basis vectors u(1)∧· · ·∧u(p) is a p-vector. Then the (p+1)-vector
obtained by the wedge product

u(1) ∧ · · · ∧ u(p) ∧ x = u(1) ∧ · · · ∧ u(p) ∧ (cAu(A)) (expand in basis)

= cA(u(1) ∧ · · · ∧ u(p) ∧ u(A)) (linearity)

= 0 (repeated factors in each term)

is zero since it consists of a sum of p terms, each of which contains two repeated factors in
the wedge product, which separately vanish. This condition exactly captures all the vectors
which lie in the subspace as the solution of a set of linear conditions when expressed in terms
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of components, namely, a p-plane is the result of imposing n− p independent linear conditions
on n variables. Since the right hand side of this relation will remain zero under the subsequent
operations we do, the sign and factorial factors are irrelevant and can be ignored, which will
be indicated by using ∼ to indicate proportionality.

In components

[u(1) ∧ · · · ∧ u(p) ∧ x]i1···ipj = u[i1
(1) · · ·uip (p)x

j] = 0 .

Taking the natural dual of this (p+ 1)-vector leads to an (n− p+ 1)-form

[(∗)(u(1) ∧ · · · ∧ u(p) ∧ x)]
j1···jp−1

i1···ipj ∼ εj1···jn−p+1i1···ipju
i1

(1) · · ·uip (p)x
j = 0 ,

which is the natural dual of the p-vector alone evaluated on x in its last argument

(∗)(u(1) ∧ · · · ∧ u(p) ∧ x) = (∗)(u(1) ∧ · · · ∧ u(p)) x

where the symbol S x will indicate evaluating a multiform S on x in its last argument, or in
components

[(∗)(u(1) ∧ · · · ∧ u(p))]j1···jn−p+1jx
j = 0 .

The solution of these linear conditions on the n-variables xj yields the p-plane, i.e., the natural
dual (n − p)-form determines the p-plan implicitly, and one can think of x = cAu(A) as a
parametrized solution of this (n− p)× n system of linear equations.

The metric dual raises the indices on the (n − p)-form (∗)(u(1) ∧ · · · ∧ u(p)) to make an
(n− p)-vector [(∗)(u(1) ∧ · · · ∧ u(p))]

] (and corrects it with the metric determinant factor), which
is such that its inner product with the vector x is zero (provided we agree that Si1···ip−1ipGipjx

j

represents such an inner product of a p-vector and a vector). If one takes a basis {u(A)},
A = p+1, . . . , n of the orthogonal (n−p)-plane, this translates into stating that x is individually
orthogonal to each of these complementary basis vectors, changing the nature of the conditions
from linear conditions to geometrical conditions. For a hyperplane where p = n−1, the natural
dual is a 1-form, and lowering its index produces a normal vector field. The p-measure of the
p-parallelepiped formed by the original p vectors is exactly the magnitude of the corresponding
p-vector, which in turn equals the length of the corresponding dual p-vector.

Take the familiar case of an ordinary plane in R3 using the standard basis, where

u(1) ∧ u(2) = u[i
(1) ∧ uj](2)ei ∧ ej

=

∣∣∣∣u2
(1) u2

(2)

u3
(1) u3

(2)

∣∣∣∣ e2 ∧ e3 +

∣∣∣∣u3
(1) u3

(2)

u1
(1) u1

(2)

∣∣∣∣ e3 ∧ e1 +

∣∣∣∣u1
(1) u1

(2)

u2
(1) u2

(2)

∣∣∣∣ e1 ∧ e2 ,

(∗)(u(1) ∧ u(2)) =

∣∣∣∣u2
(1) u2

(2)

u3
(1) u3

(2)

∣∣∣∣ω1 +

∣∣∣∣u3
(1) u3

(2)

u1
(1) u1

(2)

∣∣∣∣ω2 +

∣∣∣∣u1
(1) u1

(2)

u2
(1) u2

(2)

∣∣∣∣ω3 ,

∗(u(1) ∧ u(2)) =

∣∣∣∣u2
(1) u2

(2)

u3
(1) u3

(2)

∣∣∣∣ e1 +

∣∣∣∣u3
(1) u3

(2)

u1
(1) u1

(2)

∣∣∣∣ e2 +

∣∣∣∣u1
(1) u1

(2)

u2
(1) u2

(2)

∣∣∣∣ e3 ≡ u(1) × u(2) .

The components of the natural dual

ni = [(∗)(u(1) ∧ u(2))]i = εijku
j
(1)u

k
(2)
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are the coefficients of the variables in the single linear equation determining the plane: nix
i = 0.

The dual is instead a normal vector ni = [∗(u(1) ∧ u(2))]
i which is orthogonal to all vectors x

in the 2-plane: δijn
ixj = 0. This normal vector is just the ordinary cross product of the two

vectors determining the plane, and its length is exactly the area of the parallelogram that
they form. The mathematics of multivectors and the metric dual generalize this familiar fact
from ordinary vector geometry to subspaces of all dimensions in all of the Rn spaces. Instead
of a normal 1-vector to a hyperplane, one has a normal (n − p)-vector to a p-plane carrying
p-measure information.

In fact this continues to work for any nondegenerate inner product on R3 since the inner
product of a vector X with a normal vector N = ∗(X ∧ Y ) is proportional to the natural
evaluation of the corresponding natural dual 1-form on the vector:

N • Z = (∗(X ∧ Y ))(Z) = | det(G)|1/2εijkX iY jZk .

In particular we can use this for 3-dimensional Minkowski spacetime to determine the local
time direction for a spatial 2-plane. See Appendix D.

Exercise 4.3.21.
2-planes in R4 and wedge products

In R4 with the usual Euclidean inner product for which the standard basis vectors {ei} are
orthonormal, consider the two vectors

X(1) = 〈1, 3, 5, 7〉 , X(2) = 〈2, 4, 6, 8〉 ,

and let

X = 〈X(1)|X2)〉 =


1 2
3 4
5 6
7 8


be the 2 × 4 matrix for which they are the columns. They determine a 2-plane through the
origin and a parallelogram in that plane with area A.

a) Evaluate the 2-vector P = X(1) ∧ X(2) = X i
(1) ∧ Xj

(2)ei ∧ ej whose 6 independent
components can be labeled by the ordered index pairs (m,n) = (2, 3), (1, 3), (1, 2), (1, 4),
(2, 4), (3, 4), and are just the determinants of the 2×2 submatrices of X formed by the ordered
rows (m,n). The length squared of the 2-vector P is |X(1)∧X(2)|2 = [X(1)∧X(2)]ij[X(1)∧X(2)]

|ij|,
which is just the sum of the squares of these 6 ordered components. Evaluate this length.

b) Evaluate the dual 2-vector Q = ∗(X(1) ∧ X(2)) and their wedge product P ∧ Q, thus
confirming the relation P ∧ ∗P = |P |2e1 ∧ e2 ∧ e3 ∧ e4.

c) What are the antisymmetric matrices of components P of X(1) ∧X(2) and Q of its dual
Q? Evaluate their product P Q. (It should be zero since they are constructed from orthogonal
vectors!) What is the rank of these two matrices, i.e., how many nonzero rows do they have
when you row reduce them to reduced row echelon form? The rank is the number of independent
linear equations they impose on the variable x when you solve the equations Ax = 0 for each
of these matrices as the coefficient matrix A. The latter solution space for Q is exactly the
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original 2-plane and the solution space for P is its orthogonal 2-plane, explaining these results.
Use a computer algebra system to solve these two homogeneous systems of linear equations
(the command LinearSolve(A, 〈0, 0, 0, 0〉) in the LinearAlgebra package of Maple) and read off
the coefficients of the arbitrary parameters in the solution as an ordered basis of each subspace

Ax = 0→ x = tAE(A) → E = 〈E(1)|E(2)〉 .
For the second such linear system Qx = 0, start with the basis matrix E so obtained, and use
a computer algebra system (the command LinearSolve(E,X) in the LinearAlgebra package of
Maple) to find the change of basis matrix B which satisfies E B = X and which expresses the
old basis of the original 2-plane as linear combinations of these new basis vectors. Use this
matrix B to express the vector

Z = X(1) +X(2) = X 〈1, 1〉 = E B 〈1, 1〉 = E 〈y1, y2〉 = y1E(1) + y2E(2)

in terms of this new basis.
d) Use the Gram-Schmidt procedure to replace the second vector in the set by its orthogonal

projection with respect to the first vector

(X(1), X(2))→ (Y(1), Y(2)) = (X(1), Y(2)) , Y(2) = X(2) −
(
X(2) ·X(1)

X(1) ·X(1)

)
X(1) .

Since these two new vectors are orthogonal, the product of their lengths is the area of the
rectangle they form, but this must be the same as the area of the parallelogram formed by the
original pair since the Gram-Schmidt operation adds a multiple of first vector to the second,
leaving the orthogonal component of the second unchanged, whose magnitude is the “height” of
the parallelogram whose base has length equal to the magnitude of the first vector. See figure
2.3. Evaluate this area.

d) Now compare the length |X(1) ∧ X(2)| calculated in the first two parts of this problem.
They should be equal. The length of a decomposable p-vector formed from the wedge product
of p vectors equals the measure of the p-parallelepiped formed by those vectors.

e) A 2-plane in R4 has two independent normal vectors which in turn span the orthogonal
2-plane. One can find a pair of such normals using the Gram-Schmidt procedure applied to
a set of 4 vectors which complete the X(1), X(2) to a basis of the whole space. Adding the
standard basis vectors e3, e4 to this set yields a square matrix with nonzero determinant, so we
can apply Gram-Schmidt to the ordered set {X(1), X(2), e3, e4} to obtain a new orthogonal basis
Y(1), Y(2), Y(3), Y(4) (the first two vectors are X(1) and the vector Y(2)) you already calculated in
part d) above!). Do this with a computer algebra system finding the appropriate GramSchmidt
command from the Help. Then for ease of computation, rescale the last two vectors of the set
to obtain integer component vectors (multiply by the least common denominator of each set
of components), and evaluate their wedge product M . The 2-vector M should determine the
same orthogonal 2-plane as Q = ∗(X(1) ∧ X(2)) in the sense that these two are proportional.
Are they?

f) Normalize the orthogonal basis {Y(i)} adapted to this orthogonal decomposition of R4 to
obtain an orthonormal basis {Y(̂i)}. Then Y(1̂) ∧ Y(2̂) is a unit 2-vector determining the plane
and Y(3̂) ∧ Y(4̂) a unit normal 2-vector. Therefore up to sign, they are duals of each other.
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4.4 Wedge and star duality on Rn in practice

32-1
0 1

1

1
2

3

3 4
0

5

5 6
-1

Figure 4.4: The parallelopiped formed by 3 vectors u, v, w plotted with the unit normal û× v.

Now that we have had a chance to play with these concepts a bit, we should conclude by
making them more intuitive and interpret them a bit more clearly. Let’s only worry about
the case of Rn with its Euclidean dot product in its standard orthonormal coordinates xi = ωi

associated with the standard basis ei, where index raising and lowering with the Kronecker
delta Gij = δij removes the need to distinguish upper and lower indices, and we can temporarily
allow a repeated pair of indices at the same level to be summed over, letting ui = ui, so that
uiui = uiui, etc. Also the components of the unit volume n-form ηi1...in = εi1...in coincide with
the Levi-Civita alternating symbol, where again we can ignore index positioning, so the duality
operation is

∗(ei1 ∧ . . . ∧ eip) = εi1...ipip+1...ineip+1 ∧ . . . ∧ ein .
In fact the unit volume n-form η = det is the determinant tensor itself.

To be concrete, consider an explicit example of 2 or 3 vectors in R3

u = 〈1, 2,−1〉 , v = 〈2, 1, 3〉 , w = 〈3,−2, 1〉 ,
u · v = 1 , u× v = 〈7,−5,−3〉 , (u× v) · w = det〈u|v|w〉 = 20 .

The determinant of the matrix with these three vectors as its columns in this order is the
signed volume of the parallelopiped they form, in this case positive since the third vector is on
the same side of the plane of the first two as their ordered cross product.

The 3-vector u∧v∧w = 20e1∧e2∧e3 is just 20 times the unit volume 3-vector η] = e1∧e2∧e3,
and the single independent component is just the determinant

20 = (ω1 ∧ ω2 ∧ ω3)(u, v, w) = ∗(u ∧ v ∧ w) .

This is constructed from the antisymmetrization of the tensor product of the three vectors

u⊗ v ⊗ w = uiei ⊗ vjej ⊗ wkek = uivjwkei ⊗ ej ⊗ ek .
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The 27 basis (0
3)-tensors ωi⊗ωj ⊗ωk pick out the products of the components of the 3 vectors,

which are the components of the tensor product u⊗ v ⊗ w

(ωi ⊗ ωj ⊗ ωk)(u, v, w) = uivjwk

The wedge product is instead just the sum over all possible permutations of the indices with a
sign factor

ωi ∧ ωj ∧ ωk = δijkmnpω
m ⊗ ωn ⊗ ωp ,

introducing the (3
3)-indexed generalized Kronecker delta which is just the collection of com-

ponents of the wedge product of the basis covectors in this case. However, there is only one
independent 3-form ω1 ∧ ω2 ∧ ω3, so

(ω1 ∧ ω2 ∧ ω3)(u, v, w) = δ123
ijk(ω

i ⊗ ωj ⊗ ωk)(u, v, w) = δ123
ijku

ivjwk = det〈u|v|w〉 ,

which is a sum of 6 terms giving the determinant. This single number is the dual of the 3-vector
u ∧ v ∧ w: ∗(u ∧ v ∧ w) = 20.

If we delete any one of the columns of the 3× 3 matrix 〈u|v|w〉, say w, we can get at most
2 × 2 submatrices by deleting one of the rows of the resulting 3 × 2 matrix of the first two
vectors

A = 〈u|v〉 =

 1 2
2 1
−1 3

 .

In an obvious notation

det(DelRow(A, 1)) =

∣∣∣∣ 2 1
−1 3

∣∣∣∣ = 7 ,

det(DelRow(A, 2)) =

∣∣∣∣ 1 2
−1 3

∣∣∣∣ = 5 ,

det(DelRow(A, 3)) =

∣∣∣∣ 1 2
2 1

∣∣∣∣ = −3 .

Ignoring the first components projects the two vectors orthogonally onto the x2-x3 plane, where
the determinant gives the signed area of the parallelogram formed by the two projected vectors
in the plane, and the sign indicates whether one moves counterclockwise (+) or clockwise (−)
from the projection of u to the projection of v. Remarkably the sum of the squares of the areas
of these 3 projections of the original unprojected parallelogram is the square of the area of that
original parallelogram.

The 3 independent basis 2-forms (with components which are the (2
2)-Kronecker deltas)

evaluate exactly to these three subdeterminants. The tensor product ω2 ⊗ ω3 simply picks out
the product components: (ω2⊗ω3)(u, v) = u2v3. The wedge product ω2∧ω3 = ω2⊗ω3−ω3⊗ω2

instead evaluates the first of these subdeterminants, deleting the first components of both
vectors

(ω2 ∧ ω3)(u, v) = (ω2 ⊗ ω3 − ω3 ⊗ ω2)(u, v) = u2v3 − u3v2 =

∣∣∣∣ u2 v2

u3 v3

∣∣∣∣ =

∣∣∣∣ 2 1
−1 3

∣∣∣∣ .
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Figure 4.5: The parallelogram formed by 2 vectors u, v plotted with the unit normal û× v
projects onto parallelograms in each of the three coordinate planes. The projected vectors
rotate from u to v in the counterclockwise direction when the orientation is positive (normal
out of the page) and in the clockwise direction (normal into the page) when the orientation is
negative.

In general the 3 independent such forms, either the ordered set ω2 ∧ω3, ω1 ∧ω3, ω1 ∧ω2, or the
cyclic set ω2 ∧ ω3, ω3 ∧ ω1, ω1 ∧ ω2, evaluate to these subdeterminants or an alternating sign
times them

ωi ∧ ωj = δijmnω
m ⊗ ωn ,

(ωi ∧ ωj)(u, v) = δijmn(ωm ⊗ ωn)(u, v) = δijmnu
mvn = (δimδ

j
n − δinδjm)umvn = uuvj − unvm .

These are exactly the coefficients of the 2-vector u ∧ v when expressed in terms of the basis
2-forms

u ∧ v = 7e2 ∧ e3 + 5e1 ∧ e3 − 3e1 ∧ e2 = 7e2 ∧ e3 − 5e3 ∧ e1 − 3e1 ∧ e2 .

The dual swaps a pair of indices (a, b) from the cyclic triplet (a, b, c) (namely a positive permuta-
tion of (1, 2, 3)) for the third index, thus economically dealing only with the three independent
components of the antisymmetric tensor u ∧ v which has 3 zero components and 3 pairs of
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components differing only by sign in each pair: ∗ea ∧ eb = εabcec or

∗(u ∧ v) = ∗(7e2 ∧ e3 − 5e3 ∧ e1 − 3e1 ∧ e2) = 7∗(e2 ∧ e3)− 5∗(e3 ∧ e1)− 3∗(e1 ∧ e2)

= 7e1 − 5e2 − 3e3 = u× v ,

which is the familiar cross product vector. It is well known that its length represents the area
of the parallelogram formed by u and v

Area(u, v) = |u× v| = |u ∧ v|

whose square is the sum of the squares of the three 2 × 2 subdeterminants representing the
signed projected areas, which is the square of the length of the 2-vector as well.

If we delete two of the three vectors in the original 3 × 3 matrix, say v and w, we are
left with a 3 × 1 matrix of one column vector u. The largest square submatrices contained in
a single column are the three 1 × 1 submatrices whose determinant is just the single matrix
entry. These are picked out by the three basis 1-forms ωi. These represent the signed lengths
of the orthogonal projections onto the three respective axes. Thus the wedge algebra is a way
of capturing the volume, area and length of the original parallelopiped and of the orthogonal
projections of its faces onto the coordinate planes, and the orthogonal projections of its edges
onto the coordinate axes, all evaluated from the set of all possible subdeterminants of the
original square matrix of the three vectors of our set. Each face is represented by a 2-vector
whose dual is a normal vector to the face, and whose length is the area of the face.

The duality operation is also very natural. The lines and planes through the origin are the
subspaces of R3. Think of the orthonormal basis e1, e2, e3 of R3 as a simple set of vectors to
discuss this concept. One way to specify the x-axis (all multiples of e1) is to say that it is the
1-dimensional subspace consisting of all vectors orthogonal to the y-z coordinate plane, which
is its complementary orthogonal 2-dimensional subspace, in turn described by the conditions:
y = 0, z = 0. e2 and e3 are a basis of that plane, but to specify a plane, no particular choice
of basis matters, so we can simply take their wedge product to represent that subspace, since
any other basis will lead to the same 2-vector e2 ∧ e3 modulo a scalar, a scalar which is just
the determinant of the 2 × 2 matrix of components of the new basis of that plane. The dual
of e1 is the 2-vector e2 ∧ e3 (itself a unit tensor since its represents the area of a unit square
whose edges are the two orthogonal unit vectors) representing the orthogonal plane such that
the wedge product of the two gives the unit volume 3-vector on R3: η] = e1 ∧ e2 ∧ e3. In other
words it is the missing factor needed to complete e1 to e1 ∧ e2 ∧ e3.

Conversely, how can we specify a plane for which we have a basis? Usually we specify a
plane by giving a normal vector to the plane. For the y-z plane which has e2, e3 as a basis and
therefore e2∧e3 as a representative 2-vector, the dual is the missing factor e1 whose wedge with
it produces the unit 3-vector. There is only one orthogonal direction, so a unit normal is all we
need to specify the orthogonal direction and the dual of the unit 2-vector e2 ∧ e3 produces one
of the two possible unit normals e1, chosen so that the wedge on the right produces the unit
volume 3-vector η] = e1 ∧ e2 ∧ e3 and not the one differing by a negative sign. For lines and
planes not aligned with the coordinate axes and planes, the duality operation still does the same
thing geometrically. Modulo a factor, the dual of any p-vector is a (3− p) vector representing
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the orthogonal directions, and the factor itself is chosen so that their wedge product produces
the square of the length of the p-vector as the multiple of η], a factor which represents the
square of the length of the vector (p = 1) or the area of the parallelogram formed by the two
vector factors (p = 2).

In Rn, a p-plane through the origin can be specified by giving a basis of (n − p) normal
vectors for the orthogonal (n − p)-plane, or simply the wedge product of those normals, and
requiring any vector that belong to the p-plane be orthogonal to that set of vectors, or to their
wedged (n− p)-vector. If we start with an orthonormal basis of the p-plane, then their wedge
is a unit p-vector specifying that p-plane, and its dual is a unit (n − p)-vector which specifies
the orthogonal (n− p)-plane, and can be represented as the wedge product of an orthonormal
basis of the (n− p)-plane.

Even in the simplest case of R2, we are all pretty familiar with the way in which we get a
line through the origin at 90 degrees to an existing line through the origin: they have negative
reciprocal slopes. In fact as illustrated in Figure 4.6, if we take the original vector specifying such
a line through the origin and swap the components with an additional minus sign introduced
in one of them, we get a negative reciprocal slope. This is just the duality operation! The dual
of a vector is a (2 − 1)-vector, just another vector, which is orthogonal to the first vector and
has the same length. The sign is chosen so that the vector and its dual form an oriented basis
of the plane, namely one moves from the first to the second counterclockwise through an angle
less than π.

The spaces of p-vectors and (n− p)-vectors in Rn both have dimension(
n

p

)
=

n!

p!(n− p)! =

(
n

n− p

)
,

and the star duality operation allows us to represent the latter in terms of the former. The
dimension is 1 for p = 0 (scalars) and p = n, with an n-vector representable as the dual of a
scalar. This dimension is n for 1-vectors and (n − 1)-vectors, and the latter are representable
as the dual of a vector. The dimension is n(n − 1)/2 for 2-vectors (whose components are
antisymmetric matrices) and (n − 2)-vectors, and the latter are representable as the dual of
a 2-vector. This is all we need for n < 5. In the plane n = 2, where n − 1 = 1, we only
need vectors, and duality takes vectors to vectors. For n = 3 we only need vectors, since
the dual of a 2-vector is a vector (explaining the cross product). For n = 4, we only need
vectors and 2-vectors, since the dual of a 3-vector is a vector, while 2-vectors are essentially
just antisymmetric matrices, still familiar. Thus the whole business of wedging and duality is
not really such a big deal in practice.

Suppose we consider an (n− p)× n matrix

A = 〈u(1)| . . . |un〉 = 〈a(1)T , . . . , a(n−p)T 〉

of rank r = n − p consisting of n columns u(i) and n − p linearly independent rows a(B)T ,
B = 1 . . . n − p. Then these rows are a basis of the (n − p)-dimensional row space of the
matrix consisting of the span of its set of rows, which is the subspace of Rn orthogonal to
the p-dimensional null space of the matrix with respect to the dot product. The null space,
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Figure 4.6: The duality operation in the Euclidean plane is simply a rotation by 90 degrees
in the counterclockwise direction: ∗〈u1, u2〉 = ∗(u1e1 + u2e2) = u1∗e1 + u2∗e2 = u1e2 − u2e1 =
〈−u2, u1〉, yielding a normal vector to the linear subspace spanned by the original vector. The
natural dual (∗)〈u1, u2〉 = (∗)(u1e1 + u2e2) = u1(∗)e1 + u2(∗)e2 = u1ω2 − u2ω1 on the other hand,
when used to find those vectors on which it evaluates to zero, describes the original subspace
by its linear equation: 0 = −u2ω1 + u1ω1 = −u2x+ u1y, or y = (u2/u1)x if u1 6= 0.

which is a p-plane in Rn through the origin consisting of all those vectors sent to 0 by matrix
multiplication by A, has a basis of p vectors v(1), . . . , v(p) provided by the reduced row echelon
algorithm. The wedge product p-vector v(1) ∧ . . .∧ v(p) completely determines this p-plane. On
the other hand the row space is an (n− p)-plane through the origin of Rn which is determined
by the wedge product (n− p)-vector a(1) ∧ . . .∧ a(n−p). The dual of each is proportional to the
other. This same geometry extends to any nondegenerate inner product on Rn.

Exercise 4.4.1.
transforming wedge products and star duals in the plane

This exercise gives us some hands on contact with actual numbers instead of just juggling
formulas. Given the standard basis of R2 and a given vector X, one can evaluate some of the
various maps: index lowering maps the vector onto a covector X[. The natural dual maps the
vector onto another covector (∗)X. The metric dual maps the vector onto another vector ∗X.
Given a new basis of the plane determined by the change of basis matrix A, one can calculate
the new components of the vector and of the dot product tensor G and use the latter to lower
the vector’s index to obtain the new components of the corresponding covector. However, one
can also transform the components of the index lowered covector X[ to get the same result and
they should agree. In other words, we can lower the index on the vector either before or after



252 Chapter 4. Antisymmetric tensors, subspaces and measure

transforming its components from the old basis to the new basis. For each of the other maps one
can repeat the exercise, performing the map either before or after transforming components.

For example, as illustrated in the following diagram we can either transform the compo-
nents and then lower the index (right, then down) or lower the index and then transform the
components (down, then right) and we should get the same result in either order, leading to a
“commutative diagram”

X i A−→ X i′

I ↓ [ [ ↓ G′

Xi
A−1

−→ Xi′ .

A similar diagram describes the component independence of the natural dual (∗), which is also
a linear map from R2 to (R2)∗. The metric dual map ∗ on the other hand is a linear map from
R2 to itself

X i A−→ X i′

∗ ↓ ∗ ↓

[∗X]i
A−→ [∗X]i

′
.

Indeed the same diagram would describe the component independence of any linear map L
from the vector space into itself. The present problem will calculate these two different ways
of getting to the opposite corner of the diagram for concrete values of the components and the
various maps.

In doing the change of basis, one has two choices: work with the set of components X or I
and use component/matrix methods to transform them, like X ′ = AX or G′ = (A−1)T I A−1, or
work with the index-free object X = X iei = X i′ei′ or G = δijω

i⊗ωj = Gi′j′ω
i′⊗ωj′ and simply

substitute the old basis vectors and covectors expressed in terms of the new ones and expand to
get the new components. Similarly the unit area 2-form η = ω1 ∧ ω2 can be so re-expressed to
evaluate its new single independent component and compared with the component definition
in a general basis.

Consider the new left handed basis on the plane: e1′ = 〈1, 2〉, e2′ = 〈3, 1〉. It would not hurt
to make a diagram showing the new coordinate grid and the various vectors, lines and 1-forms
discussed below, and start by writing out the four transformations

ei′ = ejA
−1 j

i , ei = ej′A
j
i ,

ωi
′
= Aijω

j , ωi = A−1 i
jω

j′ ,

and the matrices A and A−1.
a) Evaluate the matrix of inner products G′ = (ei′ · ej′) and its determinant detG′. Express

the inner product tensor G = δijω
i⊗ωj = Gi′j′ω

i′⊗ωj′ in terms of the new dual covectors using
your result for the new components, i.e., just replace the four numbers Gi′j′ in this expression
for G by the values you found.

b) Evaluate the unit volume form η = ω1 ∧ ω2 = η1′2′ω
1′ ∧ ω2′ by wedging together ω1 and

ω2 expressed in terms of the new dual basis, and read off the component η1′2′ as the coefficient
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of ω1′ ∧ ω2′ . Then compare with the formula η1′2′ = ±(detG′)1/2ε12, where the plus or minus
is appropriate if the transformation matrix from the oriented standard basis has positive or
negative determinant.

c) Express the vector X = −2e1 + e2 and its corresponding 1-form X[ = −2ω1 + ω2 in
terms of the new basis, and show that the new components are related to each other by index
lowering with the matrix G′.

d) Evaluate the natural dual of X = −2e1 + e2 to obtain the equation of the subspace
spanned by this vector as a linear homogeneous equation on its coordinates x1, x2, namely
(∗)X(〈x1, x2〉) = 0. Evaluate the metric dual of X to obtain a normal vector to this line and
show that its dot product with X is indeed zero.

e) Repeat d) but working in terms of the components X with respect to the new basis.
f) Consider the tensor L = −2e1 ⊗ ω1 + e1 ⊗ ω2 − e2 ⊗ ω1 + e2 ⊗ ω2 representing a linear

transformation of the plane, and the vector obtained from its evaluation in its second argument
on X = −2e1 + e2: Y = L( , X). Express this tensor in terms of the new basis and use its new
matrix of components to multiply the component matrix of X expressed in terms of the new
basis and get the new coordinates of the vector Y . Check that these are the same as you would
obtain by directly transforming the components of Y .

�
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4.5 Matrix generators of the generalized orthogonal ma-

trix groups

We have seen that the Lie algebra of the generalized orthogonal matrix group which leaves
invariant the canonical matrix of an inner product G in an orthonormal basis of Rn under a
change of basis consists of the set of antisymmetric n× n matrices with their first index raised
with the metric. The commutation relations of these Lie algebra matrices completely determine
the local structure of the matrix groups themselves. Now that we are armed with the necessary
delta machinery, we can easily write down an explicit formula for a standard basis and their
commutation relations.

In Section 1.6 we discussed the orthogonal matrix group O(P,M) and its unit determinant
subgroups, the special orthogonal matrix group SO(P,M), with P + M = n. These groups
which map among themselves the orthonormal bases of an inner product with a diagonal
orthonormal component matrix consisting of P positive entries 1 and M negative entries −1.
We can assume P ≥M without loss of generality since the overall sign has no influence on the
corresponding matrix group, and we can order an orthonormal basis so that the negative signs
are all first. The component matrix of the inner product then takes the form

G = diag(−1, . . . ,−1︸ ︷︷ ︸
P

, 1, . . . , 1︸ ︷︷ ︸
M

) .

The corresponding generalized orthogonal Lie algebra matrices B ∈ so(P,M) are off-diagonal
and satisfy

sgn(Gii)K
i
j = − sgn(Gjj)K

j
i .

The dimensions of these Lie algebras are all n(n − 1)/2, the sum of the first n − 1 natural
numbers, which in turn corresponds to the number of entries above the main diagonal of an
n× n matrix.

Kij = −Kji or more explicitly GikK
k
j = −GjkK

k
i .

If we examine this condition in an orthonormal basis in which G is diagonal and Gii = ±1,
then this forces K to be an off-diagonal matrix since i = j implies Kii = 0 so Ki

i = 0 (no sum
on i). If i 6= j and Gii and Gjj have the same sign, K is antisymmetric in the index pair (i, j)
and the matrix −ej i + eij generates an ordinary “active” rotation in the xi-xj plane from the
xi axis towards the xj axis, while if Gii and Gjj have the opposite sign, K is symmetric in the
index pair (i, j) and the matrix ej i + eij generates a hyperbolic rotation or “active boost” in
the xi-xj plane which squeezes these two positive coordinate axes into the first quadrant.

This is almost the whole story except that in some cases (like relativity) the whole is greater
than the sum of its parts. This tale has to do with the indefinite trace inner product on the
space of off-diagonal square matrices, where antisymmetric matrices have negative sign while
symmetric matrices have positive sign, and certain combinations of the two have zero drlg-
inner product, making them more interesting. Since rotations push points in the plane of the
rotation around circles which are special cases of ellipses (negative sign), while boosts in a
plane push points along hyperbolas (positive sign), the only conic remaining is the parabola,
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which manifests itself in this context as what are called null rotations (remember, null is a word
signaling the presence of zero in the concept). These “orbits” (the set of points related to each
other under a transformation) require 3 dimensions to realize.

The n = 2 case Lie algebras so(2) and so(1, 1) are 1-dimensional corresponding to the
generators of ordinary rotations or hyperbolic rotations of the plane respectively as discussed
in Appendix A. For n = 3 there are only two inequivalent cases so(3) and so(2, 1), the Lie
algebras of the rotation group and the Lorentz group of 3-dimensional Minkowski spacetime
and the latter allows us to see an example of a null rotation. There is no need to be intimidated
by the rest of this section. The only fact we need to take away is that the (pseudo-)orthogonal
matrix groups which describe the freedom in choosing a (pseudo-)orthonormal basis of the
vector space are generated by the (1

1) tensors whose component matrices are antisymmetric
when index-lowered or raised to the fully covariant or contravariant position, generated in the
sense that the matrix exponential of these matrices in the matrix Lie algebra yields elements
of the matrix group itself. The rest of this section are interesting details about related issues
that you can read for amusement or just blast through so you can cconsider yourself exposed
to the material.

Exercise 1.2.4 explored the commutator relations of the rotation group Lie algebra so(3,R) ,
where we used the duality operation to replace the antisymmetric pair of indices Lij = −ej i+eij
associated with the plane of the rotation with a single vector index by defining

Lk =
1

2
δklε

lijLij ↔ [Lk]
i
j = εikj = −εkij .

Explicitly

ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = ω1

0 0 0
0 0 −1
0 1 0

+ ω2

 0 0 1
0 0 0
−1 0 0

+ ω3

0 −1 0
1 0 0
0 0 0


≡ ω1L1 + ω2L2 + ω3L3 .

A rotation in the x1-x2 plane is interpreted as about the remaining x3 axis. We showed
there that

[L2, L3] = L1 , [L3, L1] = L2 , [L1, L2] = L3 ,

or

[L31, L12] = L23 , [L12, L23] = L31 , [L23, L31] = L12 ,

The higher dimensional orthogonal groups basically replicate these relations, namely, for any
triplet of distinct natural numbers (i, j, k) one has

[Lki, Lij] = Ljk

if the two planes of the rotations include a common direction, and zero otherwise.
In the other (Lorentz) case of so(2, 1) with G = diag(−1, 1, 1) and coordinates (x0, x1, x2)

corresponding to 3-dimensional Minkowski spacetime, we have instead two boost generators
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mixing the time coordinate x0 with the two spatial coordinates {xA} = {x1, x2} and one
rotation generator in the plane of those two spatial coordinates

θ =

 0 θ1 θ2

θ1 0 −θ3

θ2 θ3 0

 = θ1

0 1 0
1 0 0
0 0 0

+ θ2

0 0 1
0 0 0
1 0 0

+ θ0

0 0 0
0 0 −1
0 1 0


≡ θ1B1 + θ2B2 + θ3L3 .

Exercise 4.5.1.
exponentiating boost matrices

In Exercise 1.7.9 the matrix representing a rotation in space in terms of the axis of rotation
and angle about it was evaluated through summing the matrix exponential of a Lie algebra
matrix through an iteration formula. One can do the same for a general boost in 3-dimensional
spacetime. Let A,B,C = 1, 2 and let nA be the components of a unit spacelike 2-vector:
δABn

Anb = 1.
a) Show that (nCBC)3 = nCBC , a simple sign change compared to the rotation case in

Exercise 1.7.9, which allows one to collapse all powers in the exponential series eαn
CBC to at

most the quadratic power.
b) Following the same approach as the rotation case, show that

L = eαn
CBC = I + sinh θ nCBC + (cosh θ − 1)(nCBC)2

= I − (nCBC)2︸ ︷︷ ︸
1-identity

+ sinh θ nCBC + cosh θ (nCBC)2︸ ︷︷ ︸
2-identity

.

This corresponds to the identity transformation along the direction perpendicular to the plane
of the boost, and a simple hyperbolic rotation in the plane of the boost.

c) Define the speed v = tanhα, the velocity components vA = tanhαnA and the gamma
factor γ = coshα, so that γvA = sinhαnA. Rewrite the previous result in terms of these new
boost velocity parameters. vA represents the components of the spatial velocity of the boost
transformation. Show that

L0
0 = γ , LA0 = γvA , LAB = δAB + (γ − 1)v−2vAvB .

Adding a third spatial direction x3 and letting A,B = 1, 2, 3 extends these same formulas to 4-
dimensional Minkowski spacetime. Compare these formulas with what you can find on Lorentz
transformations on the web.

�

Exercise 4.5.2.
null rotations in 3 dimensions

a) Evaluate the three commutators [B2, L3], [L3, B1] and [B1, B2] and re-express them in
terms of L01 = B1, L02 = B2 and L12 = −L3.
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Notice that unlike rotations, boosts do not form a subgroup since boosts in two orthogonal
directions in different orders do not lead to a third boost but to a rotation, as signaled by the
commutator [B1, B2].

b) Confirm the identity:

Tr(θ2) = −(θ0)2 + (θ1)2 + (θ2)2 .

We get a null result for θ0 = θ2, say both equal 1, while θ1 = 0:

N =

0 0 1
1 0 −1
1 1 0


This generates a simultaneous boost in the x2 direction and a rotation in the x2-x3 plane. Show
that N3 = 0 so that the exponential series for this matrix truncates to a quadratic expression
in the coefficient. Evaluate this explicitly

etN = I + tN +
t2

2
N2 .

c) Let ~r(t) = etN 〈x0, x1, x2〉 be the orbit of the point 〈x0, x1, x2〉 in 3-dimensional Minkowski
spacetime M3 under this 1-parameter group of null rotations. Show that ~r′(t) × ~r′′(t) is a
constant (covariant) vector, which proves that this is a plane curve since its binormal is constant
(but its first index needs to be raised, i.e., changed in sign to get the actual bi-normal in the
Lorentzian geometry) and in fact this bi-normal is independent of the initial point undergoing
this null rotation except for the special points x0 = −x1, where this degenerates to a straight
null line. Plot the curves for 〈x0, x1, x2〉 = 〈1, 0, 0〉 and 〈x0, x1, x2〉 = 〈0, 1, 0〉 for t = −1..1.
These look like parabolas. Can you think of a way to prove that they are?

�

To solve this problem once and for all we can define the so(P,M) matrix Lie algebra basis
in an orthonormal frame (diagonal components ±1 as above) by

Lij = −δmkijGkne
n
m = −(δmiδ

k
j − δmjδmi)Gkne

n
m

= −(δmiGjn − δmjGin)enm

= − (δmiδjn sgn(Gjj)− δmjδin sgn(Gii)) e
n
m .

Exercise 4.5.3.
antisymmetric 3×3 matrices and the negative dual vector a) For R3 with the usual dot
product show that the definition Lij = −δmkijδknenm means that the matrix (L3)1

2 = (L12)1
2 =

−1, which extends cyclicly to the other two pairs (2, 3) and (3, 1). Thus defining the dual
indexed matrices Lk = δklε

lijLij, we obtain the three matrices of Exercise 1.2.4 which generate
active rotations in the counterclockwise direction in their planes as determined by the right
hand rule.
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b) If we expand any antisymmetric matrix ω = (ωij) = ωaLa in terms of this basis of
antisymmetric matrices, show that the relation between the matrix entries and the components
of the coefficient vector (ωa) is the sign-reversed dual

ωk = −1

2
εkijδimω

m
j .

�

Exercise 4.5.4.
commutators of the Lorentz group Lie algebra

For M4 with the Lorentz dot product show that the definition Lij = −δmkijGkne
n
m means

that the matrix (L10)1
2 = 1, which extends cyclicly to the other two pairs (2, 0) and (3, 0).

These matrices Bi generate the 3 active boosts along the positive spatial axes. These together
with the 3 rotation matrices are a standard basis of the 6-dimensional Lie algebra so(3, 1) of
the Lorentz group SO(3, 1).

Evaluate their commutators [Bi, Bj], [Li, Bj], [Li, Lj].
�

Exercise 4.5.5.
commutators of the (pseudo-)orthogonal group Lie algebras

a) For a warmup, show that for the Euclidean dot product case where Gij = δij and
Lij = δmkijδkne

n
m or Lij = δmkpjδknδ

pienm that

[Lij, Lkl] = δ
[i
[kL

m]
n] .

which is the simplest formula one can write that has the proper antisymmetries in the index
pairs.

b) Show that by shifting the indices back we get

[Lij, Lkl] = Cmn
ij,klLmn , Cmn

ij,kl = 4δm[iδj][kδ
n
l] .

c) Show that the the same formulas hold with the substitution of δij → Gij

[Lij, Lkl] = δ
[i
[kL

m]
n] ,

which can also be written

[Lij, Lkl] = Cmn
ij,klLmn , Cmn

ij,kl = 4δm[iGj][kδ
n
l] .

�
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Exercise 4.5.6.
rotations in R4

Consider the rotations of R4, with the 6 matrices defined above which generate the Lie
algebra so(4,R4) of the special orthogonal group SO(4,R). Define

Ei =
1

2
(L4i − Ljk) , (i, j, k) cyclic permutation of (1,2,3)

Ẽi =
1

2
(L4i + Ljk) , (i, j, k) cyclic permutation of (1,2,3) .

These generate simultaneous rotations in two orthogonal planes, in the same and opposite
senses. Use a computer algebra system to show that their commutators are the following

[Ea, Eb] = −Ca
bcEa , [Ẽa, Ẽb] = Ca

bcẼa , [Ẽa, Eb] = 0 ,

where Ca
bc = εabc. Thus this 6-dimensional Lie algebra decomposes into 2 commuting subalge-

bras, each of which has cyclicly related commutators like those of the 3-dimensional rotation
group generated by L23, L31, L12 (apart from an overall sign which can be changed reversing
the sign of all the basis vectors) which generate rotations that leave the last coordinate x4-axis
invariant. Note that by reversing the sign of the tilde matrices, we reverse the sign of all the
commutator coefficients.

�

Exercise 4.5.7.
differentials of rotation matrices

Recall Exercise 1.7.10 where the differentials

R−1dR = ωaLa , dRR
−1 = ω̃aLa

were evaluated for a general rotation matrix in SO(3,R), where R−1 = RT .
a) Starting from the identity

εijkR
−1i

aR
−1j

bR
−1k

c = det(R)εabc = εabc

which holds for the rotation matrices in SO(3,R), multiply this by Rc
m to get

R−1i
aεijmR

−1j
b = εabcR

c
m .

Next using the definition of the basis of the Lie algebra of the rotation group

(La)
b
c = δbdεdac = εbac = −εabc ,

replace εijm = εmij by − (Lm)ij and similarly εabc = εcab by − (Lc)ab to obtain (canceling the
common minus sign)

R−1i
a (Lm)ij R

−1j
b = (Lc)abR

c
m .
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Returning to matrix notation this is

R−1TLmR
−1 = LcR

c
m

or since R−1 = RT

RLmR
−1 = LcR

c
m .

This just says that the so called adjoint action of the matrix Lie group on its Lie algebra
K → Ad(R)K = RK R−1 leads to a rotation of the basis of the Lie algebra. This is in
fact the identity derived in general in Exercise 1.7.8 where we introduced the adjoint action
AD(A)B = ABA−1. If we let R = eθ

aLa and λX = θaLa, then that identity becomes

AD(eλX)Y = eλ ad(X) Y ↔ AD(eθ
cLc)Y bLb = La

(
eθ
c ad(kc)

)a
b Y

b

but in fact for the rotation group we have (La)
b
c = εbac = (ka)

b
c, i.e., the linear adjoint group

of the rotation group is itself.

b) Use the above identity for AD(R) applied to the differential relationships above, applying
Ad(R) to the first one to obtain the second one and comparing coefficients of the basis matrices,
show that

ω̃a = Ra
bω

b .

c) Then show that

δabω̃
aω̃b = δabω

aωb ≡ 4ds2 .

d) Show that left multiplication by a constant rotation leaves the relation R−1dR = ωaLa
invariant, so the differentials ωa are invariant under such a “left translation” of the group.
They are said to be “left invariant.” Repeat for the other differentials ω̃a which are called right
invariant. Thus the previous part c) defines a so called “bi-invariant” (both left and right
invariant) metric on the rotation group, also invariant under the inversion map which sends
each group element to its inverse, interchanging left and right on the group. We will see next
that this is essentially just the metric on the unit 3-sphere S3 within R4 and hence multiplying
it by a2 yields the metric on the 3-sphere of radius a.

�

Hermitian and unitary matrices

Complex matrix groups are also very useful in the real world, especially in quantum physics
where complex scalar wave functions Ψ define probability distributions through the square of
their absolute value |Ψ|2 = Ψ∗Ψ ≥ 0. On the complex vector space Cn of n-tuples of complex
numbers with standard basis ~ei, identical to the real basis of Rn, there are two natural inner
products which make this standard basis orthonormal. One is the usual bilinear dot product
for which

〈z, z〉 = 〈z1, . . . , zn〉 · 〈z1, . . . , zn〉 = zT z = δabz
azb ∈ C
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but the following one (referred to as sesquilinear instead of bilinear, since it is linear in one
argument, but “antilinear” in the other) enables the result of self-inner products to be inter-
preted as probability densities in quantum mechanics (overbars represent complex conjugates
of complex numbers)

〈z, z〉s = 〈z1, . . . , zn〉 · 〈z1, . . . , zn〉 = z̄T z̄ = δabz̄
azb ≥ 0 .

The latter inner product requires a complex conjugate acting on the matrix A of a linear
transformation when transposed from the right factor to the left factor

〈w, z〉s = w̄TAz = (Ā
T
w̄)T z = 〈ĀT w̄, z〉s

so it is useful to define the Hermitian conjugate of a matrix as the complex conjugate (overbar)
of the transpose

A† ≡ Ā
T

(Hermitian conjugate) .

This is also called the adjoint matrix.
The adjoint operation on complex matrices plays the same role for the sequilinear dot

product that the transpose operation plays for the bilinear dot product. Hermitian matrices
are those matrices which equal their adjoint and are sometimes referred to as self-adjoint

H† = H (Hermitian condition) .

These generalize the symmetric matrices for the ordinary dot product. Anti-Hermitian matrices

K† = −K (anti-Hermitian condition)

then play the role of the antisymmetric matrices for the ordinary dot product.
Note that if K = iK is anti-Hermitian, i.e., K = −iK, then multiplying it by i makes it

Hermitian
K† = (−iK)† = i(−K) = K .

If a matrix is real and symmetric, the transpose and complex conjugate operations do nothing
to it so it is Hermitian. If a matrix is purely imaginary and antisymmetric, they both change
the sign so together they do nothing and the matrix is Hermitian. Thus Hermitian matrices
consist of all real linear combinations of real symmetric matrices (dimension n(n + 1)/2 and
purely imaginary antisymmetric matrices (dimension n(n−1)/2, a real direct sum vector space
of dimension n2. The tracefree subspace has dimension n2− 1. Thus the Lie algebra su(n) has
dimension n2 − 1: dim(su(2)) = 3, dim(su(3)) = 8.

Remark.

Exercise 1.2.2 introduced the Paoli matrices plus the identity matrix as a basis of the
subspace h(2) of 2 × 2 complex matrices. I, σ1, σ3 span the 3-dimensional subspace of real
symmetric matrices and σ2 spans the 1-dimensional subspace of purely imaginary antisymmetric
matrices, thus providing a basis for the 2× 2 Hermitian matrices. Thus h(2) is an appropriate
symbol for this real vector space of complex matrices.
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In two dimensions, there is a single real tracefree diagonal (symmetric) matrix, one real
off-diagonal symmetric matrix, and one real antisymmetric matrix, which lead to the three
matrices introduced by Pauli as though by magic and explains why one of them is multiplied
by i. Finally after 40 years I understand how natural they are from this point of view of matrix
symmetry properties, rather than just blindly using them for their important connection with
rotations explored next.

N

Why are Hermitian matrices useful? Well, we already know from our experience in the
plane that a rotation generator (antisymmetric matrix) has purely imaginary eigenvalues, while
a boost generator (symmetric matrix) has real eigenvalues, as do the real diagonal matrices,
so multiplying the rotation generator by i makes it have real eigenvalues too, so Hermitian 2
matrices have real eigenvalues. Suppose K x = λK for a Hermitian matrix K = K†. Then

x†K x = λx†K = λ|x|2

but the Hermitian conjugate of the left hand side (a 1×1 matrix, so just the complex conjugate)
is itself since like the transpose (AB)† = B†A†, etc. (for more factors)

(x†K x)
(
x†K x

)†
= x†K† x = x†K x .

So it equals its complex conjugate, and is real, but the right hand side must also be real, so λ
is real.

Physically observable quantities in physics must be real, so matrices which represent some
physical quantity in quantum mechanics must have real eigenvalues, which turn out to be
the observables in quantum mechanics. Angular and linear momentum are examples, where
the quantum operators are related to the generators of rotations and translations by a factor
of i. They describe how wave functions behave under dragging along by these symmetry
transformations of space.

Matrix transformations of the basis which preserve the bilinear inner product lead to the
complex orthogonal condition OTO = I or equivalently OT = O−1 as in the real case, defining
the complex orthogonal and special orthogonal groups O(n,C) and SO(n,C), the latter of
which has complex antisymmetric matrices as its matrix Lie algebra just like in the real case.

In the second case of the sequilinear inner product, this leads instead to the unitary condition
which preserves the inner product of vectors like the orthogonal matrices in the real case

U †U = I ↔ U † = U−1 ,

This condition guarantees that probability densities are invariant under the linear transforma-
tion of the complex vector on which it acts, called spinors. The group of n×n unitary matrices
is denoted by U(n). The special unitary subgroup SU(n) satisfies the additional condition
detU = 1, which leads to the tracefree condition on its Lie algebra

U = eiK : detU = 1→ TrK = 0 .
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2-component spinor wave function fields are used to represent particles with half-integral spin
(“fermions”) because of how they transform under the special unitary group SU(2) either
directly through its defining action on C2 through matrix multiplication or through its rep-
resentation on the space C4 of 4-component Dirac spinors through the Dirac matrix algebra.
SU(2) is locally isomorphic to the rotation group S(3,R), as will be explored in the next ex-
ercise, and spin is a concept intimately connected to rotations: a spinning body is a rotating
body.

Exercise 4.5.8.
unitary groups

a) Show by differentiation of a curve in U(λ) = eiK through the identity U(0) = I at λ = 0
leads to the anti-Hermitian condition on its Lie algebra matrices iK

(iK)† = −iK (anti-Hermitian condition) ,

which explains the factor of i, without which the matrices are Hermitian

K† = K (Hermitian condition) .

Show that this second condition follows from the first. Physicists like Hermitian matrices since
they are associated with “observable quantities” in quantum mechanics.

�

Exercise 4.5.9.
the special unitary group SU(2) and SO(3,R)

FIX ??
In Exercise 1.2.2, we introduced the three tracefree Pauli matrices

σ 1 =

(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.

a) Use a computer algebra system to show that together with the identify matrix these gen-
erate an algebra, namely all products of these matrices can be expressed as linear combinations
of themselves so that the vector space they generate is closed under multiplication?? Namely
establish the product formula by first considering the self-products and then all distinct factor
products

σa σb = δabI + i

3∑
c=1

εabcσc .

This contains symmetric and antisymmetric parts

σ(a σb) = δabI , σ[a σb] = i

3∑
c=1

εabcσc .
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Show that the latter is equivalent to the following commutation relations for the rescaled
matrices

[Ea, Eb] =
3∑
c=1

εabcEc Ea =
i

2
σa .

b) Use the symmetric part of their matrix products to evaluate the matrix exponential

eiθ n
aσa/2 , n · n = δabn

1nb = 1 .

by summing the even and odd powers of θ separately as in Exercise 1.7.9, recognizing the power
series for the cosine and sine as coefficients. Show that the result is

eiθ n
c
c = cos θI + i sin θ ncσc .

This generalizes Euler’s formula for the exponential of 1×1 anti-Hermitian matrices, i.e., purely
imaginary numbers: eiθ = cos θ + i sin θ.

This result takes the form

U = eiθ n
cσc = a4I + iacσc =

(
a4 + ia3 ia1 + a2

−a1 + a2 a4 − ia3

)
, .

Show that U † = U is unitary, as must be the case since multiplying the Paoli matrices by i
makes them anti-Hermitian. Since the Paoli matrices are tracefree their exponentials have unit
determinant and lie in the special unitary group SU(2) for which they form a basis of the Lie
algebra su(2) once multiplied by i.

c) Show that the special unitary condition of unit determinant takes the form

1 = det (U) = . . . = (a1)2 + (a2)2 + (a3)2 + (a4)2 ,

which is the equation for the unit sphere S3 in Euclidean R4 in Cartesian coordinates aα

(α = 1, 2, 3, 4). Thus the group manifold of SU(2) can be identified with the 3-sphere.
d) The summation sign due to the wrong index positioning for summation is easily fixed by

introducing the components of the structure constant tensor of the Lie algebra in this basis

[Ea, Eb] = Cc
abEc , Cc

ab = εcab .

Thus these matrices have the same commutation relations as the rotation matrices {La}. This
in turn means that the rotation group is the linear adjoint group of the Lie algebra su(2)

AD(e
i
2
θcσc)σa = σb

(
eθ
ckc
)b

a .

Re-express the above exponential to get

eθ n
cEc = cos

(
θ

2

)
I + sin

(
θ

2

)
ncEc .
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Note that the factor of 2 requires θ = 4π to return to the identity

e4π ncEc = I .

e) Note that the adjoint action of the unitary group

aaσ a → U σ a U
−1

leaves the above trace inner product of these Pauli matrices invariant and hence must result in
a rotation of the basis

U σ aU
−1 = σ bR

b
a .

This defines a 2-to-1 map (U,−U)→ R from the 3-dimensional matrix group SU(2) and hence
from the unit 3-sphere S3 to the 3-dimensional matrix group SO(3,R) which clearly satisfies

U1 U2 → R1R2

Verify this composition law. This is said to define a Lie group homomorphism which is locally
1 to 1 near the identity matrices, and which corresponds to identifying antipodal points on
the unit sphere to correspond to a single rotation matrix. The result stated in part b) makes
this linear adjoint group relationship more explicit in terms of an exponential representation
of the matrices in both groups. This relationship turns out to be extremely important in
describing the spin of most of the elementary particles in nature (which have half integral
spin). The elements of C2 on which SU(2) acts by matrix multiplication are called spinors and
are instrumental in describing spin states in nonrelativistic quantum mechanics. The above
result of part d) shows that while spinors undergo a rotation by an angle θ/2 about the axis ~n,
the corresponding adjoint matrix rotates the Pauli basis by a rotation by angle θ about that
axis. However, spinors must be rotated by 4π to return to their original state, while ordinary
3-vectors return to their original state after a single revolution by 2π.

�

Exercise 4.5.10.
SL(2,R) and the Lorentz group in 3 dimensions

Define the three tracefree matrices

ρ
1

= σ 1 =

(
0 1
1 0

)
, ρ

2
= iσ 2 =

(
0 1
−1 0

)
, ρ

3
= σ 3 =

(
1 0
0 −1

)
which are a basis of the vector space of tracefree 2× 2 matrices, the Lie algebra sl(2,R) of the
special linear group SL(2,R) in 2 dimensions. Let

S = a4I + aaρ a =

(
a4 + a3 a1 + a2

a1 − a2 a4 − a3

)
.

a) Show that
1 = det (S) = . . . = −(a1)2 + (a2)2 − (a3)2 + (a4)2
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which is a unit hyperboloid in R4 in Cartesian coordinates aα (α = 1, 2, 3, 4).
b) Evaluate the commutation relations of the basis {1

2
ρ
a
} of the Lie algebra[

1

2
ρa,

1

2
ρb

]
= Cc

ab
1

2
ρc , C

1
23 = −C2

31 = C3
12 = 1 .

c) Show that (
Tr ρ a ρ b

)
= 2 diag(1,−1, 1) ,

and even further (
1

2

(
ρ
a
ρ
b

+ ρ
b
ρ
a

))
= diag(1,−1, 1)

so that
(θaρ

a
)(θaρ

a
) = (θ1)2 − (θ2)2 + (θ3)2 .

Use this to sum the exponential series by separating out the even and odd series to recognize
the power series for the hyperbolic cosine and sine to obtain (setting θa = αna with unit vector
~n satisfying (n1)2 − (n2)2 + (n3)2 = 1)

S(α~n) = e
1
2
αnaρ

a = cosh
(α

2

)
I + sinh

(α
2

)
naρ

a
= a4I + aaρ a .

d) Note that the adjoint action of the special linear group leaves the above trace inner
product of these Lie algebra basis matrices invariant and hence must result in a Lorentz trans-
formation of the basis

S ρ aS
−1 = ρ bL

b
a .

This defines a 2-to-1 map (S,−S) → L from the 3-dimensional matrix group SL(2,R) to the
3-dimensional matrix group SO(2, 1) exactly as in the previous exercise.

In fact the complex SL(2,C) matrix group is a 6-dimensional Lie group which is related to
the full 6-dimensional Lorentz group in 4 spacetime dimensions in exactly this same way.

�

Exercise 4.5.11.
quaternions?

The real linear combinations of the Pauli matrices together with the unit matrix not only
have a Lie algebra structure (the unit matrix commutes with any other matrix, and together
they are a basis of the Lie algebra u(2) of the unitary group U(2), not a rock band) as explored
in Exercise 4.5.9, but actually generate a field called the quaternions. The real numbers are
a field, and the complex numbers are a field, equivalent to an algebra structure on a real 2-
dimensional vector space, and the quaternions are a field, equivalent to an algebra structure on
a real 4-dimensional vector space. In an algebra, the elements can be both added and multiplied
resulting again in an element of the same space, obeying all the usual rules that we know for
real numbers except for the commutative rule for multiplication, which is an extra condition.
Indeed the quaternions are the first noncommutative field in the hierarchy of increasing real
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dimension. The basis of the quaternion algebra is usually denoted by {1, i, j, k} but the matrices
{Eα} = {I, iσa}, where α = 0, 1, 2, 3 are a faithful representation of the algebra they generate
(in the sense that products of quaternions correspond exactly to products of the corresponding
matrices).

a) Show that

E0E0 = E0 , E0Ea = Ea = EaE0 , EaEb = −δabE0 + εabcEc .

b) Using the notation aαEα = a0E0 + [~a]cEc for a general quaternion (with real coeffi-
cients aα), show that the multiplication of two quaternions incorporates both the dot and cross
products that are so crucial to the structure of the rotation group on R3.

(aαEα) (bβEβ) = (a0b0 − ~a ·~b)E0 + a0bcEc + b0acEc + [~a×~b]cEc .

c) E0 is a unit quaternion playing the role of the number 1 in both the real and complex
numbers. As in the complex numbers one can introduce the conjugate quaternion by

A = aαEα → A = a0E0 − aaEa

and magnitude by
|A|2 = AA = (a0)2 + δaba

aab .

Like the unit complex numbers which reside on the unit circle S1 and can be represented as the
exponential of a purely imaginary number, the unit quaternions reside on the unit sphere S3

(a0)2 + δaba
aab = 1 and can be represented as the exponential of a “purely spatial quaternion”

aaEa, namely
ea

aEa .

Show that quaternion “conjugation” of the spatial quaternions by a fixed spatial quaternion is
equivalent to a rotation of the spatial quaternions through what we have learned in the adjoint
discussion of SU(2) in Exercise 1.7.11. The quaternions incorporate the mathematics of both
SU(2) and SO(3,R) and are fascinating in their own right, but enough said.

The slight modification of the Pauli matrices over the complex numbers associated with
SL(2,R) as described in Exercise 4.5.10 leads to a hyperbolic analog of the trigometric geometry
of the rotation group associated with the 3-dimensional Lorentz group of the Minkowski plane,
and to the “Gödel quaternions” (also called “split quaternions”) which played a role in the Gödel
solution of the Einstein equations involving rotating matter which surprised even Einstein in
1949.

�

Exercise 4.5.12.
squared angular momentum L2

Given a basis Ea of a matrix Lie algebra g, with corresponding adjoint matrices ka = (Cb
ac),

then γab = Tr(ka kb) = Cm
anC

n
bm transforms as a symmetric covariant tensor under changes

of basis. When this matrix of components has nonzero determinant, this or any multiple of it



268 Chapter 4. Antisymmetric tensors, subspaces and measure

represents a nondegenerate inner product on the Lie algebra called the Killing form. This is
true for the standard basis of so(3,R).

a) Since the adjoint representation is the identity for so(3,R), namely ka = La, one has the
identity

RkmR
−1 = kcR

c
m .

By writing this out in component form, show that this implies that the structure constant
tensor itself is invariant under the adjoint action

Ca
bc = Ra

pC
p
mnR

−1m
bR
−1n

c

Thus the Killing form γab = −2δab is also invariant, which is true in general.
b) Since the adjoint representation is the identity representation for SO(3,R): (ka)

b
c = εbac,

one has the following evaluation in which we raise and lower indices as we please

γab = εmanε
nbm = εmanε

mnb = δnban = −2δab = −2δab .

Thus the matrix L2 = δabLa Lb is rotationally invariant. Evaluate this matrix and show that it
is equal to −s(s+ 1)I, where s = 1. Since this is a multiple of the identity matrix, this means
it commutes with the individual basis matrices

[L2, La] = 0 .

This squared magnitude angular momentum operator L2 turns out to be extremely important
in classifying electronic states in the atom.

c) Evaluate γ for the structure constant tensor found in Exercise 4.5.10 for SL(2,R), to find
that it is proportional to the Lorentz inner product, which must be invariant under the adjoint
action, which explains why the Lorentz group shows its face here.

�

Exercise 4.5.13.
unitary groups again

a) Suppose we consider a general “sequilinear” inner product on Cn introduced in Exercise
4.5.8 and use angle bracket pairing to denote its evaluation

〈X, Y 〉 = GijX iY j = XT GY

and require that the self-inner product of a vector be real

〈X,X〉 = 〈X,X〉 .

Expressing this in components, show that this requires that the matrix satisfy G = GT ≡ G†,
i.e., it should be a Hermitian matrix. This generalizes the symmetry condition for a real inner
product, and extends the real pseudo-orthogonal groups which preserve them to the complex
case.
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b) Suppose we have a linear transformation A of Cn into itself

〈X,AY 〉 = GijX iAjkY
k = GkmAi

mX iY k

= 〈AdG(A)X, Y 〉

Show that the adjoint matrix with respect to this inner product is the ordinary Hermitian
conjugate with its indices then raised and lowered by the inner product matrix in a particular
way (since the inner product is not symmetric but Hermitian, the ordering of its component
indices matters)

AdG(A) = G−1A†G ↔ (AdG(A))ij = GikAmkGmj .

When the inner product component matrix is the identity matrix G = I in an orthonormal
basis, this reduces to the Hermitian conjugate. In the case of real matrices, this condition
corresponds to the ordinary transpose of the index-lowered matrix, which is the operation used
to describe the antisymmetry of the matrices in the Lie algebra of the pseudo-orthogonal groups
which preserve symmetric inner products. Correspondingly for Hermitian inner products in
an orthonormal basis, anti-Hermitian matrices generate the unitary matrix groups which are
symmetries of that inner product.

�
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5.1 The tangent space in multivariable calculus

Figure 5.1: The tangent space at P0 ∈ R3 consists of all difference vectors
−→
OP − −→OP 0, i.e.,

with initial point at P0.

The space R3 consisting of all triplets (a, b, c) of real numbers has many different mathe-
matical structures. Most simply, it can be thought of as a space of points with no additive
structure, with the values of the three Cartesian coordinates {x, y, z} at a point serving to
locate that point relative to the standard orthogonal axes on the space. Alternatively one can
think of R3 as a space of vectors, i.e., as a real vector space with vector addition and scalar

multiplication. In this case the points P of R3 are reinterpreted as directed line segments
−→
OP

or “arrows” with initial point at the origin O and terminal point at the point P . The notation−→r = 〈x, y, z〉 for the position vector of the point P (x, y, z) emphasizes this vector interpretation
of the point (x, y, z) ∈ R3.

In this case the Cartesian coordinates of a point are reinterpreted as the components of
the corresponding vector with respect to the standard basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1) of R3, often designated respectively by î, ĵ, k̂, where the “overhat” is a reminder that
these are “unit vectors.” The Cartesian coordinates {x, y, z} are real-valued linear functions on
R3 which pick out the associated component of a vector with respect to the standard basis:
x((a, b, c)) = a, y((a, b, c)) = b, z((a, b, c)) = c. In other words they are just the basis dual to
the standard basis of R3 when thought of as a vector space: {x, y, z} = {ω1, ω2, ω3}, in the
context of which the notation ω1(〈u1, u2, u3〉) = x(u1, u2, u3) = u1 is more suggestive.

The closest one comes to the terminology “tangent space” in a first pass at multivariable
calculus is the tangent plane to the graph of a function of two variables or to the level surface
of a function of three variables. The idea of the tangent space to a point P0 is not formally
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Figure 5.2: The dual interpretation of elements (x0, y0, z0) of R3 as points P0(x0, y0, z0) and

vectors
−→
OP 0 = 〈x0, y0, z0〉 ≡ ~r0.

introduced but it is nonetheless used and understood. It is just the space of all difference
vectors −→r −−→r 0 = 〈x−x0, y−y0, z−z0〉 for all points P (x, y, z) of R3. These difference vectors
are pictured as arrows with initial point at P0 and terminal point at P , i.e., as the directed line

segments
−−→
P0P . They are called tangent vectors at P0.

A basis for this tangent space is the standard basis {e1, e2, e3} of R3 thought of as di-
rected line segments with their initial points at P0. To recall this interpretation, the symbols
{e1|P0 , e2|P0 , e3|P0} can be used. Each such tangent space is a real vector space isomorphic to
R3 itself and usually no distinction is made between them in multivariable calculus. However,
tangent vectors are discussed in relation to curves and surfaces in R3. The tangent vector to
a parametrized curve is always thought of as attached to the point on the curve at which it is
defined, while a normal vector determining the orientation of the tangent plane to a surface at
a point is always thought of as attached to that point. Each of these are examples of tangent
vectors.

The Cartesian coordinate differentials {dx, dy, dz} at the point P0 are sometimes introduced
as new Cartesian coordinates translated from the origin to P0, but notationally the point P0 is
suppressed

〈dx, dy, dz〉|P0 = 〈x− x0, y − y0, z − z0〉 = −→r −−→r 0 ≡ d−→r |P0 .

The value of these new coordinates at a point P1(x1, y1, z1)

dx|P0(P1) = x1 − x0 , dy|P0(P1) = y1 − y0 , dz|P0(P1) = z1 − z0 ,

are just the components of the difference vector
−−→
P0P1 with respect to the basis {e1|P0 , e2|P0 , e3|P0}

of the tangent space at P0. In other words the Cartesian coordinate differentials {dx|P0 , dy|P0 , dz|P0}
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Figure 5.3: Tangent vectors at P0 thought of as difference vectors with a fixed initial point at
P0.

form the dual basis to this basis of the tangent space at P0. However, to interpret the differen-
tials as the dual basis, we must agree to evaluate them on the difference vectors relative to P0

rather than on their terminal points. If

−→
X = X1e1|P0 +X2e2|P0 +X3e3|P0

is a tangent vector at P0, then

dx|P0(
−→
X ) = X1 , dy|P0(

−→
X ) = X2 , dz|P0(

−→
X ) = X3

are its components evaluated using the dual basis. The differential of an arbitrary (differen-
tiable) function f at point P0 is defined in terms of the partial derivatives of f at P0

df |P0 = fx(x0, y0, z0)dx|P0 + fy(x0, y0, z0)dy|P0 + fz(x0, y0, z0)dz|P0 ,

where we use interchangably the subscript and partial notations for partial derivatives

fx = ∂xf =
∂f

∂x
.

The differential df |P0 is a real valued linear function on the tangent space at P0, i.e., a covector,

also called a “1-form.” When evaluated on a tangent vector
−→
X as above, it produces the result

df |P0(
−→
X ) = fx(x0, y0, z0)X1 + fy(x0, y0, z0)X2 + fz(x0, y0, z0)X3 =

−→
X · −→∇f(x0, y0, z0) ,
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where −→∇f(x0, y0, z0) = fx(x0, y0, z0)e1|P0 + fy(x0, y0, z0)e2|P0 + fz(x0, y0, z0)e3|P0

is the gradient of f at P0. The differential df |P0 represents the linear approximation to the
function f − f(x0, y0, z0) at P0, as a function of the difference vectors relative to P0.

Remark.
Notice that the differential is defined as a covector on the tangent space, taking a linear com-
bination of the components of the tangent vector ~X in that space, but the dot product in
our multivariable calculus notation represents that linear evaluation instead as a dot product
“~∇f · ~X” with a vector ~∇f whose components are the same as the covector differential df .
This new vector is the gradient vector, and it is related to the differential by index raising with
respect to the dot product. If we use indexed notation (x1, x2, x3) = (x, y, z), then df = fidx

i

has components fi = ∂if ≡ f,i using the comma subscript to denote partial differentiation,

where fi = df(ei), while the gradient vector is ~∇f = f iei with f i = δijfj, all objects referred
to a particular tangent space. N

Two important uses of the tangent space in multivariable calculus occur in the discussion
of tangent vectors to parametrized curves and in directional derivatives of functions, and they
come together in the chain rule. Given a parametrized curve

−→r = −→r (t) = 〈x(t), y(t), z(t)〉
which passes through a point P0(x0, y0, z0) at t = t0, one produces a tangent vector at P0 by
differentiating it to produce the tangent vector to the curve at P0

−→r ′(t0) = 〈x ′(t0), y ′(t0), z ′(t0)〉 = x ′(t0)e1|P0 + y ′(t0)e2|P0 + z ′(t0)e3|P0 ,

where the last equality reminds us notationally of the connection of the tangent vector to the
point P0. This distinction is never made but it is an integral part of the intuitive picture one
has of the tangent vector.

Figure 5.4: A parametrized curve −→r (t) through P0 with its tangent vector −→r ′(t) there.

One can think of the tangent space at P0 as the space of tangent vectors at P0 to all possible
parametrized curves passing through P0. This is in fact a useful idea which generalizes to more
complicated settings.
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The chain rule evaluates the derivative of a function f on R3 along the parametrized curve
as a function of the parameter

d

dt
f(−→r (t))|t=t0 = fx(x0, y0, z0)x ′(t0) + fy(x0, y0, z0)y ′(t0) + fz(x0, y0, z0)z ′(t0)

= −→r ′(t0) · −→∇f(x0, y0, z0) . (5.1)

However, this linear combination needs no inner product as we explained above—it is just the
value of the differential of f at P0 on the tangent vector −→r ′(t0), namely

d

dt
f(−→r (t))|t=t0 = df |P0(

−→r ′(t0)) .

One can also differentiate a function along a given direction at P0 without having an explicit
parametrized curve. For this one introduces the directional derivative which generalizes the
partial derivatives to an arbitrary direction specified by a unit vector û = 〈u1, u2, u3〉, û · û = 1.
(We immediately adopt the correct index positioning ui rather than the usual multivariable
calculus notation ui.) Taking the arclength parametrized straight line in the direction û at P0

−→r = −→r (s) = 〈x(s), y(s), z(s)〉 : x = x0 + su1 , y = y0 + su2 , z = z0 + su3 ,

for which the tangent vector is the given unit vector

−→r ′(s) = 〈u1, u2, u3〉 = û ,

one defines the directional derivative Dûf of a function f at P0 in the direction û by an
application of the chain rule

Dûf(x0, y0, z0) ≡ d

dt
f(−→r (s))|s=0 = û · −→∇f(x0, y0, z0)

= u1fx(x0, y0, z0) + u2fy(x0, y0, z0) + u3fz(x0, y0, z0)

=

(
u1 ∂

∂x

∣∣∣∣
P0

+ u2 ∂

∂y

∣∣∣∣
P0

+ u3 ∂

∂z

∣∣∣∣
P0

)
f = df |P0(û) .

Along the coordinate directions this reduces to the ordinary partial derivatives, using the î, ĵ, k̂
notation for the basis unit vectors (the standard basis of R3)

Dîf = fx , Dĵf = fy , Dk̂f = fz .

Note that the directional derivative Dûf(x0, y0, z0) may be interpreted either as the result of
allowing the first order differential operator

u1 ∂

∂x

∣∣∣∣
P0

+ u2 ∂

∂y

∣∣∣∣
P0

+ u3 ∂

∂z

∣∣∣∣
P0

= û · −→∇|P0

to act on function f or by evaluating the differential of the function f at P0 on the unit tangent
vector û. However, the usual multivariable calculus condition that û be a unit vector requires
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the use of the dot product, so if we want to generalize the directional derivative to a setting
where no inner product is required, this restriction must be dropped.

So introduce the derivative of f at P0 along any tangent vector
−→
X there by

∇−→
X
f = X1fx(x0, y0, z0) +X2fy(x0, y0, z0) +X3fz(x0, y0, z0)

=

(
X1 ∂

∂x

∣∣∣∣
P0

+X2 ∂

∂y

∣∣∣∣
P0

+X3 ∂

∂z

∣∣∣∣
P0

)
f = df |P0(

−→
X ) . (5.2)

In this way the chain rule links the derivative of a function along a parametrized curve to the
derivative along its tangent vector

d

dt
f(−→r (t))|t=t0 = (∇−→r ′(t0)f)(x0, y0, z0) =

(
x ′(t0)

∂

∂x

∣∣∣∣
P0

+ y ′(t0)
∂

∂y

∣∣∣∣
P0

+ z ′(t0)
∂

∂z

∣∣∣∣
P0

)
f .

This in turn may be interpreted as the result of a uniquely associated first order differential
operator at P0 acting on the function, namely the final expression in the large parentheses.

Still we haven’t gone far enough with the tangent space idea. The notation of a tangent
vector as a difference vector requires an underlying vector space in order to realize it as a dif-
ference of vectors. If we want to generalize this tangent vector idea to a setting without vector
space structure (like the points on the surface of a sphere), the difference vector interpreta-
tion must be abandoned. The solution to this problem of disconnecting tangent vectors from
their interpretation as difference vectors lies with tangent vectors to parametrized curves and
derivatives of functions along them.

One can always differentiate functions along parametrized curves and the chain rule shows
that this is equivalent to the derivative of those functions along the corresponding tangent
vectors, regardless of how we try to interpret those tangent vectors. In fact with every vector at a
point P0 there is a uniquely associated first order linear differential operator which accomplishes
the derivatives of functions along that tangent vector. It is just the linear combination of the
partial derivatives at P0 whose coefficients are the corresponding components of the tangent
vector.

Why not simply define this differential operator to be the tangent vector? In-
deed this is exactly what we will do.

This definition makes the coordinate partial derivative operators a basis of the tangent
space at each point. The components of a tangent vector with respect to this basis are exactly
what we’ve been calling the components all along. So this definition can be looked at as a
bookkeeping trick. It turns out to be extremely useful. Thus our previous expansion of a
tangent vector at P0 −→

X = X1e1|P0 +X2e2|P0 +X3e3|P0

can still be used if we re-interpret the symbols ei|P0 to mean the corresponding partial derivatives
at P0: ∂/∂xi|P0 . The index notation {x1, x2, x3} = {x, y, z} for the three coordinate variables
has to be introduced so that indexed equations using the summation convention can make
formula writing simpler.



278 Chapter 5. From multivariable calculus to the foundation of differential geometry

Finally index positioning must be respected. We can remind ourselves of the differential

operator interpretation for a tangent vector
−→
X by dropping the arrow notation and just let X

denote the above tangent vector

~X = X iei|P0 7→ X = X i ∂

∂xi

∣∣∣∣
P0

.

Also, since we have changed our definition of tangent vectors, and since differentials were
defined to be dual to tangent vectors, i.e., real valued linear functions on tangent vectors, their
definition must be changed if we insist on maintaining duality. The differential of a function f at
P0 will be defined by an equation already used above but now acting on the new interpretation
of a tangent vector as a first order differential operator

df |P0(X) = Xf ≡ X i ∂f

∂xi

∣∣∣∣
P0

.

The right hand side is a real valued linear function of the tangent vector X and so defines
a covector or 1-form at P0. The coordinate differential dx|P0 is no longer a new Cartesian
coordinate x − x0, but the real valued linear map obtained by letting a tangent vector X act
on the function x: dx|P0(X) = Xx = (X1∂x + X2∂y + X3∂z)x = X1 and so on, or in terms
of the indexed coordinates dxi|P0(X) = Xxi = X i∂ix = X i. Thus the coordinate differentials
merely pick out the components of tangent vectors in the coordinate derivative basis. This
identification of the tangent space and its dual enables us to extend the concept to spaces
which are locally like Rn, called manifolds.

Example 5.1.1. Let P0(1, 2, 3) and P1(2, 0, 7) be two points in space with position vectors

~r0 =
−→
OP 0 = 〈1, 2, 3〉 and ~r1 =

−→
OP 1 = 〈2, 0, 7〉. Let’s talk about the tangent space at the first

point. The difference vector

~X =
−−→
P0P 1 = ~r1 − ~r0 = 〈1,−2, 4〉 = e1|P0 − 2e2|P0 + 4e3|P0

belongs to this tangent space. Its components are dx1|P0(X) = 1, dx2|P0(X) = −2, dx3|P0(X) =
4.

It is also the tangent vector at P0 to the parametrized curve which is the straight line
connecting the two points parametrized in the most economical way:

~r(t) = ~r0 + t(~r1 − ~r0) = 〈1 + t, 2− 2t, 3 + 4t〉 .
Its constant tangent vector is ~r ′(t) = 〈1,−2, 4〉 in the usual calculus notation but now that we
are distinguishing tangent vectors by their initial points we must write

~r ′(0) = e1|P0 − 2e2|P0 + 4e3|P0 .

Next we move up the the differential operator interpretation of a tangent vector: X =
∂/∂x1|P0 − 2∂/∂x2|P0 + 4∂/∂x3|P0 , dropping the arrow to distinguish it from the former math-
ematical quantity. It acts on a function

f = 4x2 − 2xy +
5

2
y2 + z2 = 4(x1)2 − 2x1x2 +

5

2
(x2)2 + (x3)2
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by

Xf =

(
1
∂

∂x1

∣∣∣∣
P0

− 2
∂

∂x2

∣∣∣∣
P0

+ 4
∂

∂x3

∣∣∣∣
P0

)
f = 1

∂f

∂x1

∣∣∣∣
P0

− 2
∂f

∂x2

∣∣∣∣
P0

+ 4
∂f

∂x3

∣∣∣∣
P0

= 1 ((8x− 2y)− 2(−2x+ 5y) + 4(2z))|(1,2,3) = 1(8(1)− 2(2))− 2(−2(1) + 5(2)) + 4(6)

= 1(4)− 2(8) + 4(6) = 12 ,

or equivalently

df = 1(8x− 2y) dx+ (−2x+ 5y) dy + (2z) dz ,

df |P0 = (4 dx+ 8 dy + 6 dz)|P0 ,

df |P0(X) = 4(1) + 8(−2) + 6(4) = 12 .

Our mental image of the three basis tangent vectors as tangent vectors to the three coordinate
curves pictured as arrows with initial points at (1, 2, 3) remains, but the actual mathematical
object will be the directional derivative along those arrow tangent vectors waiting for a function
to act on. For a fixed function f and variable tangent vector X in this fixed tangent space, the
quantity Xf is a linear function and hence a covector: df |P0(X) = (4dx1 +8dx2 +6dz)|P0(X) =
4X1 + 8X2 + 6X3, which is the interpretation of the differential of a function evaluated at the
point in question.

�

Exercise 5.1.1.
Some problems from 3-d calculus

Note the correspondence
−→
X = X iei ←→ X = X i∂/∂xi|P0

for the tangent space at the point
P0.

• Suppose x = t, y = t2 + 1,z = 2− t, or −→r (t) = 〈t, t2 + 1, 2− t〉.
Evaluate −→r ′(t). What is the tangent vector at t = 1?
Express it as a first order linear differential operator, call it r ′(1) with no over arrow (and
r ′(t) in general).

• Consider the function f(x, y, z) = x2 + y2 − 3z2.
What is df(x, y, z)? df(1, 2, 1)?
What is −→r ′(1)f? [the action of the derivative operator on the function f ].

• Find expressions for x, y, z as functions of t for some other parametrized curve which has
the same tangent at t = 0 as the previous curve (such that t = 0 : x = 0, y = 1, z = 2 as
with the previous curve). (This is easy! Try the tangent line as the other curve!)

• If X = 2
∂

∂x

∣∣∣∣
(1,2,1)

− ∂

∂y

∣∣∣∣
(1,2,1)

+ 4
∂

∂z

∣∣∣∣
(1,2,1)

, what is df(1, 2, 1)(X)?

If Θ = dx|(1,2,1) + 2dy|(1,2,1) − dz|(1,2,1), what is Θ(r ′(1))? Θ(X)?
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Figure 5.5: Visualizing the differential of a function at a point on a level surface.

�

The differential df |−→r 0
of f at −→r0 can be represented by the pair of planes in R3 shown in the

diagram. The value df |−→r 0
(
−→
X ) using the calculus meanings of differential and tangent vector

(as a difference vector) is the number of integer spaced planes of this family containing these

two planes which are pierced by
−→
X , interpolating between the integers. The value on tangent

vectors belonging to the tangent plane is zero since it does not pierce any of the planes in this
family. In the old fashioned language

df |−→r 0
(
−→
X ) =

−→
X · −→∇f |−→r 0

= 0

means that
−→
X is perpendicular to the gradient of f which itself is orthogonal to the tangent

plane to the level surface, making
−→
X belong to this tangent plane.

The new meaning of the differential and tangent vector

df |P0(X) = Xf , X ∈ TR3
P0

tells us if Xf = 0, then X belongs to the tangent plane to the level surface of f at the point
P0. Suppose we have instead a vector field X such that Xf = 0. This means X|P is tangent to
the level surface of f through P at every point P .

Remark.
vector fields

Suppose we take a vector field in the multivariable calculus sense ~X(x, y, z), for example the
position vector defines a vector at each point of space ~r = 〈x, y, z〉, whose value at any point
defines a tangent vector there which we can picture as having its initial point located at that
point, thus determining a field of tangent vectors, all pointing radially away from the origin.
Similarly X = x∂x + y∂y + z∂z is a vector field in the new sense, whose value at any point
defines a tangent vector there in the new sense of a derivative operator whose coefficients are
exactly the component functions of the corresponding vector field in the multivariable calculus
sense.
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N

Exercise 5.1.2.
tangent to level surfaces

Show that

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

is tangent to the level surfaces of the functions

f(x, y, z) =
y

x
and g(x, y, z) =

z√
x2 + y2

.

Compute df and dg and df(X), dg(X) as well as Xf and Xg.
Note: Recall that f = tan(φ) and arccos(g) = θ relate these two functions to the polar

coordinate functions: the azimuthal angle φ around the z-axis and the polar angle θ down from
the z-axis, although these Greek letters are interchanged in calculus textbooks. This explains
why the vector field whose components are the radial position vector components is tangent to
their level surfaces. It lies in the cones of constant θ and in the vertical half planes of constant
φ. Don’t worry, we will study these coordinates soon enough if you don’t recall their details
now.

�

Exercise 5.1.3.
elliptical level curves

Consider the function f(x, y) = 4x2 − 2xy +
5

2
y2 from Exercise 1.6.12 and the two vector

fields

X = (8x− 2y)
∂

∂x
+ (−2x+ 5y)

∂

∂y
, Y = −(−2x+ 5y)

∂

∂x
+ (8x− 2y)

∂

∂y
,

where the vector field Y at each point is related to X by a local rotation of the tangent space
by a 90 degree angle counterclockwise: 〈Y 1, Y 2〉 = 〈−X2, X1〉 = 〈〈0| − 1〉, 〈1|0〉〉〈X1, X2〉.

a) Compute df , then df(X) and Xf , and then df(Y ) and Y f . What is X ·X = |X|2, i.e.,
the length squared of this vector field? What is X · Y ?

b) Consider also the parametrized curve: x(t) = cos(6t) + 1
3

sin(6t), y(t) = 4
3

sin(6t). What
is the tangent vector Z(t) to this curve? Evaluate df(Z(t)) = Z(t)f .

�
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5.2 More motivation for the re-interpretation of the tan-

gent space

The standard Cartesian coordinates {xi} on Rn are those functions which pick out the individual
components ui of vectors −→u = 〈u1, . . . , un〉 = uiei—these are just the dual basis covectors which
are dual to the standard basis ei

xi ≡ ωi , xi(〈u1, · · · , un〉) = ui .

However, since we are going to emphasize a different mathematical structure on Rn, we will
use a different notation. If P = (u1, · · · , un) is a point in Rn, de-emphasizing its vector nature
using a capital letter as we conventionally do for points, then

xi|P ≡ xi(P ) = ui

will indicate the value of xi at P .
We can now re-interpret a change of basis on Rn as a change of Cartesian coordinates. A

change of basis from the (old) standard basis ei to a (new) basis ei′ involving a (constant)
matrix A = (Aij) is given by

ωi
′
= Aijω

j , ei′ = A−1j
iej .

The second equation shows that the columns (labeled by the lower right index) of the inverse
matrix B = A−1 are the old components of the new basis vectors ei′ . Rewritten in terms of
Cartesian coordinates this becomes

xi
′
= Aijx

j or xi = A−1i
jx
j′ ,

which when evaluated at a particular point (i.e., on a particular vector) become

ui
′
= Aiju

j or ui = A−1i
ju
j′ .

By the definition of partial differentiation for a given coordinate system

∂xj

∂xi
= δj i ,

∂xj
′

∂xi′
= δj i

so
∂xi

′

∂xj
=

∂

∂xj
(Aikx

k) = Aik
∂xk

∂xj
= Aikδ

k
j = Aij

and
∂xi

∂xj′
= · · · (same calculation) · · · = A−1i

j .

Thus the components of vectors transform by

ui
′
=
∂xi

′

∂xj
uj or ui =

∂xi

∂xj′
uj
′
,



5.2. More motivation for the re-interpretation of the tangent space 283

which is said to be the transformation law for a contravariant vector. The matrix

J =

(
∂xi

′

∂xj

)
is called the Jacobian matrix of the coordinate transformation and its inverse

J−1 =

(
∂xi

∂xj′

)
is just the Jacobian matrix of the inverse transformation. Although these are just constant
matrices for such a simple transformation of Cartesian coordinates, they will depend on position
in a transformation to more general “curvilinear” coordinate systems which are not adapted to
the vector space structure of R3 like linear Cartesian coordinates are.

Suppose now that (ui) are n real-valued functions on Rn and we introduce the partial
derivative operator u = ui ∂/∂xi on real-valued differentiable functions on Rn, acting in the
obvious way to produce new functions

f 7−→ uf =

(
ui

∂

∂xi

)
f = ui

∂f

∂xi
.

By the chain rule and using the same vector transformation law for the “contravariant vector
field” ui, one finds

uf = ui
∂f

∂xi
= ui

∂xj
′

∂xi
∂f

∂xj′
= uj

′ ∂f

∂xj′
=

(
uj
′ ∂

∂xj′

)
f .

Thus the vector transformation law for the coefficient functions in the linear differential operator
guarantees that this differential operator has the same form in both coordinate systems, i.e., is
“independent of coordinates,” producing the same result when acting on a function.

Conversely if one has a set of components which transform in this way, then using the chain
rule in the form

∂

∂xi′
=
∂xj

∂xi′
∂

∂xj
= A−1j

i
∂

∂xj
,

the combination

ui
′ ∂

∂xi′
= (Aiku

k)

(
Aj i

∂

∂xj

)
= (A−1j

iA
i
k)u

k ∂

∂xj
= δjk u

k ∂

∂xj
= uj

∂

∂xj

is invariant. The same chain rule applied to a function

∂f

∂xi′
=
∂xj

∂xi′
∂f

∂xj
= A−1j

i
∂f

∂xj

is said to define the transformation law of a covariant vector (field). In fact these are just the
coefficients of the differential df expressed in terms of the coordinate differentials

df =
∂f

∂xi
dxi =

∂f

∂xi′
dxi

′
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which of course doesn’t depend on which coordinates are used to express it. Thus expressing the
coordinate independent operations uf and df in particular Cartesian coordinate systems leads
to the usual coordinate transformation of the components of vectors and covectors point by
point on Rn using the Jacobian matrix and its inverse. By referring to the differential operator
u = ui ∂/∂xi as the vector field instead of the collection of components (ui), the vector field
enjoys the same invariant status as the differential of a function or even of an ordinary vector

v = 〈v1, · · · , vn〉 = viei ∈ Rn ,

which is a quantity v independent of the choice of basis, whose components merely change with
a change of basis.

On the other hand, although everybody knows the rules for evaluating differentials, the
meaning of the differentials of the coordinates themselves is often lost on students or poorly
presented in textbooks. We all remember that we plug in increments in the coordinates for
them when we use the differential approximation, but the mathematical interpretation of the
differentials themselves we quickly forget. It should therefore cause no great objection if we
redefine what they mean mathematically, although the rules for taking differentials will remain
the same.

Linearity of differentiation means

(a u+ b v)f =

(
a ui

∂

∂xi
+ b vi

∂

∂xi

)
f = a ui

∂f

∂xi
+ b vi

∂f

∂xi
= a uf + b vf ,

so
(a u+ b v)|Pf = a u|Pf + b v|Pf , (where a, b are constants) .

This linearity condition means that associating to such a derivative operator at a given point
of Rn the value of its derivative of a particular function there

u|P 7−→ u|Pf = ui|P
∂f

∂xi

∣∣∣∣
P

∈ R

is a real-valued linear function of the derivative operator. The space of all such derivative
operators at a given point P is clearly an n-dimensional vector space isomorphic to Rn

ui|P ei ∈ Rn ←→ ui|P
∂

∂xi

∣∣∣∣
P

so as a real-valued linear function, u|P 7−→ u|Pf defines a covector on that vector space.
{∂/∂xi|p} is then a basis of the space of these operators at P , and with respect to this basis,
the components of the covector are ∂f/∂xi|P since

u|Pf =
∂f

∂xi

∣∣∣∣
P

ui|P .

By making the simple definition
df |P (u) = u|Pf
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for the covector, thereby defining the differential of the function f at P , we get a meaning for
the differentials of the coordinates themselves

dxi|P (u) = uj
∂

∂xj
xi = ujδij = ui

as the covectors which pick out the components of these linear operators with respect to the
basis {∂/∂xi|P}, i.e., the dual basis

dxi|P
(

∂

∂xj

∣∣∣∣
P

)
=

∂

∂xj

∣∣∣∣
P

xi =
∂xi

∂xj
= δij .

Of course this is exactly what we did in the previous section for R3, presented in a slightly
different way here for Rn.

Let’s use the notation TRn
P for the tangent space to Rn at the point P (T for tangent!)

identified with the space of linear differential (derivative!) operators there. Then by this new
definition of differential, the coordinate differentials form a basis for the dual space (TRn

P )∗,
called the cotangent space at P. Thus at each point P of Rn, we have the tangent space V = TRn

P

with basis {∂/∂xi|P} and its dual basis {dxi|P} of the dual cotangent space V ∗ = (TRn
P )∗, and

we are free to consider all the spaces of (pq)-tensors over each such V and independent changes
of basis at different points. Objects defined at each point of a space are called “fields.” Picking
out (smoothly) a tangent vector at each point P leads to the already familiar concept of a
vector field (familiar at least for n = 2 and n = 3).

The differential of a (smooth = differentiable) function leads to a covector field or “1-form”
on Rn. Fields of p-covectors are often called p-forms, or just “differential forms” without being
specific about the number of indices. The differential is a special 1-form since its components
come from the partial derivatives of a function. Given n functions Θi on Rn, then Θ = Θidx

i

defines a general 1-form field (or just a 1-form, with “field” understood by context).
The constant vector fields ei = ∂i resulting from the standard basis vectors of Rn comprise

a field of bases, which is often called a frame, in the sense that it provides a local reference
frame with which to measure the geometry near each point. The standard dual basis of 1-forms
ωi = dxi is then referred to as the dual frame. One can smoothly pick any set of n vector fields
which are linearly independent at each point of the space to introduce more general frames and
the corresponding dual frames. The coordinate components of these frames and dual frames
are simply inverse matrices. Note that the original Cartesian coordinates xi we interpreted as
the dual basis to the standard basis of Rn as a vector space—now their differentials give us the
dual basis to the standard basis of each tangent space of Rn.

Similarly the Euclidean dot product tensor on Rn itself enables us to define a corresponding
constant tensor field, the Euclidean metric tensor field

G = δij dx
i ⊗ dxj , δij = G

(
∂

∂xi
,
∂

∂xj

)
which tells us how to take the lengths of vector fields by defining the basis {∂/∂xi|P} at each
point P to be orthonormal. This just reproduces the usual inner product (the dot product on
Rn)

G(u, v) = δiju
ivj
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for two vector fields u, v when expressed in terms of components. Inner product tensor fields
are referred to as metrics since they provide a way to measure the local geometry at each point
of space, the word “metric” being associated with standards of measurement. Conventionally
a metric tensor field is denoted by a lower case g, a notation we will soon adopt, but for now
we retain the uppercase letter from its origin in a symmetrix matrix G.

A p-covector field or simply p-form has the expression

S =
1

p!
Si1···iP dx

i1 ∧ · · · ∧ dxiP ≡ 1

p!
Si1···iP dx

i1···iP ,

while a p-vector field is of the form

T =
1

p!
T i1···iP

∂

∂xi1
∧ · · · ∧ ∂

∂xiP
,

where the components are now functions on Rn. In particular the unit n-form associated with
the dot product induced metric tensor field G is just

η = η1...ndx
1...n .

with η1...n = ε1...n = 1 in an oriented basis, and represents the determinant function in each
tangent space.

Exercise 5.2.1.
polar coordinate calculations

Consider the functions and vector fields

r = (x2 + y2)1/2 , θ = arctan(y/x) , X = x∂/∂x+ y∂/∂y , Y = x∂/∂y − y∂/∂x .

a) Evaluate dr, dθ and r dr ∧ dθ.
b) Evaluate X ∧ Y , dr(X), dr(Y ), dθ(X), dθ(Y ) and (r dr ∧ dθ)(X, Y ).
c) r and θ are just polar coordinates in the plane. Evaluate dr⊗dr+r2 dφ⊗dφ, simplifying

it until you recognize the metric tensor field G = dx⊗ dx+ dy ⊗ dy.
d) Now do the opposite easier calculation, evaluating and simplifying G = dx⊗ dx + dy ⊗

dy in terms of the polar coordinates using the inverse coordinate transformation: (x, y) =
(r cos θ, r sin θ). Then evaluate and simplify dx ∧ dy in terms of the polar coordinates.

�
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Figure 5.6: Visualizing the flow of the vector field x ∂/∂y − y ∂/∂x in the plane. In this
representation, the length of the vector field is scaled down so that its largest value fits within
a grid box.

5.3 Flow lines of vector fields

The reinterpretation of a tangent vector as a directional derivative at a point makes sense for
another good reason, the flow lines associated with a vector field. In a typical first course in dif-
ferential equations, students learn to solve a linear homogeneous system of ordinary differential
equations. For example, consider this system in the plane

scalar form: vector form index form:

dx1

dt
= −x2 , x1(0) = x1

0

dx

dt
= Ax

dxi

dt
= Aijx

j

dx2

dt
= x1 , x2(0) = x2

0 x(0) = x0 xi(0) = xi0

where

A = (Aij) =

(
0 −1
1 0

)
, x =

(
x1

x2

)
.

By introducing the vector field ξ = Aij x
j ∂/∂xi = x1 ∂/∂x2 − x2 ∂/∂x1, i.e., with components

(ξ1, ξ2) = (−x2, x1), this system of differential equations states that the tangent to a solution
curve parametrized by the variable t equals the value of the vector field at each point along it

dxi(t)

dt
= ξi(x(t)) .

The solution curves are called the integral curves of the vector field, or its “flow lines.” There
is a unique such flow line through each point of the space, as long as the vector field is well
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behaved everywhere. Indeed with modern mathematics technology, one can easily visualize
both the vector field and its flow lines in the plane. Fig. 5.6 illustrates this for this particular
rotational vector field, whose flow lines are circles about the origin.

This system is solved by finding an eigenbasis {b1, b2} of the coefficient matrix: Abi = λibi,
in terms of which the transformed matrix of coefficients is diagonal

AB = B−1AB =

(
λ1 0
0 λ2

)
, B = 〈b1|b2〉 .

Then by introducing a linear change of variables: x = B y, y = B−1 x, the differential
equations take the new form

dy

dt
= B−1 dx

dt
= B−1Ax = B−1AB y = AB y .

This decouples the differential equations for the new variables: dyi/dt = λiy
i, which have

exponential solutions yi = cieλit whose arbitrary constant coefficients are the initial values of
the new variables at t = 0: yi = yi0e

λit, yi(0) = yi0 = ci. Backsubstituting these expressions
for the new variables into the matrix product which yields the old variables gives explicitly the
general solution.

By going a small step farther than time usually allows in an undergraduate class on differ-
ential equations, writing the solution for the new variables in vector form with the exponential
factors factored out into a diagonal matrix factor

y =

(
eλ1tc1

eλ2tc2

)
=

(
eλ1t 0
0 eλ2t

)(
c1

c2

)
=

(
eλ1t 0
0 eλ2t

)
c ,

one can backsubstitute using matrix notation to get the matrix form of the general solution

x = B

(
eλ1t 0
0 eλ2t

)
c .

Solving the initial condition transforms the coordinates of the initial position in the plane:
x(0) = B y(0) leads to B c = x0 with solution c = B−1 x0 = y

0
, representing a change of

coordinates of the initial point. Thus the matrix form of the solution of the initial value
problem solution is

x = B

(
eλ1t 0
0 eλ2t

)
B−1 x0 .

By defining A0 = I to be the identity matrix and introducing the matrix exponential

eA =
∞∑
k=0

Ak/k! = I + A+
1

2
A2 + . . .

one sees that for a diagonal matrix this consists of the diagonal entries which are the exponen-
tials of the diagonal entries

(
eλ1t 0
0 eλ2t

)
= e

t

λ1 0
0 λ2


= etAB .
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Also, it is obvious from the property BAnB−1 = (BAB−1)(BAB−1) · · · (BAB−1) =
(BAB−1)n which applied term by term to the infinite series for the exponential leads to

BeAB−1 = eBAB
−1

.

Putting this all together, we find

x = B

(
eλ1t 0
0 eλ2t

)
B−1 x0

= etB AD B
−1

x0 = etA x0 .

Of course this final result is just the matrix version of the well known scalar exponential
initial value problem dx/dt = kx, x(0) = x0, which has solution x = x0e

kt, and the matrix
result follows from the obvious “chain rule” derivative property

d

dt
etA = AetA = etAA

which follows from differentiating the infinite series term by term, so

d

dt
(etAx0) = A(etAx0)

shows that this is indeed a solution of the matrix differential equation directly.

Exercise 5.3.1.
matrix exponential chain rule

Verify this “chain rule” derivative property of the matrix exponential using its series repre-
sentation.

�

For this particular matrix that we started with, the eigenvalues and eigenvectors are com-
plex, but the final result is real. Using the property(

0 −1
1 0

)2

= −I ,
(

0 −1
1 0

)3

= −
(

0 −1
1 0

)
,

one can evaluate the matrix exponential by separating it into its even and odd terms

etA =
∞∑
k=0

(tA)k

k!
=
∞∑
k=0

t2k

(2k)!
A2k +

∞∑
k=0

t2k+1

(2k + 1)!
A2k+1

=
∞∑
k=0

(−1)k
t2k

(2k)!
I +

∞∑
k=0

(−1)2k+1 t2k+1

(2k + 1)!
A = cos t I + sin t A .
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Suppose we introduce the function f i(x0, t) for the solution of this initial value problem for
any matrix A. Then in this case(

f 1(x, t)
f 2(x, t)

)
=

(
cos t − sin t
sin t cos t

)(
x1

x2

)
=

(
x1 cos t− x2 sin t
x1 sin t+ x2 cos t

)
which corresponds to a counterclockwise rotation of the plane by an angle t. Notice that the
radius of the circle through a point (x1

0, x
2
0) is just r0 = ((x1

0)2+(x2
0)2)1/2, which is the magnitude

of the vector field x1∂/∂x2 − x2∂/∂x1 on this circle, the vector field for which the circle is a
flow line.

In general the map xi → f i(x, t) is a point transformation of the plane into itself in which
each point “flows” along a solution curve a parameter interval t from initial point with coor-
dinates xi to final point with coordinates f i(x, t). These transformations form a 1-parameter
group of transformations of the plane into itself, referred to as the flow of the vector field. In
this case the flow is the group of rotations of the plane about the origin, each point moving
around a circle centered at the origin, with the origin itself a fixed point.

One may directly solve the flow line differential equations formally by expressing the function
f as a power series in t, using the chain rule to differentiate functions along the flow line

dxi(t)

dt
= ξi(x(t)) = (ξ xi)|x(t) ,

d2xi(t)

dt2
=
dxk(t)

dt

∂

∂xk
(ξ xi)|x(t) = (ξ2xi)|x(t) , . . .

so that

(xi)(k)(0) =
dkxi(t)

dtk

∣∣∣∣
t=0

= ξkxi

and hence the exponential series representation of the solution is

xi(t) =
∞∑
k=0

tk

k!
(xi)(k)(0) =

∞∑
k=0

tk

k!
(ξk xi)|t=0 =

(
∞∑
k=0

tk

k!
ξk

)
xi . = etξxi = f i(x, t) .

Thus the exponential of the first order differential operator corresponding to the multivariable
calculus vector field, when acting on the coordinate functions, produces the coordinates of a
new point a unit parameter interval along the flow line through an initial point with the given
coordinates. An immediate consequence of this is the formula for the derivative of a scalar
along the flow lines

d

dt

∣∣∣∣
t=0

F (x(t)) =
∂F

∂xi
(x)

dxi

dt
(t)

∣∣∣∣
t=0

=
∂F

∂xi
(x)

dxi

dt
(0) = ξi(x)

∂F

∂xi
(x) = (ξF )(x) .

The coordinate vector fields ∂/∂xi themselves generate translations along the coordinate
lines since the infinite series terminates at the first power term

et∂/∂x
j

xi = xi + tδij .

The corresponding system of differential equations can be trivially integrated to produce this
result directly.
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Exercise 5.3.2.
hyperbolic rotations via matrix exponential

a) Repeat the above analysis for the matrix and associated linear vector field

A =

(
0 1
1 0

)
, ξ = x1∂/∂x2 + x2∂/∂x1 ,

but first find the eigenvalues λ = λ1, λ2 and corresponding matrix of eigenvectors B = 〈b1|b2〉
and evaluate directly the matrix product BetABB−1. Then evaluate the exponential etA using
the corresponding properties of the powers of A to get the same result. In each case rewrite
your expressions in terms of the hyperbolic cosine and sine

cosh t =
et + e−t

2
, sinh t =

et − e−t
2

.

One could repeat this same calculation for the previous rotation case in terms of complex
exponentials, in terms of which one would need the identities

cos t =
eit + e−it

2
, sin t =

eit − e−it
2i

.

b) Use technology to view the direction field of this DE system on the window x1 ∈ [−3, 3],
x2 ∈ [−3, 3] and include solution curves for the eight initial data points(

x1

x2

)
=

(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)
,

(
1
−1

)
.

In this case the flow lines are hyperbolas centered at the origin, except for the degenerate cases
along the eigenvector directions x2 = ±x1. This hyperbolic analog of the circular geometry of
trigonometry is just the mathematics of special relativity in one space and one time dimension,
explored in Appendices A.1 and A.2.

�

Exercise 5.3.3.
space rotations via the matrix exponential

a) Use a computer algebra system to find the integral curves of the linear vector fields
introduced at the beginning of this Section 5.2, i.e., to solve the first order system of differential
equations associated with the vector fields generating the rotations of the plane about the origin,
imposing the generic initial conditions x1(0) = x1

0, x
2(0) = x2

0.
b) Since these are linear vector fields, they generate linear transformations, so one can use

the matrix exponential to find the general solution of the same initial value problem. Do this
and compare with your previous result. Both of these calculations can be done by hand as
illustrated in this section, but if the goal is to obtain the results for other purposes, there is no
need to waste the time.
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c) Since we like math, maybe we want to waste some time for fun, provided we can learn
something new from the experience. To evaluate the matrix exponential by hand we need to be
able to express A2 and A3 in terms of I and A and in fact once we do the first task, the second
follows for free by multiplying through the previous relation and substituting for A2. Can you
solve the equation A2 = aI + bA for the unknown coefficients a, b, i.e., A2 − aI − bA = 0?
Compare your resulting quadratic equation satisfied by the matrix A with the characteristic
equation satisfied by its eigenvalues

0 = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2

= λ2 − (TrA)λ+ det(A) .

They are the same! This result, that the matrix satisfies its characteristic equation using the
identity matrix in its constant term (called the Cayley-Hamilton theorem), is therefore crucial
in reducing the infinite series of the matrix exponential function to a more manageable linear
combination of I and A whose coefficients are scalar infinite series, as in our explicit example
in this section.

�

Remark.

It is easy to establish this result by first showing that the diagonalized matrix AB = B−1AB
satisfies the equation CharPoly (AB) = 0 (easy since each diagonal entry satisfies it separately
as an eigenvalue) and then “conjugating” this matrix equation by B

B CharPoly (AB)B−1 = 0 ,

and using the fact that A = B−1ABB, A2 = B−1AB
2B, etc. to convert it to the characteristic

equation for A.
N

Exercise 5.3.4.
Cayley-Hamilton theorem for n = 3

For 3×3 matrices expanding the characteristic equation in terms of its eigenvalue roots one
finds

0 = (λ− λ1)(λ− λ2)(λ− λ3) = λ3 − (λ1 + λ2 + λ3)λ2 + (λ1λ2 + λ2λ3 + λ3λ1)λ− (λ1λ2λ3)

= λ3 − (TrA)λ2 +
1

2
(Tr2A− TrA2)λ− det(A) .

a) Convince yourself that the first power coefficient in this third degree polynomial is cor-
rectly expressed in terms of the original matrix.

b) Recall Exercise 4.5.2, where a tracefree matrix N with zero self-inner product under
the trace inner product TrN2=0 and zero determinant was seen to generate null rotations
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of 3-dimensional Minkowski space. This formula shows why it must be a so called nilpotent
matrix—one for which a positive integer power equals the zero matrix—in this case N3 = 0.
What extra condition is required for 4 × 4 matrices to have N4 = 0? It is a fun challenge to
express the new first power coefficient Q in the characteristic equation in terms of the trace of
the first three powers of the matrix

λ4 − (TrA)λ3 +
1

2
(Tr2A− TrA2)λ2 +Qλ+ det(A) .

�

Remark.

A direct sum decomposition of a vector space into two subspaces V = V1⊕V2 was introduced
near the end of Section 1.7. Recall that this just means that every vector in V can be decom-
posed uniquely into a sum of two vectors, one in each subspace: v = v1 + v2, v1 ∈ V1, v2 ∈ V2. If
there is an inner product on V , these is an orthogonal direct sum if the vectors in each subspace
are mutually orthogonal G(v1, v2) = 0. Any such a decomposition is accompanied by two linear
projection maps: P1(v1 + v2) = v1, P2(v1 + v2) = v2, which then satisfy

P 2
1 = P1 , P

2
2 = P2 , P1P2 = P2P1 = 0 .

This direct sum structure can be extended to any number of summand subspaces in an obvious
way. When an inner product is available, one can take an orthonormal basis and express
vectors in terms of this basis, and any partition of the terms in that linear combination leads
to a corresponding orthogonal direct sum of the vector space. For example, the vector space of
n×n matrices gl(n,Rn) decomposes into an orthogonal direct sum of the subspace of multiples
of the identity matrix, the subspace of antisymmetric matrices, and the subspace of symmetric
tracefree matrices as explored in Exercise 1.6.9, with respect to either of the two natural trace
inner products on that space. For example on R3, any 3×3 matrix can be represented in terms
of the following orthonormal basis with respect to either trace inner product

A = A0I/
√

3︸ ︷︷ ︸
∈ Trace(3)

+C6 diag(1, 1,−2)/
√

6 + C7 diag(1,−1, 0)/
√

2 + |εijk|Ciejk/
√

2|︸ ︷︷ ︸
∈ SymTraceFree(3)

+ εijkBiejk/
√

2︸ ︷︷ ︸
∈ ASym(3)

.

Thus one has an orthogonal direct sum into 3 subspaces of dimensions 1, 5, and 3 respectively:
the pure trace matrices Trace(3) which are multiples of the identity, the symmetric tracefree
matrices SymTracefree(3), and the antisymmetric (tracefree) matrices ASym(3).

The next exercise deals with such an orthogonal direct sum. N

Exercise 5.3.5.
space rotations as solutions of a system of differential equations
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Consider the system of constant coefficient differential equations

dxi(t)

dt
= ξi(x(t)) , ξi = Ωi

jx
j ,Ωi

j = δimεmjkω
k , 〈ω1, ω2, ω3〉 = 〈1, 1, 1〉 ,

or explicitly

dx1(t)

dt
= −x2(t) + x3(t) ,

dx2(t)

dt
= x1(t)− x3(t) ,

dx3(t)

dt
= −x1(t) + x2(t) ,

with initial conditions

x1(0) = x1
0 , x

2(0) = x2
0 , x

3(0) = x3
0 .

Note that the coefficient matrix Ω is antisymmetric and so determines a 2-vector Ω = Ωijei∧ ej
which spans a plane whose normal is the dual ω = ∗Ω = ωiei of this 2-vector, both of which
have magnitude |Ω| = |ω| = (δijω

iωj)1/2 =
√

3, and hence n = ω̂ = ω/|ω| = 〈1, 1, 1〉/
√

3 is a

unit normal to this plane. Let Ω̂ = Ω/|Ω|. Then by definition Ωx corresponds to ω × x and
Ω̂x corresponds to n × x. [By the magnitude of the antisymmetric matrix, we mean the one
from the self-inner product without overcounting: Ω|ij|Ωij = 1

2
Tr ΩTΩ.]

a) Use technology to verify that det Ω = 0, which means that 0 is an eigenvalue of the matrix
corresponding to a direction along which the matrix product yields zero, and hence equilibrium
points of the system of differential equations (constant value solutions for the three variables
of the system), that is, fixed points of the flow of the corresponding vector field ξ. Verify that
∗Ω is an eigenvector with this eigenvalue.

b) Use technology to solve the initial value problem. The result looks pretty messy, no?
How do we make sense of it? Keep reading.

c) Use technology to find the eigenvalues and eigenvectors of the matrix Ω: λ1 = |ω|i, λ2 =
−|ω|i, λ3 = 0, B = 〈b1|b2|b3〉. Verify that Re b1 × Im b1 ∝ ω, so the real plane determined by
the complex conjugate pair of eigenvectors through their real and imaginary parts coincides
with the plane determined by the 2-vector Ω or its normal ω. Define a new real basis of this
plane by taking the real and imaginary parts of the complex conjugate of the eigenvector b1

corresponding to the positive imaginary eigenvalue, and divide each one by its length, and
complete it to a basis of the whole space by adding the normalized third eigenvector

r1 = Re b1/|Re b1| , r2 = −Im b1/|Im b1| , r3 = b3/|b3| ,

Define the matrix R = 〈r1|r2|r3〉. Verify that this is an orthogonal matrix: RTR = I and
that detR = 1, the reason for using the complex conjugate. This latter condition guarantees
that this basis is right-handed: r1 × r2 = r3 or equivalently (r1 × r2) · r3 = 1. Check it. Use
technology to evaluate the new matrix of ΩR = R−1ΩR with respect to this basis.

d) Use technology to obtain the characteristic polynomial of Ω whose roots are the eigen-
values and verify that it has the form: λ(λ2 + |ω|2) = 0. This implies that the matrix itself
satisfies Ω3 = −|ω|2Ω whose iteration (Ω4 = −|ω|2Ω2, etc.) allows us to express every power
of Ω from the third on up in terms of Ω and Ω2 so that the matrix exponential power series
can be expressed in terms of a linear combination of these two matrices alone (with coefficients
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which are scalar power series) together with the identity matrix (the first term in the series).
Show that the higher order terms can be grouped as follows

etΩ = I +
∞∑
k=0

1

(2k + 1)!
t2k+1Ω2k+1 +

∞∑
k=1

1

(2k)!
t2kΩ2k

= I +

(
t− t3

3!
|ω|2 + . . .

)
Ω +

(
t2

2!
− t4

4!
|ω|2 + . . .

)
Ω2 + . . .

= I + sin(|ω|t) Ω

|ω| + (1− cos(|ω|t)) Ω2

|ω|2

=
(
I + Ω̂

2
)

+ sin(|ω|t) Ω̂ + cos(|ω|t)
(
−Ω̂

2
)
.

This represents a rotation by an angle θ = |ω|t in the plane of the 2-vector Ω̂ with angular
velocity dθ/dt = |ω| (namely

√
3 in our explicit example) if t is interpreted as the classical

time. This is said to be a rotation “about the axis” n, which is the unit normal to this plane,
fixed under all these rotations. The angle of the rotation is increasing in the counterclockwise
direction in this plane as oriented by the right hand rule using n: with the thumb along n, the
fingers curl in the direction of the time-dependent rotation.

e) The matrix P ⊥ = −Ω̂
2

is the projection onto this two plane and acts as the identity on
vectors which lie in this plane, while the linear transformation x → Ω̂x = n× x acts as a 90
degree counterclockwise rotation in this plane. Check these statements by multiplying r1, r2

and r3 by the matrix Ω̂. The matrix P || = I + Ω̂
2

projects along the normal direction, where
it acts as the identity. Check this by evaluating this matrix explicitly and using it to multiply
r1, r2 and r3, verifying these statements. The pair of matrices P⊥, P|| together determine an
orthogonal decomposition of R3 = (R3)||⊕(R3)⊥ into an orthogonal direct sum of two subspaces,
which are the eigenspaces of dimension 2 and 1 of the matrix Ω.

Show that
P 2
⊥ = P ⊥ , P

2
|| = P || , P ⊥ P || = 0 = P || P ⊥

and
I = P ⊥ + P || .

Then show that
P ⊥ = r1 r

T
1 + r2 r

T
2 , P || = r3 r

T
3

The fact that the sum of these two matrices is the identity merely reflects the component
expression of the identity tensor in terms of an orthonormal basis Id = r1⊗r[1+r2⊗r[2+r3⊗r[3 as
the sum of 1-dimensional mutually orthogonal projections along the orthonormal basis vectors.

f) The rotation of the standard basis ei by the orthogonal matrix R adapts the coordinates
of R3 to this rotation by sending the standard basis to the basis ri. If we introduce new
coordinates x = R−1y, then the transformed matrix of the differential equation system

R Ω̂R−1 =

0 −1 0
1 0 0
0 0 0

 .



296 Chapter 5. From multivariable calculus to the foundation of differential geometry

Use technology to verify this. In terms of these new coordinates the family of rotations takes
the simple form y1(t)

y2(t)
y3(t)

 =

cos(|ω|t) − sin(|ω|t) 0
sin(|ω|t) cos(|ω|t) 0

0 0 1

y1
0

y2
0

y3
0

 .

Thus the dual ω of a 2-vector Ω represented as a linear transformation Ωx = ω×x through the
cross product with the dual vector is something that is used in the first physics course when
describing a body rotating about an axis with a given angular velocity. The magnitude of this
2-vector Ω is the scalar angular velocity |ω| , while its dual is the vector angular velocity ω,
and the 2-plane it determines is the plane of the rotation, whose normal is the direction unit
vector n = ω̂ associated with the angular velocity vector.

�

Remark.

Given any orthonormal basis ei′ = ejB
j
i of Rn, where ei is the standard basis, the identity

tensor partially evaluated on a vector decomposes it into a sum of vector components along
each 1-dimensional vector subspace spanned by the individual basis vectors. This in turn can
be re-expressed in terms of the dot product

Id( , X) = δj iej′ ⊗ ωi
′
( , X) = ωj

′
(X)ej′ = Gi′j′(ei′ ·X)ej′ =

n∑
j=1

(ej′ ·X)ej′

Gj′j′
,

where of course Gj′j′ = δjj. However, for any signature metric G with Gii = ±1, this latter
formula continues to hold, so that the components along basis vectors with Gii = −1 have an
extra minus sign to reverse the sign of the inner product in its term in the projection. Thus
in Minkowsksec:groupsi spacetimes, the vector projection of a vector X along a timelike unit
vector u satisfying G(u, u) = −1 is −G(X, u)u, or in components X i

|| = −Xjuju
i ≡ T (u)ijX

j.

Then P (u) = Id− T (u) projects to the hyperplane orthogonal to u.
N

Exercise 5.3.6.
Local rest space decomposition in M4

On Minkowski spacetime M4 any unit timelike vector u (namely G(u, u) = uαu
α = −1)

decomposes the vector space into the 1-dimensional subspace of its own multiples and the 3-
dimensional orthogonal subspace LRSu of spacelike vectors called the local rest space associated
with the observer whose 4-velocity is u.

a) If one completes u = E0 to an orthonormal frame Eα, α = 0, 1, 2, 3 then any vector
can be expressed as Xαeα = Y 0E0 + Y iEi, i = 1, 2, 3, where eα is the standard basis. Then
P||(X) = Y 0E0, where Y 0 = −uαXα, and P⊥(X) = Y iEi = X − P||(X) defines the two
projection maps for this decomposition. Show that the tensors which represent these projections



5.3. Flow lines of vector fields 297

are Pα
|| β = −uαuβ and P⊥(X)αβ = δαβ + uαuβ and that they satisfy the projection relations

(multiplication of linear maps means contraction of adjacent indices as in matrix multiplication)

P 2
|| = P|| , P

2
⊥ = P⊥ , P||P⊥ = 0 .

b) Suppose u = u0e0 + uiei is a timelike future pointing (u0 > 0) vector in the standard
orthonormal basis of M4, namely the 4-velocity of some observer in relative motion with the
observer associated with these inertial coordinates (having 4-velocity e0). The 3 vectors ei span
the local rest space LRSe0 . The unit condition is −(u0)2 + δiju

iuj = −1 is identically satisfied
by setting u0 = cosh β = γ and sinh β =

√
δijuiuj, with β ≥ 0. Then define the 3-velocity

vi = ui/u0 and speed |v| =
√
δijvivj = tanh β and let v̂i = vi/|v| be its unit vector so that the

4-velocity has the representation

u = cosh βe0 + sinh β v̂iei = cosh β(e0 + tanh β v̂iei) = γ(e0 + viei)

Show that the gamma factor is related to the spatial speed by γ = (1− |v|2)−1/2.
c) While this exercise can be thought of as living on the vector space M4 involving its points

thought of as displacement vectors from the origin, once we start considering world lines in that
space it is more appropriate to consider it in the context of each tangent space along the world
line, as in the examples in Appendix C. In this case u would be the future-pointing timelike
unit tangent to the world line called its 4-velocity, and the local rest space would be a subspace
of the local tangent space, which of course can also be considered a hyperplane in R4 itself.

For a test particle of rest mass m, the 4-momentum is defined as

p = mu = mγ(u+ viei) ≡ Eu+ piei ,

thus defining the energy E = mγ as the timelike component and the spatial momentum ~p =
piei = mγ ~v as the orthogonal component with respect to the inertial observer attached to
the inertial coordinates (just the ordinary Cartesian coordinates of the standard basis if R4

interpreted as M4 with the Lorentz inner product. The relativistic equations of motion for a
charged particle with charge q in an electromagnetic field F and 4-velocity uα = dxα/dτ along
such a world line parametrized by its proper time τ are then

dpα

dτ
= qFα

βu
β .

Since u is a unit vector, it can only change by an orthogonal transformation (Lorentz trans-
formation, which includes rotations), and thus its rate of change along its world line has to be
generated by an antisymmetric matrix, which is the role played by the electromagnetic field.

Show that using the chain rule relation dt/dτ = u0 = γ and the decomposition of the
electromagnetic field given in Exercise 1.6.6, the components of this equation can be written
(don’t confuse the energy scalar E with the electric field ~E = Eiei)

dE

dt
= Eiv

i ,

dpi

dt
= q( ~E + ~v × ~B)i .
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�

Exercise 5.3.7.
logarithmic spiral group

The 2-parameter family of logarithmic spiral curves satisfies the equation r = r0e
kθ in

the plane in polar coordinates (r, θ), so called since the natural log of the radial coordinate
ln r = ln r0 + kθ is a linear function of the polar angle. For a given k value, this is an integral
curve (flow line) of a vector field which has a simple expression in polar coordinates. First
choosing to parametrize it by t = θ − θ0, we get

~r(t) = 〈r0e
kt, t+ θ0〉 , ~r(0) = 〈r0, θ0〉 , ~r ′(t) = 〈kr0e

kt, 1〉 = 〈kr, 1〉 ≡ 〈ξr, ξθ〉 .

Define the associated vector field ξ = kr ∂r + ∂θ. By definition the flow lines of this vector field
starting at (r0, θ0) at t = 0 are the members of the logarithmic spiral family for that fixed k
value. The origin is a fixed point of this vector field where it vanishes, so the flow of the vector
field only acts on the plane excluding the origin.

a) We will study polar coordinates in detail soon, but use coordinate transformation relations
the chain rule

x = r cos θ , y = r sin θ ,
∂

∂r
=

∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
,
∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
,

to show that in Cartesian coordinates one has

ξ = (kx− y)∂x + (x+ ky)∂y .

b) This is a linear vector field. What is its matrix K? Use a computer algebra system
to evaluate etK . If you consider the characteristic equation satisfied by the matrix itself, one
can repeat the steps taken with the rotations of the plane to sum the exponential power series
for this matrix, but it is a bit tedious, no, complicated by the parameter k. In fact one can
separate K into a multiple of the identity matrix which generates a radial scaling of the points
and a simple rotation generator which commutes with the identity matrix multiples, so that
one can factor the exponential into the product of the two separate exponentials, which is easy.
This transformation transforms figures into the plane into similar figures of the same shape but
different scale. These are called conformal transformations of the Euclidean plane.

�
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5.4 Frames and dual frames and Lie brackets

As already mentioned above, a smooth choice of basis for the tangent spaces to Rn is called a
frame, and consists of n vector fields whose values are n linearly independent tangent vectors
of each point of Rn. The corresponding choice of dual basis is called the dual frame. {∂/∂xi}
is such a frame, usually called a coordinate frame since the individual frame vector fields are
just partial derivatives with respect to the coordinates, and {dxi} is its dual frame.

All the linear algebra we developed for a single vector space we can apply to each tangent
space to Rn independently, although we must assume that what we do at different tangent
spaces is a continuous or even differentiable function of position.

For example, we can change the frame, i.e., perform a change of basis on each tangent space
in a continuous or differentiable fashion

Ei = A−1j
i
∂

∂xj
, W i = Aijdx

j , (i.e., Ej
i = A−1j

i, W
i
j = Aij) ,

where now A is a matrix-valued function on Rn, with everywhere nonzero determinant of course
so that the frame vectors are linearly independent. The components of tensor fields will change
according to the same formulas as before except that now both the components of the tensors
and the matrix of the transformation are functions on Rn. The special case of constant A
describes the change to a new frame which is the coordinate frame associated with the new
Cartesian coordinates xi

′
= Aijx

j so that Ei = ∂/∂xi
′
. A more general special case corresponds

to the change to a frame associated with a non-Cartesian coordinate system, but the most
general case cannot be associated with any coordinate system as we will see.

Suppose {xi′} are n functions on Rn such that the matrix Aij = ∂xi
′
/∂xj of partial deriva-

tives has nonzero determinant at each point of Rn. Then the chain rule says that Ei = ∂/∂xi
′

are partial derivatives with respect to the new coordinates.
Thus we have Cartesian coordinate frames, non-Cartesian coordinate frames, and “non-

coordinate” frames, namely frames for which no system of coordinates can be found so that the
frame vector fields can be represented as coordinate derivatives. There is a simple way to tell
whether a frame is noncoordinate or not. We all know that partial derivatives commute, i.e.,
as long as a function f is well behaved, the order of the partial derivatives does not matter

∂

∂xi
∂

∂xj
f =

∂

∂xj
∂

∂xi
f

or (
∂

∂xi
∂

∂xj
− ∂

∂xj
∂

∂xi

)
f = 0 for all such f

or [
∂

∂xi
,
∂

∂xj

]
≡ ∂

∂xi
∂

∂xj
− ∂

∂xj
∂

∂xi
= 0

when acting on such well behaved functions.
For any operators A and B, their commutator is defined by

[A,B] = AB −BA
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and when it vanishes, their order doesn’t matter: AB = BA, and they are said to “commute.”
Any commutator has the obvious properties

[A,A] = AA− AA = 0 , [B,A] = BA− AB = −(AB −BA) = −[A,B] .

Note also that this commutator [A,B] is bilinear in its two inputs or arguments A and B,
namely for any two constants c1, c2 one has a distributive law in each argument, for example

[c1A+ c2B,C] = (c1A+ c2B)C − C(c1A+ c2B) = (c1AC + c2BC)− (c1CA+ c2CB)

= c1(AC − CA) + c2(BC − CB) = c1[A,C] + c2[B,C] .

Another very useful commutator identity is the Jacobi identity which results from expanding
a cyclic combination of three double commutators into twelve terms which all cancel in pairs

[[A,B], C] + [[B,C], A] + [[C,A], B]

=
(AB −BA)C − C(AB −BA)

+(BC − CB)A− A(BC − CB)
+(CA− AC)B −B(CA− AC)

=
(ABC −BAC − CAB + CBA)

+(BCA− CBA− ABC + ACB)
+(CAB − ACB −BCA+BAC)

= 0 .

Define the commutator of any two vector fields u and v by the same formula [u, v] = uv−vu.
This is a differential operator on functions. What is it? We can express it in components, when
acting on a well-behaved (i.e., differentiable) function

[u, v]f = (uv − vu)f = uvf − vuf = ui
∂

∂xi

(
vj
∂f

∂xj

)
− vi ∂

∂xi

(
uj
∂f

∂xj

)
= ui

∂vj

∂xi
∂f

∂xj
+ uivj

∂2f

∂xi∂xj
− vi∂u

j

∂xi
∂f

∂xj
− viuj ∂2f

∂xi∂xj

=

(
ui
∂vj

∂xi
− vi∂u

j

∂xi

)
∂f

∂xj︸ ︷︷ ︸
new vector field acting on f

+uivj
(

∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
︸ ︷︷ ︸
0 for well-behaved f

.

The final formula defines a new vector field [u, v] acting on f whose components are

[u, v]j = ui
∂vj

∂xi
− vi∂u

j

∂xi
= uvj − vuj

called the Lie bracket of u and v.
Thus if Ei′ = Aii∂/∂x

j can be represented as coordinate derivatives for some coordinate
system: Ei′ = ∂/∂xi′, then

[Ei′ , Ej′ ] =

[
∂

∂xi′
,
∂

∂xj′

]
= 0

since partial derivatives commute. A necessary condition for this therefore is the vanishing of
the Lie brackets of all pairs of distinct frame vector fields.
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When the frame vectors do not commute, then one can express them in the same frame,
leading to the definition of the component functions of those frame vectors

[Ei′ , Ej′ ] = Ck′
i′j′Ek′ , Ck′

j′i′ = −Ck′
i′j′ .

These “structure functions of the frame” determine certain geometrical properties of the frame.
They are the components of a (1

2)-tensor but one which is frame-dependent, like the Levi-Civita
symbols. All coordinate frames have zero structure functions.

Exercise 5.4.1.
Lie bracket evaluation

Compute the nonzero Lie brackets among the following sets of vector fields on R2

a) X1 = ∂1 , X2 = ∂2 , X3 = x1∂2 − x2∂1 ,

b) X1 = ∂1 , X2 = ∂2 , X3 = x1∂2 + x2∂1 .

Note that the flow lines of X1, X2 are just the Cartesian coordinate lines, while the final vector
field in each set corresponds respectively to rotations about the origin or hyperbolic rotations
about the origin, as discussed in Section 5.3. Notice that in this case these Lie brackets are
constant linear combinations of the same set of vector fields, i.e., as a set of 3 vector fields, this
is a 3-dimensional vector space which is closed under the Lie bracket. Such sets of vector fields
are said to define a Lie algebra of vector fields.

�

Exercise 5.4.2.
Lie bracket evaluation

a) Compute the nonzero Lie brackets among the following vector fields on R3

u = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, v = y

∂

∂x
− x ∂

∂y
, w = (x2 + y2)

(
∂

∂x
+
∂

∂y

)
+
∂

∂z
,

namely, [u, v], [u,w] and [v, w].
b) On R2 do the same for u = (x2 + y2)−1/2(x ∂/∂x + y ∂/∂y) and v = −y ∂/∂x + x ∂/∂y.

If we introduce a new frame by E1 = u, E2 = v then

A−1 =

 x√
x2 + y2

−y
y√

x2 + y2
x

 .

What is detA−1? Can this vanish? What does this mean? What does your result for [u, v] tell
you?

Note that the ordinary vector functions ~u = (x2 + y2)−1/2(x, y) = ~r/||~r|| = r̂, and ~v =
(−y, x), which satisfy ~u·~v = 0, are the unit outward radial vector field and the counterclockwise
pointing vector field tangent to the circles about the origin illustrated in Fig. 5.6.



302 Chapter 5. From multivariable calculus to the foundation of differential geometry

�

Example 5.4.1. Consider the product rule

∂

∂xi

(
f
∂

∂xj

)
=
∂f

∂xi
∂

∂xj
+ f

∂2

∂xi∂xj

and use it to expand the Lie bracket[
xy

∂

∂x
, sin(x+ y)

∂

∂y

]
= xy

∂

∂x

(
sin(x+ y)

∂

∂y

)
− sin(x+ y)

∂

∂y

(
xy

∂

∂x

)
= xy cos(x+ y)

∂

∂y
+ xy sin(x+ y)

∂2

∂x∂y
− sin(x+ y)x

∂

∂x
− sin(x+ y)xy

∂2

∂x∂y

= xy cos(x+ y)
∂

∂y
− x sin(x+ y)

∂

∂x
.

So the commutator of the vector fields on R2 with the Cartesian coordinate components (xy, 0)
and (0, sin(x+ y)) has components (−x sin(x+ y), xy cos(x+ y)). �

Exercise 5.4.3.
linear vector field Lie brackets

If A = (Aij) and B = (Bi
j) are constant matrices and ~b = (bi) and ~c = (ci) are constant

vectors in Rn, define the four vector fields

X = Aijx
j ∂

∂xi
, Y = Bm

nx
n ∂

∂xm
, Z = bl

∂

∂xl
, W = ck

∂

∂xk
.

Evaluate [X, Y ] and [X,Z] (using ∂xi/∂xj = δj i) and [Z,X]. The result [X, Y ] = −[A,B]ijx
j∂/∂xi

shows that the commutators of the matrices are directly reflected in the commutators of the
corresponding vector fields.

These results allow us evaluate the Lie brackets of any vector fields whose components are
linear functions of the coordinates in the nonhomogeneous sense: Aijx

j + bi.
�

Exercise 5.4.4.
rotation generator Lie brackets

Define three vector fields on R3 of the type discussed in the previous problem by Li =
εijkx

j∂/∂xk associated with the basis [Sk]
i
j = εikj of antisymmetric matrices

S1 =

0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

0 −1 0
1 0 0
0 0 0

 ,

L1 = x2 ∂

∂x3
− x3 ∂

∂x2
, L2 = x3 ∂

∂x1
− x1 ∂

∂x3
, L3 = x1 ∂

∂x2
− x2 ∂

∂x1
.
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Figure 5.7: The three vector fields L1, L2, L3 are shown at a single point of a sphere of radius
r centered at the origin. Their flow lines are circles about the three coordinate axes in R3

contained in each such sphere and their magnitudes equal the radii of the corresponding circles.

a) Evaluate directly the commutators [S1, S2] and [L1, L2] and compare with the previous
problem result. Then instead use the epsilon formulas to derive the formulas

[Si, Sj] = εijkSk , [Li, Lj] = −εijkLk ,

which are explicitly

[S2, S3] = S1 , [S3, S1] = S2 , [S1, S2] = S3 ,

[L2, L3] = −L1 , [L3, L1] = −L2 , [L1, L2] = −L3 .

b) Show that ωiLi = [~ω× ~x]i∂/∂xi, where the cross product is defined in terms of the usual
vectors in R3. Thus the differential equations

d~x

dt
= ~ω × ~x

describing a constant rotation with constant angular velocity ~ω corresponds to the flow lines of
the vector field ωiLi. Each vector field Li generates rotations in the xj-xk plane (where i, j, k
are distinct) exactly as the 2-dimensional example of the previous section, leaving fixed the
xi-axis.

c) Introduce three constant vector fields pi = ∂/∂xi. These are just the usual unit vectors
along the three coordinate axes thought of as vector fields. Evaluate [Li, pj].

�
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Exercise 5.4.5.
Laplacian

2nd order linear differential operators are also useful. Define the Laplacian

∇2 =
−→∇ · −→∇ = δij

∂2

∂xi∂xj
=

n∑
i=1

∂2

∂(xi)2 .

For n = 2 this is

∇2 =
∂2

∂(x1)2 +
∂2

∂(x2)2 .

Evaluate the commutator

[
∇2, x1 ∂

∂x2
− x2 ∂

∂x1

]
.

Hint:
∂2

∂x2

(
x
∂

∂y

)
=

∂

∂x

(
∂

∂x

(
x
∂

∂y

))
=

∂

∂x

(
∂

∂y
+ x

∂2

∂x∂y

)
etc.

�

Exercise 5.4.6.
total angular momentum operator and the Laplacian

a) In traditional notation on R3, the position vector ~r = 〈x1, x2, x3〉 has length r = |~r| =
(δijx

ixj)1/2 and the direction unit vector r̂ = ~r/r. These determine two vector fields whose

associated derivatives are indicated by ~r · ~∇ and r̂ · ~∇ = Dr̂, the latter being the true directional
derivative along the radial direction from the origin, interpreted as the derivative with respect
to arclength along the radial line from the origin. In our new notation, these correspond to the
vector fields xi∂/∂xi and (xi/r)∂/∂xi ≡ Dr. Show that Drr = 1 and that Dr(x

i/r) = 0.

b) Similarly the three vector fields ~L1 = 〈0,−x3, x2〉, ~L2 = 〈x3, 0,−x1〉, ~L3 = 〈−x2, x1, 0〉,
clearly satisfy ~Li · ~r = 0 by inspection, which is due to the fact that each is tangent to a circle
about one of the three axes and hence hence is tangent to the sphere of radius r at each point
which contains these circles,and the radial direction is orthogonal to the tengent plane to the
sphere. Show that the corresponding vector field operators Li = εijkx

j∂/∂xk satisfy Lir = 0,
which must be the case since these vector fields are tangent to the level surfaces (spheres) of
the function r, and that [

Li, x
k ∂

∂xk

]
= 0 , [Li, Dr] = 0 .

c) Consider the second order operator in Cartesian coordinates on R3

L2 = δijLiLj = δijεimnεjpqx
m ∂

∂xn

(
xp

∂

∂xq

)
= δpqmnx

m

(
δpn

∂

∂xq
+ xp

∂2

∂xn∂xq

)
= (δpmδ

q
n − δqmδpn)

(
δpn

∂

∂xq
+ xp

∂2

∂xn∂xq

)
= . . .

= 2xi
∂

∂xi
+ (δijxkx

k − xixj) ∂2

∂xi∂xj
,
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so that upon solving this for the Laplacian ∇2 = δij∂2/∂xi∂xj, one finds

∇2 =
L2

r2
+
xixj

r2

∂2

∂xi∂xj
+

2xk

r2

∂

∂xk
.

Fill in the dots above and then show that the final two terms in this formula can be rewritten
in terms of the derivative Dr ≡ r−1xi∂/∂xi as

Dr(r
2Dr)

r2
=
xixj

r2

∂2

∂xi∂xj
+

2xk

r2

∂

∂xk
,

so that one obtains the formula

∇2 =
L2

r2
+
Dr(r

2Dr)

r2
.

d) Use the following product fule for commutators

[A,BC] = ABC −BCA = ABC −BAC +BAC −BCA = [A,B]C +B [A,C]

and the commutation relations for the Li from a previous exercise to show that the following
commutator vanishes

[L3, L
2] = [L3, L1

2 + L2
2 + L3

2] = [L3, L1
2 + L2

2] (note: [A,An] = AAn − AnA = 0)

= [L3, L1]L1 + L1[L3, L1]

+ [L3, L2]L2 + L2[L3, L2] = . . . = 0 .

Clearly the latter result holds for all three Li: [Li, L
2] = 0 because of the symmetry with which

they enter the formula.
e) Since Li also commutes with Dr and since Lir = 0, it follows from the final formula of

part c) that the Laplacian ∇2 also commutes with Li: [Li,∇2] = 0. Convince yourself that
this is true. Thus ∇2, L2 and L3 form a set of commuting operators. It turns out that once
one adds a radial potential term to the Laplacian, these are associated with the three quantum
numbers (n, l,m) that characterize the electronic wave function states of atoms, from which
the periodic table and all of chemistry follows.

�

Remark.
Why do we care if linear operators like matrices acting by matrix multiplication or deriva-
tive operators acting on functions commute? The eigenvector/eigenfunction technique is very
powerful. Suppose two matrices have simultaneous eigenvalues:

Ax = λAx , B x = λBx ,

then
[AB]x = (AB −BA)x = (λBλA − λBλA)x = 0 .
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This only shows that the commutator must have x as an eigenvector with eigenvalue 0, but
if both matrices are diagonalizable, i.e., share an eigenbasis, then the commutator must have
0 eigenvalue for all the eigenbasis vectors, i.e., it is identically zero. Such matrices are “si-
multaneously diagonalizable.” When instead we deal with linear derivative operators acting on
functions, we call the eigenvectors eigenfunctions. We already showed in Exercise 1.7.12 that
the space of 3 × 3 matrices could be decomposed into eigenspaces of L2 = δabLa Lb. Since it
and L3 commmute they are simultaneously diagonalizable and we can choose eigenbases of each
such subspace which are eigenmatrices of L3 as well. N

Exercise 5.4.7.
spherical basis?

Consider the Hermitian matrix (just the second Pauli matrix in the upper 2 × 2 block of
the matrix, see Exercise 1.7.12)

L3 = iL3 =

0 −i 0
i 0 0
0 0 0

 .

Find its eigenvalues and show that the following combinations of the standard basis vectors

e± = e1 ± ie2, e0 = e3

of R3 form an eigenbasis, called the spherical basis. What are their respective eigenvalues?
What is the result of a rotation of this basis by an angle θ

eθL3 = e−iθL3 ?

This spherical basis is important for creating the vector spherical harmonics by combining them
properly with the scalar spherical harmonics.

�
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5.5 Non-Cartesian coordinates on Rn (polar coordinates

in R2)

The dual basis covectors ωi ≡ xi to the standard basis {ei} of Rn are the standard Cartesian
coordinates on Rn. Any change of basis of this vector space

ei′ = A−1 j
iej , ei = Aj iej′ ,

ωi
′
= Aij ω

j , ωi = A−1 i
j ω

j

leads to a new set of Cartesian coordinates xi
′
= Aijx

j, where A = (Aij) is a constant matrix.
The Cartesian coordinates also induce a basis {∂/∂xi|P} of the tangent space at each point

of Rn, with dual basis {dxi|P} of the corresponding cotangent space. The set of vector fields
{∂/∂xi} is a frame on Rn in terms of which any tensor field may be expressed

T = T
i1...ip
j1...jq

∂

∂xi1
⊗ · · · ⊗ ∂

∂xip
⊗ ωj1 ⊗ · · · ⊗ ωjq ,

with the component functions defined by

T
i1...ip
j1...jq

= T

(
dxi1 , · · · , dxip , ∂

∂xj1
, · · · , ∂

∂xjq

)
,

which are functions on Rn. The “constant” tensor fields on Rn whose Cartesian coordinate
component functions are just constants are in a 1–1 correspondence with the tensors on the
vector space Rn. Their components are clearly constants in any Cartesian frame.

For example, X=∂/∂x+∂/∂y+∂/∂z is a constant vector field on R3, while G = dx ⊗ dx +
dy⊗ dy+ dz⊗ dz = δijdx

i⊗ dxj is a constant metric field, the Euclidean metric tensor field on
R3. The self-inner product of X with itself

G(X,X) = dx

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
dx

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
+ dy

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
dy

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
+ dz

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
dz

(
∂

∂x
+
∂

∂y
+
∂

∂z

)
= 1(1) + 1(1) + 1(1) = 3 = 〈1, 1, 1〉 · 〈1, 1, 1〉

is just the self-inner product of the corresponding vector 〈1, 1, 1〉 ∈ R3. The covector field
θ = 4dx is a constant 1-form on R3.
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Figure 5.8: Picturing vector fields and 1-forms as a field of representative arrows or plane
pairs on a grid. [correction: change figure to 4dx]
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r

q

y = r sin q

x = r cos q

, x, y

Figure 5.9: Polar coordinates on R2.

Figure 5.8 shows how we can picture the 1-form as a field of pieces of the pair of planes
which represent its value at each point just like we picture a vector field as a field of arrows with
initial point at the point where they represent a value. Similar pictures hold for nonconstant
vector and covector fields.

Non-Cartesian coordinates on Rn often prove useful, especially when a problem under con-
sideration has a symmetry associated with special families of surfaces like concentric circles,
spheres or cylinders. Polar coordinates {r, θ} on R2 are the most familiar example, followed by
cylindrical coordinates {ρ, φ, z} on R3 and spherical coordinates {r, θ, φ} on R3.

Consider polar coordinates on R2. The usual picture is illustrated by Fig. 5.9, using the
more familiar coordinate symbols x, y, with the coordinate transformation and its inverse given
by

a)

{
x = r cos θ
y = r sin θ

b)

{
r =

√
x2 + y2 ≥ 0

tan θ = y/x

(parametrization map) (coordinate map)

If we agree to choose θ ∈ (−π, π] , we get a unique polar angle for every point except the origin,
a function on the plane which we can designate by Θ

θ = Θ ≡



tan−1(y/x) x > 0,

tan−1(y/x) + π x < 0, y > 0,

tan−1(y/x)− π x < 0, y > 0,

π/2 x = 0, y > 0,

−π/2 x = 0, y < 0,

π x < 0, y = 0 .
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Thus a unique pair of values of the polar coordinates characterize every point in the plane
except the origin where r = 0 but θ is undetermined and no choice of value for θ there will
make the function continuous at the origin. This is called a “coordinate singularity”.

WARNING: We use the symbols x and y or r and θ for different things! We interpret x
and y as functions on the plane, but we also use (x, y) to represent a particular point in the
plane, i.e., the pair of values of the Cartesian coordinate functions at that point. This sloppy
habit means we have to be careful so that in any given situation we understand which meaning
is intended. Otherwise in order to be clear we can use notation which distinguishes them. For
example x = r cos θ or r = (x2 + y2)1/2 are each relationships among three functions on the
plane which happen to express one “as a function of the others”, or we can think of them as
relationships among 3 “variables.” To make explicit the functional relationship, we must name
explicitly the function, which we will do below, for example r = Φ1(x, y), θ = Φ2(x, y).

What is really going on with the above picture and relationships between the Cartesian and
polar coordinates? Well, first of all we have two distinct copies of R2, a “physical space” of
points which has a lot of mathematical structure, and a “coordinate space” on which operations
involving the polar coordinates occur. The relationship between the two sets of coordinates
define two maps between these spaces going in opposite directions. The “coordinate map”
(r, θ) = (Φ1(x, y),Φ2(x, y)) associates with each point (x, y) in the “physical space” a point
(r, θ) in the coordinate space which is the pair of values of the polar coordinates there. The
“parametrization map” (x, y) = (Ψ1(r, θ),Ψ2(r, θ)) associates with each point (r, θ) in the
coordinate space, the point in the (x, y) “physical space” that it represents.

Figure 5.10: Polar coordinates on R2: the physical space and the coordinate space for the plane.
The origin in the physical space corresponds to an entire line segment in the coordinate space,
where the 1-1 nature of the relationship breaks down, called a “coordinate singularity.” [oops,
the figure should show the polar coordinate point (

√
2, π/4) corresponding to the Cartesian

coordinate point (1, 1),]

For the polar coordinates as shown in Fig. 5.10, the coordinate map Φ maps physical space
to its coordinate representation

Φ : U = R2 − {~0} −→ U ⊂ R2 ,

Φ(u1, u2) = (
√

(u1)2 + (u2)2,Θ(u1, u2)) ,
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Figure 5.11: The polar coordinate grid on physical space: (x, y) = Ψ(r, θ) = (r cos θ, r sin θ).
Hold θ fixed, vary r: r coordinate lines (half rays from origin). Hold r fixed, vary θ: θ coordinate
lines (circle centered at origin). The map Ψ maps from right to left, while Φ maps from left to
right.

which takes the open set U excluding the origin from R2 onto the subset U = (0,∞)× (−π, π]
of another copy of R2. (An open set is simply a set of points that does not include its boundary
points. A closed set includes its boundary points.)

Its inverse, the parametrization map Ψ, maps the coordinate representation of a physical
point onto that point

Ψ : R2 −→ R2 ,

Ψ(u1, u2) = (u1 cosu2, u1 sinu2) ,

which maps all of R2 onto all of R2 an infinite number of times unless we restrict it to the
subset U . In both cases we denote a point in R2 by the neutral symbols (u1, u2).

Notice that Φ ◦Ψ maps all of the coordinate space onto the subset U which is the image of
the coordinate map Φ. For points in U , this is the identity map. For points outside of U this
associates our specific choice of polar coordinates with any other possible choices, like fixing
θ ∈ [0, 2π), or allowing negative r. The vertical segment between −π and π on the θ axis (not in
U) corresponds to the origin in physical space in the sense that approaching it from any nearby
point of U corresponds to approaching the origin in physical space in a certain direction. The
parametrization map collapses this whole line segment to a single point in the physical space,
so the map is no longer 1-1 as it must be to faithfully represent distinct points with distinct
coordinates.

The map Ψ ◦ Φ maps all of physical space except for the origin onto itself, where it is the
identity map. Restricting Ψ to the set U makes it the inverse of the map Φ. The parametrization
map Ψ represents the plane as a 2-parameter family of parametrized curves (“coordinate lines”)
which make up the polar coordinate grid, illustrated in Fig. 5.11

We can easily compute the tangents to these parametrized curves as ordinary vector func-
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tions and as tangent vectors defined along the curves

−→E1(r, θ) =

(
∂x

∂r
,
∂y

∂r

)
= (cos θ, sin θ) ,

−→E2(r, θ) =

(
∂x

∂θ
,
∂y

∂θ

)
= (−r sin θ, r cos θ) ,

E1(r, θ) = cos θ
∂

∂x

∣∣∣∣
(r cos θ,r sin θ)

+ sin θ
∂

∂y

∣∣∣∣
(r cos θ,r sin θ)

,

E2(r, θ) = −r sin θ
∂

∂x

∣∣∣∣
(r cos θ,r sin θ)

+ r cos θ
∂

∂y

∣∣∣∣
(r cos θ,r sin θ)

.

Suppose f(x, y) = x2 − y2 is a function on R2. Then the tangent vector E1(r, θ) acts on it
to produce the number

E1(r, θ)f = cos θ
∂

∂x

∣∣∣∣
(r cos θ,r sin θ)

(x2 − y2) + sin θ
∂

∂y

∣∣∣∣
(r cos θ,r sin θ)

(x2 − y2)

= cos θ (2x)|(r cos θ,r sin θ) + sin θ (−2y)|(r cos θ,r sin θ)

= 2r(cos2 θ − sin2 θ) = 2r cos 2θ

for given values of r and θ. Note that this is the same as first evaluating f in terms of the new
coordinates and just taking the r partial derivative

f(r cos θ, r sin θ) = x2 − y2 = (r cos θ)2 − (r sin θ)2 = r2(cos2 θ − sin2 θ) = r2 cos 2θ ,

∂

∂r
f(r cos θ, r sin θ) =

∂

∂r
(r2 cos 2θ) = 2r cos 2θ .

The ordinary dot products of the vector functions
−→E1 and

−→E2 (multivariable calculus notation)
or equivalently the inner products of the vector fields E1 and E2 (as differential operators) using
the Euclidean metric tensor G are

−→E1(r, θ) · −→E1(r, θ) = cos2 θ + sin2 θ = 1 = G|(r cos θ,r sin θ)(E1(r, θ), E1(r, θ)) ,
−→E2(r, θ) · −→E2(r, θ) = r2 sin2 θ + r2 cos2 θ = r2 = G|(r cos θ,r sin θ)(E2(r, θ), E2(r, θ)) ,
−→E1(r, θ) · −→E2(r, θ) = −r cos θ sin θ + r cos θ sin θ = 0 = G|(r cos θ,r sin θ)(E1(r, θ), E2(r, θ)) ,

so E1(r, θ) , E2(r, θ) are mutually orthogonal tangent vectors of lengths 1 and r respectively.
Now going back to the sloppy notation x = r cos θ, y = r sin θ suppressing functional argu-

ments, then

cos θ =
x

r
=

x√
x2 + y2

, sin θ =
y

r
=

y√
x2 + y2

.

These relations enable us to re-express these two tangent vector fields entirely in terms of the
Cartesian coordinates, so define the vector fields on physical space by

E1 = (x2 + y2)−1/2

(
x
∂

∂x
+ y

∂

∂y

)
, E2 = −y ∂

∂x
+ x

∂

∂y
.
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Their values at (r cos θ, r sin θ) are just E1(r, θ) and E2(r, θ)

Ei|(r cos θ,r sin θ) = Ei(r, θ) , i = 1, 2 .

In other words E1 at a given point equals the tangent vector to the curve through the point
corresponding to translations in the coordinate r, while E2 is the same for θ. Their action
on a function is equivalent to partial differentiation once it is re-expressed in term of the new
coordinates

E1|(r cos θ,r sin θ)f = E1(r, θ)f =
∂

∂r
f(r cos θ, r sin θ) =

∂

∂r
[f ◦Ψ](r, θ) ,

E2|(r cos θ,r sin θ)f = E2(r, θ)f =
∂

∂θ
f(r cos θ, r sin θ) =

∂

∂θ
[f ◦Ψ](r, θ) .

The function f ◦ Ψ on the coordinate space is just the function one gets by expressing f in
terms of the coordinate functions r and θ = Θ (namely r2 cos 2θ in our explicit example above)
and we write

E1 =
∂

∂r
, E2 =

∂

∂θ
.

In other words {Ei} is the coordinate frame associated with the polar coordinates. The change
in frame (the matrix columns are the Cartesian coordinate components of the new frame vectors)

Ei = A−1j
i
∂

∂xj
, A−1 =


x

(x2 + y2)1/2
−y

y

(x2 + y2)1/2
x

 , detA−1 = (x2 + y2)1/2

is invertible everywhere except at the origin where E2 = 0 and E1 has no unique limiting value,
with inverse

A = (x2 + y2)−1/2

 x y

− y

(x2 + y2)1/2

x

(x2 + y2)1/2

 ,

whose rows are the Cartesian coordinate components of the corresponding dual basis.
If we return to the indexed notation (x1, x2) = (x, y) and let (x1′ , x2′) = (r, θ), then from

the identification

∂

∂xi′
=
∂xj

∂xi′
∂

∂xj
= A−1j

i
∂

∂xj
, dxi

′
=
∂xi

′

∂xj
dxj = Aijdx

j ,

correlates the change of frame matrix with the two so called Jacobian matrices of partial
derivatives of one set of coordinates with respect to the other

∂xi

∂xj′
= A−1i

j ,
∂xi

′

∂xj
= Aij .

In terms of the explicit coordinate variables, one can express the new partial derivative operators
in terms of the old ones (and vice versa) so

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
,

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
.
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Using polar coordinates basically means re-expressing everything in terms of them, i.e.,
moving over to the coordinate space, and doing calculus operations there. The polar coordinate
frame vectors

E1 = (x2 + y2)−1/2

(
x
∂

∂x
+ y

∂

∂y

)
=

∂

∂r
, E2 = −y ∂

∂x
+ x

∂

∂y
=

∂

∂θ

do not form a frame at the origin. E1 is not defined and has no limit there, while E2 vanishes.
If we remove the factor (x2 + y2)−1/2 from E1, it is defined but also equal to zero at the origin.
This means we cannot use them to express tangent vectors at the origin. Everywhere else they
are fine. We therefore need the idea of a local frame and a local coordinate patch to handle
frames and coordinate systems which have problems at certain points of space, using the word
“local” to distinguish them from the global Cartesian frames which are valid everywhere in
space.

A local frame (defined on an open set U ⊂ Rn) will be a set of n vector fields ei = ej i(x)∂/∂xj

which form a basis of the tangent space at each point of U , i.e., det(ej i(x)) never vanishes in
this set. If U = Rn, it will be called a global frame or simply a frame. A local coordinate
patch will be an open set U ⊂ Rn and a set of n coordinate functions such that the associated
coordinate vector fields form a local frame on U . If {xi} are Cartesian coordinates and

∂

∂xi′
=
∂xj

∂xi′
∂

∂xj
= A−1j

i
∂

∂xj
,

this requires that the Jacobian matrix determinant be nonzero everywhere on the set U

detA−1 = det

(
∂xj

∂xi′

)
6= 0 on U .

For polar coordinates U = R2−{~0} is an open set on the physical space. Note that the subset
U of the coordinate space (r-θ plane), which was the range of the coordinate functions from all
of physical space (including the origin which is mapped to the line segment r = 0), contained
the boundary points θ = π and was not an open set.

In order to deal with tensor fields or tangent tensors at a given point of Rn, it must be an
interior point of the open set U of the local frame or of the local coordinate patch we wish
to use or we must play special games to circumvent the difficulties associated with the bad
boundary points.

Example 5.5.1. Let U be the interior of a circle of radius ε > 0 about the origin in the plane.
The Cartesian coordinates {x, y} are local coordinates on U , for every value of ε > 0. In order
to use polar coordinates, which fail at the origin, we must use some other local coordinate
patch like one of this family which contains the origin in order to handle that problem point.
The polar coordinates themselves are local coordinates on the plane minus the origin. This
local coordinate patch has to be supplemented by some other patch like one of these local
Cartesian coordinate patches in order to figure out what’s going on at the origin. The two
patches together then form a “coordinate covering” of the plane, with each point “covered” by
at least one local coordinate patch.
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In fact the situation is a bit more complicated than this, since one has a discontinuity in
the angular coordinate at θ = π where a jump of 2π occurs, so we need to make sure functions
of θ that we deal with are always periodic. However, we don’t need to worry much about these
technicalities at this introductory level, and in practice it is hardly ever necessary as well.

�

When a coordinate patch just missed being global on some set “of measure zero” (like a
single point or a curve or a surface), the points where it fails are called coordinate singularities.
The origin is a coordinate singularity for polar coordinates. The coordinate map Φ fails to be
well-defined since the parametrization map is no longer 1-1, and although r = 0, one has many
choices for the polar angle θ to be assigned there.

We can also redefine the infinite range radial coordinate to one which has a finite interval
of values. Suppose we introduce a new radial coordinate χ by

r = tanχ , χ = tan−1 r , r ∈ [0,∞) , χ ∈ [0, π/2) .

Although the coordinate lines are still the same, all of physical space except for the origin is
mapped onto a rectangle in coordinate space with the new “edge” representing “infinity.” One
must be careful with the boundary of a coordinate patch where the limiting boundary points in
the coordinate space can be deceptive as far as what points they represent in the physical space.
In this case one side of the boundary of this coordinate rectangle corresponds to the circle at
infinity and the opposite side to a single point (the origin). The remaining two opposing sides
must be identified since they correspond to the same line in physical space (the negative x-axis).

Figure 5.12: Mapping the radial polar coordinate r = tanχ onto the closed interval [0, π/2]
using the parametrization map (x, y) = (tanχ cos θ, tanχ sin θ).

Exercise 5.5.1.
polar coordinates and circles not centered at the origin

a) It is easy to re-express the Cartesian equations of horizontal and vertical lines in the plane
y = y0 and x = x0 in terms of polar coordinates, as well as the lines through the origin (trivially
angular coordinate half lines). Do this and solve them for r as a function of θ. Similarly it is
easy to re-express the Cartesian equations of circles with centers on the x and y axes passing
through the origin (x− a)2 + y2 = a2, x2 + (y − a)2, as well as those with center at the origin
(trivally the radial coordinate circles). Expand these equations and transform them to polar
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coordinates and solve them for r as a function of θ. What is the range of θ over one of these
circles?

b) Suppose we move those circles out farther from the origin along those axes, say (x−a)2 +
y2 = b2, b > a. Now there are two values of r for each value of θ along these circles. What is
the range of θ for the case b > a > 0? Express the two values of r as functions of θ for that
range.

If you use a computer algebra system, you want the equation expressed in terms of the sine
as is natural in a hand calculation, and not in terms of the cosine, which happens when you
simplify it in Maple.

�

Exercise 5.5.2.
polar coordinates and multipetal curves

a) Consider the flower petal curve r = a cos(nθ). What is the range of θ about 0 over one
lobe of this curve (between successive values r = 0).

b) For n = 2, re-express this equation in terms of Cartesian coordinates as a polynomial
condition using the double angle formula for the sine. [Hint: first multiply both sides of the
equation by r2, then square both sides.]

c) Repeat for r = 2 sin(2θ).
�
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5.6 Cylindrical and spherical coordinates on R3

Figure 5.13: Cylindrical coordinates on R3 and their coordinate lines and surfaces.

2-dimensional space is a bad example for some issues since 1 = n − 1, so lines and planes
as well as curves and surfaces coincide. 3-dimensional space gives us a better picture of what
occurs in higher dimensions.

Cylindrical and spherical coordinates in 3-dimensions generalize polar coordinates in 2-
dimensions and are covered in every course in multivariable calculus. They provide us with a
convenient springboard to jump into the more general topic of curvilinear coordinates in curved
spaces. Coming from training as a physicist, I will use the physics convention for naming the
angular coordinates in this context. The “azimuthal angle” measured around the vertical z-axis
will be called φ instead of θ as in polar coordinates and to which it reduces in the horizontal x-y
plane, while θ will be used for the polar angle measured down from the upward vertical axis (the
“North pole” on any sphere centered at the origin!). In multivariable calculus it is easier to just
add one more angle with a new name than switch the names on students. Physicists actually
use these coordinates extensively and have a long tradition of certain conventions which are
useful to respect. Similarly r (the length of the position vector ~r) is always used for the radial
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Figure 5.14: One passes from cylindrical coordinates (ρ, φ, z) to spherical coordinates (r, θ, φ)
by introducing polar coordinates in the ρ-z half plane.

distance from the origin in R3, so the cylindrical coordinate giving the radial distance from the
z-axis will be designated by a new name ρ.

For each coordinate system we need to specify a parametrization map Ψ representing the
Cartesian coordinate functions in terms of the new coordinates and a coordinate map Φ ex-
pressing the new coordinate functions in terms of the Cartesian coordinates, well-defined on
some open set U ⊂ R3 covering “almost all of space.”

Cylindrical coordinates

Ψ :


x = ρ cosφ
y = ρ sinφ
z = z

Φ :


ρ =

√
x2 + y2

tanφ =
y

x
(same solution as before)

z = z

The cylindrical coordinates (ρ, φ) are just the polar coordinates (r, θ) of the projection of a
point vertically downward or upward to the x-y plane (see Fig. 5.13). The open set of R3 on
which they are uniquely defined (assuming −π < φ ≤ π) is U = R3 − {(x, y, z)|y = 0, x ≤ 0},
which excludes the z-axis and the vertical half plane through negative x-axis where the angular
coordinate is respectively not defined and discontinuous (jumping in value by 2π). This just
means that when we consider these bad points, we have to be careful about what we are doing.

Spherical coordinates

To go from cylindrical coordinates to spherical coordinates, one introduces polar coordinates
{r, θ} in the ρ-z half plane, with the same open set U as before

Ψ :


x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

Φ :


r =

√
x2 + y2 + z2

θ = cos−1

(
z√

x2 + y2 + z2

)
tanφ =

y

x
(same solution as before)
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The intermediate coordinate transformation from cylindrical to spherical coordinates which
takes place in the ρ-z half plane is pictured in Fig. 5.14 and is very useful in visualizing the
latter coordinates {

ρ = r sin θ
z = r cos θ

,


r =

√
ρ2 + z2

θ = cos−1

(
z√

ρ2 + z2

)
.

Figure 5.15: Spherical coordinates on R3.

In both of these cases the coordinate map Φ is discontinuous on the half plane {(x, y, z)|x <
0, y = 0} where φ has a jump of 2π and undefined on the z-axis where the angular coordinate
φ is not defined. A “coordinate singularity” occurs at the z-axis for this reason, while at the
origin θ is also undefined, making the singularity worse. The parametrization map maps a line
segment (different φ values) onto each point on the z-axis except at the origin where a rectangle
(all θ and φ values) is mapped onto a single point.

I haven’t been consistent about the open set U of a local coordinate patch. For polar
coordinates I included the negative x-axis where the jump in the angular coordinate occurs,
but not the corresponding half plane for cylindrical and spherical coordinates. If we require φ
to be continuous then we must exclude points of discontinuity. The coordinate frame and dual
frame are perfectly fine there, however, because of periodicity, so the local frame {E1, E2, E3}
expressed in terms of Cartesian coordinates is valid everywhere except on the z-axis, i.e., its U
includes the discontinuous points of φ.

Now that we have the two new coordinate systems defined, the first thing to do for each is
compute the new coordinate frame vector fields and dual 1-forms. The next step is to evaluate
their inner products and re-express the Euclidean metric, which shows them to be orthogonal
coordinate systems, namely those for which the coordinate lines have orthogonal tangent vec-
tors. The orthogonal coordinate frame vector fields can be normalized to orthonormal frame
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Figure 5.16: Coordinate lines and surfaces for spherical coordinates on R3.

vector fields simply by dividing by their lengths, and these frames must be explored since they
are natural to use in calculations. Finally we can consider derivative operators expressed in the
new coordinates and in their closely associated orthonormal frames.

Exercise 5.6.1.
mathematical wedding band surface boundaries

Consider the region of space bounded by the surfaces

sphere: x2 + y2 + z2 = 42 ,

cylinder: x2 + y2 = 32 .

This is roughly the shape of simple wedding band ring, though exaggerated to have simple
numbers, and it is invariant under rotations around the z-axis, i.e., is independent of the
azimuthal angle φ. Draw a rough sketch of the cross-section of this region in a vertical plane
of constant φ and evaluate the boundary values of the remaining cylindrical and spherical
coordinates on the two intersection rings of these two surfaces. Note that this is equivalent to
a plane problem in polar coordinates for a vertical line and a circle, treated in Exercise 5.5.1.

a) In cylindrical coordinates (ρ, φ, z) describe this region first by explicit relations of the
form ρ1 ≤ ρ ≤ ρ2, z1(ρ) ≤ z ≤ z2(ρ) and second by relations of the form z1 ≤ z ≤ z2,
ρ1(z) ≤ ρ ≤ ρ2(z).

b) In spherical coordinates (r, θ, φ), describe this region by explicit relations of the form
θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ).

�
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5.7 Cylindrical coordinate frames

The cylindrical coordinate differentials, using multiple notations, are

W 1 ≡ ωρ = dρ = d(x2 + y2)1/2 =
d(x2 + y2)

2(x2 + y2)1/2
=

xdx+ ydy

(x2 + y2)1/2
,

W 2 ≡ ωφ = dφ = d
(

tan−1 y

x
+ const

)
=

d(y/x)

1 + (y/x)2
=
−ydx+ xdy

(x2 + y2)
,

W 3 ≡ ωz = dz .

Comparison with
(x1′, x2′, x3′) ≡ (ρ, φ, z) (x1, x2, x3) ≡ (x, y, z)

dxi′ = Aijdx
j =

∂xi′

∂xi
dxj ,

∂

∂xi′
= A−1j

i
∂

∂xj

shows that the rows of the “Jacobian matrix” (Aij) of partial derivatives are the old components
of the new basis 1-forms, so one can read off its entries expressed in terms of the old coordinates,
which are then easily re-expressed in terms of the new coordinates

(Aij) =

(
∂xi′

∂xj

)
=


x

(x2 + y2)1/2

y

(x2 + y2)1/2
0

−y
x2 + y2

x

x2 + y2
0

0 0 1

 =

 cosφ sinφ 0
−ρ−1 sinφ ρ−1 cosφ 0

0 0 1


and hence using the convenient formula for the inverse of a 2× 2 matrix(

a b
c d

)−1

= (ad− bc)−1

(
d −b
−c a

)
,

one obtains the inverse Jacobian matrix expressed in terms of the old coordinates, which is
then easily re-expressed in terms of the new coordinates

(A−1i
j) =

(
∂xi

∂xj ′

)
=


x

(x2 + y2)1/2
−y 0

y

(x2 + y2)1/2
x 0

0 0 1

 =

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

 .

The columns of this matrix are the old components of the new coordinate vector fields

E1 ≡ eρ =
∂

∂ρ
=

∂

∂x1′ = A−1i
1
∂

∂xi
= (x2 + y2)−1/2

(
x
∂

∂x
+ y

∂

∂y

)
,

E2 ≡ eφ =
∂

∂φ
=

∂

∂x2′ = A−1i
2
∂

∂xi
= −y ∂

∂x
+ x

∂

∂y
,

E3 ≡ ez =
∂

∂z
=

∂

∂x3′ = A−1i
3
∂

∂xi
=

∂

∂z
.
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On the other hand, by the chain rule, the tangents to the parametrized coordinate lines are

∂

∂ρ

∣∣∣∣
(ρ cosφ,ρ sinφ,z)

=

[
∂x

∂ρ

∂

∂x
+
∂y

∂ρ

∂

∂y
+
∂z

∂ρ

∂

∂z

]∣∣∣∣
(ρ cosφ,ρ sinφ,z)

=

[
cosφ

∂

∂x
+ sinφ

∂

∂y

]∣∣∣∣
(ρ cosφ,ρ sinφ,z)

,

∂

∂φ

∣∣∣∣
(ρ cosφ,ρ sinφ,z)

=

[
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z

]∣∣∣∣
(ρ cosφ,ρ sinφ,z)

= −
[
ρ sinφ

∂

∂x
+ ρ cosφ

∂

∂y

]∣∣∣∣
(ρ cosφ,ρ sinφ,z)

,

∂

∂z

∣∣∣∣
(ρ cosφ,ρ sinφ,z)

=
∂

∂z

∣∣∣∣
(ρ cosφ,ρ sinφ,z)

.

This gives a direct way to evaluate the matrix A−1 in terms of the new coordinates as partial
derivatives of the parametrization map; the components of these vector fields are its columns.
Similarly one could evaluate directly A in terms of the old coordinates by partial differentiation
of the coordinate map.

Note that the coordinate vector fields {E1, E2, E3} fail to be linearly independent on the
z-axis where E2 vanishes, while at the origin E1 vanishes. This leads to W 1 not having a
well-defined limit at the z-axis and causes W 2 to have components which become infinite there.

Now we need a change in notation for the Euclidean metric. We have been using g for
functions and G for symmetric inner product tensors. By convention one uses g for symmetric
inner product tensors. The Euclidean metric tensor field is

g = δijdx
i ⊗ dxj , gij = g

(
∂

∂xi
,
∂

∂xj

)
= δij .

We can re-express it in terms of the new frame

g = gi′j′dx
i′ ⊗ dxj′ , gi′j′ = g

(
∂

∂xi′
,
∂

∂xj ′

)
= A−1m

iA
−1n

jδmn = [(A−1)T I A−1]ij .

One can directly take the inner products of {Ei} or use the matrix transformation law to
obtain the new components as functions of the Cartesian coordinates, or one can just evaluate
the differentials of x, y, z which will lead to expressions in terms of the new components. The
matrix calculation (exercise) yields

(gi′j′) =

1 0 0
0 x2 + y2 0
0 0 1

 =

1 0 0
0 ρ2 0
0 0 1

 =

gρρ gρφ gρz
gφρ gφφ gφz
gzρ gzφ gzz

 ,

while

dx = d(ρ cosφ) = cosφ dρ− ρ sinφ dφ ,

dy = d(ρ sinφ) = sinφ dρ+ ρ cosφ dφ ,

dz = d(z) = dz .
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Comparing with

dxi =
∂xi

∂xj ′
dxj ′ = A−1i

j′dx
j′

shows that

A−1(x′) =

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

 .

Then backsubstituting the coordinate differentials in the metric and simplifying leads to

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz
= (cosφdρ− ρ sinφdφ)⊗ (cosφdρ− ρ sinφdφ)

+ (sinφdρ+ ρ cosφdφ)⊗ (sinφdρ+ ρ cosφdφ) + dz ⊗ dz
= (cos2 φ+ sin2 φ)dρ⊗ dρ+ ρ(cosφ sinφ− sinφ cosφ)(dρ⊗ dφ+ dφ⊗ dρ)

+ ρ2(cos2 φ+ sin2 φ)dφ⊗ dφ+ dz ⊗ dz
= 1︸︷︷︸

gρρ

dρ⊗ dρ+ ρ2︸︷︷︸
gφφ

dφ⊗ dφ+ 1︸︷︷︸
gzz

dz ⊗ dz .

Thus the coordinate frame is orthogonal (since mutual inner products vanish, i.e., the metric
component matrix is diagonal): eρ = ∂/∂ρ and ez = ∂/∂z are in fact unit vector fields, while
eφ∂/∂φ has length ρ, making ρ−1∂/∂φ a unit vector. Thus

{eφ̂, eφ̂, eẑ} =

{
∂

∂ρ
,

1

ρ

∂

∂φ
,
∂

∂z

}
is an orthonormal frame naturally associated with cylindrical coordinates, with dual frame

{ωρ̂, ωφ̂, ωẑ} = {dρ, ρ dφ, dz} .

Note that the cross product of the first such frame vector with the second equals the third
(which can be evaluated component-wise using the corresponding Cartesian component triplet
vectors, or geometrically from Fig. 5.17 representing the orthogonal coordinate lines), making
this a right handed frame like the original Cartesian coordinate frame: eρ̂ × eφ̂ = eẑ. This is
reflected in the fact that detA > 0.

The two matrices A and A−1 expressed in terms of both the old and new coordinates (four
matrices in all) may be used to transform any tensor field from one coordinate system to the
other. For example, to transform the components of a vector field from old to new coordinates,
one must a) re-express the old coordinates as functions of the new coordinates in the component
functions, and b) change from old to new frame components, which requires the Jacobian matrix
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Figure 5.17: The coordinate frame vectors for cylindrical coordinates. Only ∂φ is not a unit
vector, having length equal to ρ. The cross product of ∂/∂ρ with ∂/∂φ is along ∂/∂z, making
the ordering (r, φ, z) a right handed coordinate system.

to be expressed in terms of the new coordinates

X i′(x′) =
∂xi

′

∂xj
(x(x′)︸ ︷︷ ︸

a)

)

︸ ︷︷ ︸
b)

Xj(x(x′)︸ ︷︷ ︸
a)

)

Xi′(x
′) = Xj(x(x′)︸ ︷︷ ︸

a)

)
∂xj

∂xi′
(x′)︸ ︷︷ ︸
b)

.

In traditional “old fashioned” tensor analysis, tensors are defined by the “transformation law”
under changes of coordinates which follows from these two basic relations, suppressing coordi-
nate dependence of the component functions and the Jacobian matrices

T i
′...
j′... =

∂xi
′

∂xm
· · · ∂x

n

∂xj′
· · ·Tm...n... .

Example 5.7.1. transforming a vector field and 1-form

The vector field X = y ∂/∂x+ x ∂/∂y has components

(X i) =

yx
0

 =

ρ sinφ
ρ cosφ

0
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so its new components are

(X i′) =

Xρ

Xφ

Xz

 =

 cosφ sinφ 0
− sinφ/ρ cosφ/ρ 0

0 0 1

ρ sinφ
ρ cosφ

0


=

 2ρ sinφ cosφ
cos2 φ− sin2 φ

0

 =

ρ sin 2φ
cos 2φ

0


so

X = ρ sin 2φ
∂

∂ρ
+ cos 2φ

∂

∂φ
.

Similarly X[ = y dx+ x dy can be transformed

(Xi
′) = (XjA

−1j
i) =

(
ρ sinφ ρ cosφ 0

)cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1


=
(
2ρ sinφ cosφ ρ2(cos2 φ− sin2 φ) 0

)
=
(
ρ sin 2φ ρ2 cos 2φ 0

)
so

X[ = ρ sin 2φ dρ+ ρ2 cos 2φ dφ .

The same result could have been obtained using the re-expressed metric to lower the indices
of the vector field X. Since the frame is orthogonal, index lowering reduces to multiplication
of each vector component by the corresponding diagonal metric component. Similarly index
raising simply divides each 1-form component by that diagonal metric component.

Notice that since these had no z components, nor depended on z, this was really just a
polar coordinate problem in the plane.

�

Exercise 5.7.1.
transforming a vector field and 1-form

Repeat this for X = x∂x + y∂y.
�

We can also just re-express the old coordinate frame vector fields in terms of the new ones
using

∂

∂xi
= Aj i

∂

∂xj′
,

namely

∂

∂x
= cosφ

∂

∂ρ
− ρ−1sinφ

∂

∂φ
,

∂

∂y
= sinφ

∂

∂ρ
+ ρ−1cosφ

∂

∂φ
,

∂

∂z
=

∂

∂z
.
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To transform all the way to the orthonormal components associated with cylindrical coor-
dinates, one must divide the rows of A (which are the Cartesian coordinate components of the
new dual 1-forms) and the columns of A−1 (which are the Cartesian components of the new
frame vector fields) by their lengths as vectors in R3, leading toωxωy

ωz

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

ωρ̂ωφ̂
ωẑ

 = A

ωρ̂ωφ̂
ωẑ


(
eρ̂ eφ̂ eẑ

)
=
(
ex ey ez

)cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 =
(
ex ey ez

)
A−1

Notice that the matrix which transforms from the orthonormal Cartesian coordinate frame to
the orthonormal cylindrical coordinate frame is a rotation matrix representing a rotation by
the angle φ in the horizontal plane of each tangent space taking ex, ey to eρ̂, eφ̂.

Exercise 5.7.2.
Laplacian in cylindrical coordinates

Evaluate the 2nd order linear differential operator

∇2 = δij
∂2

∂xi∂xj
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

by substituting the above expressions for the Cartesian coordinate vector fields. This oper-
ator called the Laplacian plays a very important role in many physically interesting partial
differential equations.

Show that the result can be re-expressed in the form

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+
∂2

∂z2
=

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+
∂2

∂z2
.

This is really just the Laplacian expressed in polar coordinate in the plane, with the extra z
term, and for a brute force evaluation like this, a computer algebra system is better than a
hand calculation. Later we will understand this in a much better way.

�

Summary of what we did for cylindrical coordinates

(1) dxi
′

=
∂xi

′

∂xj
(x)dxj = Aij(x)dxj

(2)
∂

∂xi′
=
∂xj

∂xi′
(x′(x))

∂

∂xj
= A−1j

i(x
′(x))

∂

∂xj

(3) dxi =
∂xi

∂xj′
(x′)dxj

′
= A−1i

j(x
′)dxj

′

(4)
∂

∂xi
=
∂xj

′

∂xi
(x(x′))

∂

∂xj′
= Aj i(x(x′))

∂

∂xj′
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In words, we defined the new coordinate frame entirely in terms of the old Cartesian coor-
dinates by taking the differential (1) of the coordinate map Φ(x) = (x1′(x), x2′(x), x3′(x)) to
yield the new coordinate dual frame in terms of the Cartesian coordinates and the Jacobian
matrix Aij(x) which can be inverted to give A−1i

j(x
′(x)) and Cartesian coordinate expressions

(2) for the new coordinate vector fields.
Then substitution of parametrization map Ψ(x′) = (x1(x′), x2(x′), x3(x′)) into these two

matrices re-expresses them in terms of the new coordinates which may then be used to represent
the old coordinate frame (4) and dual frame (3) in terms of the new coordinates.

(5) Alternatively one can take the differential (3) of the parametrization map to directly
yield A−1i

j(x
′) which can be inverted to get Aij(x(x′)) expressing the old coordinate frame

and dual frame in terms of the new coordinates. Using the coordinate map to re-express the
Jacobian matrix, one could then represent the new coordinate frame and dual frame in terms
of the old coordinates.

(6) Then we re-expressed the Euclidean metric

g = δij dx
i ⊗ dxj

= δij
∂xi

∂xm′
∂xj

∂xn′
dxm

′ ⊗ dxn′

= gm′n′ dx
m′ ⊗ dxn′

either by substituting the differential (3) of the parametrization map into the metric g or by
using the equivalent matrix transformation of its components

g′ = A−1(x′)T I A−1(x′) ≡ (gm′n′)

(7) Then we evaluated ∇2 = δij∂2/∂xi∂xj = · · ·

Exercise 5.7.3.
paracylindrical coordinates

Many other useful orthogonal coordinate systems exist in the plane and in ordinary space,
built on the geometry of other interesting curves, many of which are conics. For example,
generalized cylindrical coordinates exist which keep the Cartesian coordinate z like ordinary
cylindrical coordinates, and replace the polar coordinates in the x-y plane by another system
of coordinates. A simple example of these are paracylindrical coordinates, where “parabolic
coordinates” in the plane are defined by

x =
1

2
(u2 − v2) , y = uv .

The coordinate lines for both coordinates are families of parabolas with a common symmetry
axis on which all the vertices lie, namely the y axis. Since X is really a vector field in the x-y
plane, one can convert it to paracylindrical coordinates in the same way it would be converted
to parabolic coordinates in that plane alone. Do this for both X and X[.

a) Evaluate the 2-dimensional matrices A and A−1 expressed in terms of both old and new
coordinates for the corresponding coordinates in the plane.
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Figure 5.18: One passes from Cartesian coordinates in the x-y plane to parabolic coordinates
(u, v) by introducing coordinates built from two families of parabolas with a common symmetry
axis and the same foci. The u coordinate lines open to the right, while the v coordinate lines
open to the left.

b) Evaluate the Euclidean metric tensor field in the new coordinates on the plane, showing
that this is an orthogonal coordinate system.

c) Evaluate the the 2-dimensional matrices A and A−1 of components of the normalized
orthogonal coordinate frame vectors and dual frame 1-forms expressed in terms of both old and
new coordinates for the corresponding coordinates in the plane.

�
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5.8 Spherical coordinate frames

To keep you on your toes (it is not good to be married to a single notation, versatility is key
in this subject), we switch from primed index to barred variable notation for new coordinates:
xi
′ → x̄i.

We now repeat step (5) for spherical coordinates, namely we differentiate the parametriza-
tion map to get the Jacobian matrix A−1(x(x̄))

r =

xy
z

 =

r sin θ cosφ
r sin θ sinφ
r cos θ



A−1(x(x̄)) =

(
∂xi

∂x̄j
(x̄)

)
=

∂x/∂r ∂x/∂θ ∂x/∂φ
∂y/∂r ∂y/∂θ ∂y/∂φ
∂z/∂r ∂z/∂θ ∂z/∂φ


=

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


The first column is just r̂ = r−1r, corresponding to the vector (x2+y2+z2)−1/2〈x, y, z〉. The first
two entries of the second column correspond to cot θ = z/ρ = z/(x2 + y2)1/2 times 〈x, y, 0〉 (see
Fig. 5.14 for the trig ratio), while the last entry is just −ρ (obvious from the same figure). The
last column obviously corresponds to the vector 〈−y, x, 0〉. Thus re-expressing the Jacobian
matrix in terms of the old coordinates gives

A−1(x) =

(
∂xi

∂x̄j
(x̄(x))

)
=


x

(x2 + y2 + z2)1/2

xz

(x2 + y2)1/2
−y

y

(x2 + y2 + z2)1/2

yz

(x2 + y2)1/2
x

z

(x2 + y2 + z2)1/2

−(x2 + y2)

(x2 + y2)1/2
0

 .

On the other hand repeating step (1) of differentiating the coordinate map

rθ
φ

 =


(x2 + y2 + z2)1/2

cos−1

(
z

(x2 + y2 + z2)1/2

)
tan−1 y

x
+ C


will lead to the inverse Jacobian. In carrying out this step, one needs the derivative formulas

d

du
cos−1 u = − 1√

1− u2
,

d

du
tan−1 u =

1

1 + u2
,
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together with the quotient rule and some simplification, finally obtaining the result

A(x) =

(
∂x̄i

∂xj
(x)

)
=

∂r/∂x ∂r/∂y ∂r/∂z
∂θ/∂x ∂θ/∂y ∂θ/∂z
∂φ/∂x ∂φ/∂y ∂φ/∂z



=


x

(x2 + y2 + z2)1/2

y

(x2 + y2 + z2)1/2

z

(x2 + y2 + z2)1/2

xz

(x2 + y2 + z2)(x2 + y2)1/2

yz

(x2 + y2 + z2)(x2 + y2)1/2

−(x2 + y2)

(x2 + y2 + z2)(x2 + y2)1/2

− y

x2 + y2

x

x2 + y2
0

 .

Finally to re-express this in terms of the spherical coordinates one notices that the first
row corresponds to the vector 〈x, y, z〉/r, the first two entries of the second row are just
z(x, y)/(r2ρ) = (r cos θ)(x, y)/(r3 sin θ) while the last entry is −ρ/r2 = −r sin θ/r2, and finally
the third row corresponds to (−y, x)/(r2 sin2 θ). Finishing the details leads to the result

A(x̄) =

(
∂x̄i

∂xj
(x(x̄))

)
=


sin θ cosφ sin θ sinφ cos θ

1

r
cos θ cosφ

1

r
cos θ sinφ −1

r
sin θ

− sinφ

r sin θ

cosφ

r sin θ
0

 .

Exercise 5.8.1.
Jacobian matrices for spherical coordinates

Check all the details in the previous calculations of the two Jacobian matrices.
�

The matrix

A−1(x̄) =

(
∂xi

∂r

∂xi

∂θ

∂xi

∂φ

)
has as its columns the Cartesian coordinate components of the tangents to the new coordinate
lines parametrized by those coordinates. The first column are the old fashioned components
of the tangent vector of the curve which results from holding θ and φ fixed and varying r,
for example. Since the new coordinate system is orthogonal, these three tangent vectors are
orthogonal as one can verify by taking dot products of the corresponding vectors in R3. In fact

g = [A−1(x̄)]TA−1(x̄)

is the matrix of all possible inner products of these vectors, namely the coordinate components
of the Eucidean metric. By orthogonality this matrix will be diagonal. The diagonal elements
will be the self-dot products of the three tangent vectors, i.e., the lengths of the three column
matrices thought of as vectors in R3.

If we divide each column by its lengths, the new columns will be orthonormal. A square
matrix whose columns are mutually orthogonal unit vectors in Rn are called orthogonal matri-
ces.
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Exercise 5.8.2.
spherical coordinate frame rotation

Show that dividing the rows of A (whose entries are the Cartesian components of the
differential of the corresponding new coordinate) by their lengths as vectors in R3 yields the
matrix

A =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


and show that it is orthogonal by verifying that ATA = I. This matrix takes the orthonormal
Cartesian coordinate frame to the orthonormal frame associated with spherical coordinates and
represents a rotation.

Show that this rotation A = A3A2A1 is the product of two simple rotations and a swap:
first a rotation in the x-y plane of the tangent space by the azimuthal angle φ from x towards
y, which takes ex, ey to eρ̂, eφ̂, then followed by a rotation in the ρ-z plane of the tangent space
by the polar angle θ from z towards ρ which rotates the vertical direction to the radial direction
taking ez, eρ̂ to er̂, eθ̂ dρ

ρdφ
dz


︸ ︷︷ ︸ωρ̂ωφ̂
ωz


=

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


︸ ︷︷ ︸

A1

dxdy
dz


︸ ︷︷ ︸ωxωy
ωz


,

 dr
r sin θdφ
rdθ


︸ ︷︷ ︸ωr̂ωφ̂

ωθ̂


=

sin θ 0 cos θ
0 1 0

cos θ 0 − sin θ


︸ ︷︷ ︸

A2

 dρ
ρ dρ
dz

 ,

and finally an exchange of the two angular directions eφ̂, eθ̂ to make the final frame ordering
{er̂, eθ̂, eφ̂} right handed (since det A2 = −1 = A3 while det A1 = 1, one has det A = 1) dr

r dθ
r sin θ dφ

 =

1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸
A3

 dr
r sin θ dφ
r dθ

 .

�

The rows of A−1(x̄) are the new components of the differentials of the old coordinates

dxi =
∂xi

∂x̄j
dx̄j :dxdy

dz

 = A−1(x̄)

drdθ
dφ

 =

sin θ cosφ dr + r cos θ cosφ dφ− r sin θ sinφ dφ
sin θ sinφ dr + r cos θ sinφ dφ+ r sin θ cosφ dφ

cos θ dr − r sin θ dθ

 .
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The columns of A(x̄) are the new components of the old coordinate frame vectors

∂

∂xi
=
∂x̄j

∂x̄i
∂

∂x̄j
:

(
∂

∂x

∂

∂y

∂

∂z

)
=

(
∂

∂r

∂

∂θ

∂

∂φ

)
A(x̄) .

These, together with the parametrization map xi = xi(x̄) are needed to transform the compo-
nents of tensor fields.

For a vector field the matrix form of the transformation from old to new components is
accomplished by left multiplication of the column matrix of components by the matrix A−1

X = X i ∂

∂xi
= X̄ i ∂

∂x̄i
: X̄ i(x̄) =

∂x̄i

∂xj
(x̄)Xj(x(x̄))←→

Xr

Xθ

Xφ

 = A(x̄)

X1

X2

X3

 .

For a covector field the matrix form of the transformation from old to new components is
instead accomplished by right multiplication of the row matrix of components by the matrix
A, re-expressing everything in terms of the new coordinates

X[ = Xidx
i = X̄idx̄

i :

X̄i(x̄) =
∂xj

∂x̄i
(x̄)Xj(x(x̄))←→

(
Xr Xθ Xφ

)
=
(
X1 X2 X3

)
A−1(x̄) .

Example 5.8.1. transformation and index shifting
We used matrix methods to express the vector field and 1-form of Exercise 5.7.1 in spherical

coordinates, first re-expressing the matrix of Cartesian components in the new coordinates and
then left multiplying by the appropriate Jacobian matrix.

X = y
∂

∂x
+ x

∂

∂y
←→

X1

X2

X3

 =

yx
0

 =

r sin θ sinφ
r sin θ cosφ

0



Xr

Xθ

Xφ

 =


sin θ cosφ sin θ sinφ cos θ

1

r
cos θ cosφ

1

r
cos θ sinφ −1

r
sin θ

− sinφ

r sin θ

cosφ

r sin θ
0


r sin θ sinφ
r sin θ cosφ

0



=

 r sin2 θ cosφ sinφ+ r sin2 θ sinφ cosφ
sin θ cos θ sinφ cosφ+ sin θ cos θ sinφ cosφ

− sin2 φ+ cos2 φ

 =

 r sin2 θ sin 2φ
sin θ cos θ sin 2φ

cos 2φ


so

X = sin θ sin 2φ

(
r sin θ

∂

∂r
+ cos θ

∂

∂θ

)
+ cos 2φ

∂

∂φ
,
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so that lowering the index leads to

X[ = sin θ sin 2φ
(
r sin θ dr + r2 cos θ dθ

)
+ r2 sin2 θ cos 2φ dφ .

Now transforming the corresponding 1-form

X[ = y dx+ x dy ←→
(
X1 X2 X3

)
=
(
y x 0

)
=
(
r sin θ sinφ r sin θ cosφ 0

)
,

(
Xr Xθ Xφ

)
=
(
r sin θ sinφ r sin θ cosφ 0

)sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


=

(
r sin2 θ sinφ cosφ+ r sin2 θ sinφ cosφ r2 sin θ cosφ sinφ cosφ+ r2 sin θ cosφ sinφ cosφ

−r2 sin2 θ sin2 φ+ r2 sin2 θ cos2 φ

)
=
(
r sin2 θ sin 2φ r2 sin θ cosφ sin 2φ r2 sin2 θ cos 2φ

)
,

where the 3×1 row matrix above is too long for its three entries to fit on one row, so we obtain
the previous expression derived above, here factored

X[ = r sin θ [sin 2φ (sin θ dr + r cos θ dθ) + r cos 2φ sin θ dφ] .
�

Exercise 5.8.3.
differential, gradient in cylindrical, spherical coordinates

EDIT THIS.
Consider the function

f = xy = ρ2 sinφ cosφ =
1

2
ρ2 sin 2φ =

1

2
r2 sin2 θ sin 2φ .

Then
df = y dx+ x dy = X[

~∇f = [df ]] = y
∂

∂x
+ x

∂

∂y
= X

yields our friend X from previous exercises where we saw that

X = ρ sin 2φ
∂

∂ρ
+ cos 2φ

∂

∂φ
= sin θ sin 2φ

(
r sin θ

∂

∂r
+ cos θ

∂

∂θ

)
+ cos 2φ

∂

∂φ

X[ = ρ sin 2φ dρ+ ρ2 sin 2φ dφ = sin θ sin 2φ (r sin θ dr + r2 cos θ dθ) + r2 sin2 θ cos 2φ dφ

[
∂

∂r

]
i

= gij

[
∂

∂r

]j
= gir −→

[
∂

∂r

][
= girdx̄

i = grrdr = dr
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and similarly [
∂

∂φ

][
= gφidx̄

i = gφφdφ = r2 sin2 θ dφ[
∂

∂θ

][
= gθidx̄

i = gθθdθ = r2dθ

.

In general
ei
[ = gkje

j
iω

k = gikω
k

so that
X[ = (X iei)

[ = X iei
[ = X igikω

k = Xkω
k .

Similarly
[ωi]] = gijej

holds for an orthogonal frame, index shifting the frame vectors and dual frame covectors yields
the corresponding basis covector or vector multiplied by the diagonal metric component or its
reciprocal.

Compute df and grad f = ~∇f in cylindrical and then spherical coordinates and verify that
you get our previous results quoted above.

�

Similarly to transform the metric one can evaluate the differentials and expand their prod-
ucts

g = δij dx
i ⊗ dxj

= (sin θ cosφ dr + · · · )⊗ (sin θ cosφ dr + · · · ) + · · · , etc. ,

but matrix methods are more efficient

(ḡij(x̄)) =

(
∂xm

∂x̄i
(x̄)δmn

∂xn

∂x̄j
(x̄)

)
= A−1(x̄)TA−1(x̄)

=

 sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


= · · ·

=

1 0 0
0 r2 0
0 0 r2 sin2 θ


so

g = 1︸︷︷︸
grr

dr ⊗ dr + r2︸︷︷︸
gθθ

dθ ⊗ dθ + r2︸︷︷︸
gφφ

sin2 θ dφ⊗ dφ .

To understand why this simple result must come out from the matrix multiplication, notice
that the first column of the right matrix are just the Cartesian components of the unit radial
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vector, while the second column is a Cartesian component vector with length r (pointing along
the φ coordinate circles), and the final one with length r sin θ (pointing along the θ coordinate
circles). Multiplying by the transpose yields the square of these factors along the diagonal, and
the obvious orthogonality of these three Cartesian vectors leads to the off-diagonal entries of
the matrix product all vanishing.

The square root of the determinant of the diagonal metric matrix is then

| det g|1/2 = (grrgθθgφφ)1/2 = r2 sin θ

and hence the unit volume element is

η = | det g|1/2dr ∧ dθ ∧ dφ = r2 sin θdr ∧ dθ ∧ dφ

while the contravariant metric is

g−1 =
∂

∂r
⊗ ∂

∂r
+

1

r2

∂

∂θ
⊗ ∂

∂θ
+

1

r2 sin2 θ

∂

∂φ
⊗ ∂

∂φ
.

In the above example, we can now easily check that X[ is related to X by index lowering

Xr = grrX
r = Xr , Xθ = gθθX

θ = r2(sin θ cos θ sin 2φ) , Xφ = gφφX
φ = (r2 sin2 θ)(cos 2φ) .

The matrices A(x) and A−1(x) are necessary for transforming in the opposite direction,
from spherical to Cartesian components. The rows of A(x) are the old components of the
differentials of the new coordinatesdrdθ

dφ

 = A(x)

dxdy
dz

 = · · · =

 xdx+ ydy + zdz
z(xdx+ ydy)− (x2 + y2)dz

−ydx+ xdy

 ≡
ωrωθ
ωφ


The columns of A−1(x) are old components of the new coordinate frame vector fields (we use
the simpler partial derivative notation ∂/∂r = ∂r, etc.)(

∂r ∂θ ∂φ
)

=
(
∂x ∂y ∂z

)
A−1(x) = · · ·

=

(
(x∂x + y∂y + z∂z)

(x2 + y2 + z2)1/2

z[x∂x + y∂y]− [x2 + y2]∂z
(x2 + y2)1/2

−y∂x + x∂y

)
≡
(
er eθ eφ

)

Exercise 5.8.4.
spherical coordinates back to Cartesian coordinates

Re-express the following vector field in terms of Cartesian coordinates

Y = r
∂

∂r
+

∂

∂φ
.
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Figure 5.19: Left: the representation of ∂θ for the case y = 0, z > 0. Right: the representation
of ∂φ for the case y = 0, x > 0.

�

If we take the expressions {er, eθ, eφ} for the spherical coordinate frame vector fields in
Cartesian coordinates and their dual frame covector fields {ωr, ωθ, ωφ}, we can use them as an
orthogonal frame on R3, forgetting about their representation in terms of spherical coordinates.

Clearly er is undefined at the origin and eθ along the z-axis, while eφ is zero on the z-axis, so
the frame is only valid off the z-axis. We can normalize this orthogonal frame to an orthonormal
frame by dividing by the lengths of the frame vector fields

eˆ̄xi ≡ (ḡii)
−1/2ex̄i , ω

ˆ̄xi ≡ (ḡii)
1/2ωx̄

i

,

namely

{er̂, eθ̂, eφ̂} =

{
er,

1

(x2 + y2 + z2)1/2
eθ,

1

(x2 + y2)1/2
eφ

}
=

{
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

}
.

Components in an orthonormal frame are called “physical components” since given the
orientation of the frame at a point we can visualize a vector in terms of its orthonormal com-
ponents. For example, for our vector field X = y ∂/∂x+ x ∂/∂y we have

X r̂ = Xr̂ = r sin2 θ sin 2φ

X θ̂ = Xθ̂ = r sin θ cos θ sin 2φ

X φ̂ = Xφ̂ = r sin θ cos 2φ

and
X = r sin θ [sin 2φ (sin θ er̂ + cos θ eθ̂) + cos 2φ eφ̂] .

Note that
X ·X = δijX

iXj = y2 + x2 = r2 sin2 θ ,

so ||X|| = r sin θ, which is the factor outside the square brackets. We can also visualize the
contents of the square brackets in terms of two successive rotations of eθ̂, yielding a unit vector,
as illustrated in Fig. 5.20.
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Figure 5.20: Left: First eθ̂ is rotated to eρ̂ in the ρ-z plane of fixed φ (horizontal, i.e., no z
component). Right: Then eρ̂ is rotated in the horizontal plane by an angle 2φ in the opposite
direction. Scaling the result by r sin θ gives the vector field X.

As an example of a tedious coordinate derivative calculation, consider evaluating the Lapla-
cian in spherical coordinates by brute force as follows

∇2 =

(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2

=

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
+

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
− cosφ

r sin θ

∂

∂φ

)(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
− cosφ

r sin θ

∂

∂φ

)
+

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= · · ·

= (sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ)︸ ︷︷ ︸
1

∂2

∂r2
+ r−2 (cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ)︸ ︷︷ ︸

1

∂2

∂θ2

+ (r2 sin2 θ)−1 (sin2 φ+ cos2 φ)︸ ︷︷ ︸
1

∂2

∂φ2

+ 0
∂2

∂r∂θ
+ 0

∂2

∂θ∂φ
+ 0

∂2

∂r∂φ
[due to orthogonality of coefficient vectors]

− r−2 [sin θ cosφ(cos θ cosφ) + sin θ sinφ(cos θ sinφ) + cos θ(− sin θ)]︸ ︷︷ ︸
0

∂

∂θ
+ · · ·

+ r−1

[
cos θ cosφ(cos θ cosφ) + cos θ sinφ(cos θ sinφ)− sin θ(− sin θ)

−sinφ

sin θ
(− sin θ sinφ) +

cosφ

sin θ
(sin θ cosφ)

]
︸ ︷︷ ︸

2

∂

∂r
+ · · · .
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However, later we will see that there is a better way to do this, although it doesn’t hurt to
check some of the coefficients by this brute force method as an exercise. The result can be
expressed as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cot θ

r2

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

=
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

We will return to this in Chapter 7.

Exercise 5.8.5.
spherical coordinate Laplacian

Check the steps and fill in the dots in the previous calculation.
�

Exercise 5.8.6.
naive toroidal coordinates

We can construct an orthogonal coordinate system (σ, φ, ξ) from a family of concentric tori
built around a circle of radius b in the x-y-plane using the following mapping

〈x, y, z〉 = 〈(b+ σ cos ξ) cosφ, (b+ σ cos ξ) sinφa sin ξ〉 , 0 ≤ σ < b . (5.3)

Both angles take the full range [0, 2π] or [−π, π] as convenient. For larger values of the radius
σ of the circular cross-section of the torus, the tori of constant σ intersect each other and the
coordinates are no longer single valued, but if one is studying a fixed torus and then wishes to
integrate over its interior, these coordinates work well.

a) Calculate the Jacobian matrix J = (∂xi/∂yj) and the matrix product JTJ . Its diagonal
values tell us this coordinate system is orthogonal. Use the diagonal values to express the
metric in these coordinates and evaluate the quantity g1/2 = (det(gij))

1/2.
b) Evaluate the volume of a torus of cross-section radius σ = a < b by setting up the triple

integral of the differential of volume dV = g1/2 dσ dφ dξ.
c) If you look up toroidal coordinates on the web or in the help of a computer algebra system,

you will find nonconcentric tori so that they don’t eventually self-intersect, and therefore cover
the entire space expect for the axis of symmetry where they break down. The tori result from
revolving nonconcentric circles about the given fixed center, and the orthogonal family of curves
in the ρ-z-plane turn out to be circles as well. Try repeating this exercise for those toroidal
coordinates.

�
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5.9 Lie brackets and noncoordinate frames

While the Lie brackets of the orthogonal cylindrical and spherical coordinate frame vectors
vanish like those of the Cartesian coordinate frame vectors, it is convenient to work with the
associated orthonormal frame vectors whose components have a direct physical interpretation
like Cartesian vector components. These noncoordinate frame vectors have nonvanishing Lie
brackets, which turn out to be useful in evaluating curvature related quantities. The orthonor-
malized vectors differ from coordinate frame vectors only by a scalar factor, so it is useful to
have a formula for the Lie brackets of two vectors fields rescaled by function factors. This can
then be easily extended by linearity to provide a formula for the frame components of the Lie
bracket of any two vector fields.

Lie bracket product rule

When the vector fields in a Lie bracket are multiplied by scalar functions, the derivative product
rule generates two extra terms besides the original Lie bracket multiplied by those functions.
In the following calculation the parentheses are essential to remove the ambiguity of each
expression

[fX, hY ] = fX(hY )− hY (fX)

= f(Xh)Y + fhXY − h(Y f)X − hfY X
= fh (XY − Y X) + f(Xh)Y − h(Y f)X

= fh [X, Y ] + f(Xh)Y − h(Y f)X .

In the first line for example, fX(hY ) means that one first applies the operation hY to a
function and then fX to the result. In the second line f(Xh)Y = (Xh)fY , the factor (Xh) is
a function which simply multiplies fY ; the parentheses in this case serve to limit the action of
the derivative to h alone. The result of this calculation is the sum of the linear term fh [X, Y ]
in which neither scalar factor is differentiated plus the two terms which result when an outer
derivative differentiates an inner scalar factor.

Example 5.9.1. We verify that [
∂

∂r
,
∂

∂θ

]
= [er, eθ] = 0

entirely in Cartesian coordinates. We use the simpler partial derivative notation ∂x = ∂/∂x, etc.
This calculation is mildly tedious but certainly doable. We start by using the previous result
extended (using the bilinearity of the Lie bracket) to sums of products of functions and vector
fields, with the three respective terms simplified in three successive lines in each equality below.
The first term simplifies considerably with the cancellation of six terms in the numerator.
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[er, eθ] =

[
x∂x + y∂y + z∂z
(x2 + y2 + z2)1/2

,
z(x∂x + y∂y)− (x2 + y2)∂z

(x2 + y2)1/2

]
= (x2 + y2 + z2)−1/2(x2 + y2)−1/2[x∂x + y∂y + z∂z, z(x∂x + y∂y)− (x2 + y2)]

+ (x2 + y2 + z2)−1/2[(x∂x + y∂y + z∂z)(x
2 + y2)−1/2][z(x∂x + y∂y)− (x2 + y2)∂z]

− (x2 + y2)−1/2{[z(x∂x + y∂y)− (x2 + y2)∂z](x
2 + y2 + z2)−1/2}[x∂x + y∂y + z∂z]

=
x(z∂x − 2x∂z) + y(z∂y − 2y∂z) + z(x∂x + y∂y)− zx∂x − zy∂y + (x2 + y2)∂z

(x2 + y2 + z2)1/2(x2 + y2)1/2

− 1

2

(2x2 + 2y2)[z(x∂x + y∂y)− (x2 + y2)∂z]

(x2 + y2 + z2)3/2(x2 + y2)1/2

− 1

(x2 + y2)1/2

(
− 1

2(x2 + y2 + z2)3/2

)
[zx(2x) + zy(2y)− (x2 + y2)(2z)]

=
z(x∂x + y∂y − (x2 + y2)∂z)

(x2 + y2 + z2)1/2(x2 + y2)1/2

− z(x∂x + y∂y − (x2 + y2)∂z)

(x2 + y2 + z2)1/2(x2 + y2)1/2

+ 0

= 0 .

�

Exercise 5.9.1.
spherical coordinate commutator using Cartesian coordinates

Try the easier calculation [er, eφ] = 0.

�

The Lie bracket product rule is easily extended to apply to linear combinations of vector
fields with scalar function coefficients. This is necessary to evaluate the coordinate components
of the Lie bracket. The passage from the first line to the second line below written explicitly
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in the summation notation uses the bilinearity of the Lie bracket in each argument

[ X i︸︷︷︸
f

∂

∂xi︸︷︷︸
X

, Y j︸︷︷︸
h

∂

∂xj︸︷︷︸
Y

] =

[
n∑
i=1

X i ∂

∂xi
,

n∑
j=1

Y j ∂

∂xj

]

=
n∑
i=1

n∑
j=1

[
X i ∂

∂xi
, Y j ∂

∂xj

]

=
n∑
i=1

n∑
j=1

(
X iY j

[
∂

∂xi
,
∂

∂xj

]
+X i∂Y

j

∂xi
∂

∂xj
− Y j ∂X

i

∂xj
∂

∂xi

)
= X i∂Y

j

∂xi
∂

∂xj
− Y j ∂X

i

∂xj
∂

∂xi

= (XY j)
∂

∂xj
− (Y X i)

∂

∂xi

= (XY i − Y X i)
∂

∂xi
.

Thus the coordinate formula

[X, Y ]i = (XY i − Y X i) = (Y i
,jX

j −X i
,jY

j)

is a consequence of this basic rule for how Lie brackets behave when you stick function factors
in them, where the comma partial derivative notation f,i = ∂f/∂xi will prove useful in the
next chapter. This result can be extended to the component formula for the Lie bracket with
respect to a general noncoordinate frame.

Given any frame {ei}, define a set of “structure functions” for the frame in the following
way. Each of the commutators [ei, ej] is itself a vector field which may be expressed as a linear
combination of {ei} so

[ei, ej] = Ck
ijek .

Clearly Ck
ij = 0 for i = j and Ck

ij = −Ck
ji for i 6= j, i.e., this object is antisymmetric in its

lower indices. If we wish we can define a tensor having these components

C(e) = Ci
jkei ⊗ ωj ⊗ ωk =

1

2
Ci

jkei ⊗ ωk ,

but it changes if we change the frame, i.e., does not define the same tensor in every frame like
δij does.

Exercise 5.9.2.
structure functions of cylindrical and spherical coordinates

It is enough to list {Ck
ij}i<j to specify all the independent structure functions. Do this for

the normalized cylindrical and spherical coordinate frames, i.e.,

{eρ̂, eφ̂, eẑ} , {er̂, eθ̂, eφ̂}, .
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�

Now the same calculation done above for the coordinate frame, but not setting to zero
the self commutators, gives the component formula for the Lie bracket in a general frame
where again we make explicit the summation notation to emphasize the role of linearity in this
calculation

[X iei, Y
jej] = [

n∑
i=1

X iei,

n∑
j=1

Y jej]

=
n∑
i=1

n∑
j=1

[X iei, Y
jej]

=
n∑
i=1

n∑
j=1

(X iY j[ei, ej] + (X ieiY
j)ej − (Y jejX

i)ei)

= (XY j)ej − (Y X i)ei + Ck
ijX

iY jek

= (XY i)ei − (Y X i)ei + Ci
jkX

jY kei

= [XY i − Y X i + Ci
jkX

jY k]ei ,

so using the frame derivative notation eif = f,i, we have the result

[X, Y ]i = XY i − Y X i + Ci
jkX

jY k

= Y i
,jX

j −X i
,jY

j + Ci
jkX

jY k .

This formula is just what is needed to evaluate Lie brackets of vector fields in the orthonormal
frame associated with cylindrical and spherical coordinates.

Exercise 5.9.3.
Lie brackets in cylindrical coordinates

Consider the vector field X from Exercise 5.7.1 and Y obtained by multiplying ∂ρ by (x2 +
y2)1/2

X = y∂x + x∂y = ρ sin 2φ ∂ρ + cos 2φ ∂φ = ρ sin 2φ eρ̂ + ρ cos 2φ eφ̂ ,

Y = x∂x + y∂y = ρ∂ρ = ρeρ̂ ,

which identifies their nonzero orthonormal components X ρ̂, X φ̂ and Y ρ̂.
Compute the components [X, Y ]ρ̂, [X, Y ]φ̂, [X, Y ]ẑ from the above formula using the fact

that

C φ̂
ρ̂φ̂ = −1

ρ
= −C φ̂

φ̂ρ̂

are the only nonzero structure functions.
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Compare with the result [X, Y ] easily done entirely in terms of Cartesian coordinates.
Repeat for

Y = −y ∂
∂x

+ x
∂

∂x
=

∂

∂φ
= ρ eφ̂

and the same X.
�

Exercise 5.9.4.
Lie brackets in spherical coordinate orthonormal frame

Compute all of the Lie brackets of {er̂, eθ̂, eφ̂} working in spherical coordinates (this is easy).
�

Exercise 5.9.5.
Lie brackets in cylindrical coordinate orthonormal frame

Normalizing the cylindrical coordinate frame leads to the orthonormal frame

eρ̂ =
∂

∂ρ
, eφ̂ =

1

ρ

∂

∂φ
, eẑ =

∂

∂z
.

Evaluate the nonzero Lie brackets of these vector fields using their cylindrical coordinate ex-
pressions (almost trivial).

�

Exercise 5.9.6.
duality practice

The duality map for the basis p-vectors and p-covectors in an orthonormal basis{ei} of R3

were given in Table 4.2. These are valid pointwise for the orthonormal frames {ex, ey, ez},
{eρ̂, eφ̂, eẑ} , {er̂, eθ̂, eφ̂}.

Evaluate the following duals:
x, y, z:

∗1 (3-form)
∗(x1dx+ x2dy + x3dz)
∗(x23dy ∧ dz + x31dz ∧ dx+ x12dx ∧ dy)
∗(x123dx ∧ dy ∧ dz)

ρ̂, φ̂, ẑ:

∗1 (3-form)

∗(xρ̂ω
ρ̂ + xφ̂ω

φ̂ + xẑω
ẑ)

∗(xφ̂ẑω
φ̂ẑ + xẑρ̂ω

ẑρ̂ + xρ̂φ̂ω
ρ̂φ̂)

∗(xr̂φ̂ẑω
r̂φ̂ẑ)
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r̂, θ̂, φ̂ :

∗1 (3-form)

∗(xr̂ω
r̂ + xθ̂ω

θ̂ + xφ̂ω
φ̂)

∗(xθ̂φ̂ω
θ̂φ̂ + xφ̂r̂ω

φ̂r̂ + xr̂θ̂ω
r̂θ̂)

∗(xr̂θ̂φ̂ω
r̂θ̂φ̂)

�

Exercise 5.9.7.
dual of 2-form in R3

If

X =
1

2
X̄jkdx̄

j ∧ dx̄k = Xθφdθ ∧ dφ+Xφrdφ ∧ dr +Xrφdr ∧ dθ

use the formula (∗X̄)i = 1
2
ηijkXjk to evaluate the vector field

∗X] = (∗X])
∂

∂r
+ (∗X])

∂

∂θ
+ (∗X])

∂

∂φ
.

What are its physical components?
�

Exercise 5.9.8.
Lie brackets and the derivatives of the frame transformation matrix

Suppose we consider how the Lie brackets of a general frame are related to their component
matrix with respect to a coordinate frame, like a Cartesian coordinate frame

ei = Bj
i∂j , ∂i = B−1j

iei .

Show that

Ck
ij = B−1k

m(Bm
j,i −Bm

i,j) = 2B−1k
mB

m
[j,i] .

We will see later that this antisymmetrized derivative has a geometrical meaning too.
�

Exercise 5.9.9.
rotation generator Lie brackets in spherical coordinates

The columns of the matrix A = B−1 are the new components of the Cartesian coordinate
frame vector fields. Expressing it in term of the new coordinates in the spherical coordinate



5.9. Lie brackets and noncoordinate frames 345

case gives the representation of the Cartesian frame vector fields in those coordinates given in
Section 5.8

A(x̄)


sin θ cosφ sin θ sinφ cos θ

1

r
cos θ cosφ

1

r
cos θ sinφ −1

r
sin θ

− sinφ

r sin θ

cosφ

r sin θ
0

 .

a) Use this and 〈x1, x2, x3〉 = 〈r sin θ cosφ, r sin θ sinφ, r cos θ〉 to re-express in spherical
coordinates the vector fields of Exercise 5.4.4 which generate the rotations, leading to the
following results

L1 = x2 ∂

∂x3
− x3 ∂

∂x2
, = − sinφ

∂

∂θ
− cosφ cot θ

∂φ

∂
,

L2 = x3 ∂

∂x1
− x1 ∂

∂x3
, = − cosφ

∂

∂θ
+ sinφ cot θ

∂φ

∂
,

L3 = x1 ∂

∂x2
− x2 ∂

∂x1
=

∂

∂φ
.

Do this by using a computer algebra system to matrix multiply A by the component vectors of
these vector fields 〈0,−x3, x2〉, etc., expressed in spherical coordinates.

b) Now evaluate their Lie brackets in spherical coordinates to re-obtain the results of that
Exercise.

c) Introduce the ladder operators L± = L1 ± iL2 and show that they can be written

L± = e±iφ
(
± ∂
∂θ

+ i cot θ
∂

∂φ

)
.

d) Evaluate the Lie brackets [L±, L3].
�
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Chapter 6

Covariant derivatives

Flat space has globally constant frames, namely the coordinate frames associated with any
Cartesian coordinate system. These frames can be used to characterize constant vector fields:
those which have constant components in any such globally constant frame of vector fields.
However, if the frame we use is not constant but depends on position, then a constant vector
field must have components which vary with position to compensate for the position-dependence
of the vectors in terms of which it is expressed as a linear combination. Thus when working with
non-Cartesian coordinate systems we need a way to determine when a vector field is constant
in spite of having nonconstant components. This easily leads us to define a covariant derivative
with correction terms contributed to the derivative of the vector field by the derivatives of the
frame vectors in terms of which it is expressed. In Cartesian coordinate systems, this covariant
derivative just reduces to the ordinary partial derivative. The correction terms in a general
frame are easily evaluated in terms of the derivatives of those frame vector fields with respect
to the globally constant Cartesian frames, without which we would not so easily be able to
recognize when objects are “constant.”

Once we understand how to differentiate vector fields covariantly, we can then easily extend
the rule to covector fields and then to their tensor products to get the covariant derivative of
any tensor field. This covariant derivative is independent of the coordinate system or frame
used to express it, hence the adjective “covariant.”

However, the globally constant frames also have constant lengths and inner products, so
the metric which describes this geometry will have to be covariant constant. It will turn out
that the correction terms for the covariant derivative can alternatively be obtained through
the derivatives of the components of the metric tensor instead of the components of the frame
vectors. This latter approach will work even in a space that is not flat. If we specialize to an
orthonormal frame, it will turn out that we can express the correction terms entirely in terms
of the Lie brackets of the frame vector fields, the primary reason for our interest in those Lie
brackets.

347
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6.1 Covariant derivatives on Rn with Euclidean metric

It’s clear what we mean by a “constant tensor field” on Rn — namely one whose Cartesian
coordinate components are constant in the standard Cartesian coordinate system {xi} on Rn

(or in fact for any Cartesian coordinates). There is a 1–1 correspondence between tensors on
the vector space Rn and such constant tensor fields on Rn.

S = S
i1···ip
j1···jq︸ ︷︷ ︸

constants

ei1 ⊗ · · · ⊗ ωj1 ⊗ · · · ∈ T (p,q)(Rn) ,

S̃ = S
i1···ip
j1···jq

∂

∂xi1
⊗ · · · ⊗ dxj1 ⊗ · · · = (pq)-tensor field on Rn .

Such a constant tensor field is also characterized by the vanishing of the Cartesian coordinate
derivatives of its Cartesian coordinate components

S
i1···ip
j1···jq ,k ≡

∂

∂xk
S
i1···ip
j1···jq = 0 .

This is an important concept for the geometry of Rn, since if we take a tangent vector at
the origin and translate it all over space without changing its length or direction, we obtain
a constant vector field. In other words constant tensor fields tell us something about how to
move the tangent and cotangent spaces around in space without changing length or orientation
information. The usual dot product on each tangent space tells us about the relative geometry
of lengths and orientations of vectors in the same tangent space, but it is the ability to compare
tangent vectors at different points of space which defines the global geometry.

The Cartesian coordinate frame and dual frame consist of such constant tensor fields, so
constant linear combinations of them and the corresponding constant basis tensor fields formed
by their tensor products are consequently constant. However, if we use a general coordinate
system {x̄i}, the new basis frame vector fields will not be constant, and hence a constant
tensor field must have nonconstant components to compensate for the changing length and
orientation of the frame vectors. How can we test for constancy of a tensor field in a general co-
ordinate system where its components hide this property? The position-dependent expressions
for {∂/∂x, ∂/∂y, ∂/∂z, dx, dy, dz} in cylindrical or spherical coordinates given in the previous
chapter are a good example to consider in this context.

Before we go on, a warning is necessary. The following calculations involving first and
second partial derivatives of the coordinate transformation are exactly what gave old fashioned
tensor analysis a bad name. Fortunately, we will re-examine the result in a more modern way
that allows us to leave those kinds of transformation law nightmares in the past.

So suppose we differentiate the transformation law for a vector field

X̄ i =
∂x̄i

∂xk
Xk = AijX

k

with respect to the new coordinates using the chain rule to re-express those new partial deriva-
tives in terms of the old ones

ēj =
∂

∂x̄j
=
∂xi

∂x̄j
∂

∂xi
= A−1i

j
∂

∂xi
= Bi

j
∂

∂xi
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in order to see how the component derivatives transform. We find

X̄ i
,j ≡

∂X̄ i

∂x̄j
=

(
∂xn

∂x̄j
∂

∂xn

)(
∂x̄i

∂xm
Xm

)
=
∂xn

∂x̄j
∂x̄i

∂xm
Xm

,n +
∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm .

The first linear homogenous term corresponds to the transformation law as though Xm
,n

defined the components of some (1
1)-tensor field in every coordinate system. The second term

is an extra nonhomogeneous term
∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm

breaking the tensor transformation law. If X is a constant vector field, i.e., Xm
,n = 0 in the

Cartesian coordinates, then

X̄ i
,j =

∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm .

Only if x̄i = Aijx
j define new Cartesian coordinates (in general not orthonormal coordinates)

so that the Jacobian matrix is constant

∂x̄i

∂xm
= Aim , Aim,n =

∂2x̄i

∂xn∂xm
= 0

will the new coordinate components of the vector field be constants: X̄ i
,j = 0. Otherwise the

new partial derivatives of the new components will not be identically zero, i.e., the vector will
have nonconstant components in the new coordinates.

We can turn this around to have a quantity which must be zero in the new coordinate
system if a vector field is to be constant. We just need to re-express the extra term entirely in
terms of the new coordinates, a term which must compensate the new coordinate component
derivatives

∂xn

∂x̄j
∂x̄i

∂xm
Xm

,n = X̄ i
,j −

∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm = X̄ i

,j −
∂xn

∂x̄j
∂2x̄i

∂xn∂xm
∂xm

∂x̄l
X̄ l .

Re-expressing the second derivative requires first doing a preliminary calculation, differentiating
the relation which states that the two Jacobian matrices are inverse matrices, and then solving
for the second term in the product rule result, and recombining the factor (∂xn/∂x̄j)∂/∂xn =
∂/∂x̄j. These steps follow

∂xn

∂x̄j
∂

∂xn

[
∂x̄i

∂xm
∂xm

∂x̄`
= δil

]
−→ ∂xn

∂x̄j

[
∂2x̄i

∂xn∂xm
∂xm

∂x̄`
+

∂x̄i

∂xm
∂2xm

∂xn∂x̄`

]
= 0 ,

−→ −∂x
n

∂x̄j
∂2x̄i

∂xn∂xm
∂xm

∂x̄`
=

∂x̄i

∂xm
∂xn

∂x̄j
∂

∂xn

(
∂xm

∂x̄`

)
=

∂x̄i

∂xm
∂2xm

∂x̄j∂x̄`

= AimA
−1m

`,j̄ = B−1i
mB

m
`,j̄ = B−1i

mdB
m
`(ēj) ≡ Γ̄ij` = Γ̄i`j ,

where f,j̄ = ∂f/∂x̄j is a convenient shorthand. This defines a three index object

Γ̄ij` = Γ̄i`j = B−1i
mdB

m
`(ēj) = ω̄im(ēm`,j̄)
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which is symmetric in its lower indices due to the commutivity of partial derivatives, represent-
ing the new components of the derivatives of the Cartesian coordinate components Bm

` = ēm`
of the new coordinate frame vectors. The original transformation can be re-expressed in the
form

∂xn

∂x̄j
∂x̄i

∂xm
Xm

,n = X̄ i
,j + Γ̄ij`X̄

` ≡ [∇X]ij ≡ X̄ i
;j ≡ ∇̄jX̄

i .

These represent the new components of a (1
1)-tensor field ∇X whose Cartesian coordinate

components are the ordinary derivatives Xm,n.
In other words we can define a tensor field in any coordinate system by transforming the

tensor field

∇X = Xm
,n

∂

∂xm
⊗ dxn

from Cartesian coordinates to any other coordinates. The result will vanish any time the
Cartesian components vanish, i.e., it will be zero in any coordinate system. Constant vector
fields have ∇X = 0 in any coordinate system. The additional term in the new components
of ∇X is a correction term to compensate for the nonconstant frame vector fields. It will be
interpreted below directly in terms of the derivatives of these nonconstant frame vector fields.
In fact the columns of the matrix (A−1m

i) = (Bm
i) = (ēmi) are the old components of new

frame vectors

ēi =
∂

∂x̄i
=
∂xm

∂x̄i
∂

∂xm
= Bm

i
∂

∂xm
= ēmi

∂

∂xm

and this new object
Γ̄ij` = B−1i

mB
m
`,j̄ = ω̄im(ēm`,j̄) .

consists of their new coordinate derivatives, re-expressed in terms of the new frame vectors.
We need some notation to make this precise.
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6.2 Notation for covariant derivatives

Given any (pq)-tensor field on Rn

S = S
i1···ip
j1···jq ei1 ⊗ · · · ⊗ ωjq

expressed in any frame {ei} with dual frame {ωi}, define the following two tensor fields, if
X = X iei is any vector field:

∇S = [∇S]
i1···ip
j1···jqk ei1 ⊗ · · · ⊗ ω

jq ⊗ ωk : ( p
q+1)-tensor field, covariant derivative of S

∇XS = [∇XS]
i1···ip
j1···jqei1 ⊗ · · · ⊗ ωjq : (pq)-tensor field, covariant derivative of S along X

where

[∇S]
i1···ip
j1···jqk ≡ S

i1···ip
j1···jq ;k ≡ [∇ekS]

i1···ip
j1···jq ,

[∇XS]
i1···ip
j1···jq ≡ S

i1···ip
j1···jq ;kX

k

are alternate more convenient notations for these fields. The operation ∇X generalizes the
directional derivative from scalar fields to tensor fields. Both these tensor derivatives are defined
so that their components reduce to ordinary derivatives in a Cartesian coordinate system

S
i1···ip
j1···jq ;k = S

i1···ip
j1···jq ,k .

∇S is a new tensor field with one more vector argument which accepts the tangent vector
along which the covariant derivative of the tensor is evaluated, generalizing the differential of
a function df(X) = Xf which adds the vector argument to accept the tangent vector along
which the derivative of the function is evaluated.

A tensor field which vanishes in a single frame, by definition vanishes in every frame, i.e., zero
components in one frame define a zero tensor field which must have zero components in every
frame. Constant tensor fields have vanishing covariant derivative and will be called “covariant
constant.” The components of the covariant derivative in any non-Cartesian coordinate frame
may be calculated in two ways:

1. by transformation from Cartesian coordinates,

2. by being clever (see below).

First notice that the covariant derivative obeys obvious product rules which are inherited
from partial derivatives in Cartesian coordinates. In Cartesian coordinates one has

(Si···j···T
k···
`···),m = Si···j··· ,mT

k···
`··· + Si···j···T

k···
`··· ,m

so in any frame

(Si···j···T
k···
`···);m = Si···j··· ;mT

k···
`··· + Si···j···T

k···
`··· ;m
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since a direct transformation of the first line yields the second line in the new frame. Thus,
dropping indices

∇(S ⊗ T ) = ∇S ⊗ T + S ⊗∇T ,
or

∇X(S ⊗ T ) = (∇XS)⊗ T + S ⊗ (∇XT ) .

The same product rule holds for any number of contractions of up/down index pairs in this
equation. For example

(SijT
j);k = Sij;kT

j + SijT
j
;k ,

(SijT
j);i = Sij;iT

j + SijT
j
;i .

For a (0
0)-tensor, i.e., a function f we have f;k = f,k in Cartesian coordinates, so transforming

it to a new coordinate system {x̄i} we get

f;k̄ =
∂x`

∂x̄k
f,` =

∂x`

∂x̄k
∂f

∂x`
=

∂f

∂x̄k
= f,k̄ ,

i.e., the covariant derivative of a function equals the 1-form whose components are the corre-
sponding partial derivatives of the function in any coordinate system, i.e., the differential of
the function

∇f = f̄;kdx̄
k = f,k̄ dx̄

k = df ,

∇Xf = f̄;kX̄
k = df(X) = Xf ,

while the covariant derivative of a function along X is just the ordinary derivative of f along
X.

In a given frame {ei}, consider the covariant derivative of ej along ei, itself a new vector
field which can therefore be expressed in terms of its components in this frame

∇eiej = Γkijek ,

thus defining a three index symbol called the “components of the covariant derivative” ∇ or
more commonly the “components of the connection” (terminology which will be explained in
the next chapter)

Γkij = ωk(∇eiej)
which is the kth component of the vector field ∇eiej. Notice that the first covariant index
is associated with the direction of differentiation, while the other mixed pair of indices are
associated with a linear transformation of the tangent space.

Because of the duality relation ωj(ek) = δjk whose right hand side is a set of constant
functions whose derivative is zero, applying the product rule for the covariant derivative to the
left hand side yields a formula for the covariant derivatives of the dual frame covector fields

0 = ∇ei(δik) = ∇ei [ωj(ek)] = (∇eiωj)(ek) + ωj(∇eiek) = (∇eiωj)(ek) + Γj ik ,
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The first term is the kth component of the covector ∇eiωj so solving for it one finds

∇eiωj = −Γj ikω
k .

Now use the product rule for an arbitrary tensor field

S = S
i1···ip
j1···jqei1 ⊗ · · · ⊗ ωj1 ⊗ · · · ⊗ ωip

yielding in general three kinds of terms: the ordinary frame derivatives of the scalar component
functions, the derivatives of the frame vector fields if contravariant indices are present, and the
derivatives of the dual 1-forms if covariant indices are present

∇ekS = (∇ekS
i1···ip
j1···jq)ei1 ⊗ · · · ⊗ eip ⊗ ωj1 · · · ⊗ ωjq

+ S
i1···ip
j1···jq(∇ekei1)⊗ · · · ⊗ eip ⊗ ωj1 ⊗ · · · ⊗ ωjq + · · ·

+ S
i1···ip
j1···jqei1 ⊗ · · · ⊗ eip ⊗∇ekωj1 ⊗ · · · ⊗ ωjq + · · ·

= [ekS
i1···ip
j1···jq + Γi1kmS

m···ip
j1···jq + · · · − Γmkj1S

m···ip
m···jq − · · · ]ei1 ⊗ · · · ⊗ eip ⊗ ωj1 · · · ⊗ ωjp

≡ S
i1···ip
j1···jq ;k ei1 ⊗ · · · ⊗ eip ⊗ ωj1 ⊗ · · · ⊗ ωjp

or if we extend the comma index notation to denote the frame derivatives f,k = ekf , we have
the component formula

S
i1···ip
j1···jq ;k = S

i1···ip
j1···jq ,k + Γi1kmS

m···ip
j1···jq + · · · − ΓmkjS

m···ip
m···jq − · · · .

It consists of three kinds of terms: the first ordinary frame derivative of the component func-
tions, a positive correction term for each contravariant index, and a negative correction term
for each covariant index. The correction terms are all zero in a Cartesian coordinate frame
where the frame vector fields and 1-forms are covariant constant and so the covariant deriva-
tive reduces to the ordinary derivative of their components. In a general frame, they simply
represent the contribution to the rate of change of the tensor due to the changing frame vectors
and dual frame covectors through the product rule.

Thus once we calculate the components of the covariant derivatives of the frame vector fields,
i.e., Γkij, we can evaluate the covariant derivative of any tensor field. These were evaluated
above for general coordinate frames in terms of the transformation from Cartesian coordinates
to the new coordinates {xi}

∂

∂x̄l
= A−1m

i
∂

∂xm
→ Γ̄ij` = AimA

−1m
l,j̄ = [AdA−1]i`(ēj) ,

which led to frightening relations involving first and second partial derivatives of the two sets
of coordinates in various directions and combinations.

If we instead consider the transformation to a general frame

el = A−1m
l
∂

∂xm
= Bm

l
∂

∂xm
,
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by covariant differentiation of this relation using the covariant constancy of the Cartesian
coordinate frame vectors

∇ejel = (ejB
m
l)
∂

∂xm
= B−1i

m(ejB
m
l)ei ,

Γij` = B−1i
m(ejB

m
l) = Bi−1

mdB
m
l(ej) = [B−1dB]i`(ej) ,

where the frame derivatives of the matrix B whose columns are the old components of the new
frame vector fields have been re-expressed as the values of its differential on the frame vector
fields: for a function f,j = df(ej)), for the matrix ejB

j
l = dBj

l(ej). This is exactly the previous
relation when the frame is actually a coordinate frame: ei = ∂/∂x̄i.

Matrix methods when applicable are much more efficient than working with individual
components. The n3 components Γijk of the covariant derivative operator, or “connection” as
it is called for reasons to become clear later, may be packaged in a more user friendly format
by introducing the matrix of connection 1-forms for a given frame {ei}

ωik ≡ Γijkω
j , ω ≡ (ωik) = B−1 dB(ej)ω

j = B−1 dB .

Each entry in this matrix ω is a covector field or 1-form (we will use the two terms interchange-
ably). This formula makes it easy to calculate ω. Once the matrix is evaluated, the (i, k)
entry gives the 1-form ωik = Γijkω

j and the j-th component of this 1-form is the connection
component Γijk.

Both cylindrical and spherical coordinates are examples of orthogonal coordinates, namely
those for which the coordinate frame vectors are orthogonal, and hence when divided by their
lengths become an orthonormal frame

ēi = Bj
i
∂

∂xj
, gii = g(ei, ei)

→ ēî = (gii)
−1/2ei = (gii)

−1/2Bj
i
∂

∂xj
≡ Bj i

∂

∂xj
.

The columns of B are normalized in this way to produce the orthogonal matrix B. The dual
1-forms are also orthogonal and can be normalized by dividing by their lengths

ωi = dx̄i = Aijdx
j , ḡii = g(ωi, ωi) = (ḡii)

−1 ,

which corresponds to normalizing the rows of A to obtain the orthogonal matrix A = B−1

ωî = (ḡii)−1/2ωi = (ḡii)
1/2Aijdx

j ≡ Aijdxj .

Replacing A = B−1 by A = B−1 in the formula for the connection 1-forms gives the formula
valid for the associated orthonormal frame

ω̂ = B−1 dB = (ωîk̂) = (Γî ĵk̂ω
ĵ) .
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Thus from the jth orthonormal component of the connection 1-form in the ik entry of this
matrix, one reads off the connection component Γî ĵk̂. This is the matrix of the linear transfor-
mation of the orthonormal frame vectors corresponding to the derivative along the unit vector
eĵ, so it must belong to the Lie algebra of the orthogonal group associated with the signature
of the metric, i.e.,

∇eĵel̂ = Γî ĵ l̂eî → Γîĵ l̂ = gî̂iΓ
î
ĵ l̂ = −gl̂l̂Γl̂ ĵ î = Γl̂ĵ î → (g ω̂)T = −g ω̂

or
ωîĵ = −ωĵî .

With the index lowering convention this just means that the totally covariant components of the
connection are antisymmetric in their outer indices associated with the linear transformation of
the tangent space, or simply that the index-lowered connection 1-form matrix is antisymmetric.
For the usual dot product in Rn, the connection 1-form matrix ω̂ itself is antisymmetric. This
gives a direct interpretation to this matrix-valued 1-form. Its value on the tangent vector X,
namely ω̂(X), describes the rate of rotation of the orthonormal frame as one moves in the
direction of the tangent vector X. For R3 the dual of this antisymmetric matrix defines an
angular velocity vector 1-form using the usual correspondence between antisymmetric matrices
and vectors in an orthonormal frame—its value on a tangent vector X defines the axis of the
rotation in the tangent space, and the rate of rotation around that axis, for motion along a
curve whose tangent vector is X. For more general inner products on Rn with some negative
signs associated with the self-inner products of orthonormal frame vectors, the connection 1-
form matrix describes pseudo-rotations of the frame, namely Lorentz transformations (which
include ordinary rotations and hyperbolic rotations called boosts) in a Minkowski spacetime.

Note that the tensor Γkijek⊗ωi⊗ωj is the invariant object whose component functions we
are using, but it is a different tensor in different frames. We will see how it “transforms” in the
next section.

Exercise 6.2.1.
cylindrical and spherical frame connection components

Let’s agree to drop the bar for the non-Cartesian coordinates {xi} = {ρ, φ, z} or {r, θ, φ}
here.

a) Use the formula

B−1dB = (Γijkdx
j) =

 ωρρ ωρφ ωρz
ωφr ωφφ ωφφ
ωzr ωzθ ωzz


to calculate by hand the nonzero components Γijk = (ωik)j of the connection in cylindrical
coordinates using the expressions given in the previous chapter

B =

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

 , B−1 =

 cosφ sinφ 0
−ρ−1 sinφ ρ−1 cosφ 0

0 0 1

 .
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The results should be

Γρφφ = −ρ , Γφφρ = ρ−1 = Γφρφ = ρ−1 .

b) Do the same in the associated orthonormal frame and dual frame

{eρ̂, eφ̂, eẑ} =

{
∂

∂ρ
,

1

ρ

∂

∂φ
,
∂

∂z

}
, {ωρ̂, ωφ̂, ωẑ} = {dρ, ρ dφ, dz} .

using the expressions

B =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , B−1 = BT

given in the previous chapter. Show that the result is

ω̂ = B−1dB = dφ

0 −1 0
1 0 0
0 0 0

 .

This has a simple interpretation. The azimuthal angle φ corresponds to a right hand rule
rotation around the z-axis which rotates the orthonormal cylindrical frame vectors into position
from the Cartesian frame at φ = 0. The differential rotation by the additional angle dφ simply
continues this same rotation of those frame vectors. This accounts for two of the three nonzero
connection components in the cylindrical coordinate frame (which are scaled by normalizing
factors compared to the orthonormal frame components). The extra nonzero component due
to the fact that the azimuthal frame vector increases in length by its distance ρ from the origin,
so one gets a d ln ρ contribution to the relative rate of change of this frame vector in the radial
direction.

c) With a little more effort you can repeat this exercise by hand for spherical coordinates,
but this is insane. Use a computer algebra system to do this almost effortlessly. The orthogonal
matrices of this orthonormal frame are

B =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 , B−1 = BT .

Recall that the columns of B are the old components of the new basis vectors er̂, eθ̂, eφ̂, while

the columns of B−1 (rows of B) are the new components of the old basis vectors eẑ, eŷ, eẑ.
Show that

B−1 dB =

 0 −dθ − sin θ dφ
dθ 0 − cos θ dφ

sin θ dφ cos θ dφ 0

 =

 0 ωr̂ θ̂ ωr̂ φ̂
ωθ̂ r̂ 0 ωθ̂ φ̂
ωφ̂r̂ ωφ̂θ̂ 0

 ≡ ΩîLi .

The corresponding vector-valued 1-form (the metric dual on the pair of antisymmetric indices)
is therefore

~Ω = 〈Ωr̂,Ωθ̂,Ωφ̂〉 = 〈cos θ dφ,− sin θ dφ, dθ〉 ,
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but these are components in the orthonormal spherical frame so as a vector field valued 1-form,
this is

Ω = (cos θ er̂ − sin θ eθ̂) dφ+ eφ dθ = eẑ dφ+ eφ dθ .

The last relation follows from comparing the coefficients with the final column of the matrix
B−1 (final row of B), which are the new components of eẑ. The component relations between

the antisymmetric matrix ω and the vector ~Ω in the spherical orthononormal frame just reflect
the metric dual ∗ of the corresponding 2-form to define a 1-form or vector field depending on
the index positioning.

This final formula makes it really easy to interpret the differential rotation which occurs
as one moves along any given angular direction, and makes it obvious why this result had to
be the way it is. The rotation of the entire r-θ coordinate half plane for fixed φ rotates the
radial direction down from the vertical by the polar angle, so incrementing that angle by dθ
simply rotates the er̂-eθ̂ plane of the tangent space by an additional angle dθ about the eφ̂ axis,
rotating er̂ down towards eθ̂. Similarly the azimuthal angle rotates the plane of constant z by
the azimuthal angle about the upwards vertical axis, so incrementing that angle by dφ simply
rotates the tangent space about the eẑ axis by that angle.

d) Use a computer algebra system to evaluate the Cartesian components (in the local Carte-
sian coordinate frame) of the matrix of the linear transformation represented by ω̂ and verify
that it can be written in the form

B Ω̂B−1 = (− sin θ L1 + cos θ L2) dθ + L3 dφ = êiφ̂Li dθ + L3 dφ .

This shows how moving in the polar angle direction generates a rotation about the axis êφ̂,
from er̂ to eθ̂, while moving in the azimuthal direction generates a rotation about the vertical
axis, from er̂ to eφ̂.

e) Now use a computer algebra system to obtain the connection 1-form matrix for the
unnormalized spherical coordinate frame and read off the corresponding nonzero connection
components

Γrθθ = −r , Γrφθ = −r sin2 θ ,

Γθθr =
1

r
, Γθrθ =

1

r
,Γθφφ = − sin θ cos θ ,

Γθφr =
1

r
, Γθφθ = cot θ ,Γθrφ =

1

r
, Γθθφ = cot θ .

Besides the reverse scaling by the lengths of the nonzero orthonormal components, the extra
nonzero components of the connection along the diagonal of ω correspond to the increase in the
lengths of eθ and eφ with r (since (gθθ)

1/2 = r and (gφφ)1/2 = r sin θ and the change in length
of eφ with θ, increasing and then decreasing.

�

Remark.
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If in part a) of this exercise we ignore z and rename the remaining cylindrical coordinates
{ρ, φ} to their original polar variable names {r, θ}, we get the expressions for the nonzero
components of the covariant derivative in polar coordinates in the plane R2 in the usual polar
coordinates

Γrφφ = −r , Γφφr = r−1 = Γφrφ = r−1 ,

associated with the Euclidean metric

g = dr ⊗ dr + r2dθ ⊗ dθ .

One can also obtain the same result from the spherical coordinate expressions by ignoring φ, but
here the correspondence with R2 is with the vertical r-θ plane of constant azimuthal spherical
coordinate rather than the horizontal z-coordinate plane as in cylindrical coordinates. On the
other hand one can set θ = π/2 and get a direct correspondence with that horizontal plane as
in cylindrical coordinates, renaming only φ to θ. N

Example 6.2.1. normalized orthogonal coordinate frame Lie brackets
For simplicity we drop the barred notation to refer to the new coordinates. The following

calculation applies to any orthogonal coordinates xi.
The Lie brackets of the normalized coordinate frame vector fields lead to logarithmic deriva-

tives of the normalization factors

[eî, eĵ] = [(gii)
−1/2ei, (gjj)

−1/2ej] = (ln(gjj)
−1/2),̂ieĵ − (ln(gii)

−1/2),ĵeî

= (ln(gjj)
−1/2),̂iδ

k
jek̂ − (ln(gii)

−1/2),ĵδ
k
iek̂ = C k̂

îĵek̂ .

Thus the structure functions of the orthonormal frame can be written

C k̂
îĵek̂ = [(ln(gjj)

−1/2),̂iδ
k
j − (ln(gii)

−1/2),ĵδ
k
i] .

We shall see below that one can then directly evaluate the components of the connection in the
orthonormal frame in terms of these structure functions alone.

Alternatively, with only the knowledge of the orthogonal coordinate components of the
connection, one can repeat this Lie bracket derivative calculation for the covariant derivatives
of the normalized vectors in terms of the orthogonal coordinate frame vectors

∇eî eĵ = ∇
(gii)

−1/2ei
[(gjj)

−1/2ej] = (gii)
−1/2∇ei [(gjj)−1/2ej]

= (gii)
−1/2[(∇ei ln(gjj)

−1/2)eĵ + (gjj)
−1/2Γkijek]

= (gii)
−1/2[(∇ei ln(gjj)

−1/2)δkj + (gjj)
−1/2Γkij(gkk)

1/2]ek̂]

= Γk̂ îĵek̂ .

This can be re-expressed in terms of the connection 1-form matrix

ω̂ = (ωk̂ ĵ) = (Γk̂ îĵω
î) = (d[ln(gjj)

−1/2]δkj + (gkk)
1/2Γkij(gjj)

−1/2(gii)
−1/2ωî) .



6.2. Notation for covariant derivatives 359

The second term is just a rescaling of the components as though Γkij were the components
of a tensor (which it is, but a different tensor in different choices of frames!) while the first
term which is a diagonal matrix, is present to subtract the diagonal part of the second term
as a matrix because as we will see below, in an orthonormal frame, ω̂ must have zero diagonal
entries, and when index lowered (by at most sign changes since this is an orthonormal frame),
must be antisymmetric.

�
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6.3 Covariant differentiation and the general linear group

Suppose � is any linear (homogeneous) derivative operator which produces a (pq)-tensor field
�T from a (pq)-tensor T and which obeys the product rule for tensor products and contractions
thereof. Then � is entirely determined by how it acts on functions and how it acts on the frame
vector fields.

Consider �ei for the frame vector fields. Each such field �ei is again a vector field so it can
be expressed as a linear combination of the frame vector fields

�ei = �j iej , �j i = ωj(�ei) .

The entries of the square matrix of functions (�j i) are the “components of � with respect to
the frame,” where �j i is the jth component of the vector field �ei. This matrix represents a
linear transformation of the tangent space with respect to the frame.

However, by duality
ωi(ej) = δij

the contraction (or evaluation) of the dual frame covector fields with the frame vector fields are
constant functions (0 or 1) whose derivative must be zero no matter what � actually is, so by
the product rule

0 = �δij = �(ωi(ej)) = (�ωi)(ej) + ωi(�ej)︸ ︷︷ ︸
≡ �ij

→ ωi(�ej) = −�ij .

The first term is the jth component of the covector field �ωi, so this covector field is just

�ωi = [(�ωi)(ej)]ω
j = −�ijωj .

Thus the same matrix determines the components of �ωi but with a minus sign.
Now take any

(
p
q

)
-tensor field

T = T i···j··· ei ⊗ · · ·︸ ︷︷ ︸
p factors

⊗ωj ⊗ · · ·︸ ︷︷ ︸
q factors

.

This is a sum of products of functions (the components of T ), and tensor products of frame
vector fields and dual frame covector fields, so by the frame product rule

�T = (�T i···j···)ei ⊗ · · · ⊗ ωj ⊗ · · ·+ T i···j···(�ei)⊗ · · · ⊗ ωj ⊗ · · ·+ · · ·︸︷︷︸
p−1 terms

+ T i···j···ei ⊗ · · · ⊗ (�ωj)⊗ · · ·+ · · ·︸︷︷︸
q−1 terms

= �(T i···j···)ei ⊗ · · · ⊗ ωj ⊗ · · ·+ · · ·+ T i···j···(�
k
iek)⊗ · · · ⊗ ωj ⊗ · · ·+ · · ·

+ T i···j···ei ⊗ · · · ⊗ (−�jkωk)⊗ · · ·+ · · ·
= �(T i···j···)ei ⊗ · · · ⊗ ωj ⊗ · · ·+�ikT k···j···ei ⊗ · · · ⊗ ωj ⊗ · · ·+ · · ·
−�kjT i···k···ei ⊗ · · · ⊗ ωj ⊗ · · · − · · ·

= [�(T i···j···) +�ikT
k···
j··· + · · · −�kjT i···k··· − · · · ]ei ⊗ · · · ⊗ ωj ⊗ · · ·
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one obtains the component formula

[�T ]i···j··· = �(T i···j···) +�ikT
k···
j··· + · · ·︸ ︷︷ ︸

p terms

−�kjT i···k··· − · · ·︸ ︷︷ ︸
q terms

,

consisting of three kinds of terms: the � derivative applied to the component functions, and a
linear transformation of each contravariant index by �ij and of each covariant index by −�ij,
representing the contributions from the frame vector fields and dual frame 1-form fields. A
compact notation for these corrective terms can be introduced by defining

[σ(�)T ]i···j··· = �
i
kT

k···
j··· + · · · −�kjT i···k··· − · · · ,

so that
[�T ]i···j··· = �[T i···j···] + [σ(�)T ]i···j··· .

WARNING: In old fashioned tensor analysis, which only uses components and does not
introduce frame vectors or dual frame covectors, one drops the clarifying grouping delimiters
and

�T i···j··· means [�T ]i···j··· not � [T i···j···] ,

i.e., � is understood to be applied to the tensor and not just to the scalar component functions.
This notation no longer distinguishes between the derivative of the components and the compo-
nents of the derivative, so one has to be careful. This is true for the covariant derivative � = ∇
where T i···j··· ;k refers to the components [∇T ]i···j···k of the covariant derivative ∇T of T , not to
the covariant derivative of the component functions (which are always the ordinary derivatives
T i···j··· ,k).

The product rule and transformation matrices

The form of the corrective terms in the component formula for a derivative operator which arise
from the derivative of the frame and dual frame factors has a simple origin related to how a linear
transformation A on an n-dimensional vector space V induces an active linear transformation
ρ(p,q)(A) on each of the tensor spaces of (pq)-tensors above it, as already discussed at the end of
section 1.7. In terms of components with respect to a given basis ei, this is given by

xi → Aijx
j or x→ Ax : T i···j··· → [ρ(p,q)(A)T ]i···j··· = Aik · · ·A−1`

j · · ·T k···`··· .

As the points of the vector space move around, so too do the points in each of the vector spaces
of tensors of a given rank. However, this discussion requires some terminology, and we might
as well assume we are talking about V = Rn. None of this is necessary to accomplish our goals
but it does help explain why certain formulas arise naturally.

As already introduced in chapters 1 and 4, the set of all real n × n matrices A is an n2-
dimensional vector space called gl(n,R), which is easily identified with the space Rn2

by listing
the entries of the rows consecutively. The single condition detA = 0 on this space determines a
hypersurface through the zero matrix. The remaining open set of matrices in this vector space
whose determinant is instead nonzero is a group called the “general linear group” GL(n,R),
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where matrix multiplication is the group multiplication. This group in turn acts on the n-
dimensional vector space Rn as a group of linear “point transformations” of this space into
itself (namely a 1-1 mapping of points of the space into each other) by left multiplication of
vectors in Rn interpreted as column matrices

x→ ρ(1,0)(A)(x) = Ax .

This map A→ ρ(1,0)(A) from the matrix group into the group of linear transformations of Rn

into itself is called the identity representation of the matrix group, and under composition of
transformations it satisfies

ρ(1,0)(AB) = ρ(1,0)(A) ◦ ρ(1,0)(B) .

This just means that the result of two successive transformations on the space is the transfor-
mation corresponding to the matrix product.

In general a representation of a group is simply a map ρ from the group into the group of
linear transformations of some vector space which respects the group multiplication law: ρ(A)◦
ρ(B) = ρ(AB), i.e., the composition of two successive such linear transformations corresponds
to the group product of the corresponding group elements. When a basis is chosen in the
vector space, one has a matrix representing each such group element acting in this way, hence
the name “representation.” Maps between groups which satisfy this composition condition

ρ(AB) = ρ(A) ◦ ρ(B)

are called homomorphisms. The determinant function satisfies detAB = detA detB and is
therefore is a homomorphism from GL(n,R) into the multiplicative group of nonzero real
numbers, for example.

Given the identity representation ρ(1,0) of the matrix group GL(n,R), one automatically
has an infinite tower of tensor representations ρ(p,q) above it on each of the vector spaces of
(pq)-tensors. For example, covectors identified with row matrices xT satisfy

ρ(0,1)(A)(xT ) = xTA−1 ,

and hence the composition requirement is satisfied

ρ(0,1)(AB)(xT ) = xT (AB)−1 = xTB−1A−1 = ρ(0,1)(A) ◦ ρ(0,1)(B)(xT ) .

Suppose one has a one-parameter family of nonsingular matrices A(t) with A(0) = I. This
is just a curve through the identity matrix of the group GL(n,R), which we can think of as
Rn2

, and the derivative of ρ(A(t)) at t = 0 is the tangent vector to this curve identified with
a matrix in the same way tangent vectors to curves in Rn2

are identified with a vector in the
same space in the multivariable calculus approach. As illustrated suggestively in Fig. 6.1, then
ρ(A(t)) is a curve through the identity matrix of the representation group and one can calculate
its tangent vector at t = 0 using the product rule, which leads to one term for each factor of A
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Figure 6.1: A suggestive diagram of a curve A(t) of nonsingular matrices passing through
the identity matrix I acting on each of the points x of Rn by left multiplication (the map
ρ(1,0)). The derivative A′(0) of the curve at the identity matrix in the group is mapped onto the
derivative of the corresponding curve through each point x by the linear map σ, which defines
a linear vector field σ(A′(0))(x) on Rn.

or A−1 in the expression for ρ(A)T

d

dt

[
ρ(p,q)(A(t))

]∣∣
t=0

= Aik
′(0)T k···j··· + · · ·+ A−1k

j
′(0)T i···k··· + · · ·

= Aik
′(0)T k···j··· + · · · − Akj ′(0)T i···k··· − · · ·

= [σ(p,q)(A′(0))T ]i···j··· ,

where the derivative of the inverse matrix A−1′(0) = −A′(0) follows from differentiating the
relation

AikA
−1k

j = δij → 0 = Aik
′(0)A−1k

j(0) + Aik(0)A−1k
j
′(0) = Aij

′(0) + A−1i
j
′(0) .

The map B → σ(p,q)(B) defined above by

[σ(p,q)(B)T ]i···j··· = Bi
kT

k···
j··· + · · · −Bk

jT
i···
k··· − · · ·

on the space gl(n,R) of all n× n real matrices, which is the derivative of the map ρ(p,q) at the
identity matrix, is exactly how the extra corrective terms in the covariant derivative arise

T i···j··· ;k = T i···j··· ,k + [σ(p,q)(ωk)T ]i···j··· ,

where ωk = ([ωij]k) = (Γikj) is the kth component of the connection 1-form matrix. This latter
matrix 1-form, once evaluated on a vector field to yield a matrix function, acts as a linear
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transformation of each tangent space, lifted to a linear transformation on the tensor spaces
above it by the map σ(p,q).

The space of all n × n real matrices gl(n,R), within which GL(n,R) is the open set for
which the determinant function is nonzero, is referred to as the Lie algebra of the “Lie group”
GL(n,R). Recall that a Lie algebra is a vector space with a commutator, which in this case is
just the matrix commutator [A,B] = AB − BA. Much of the advances of twentieth century
physics was due to the mathematics of Lie groups and their Lie algebras.

This process of evaluating the tangent to a curve of matrices through the identity produces
an element of the Lie algebra gl(n,Rr). The corresponding process of differentiating the matrix
Lie group representation map ρ(p,q) produces the matrix Lie algebra representation map σ(p,q),
but now it is the Lie bracket matrix commutator which reflects the commutators of the matrix
Lie algebra itself.

Exercise 6.3.1.
matrix Lie algebra representation map

Convince yourself that the map σ(p,q), say for (p, q) = (0, 1), satisfies

[σ(A), σ(B)] = σ([A,B]) ,

i.e., the commutator can be done either before or after the map. This makes it a “Lie algebra”
homomorphism since it respects the commutator relations of the matrices.

�

Exercise 6.3.2.
rotation generator

Consider R2 and the curve of rotation matrices from section 5.3

S3 =

(
0 −1
1 0

)
, A(t) = etA =

(
cos t − sin t
sin t cos t

)
.

Show that S3 = A′(0) and that A′(0)x = L3, where the components of the vector field L3 are
L3 = 〈−y, x〉. This vector field L3 = x∂/∂y − y∂/∂x is said to generate the rotations about
the origin, as discussed in Section 5.2. Under a rotation by an angle t, points in the plane flow
along the flow lines of this vector field by a parameter interval t.

�

Exercise 6.3.3.
pseudoorthogonal generators

We already saw in the context of the Lorentz inner product in Section 1.6 that if a matrix
A preserves an inner product G by transforming it into itself under a change of basis

Gij = A−1m
iGmnA

−1n
j , G = A−1T GA−1 ,
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then it satisfies a generalized orthogonality condition

(GA)T = GA−1 .

since (GA)T = ATGT = ATG. The set of matrices A form a group called the orthogonal group
relative to that inner product. They preserve lengths and angles and in particular, if one starts
with an orthonormal basis with respect to the inner product, it maps orthonormal bases into
orthonormal bases. When G is the identity matrix as for the usual dot product expressed in
an orthonormal basis, this reduces to the orthogonal matrix condition that the transpose equal
the inverse.

a) Suppose A(t) is a curve of such matrices through the identity A(0) = I and take the
derivative B = A′(0) of this relation at t = 0, again using the result from above that A−1′(0) =
−A′(0), to show that the tangent matrix B must then satisfy a generalized antisymmetry
condition, namely the index lowered matrix is antisymmetric

(GB)T = −GB , GjkB
k
i = −GikB

k
j , Bji = −Bij .

b) Next show that the commutator of two matrices satisfying this condition again satisfies
the same condition,

(G [B,C])T = −G [B,C]↔ Gjm(Bm
nC

n
i − Cm

nB
n
i) = −Gim(Bm

nC
n
j − Cm

nB
n
i)

establishing the result that the set of matrices which are antisymmetric with respect to the
inner product (in exactly this sense) form a Lie algebra, which is just a vector space with a
commutator product which produces a new vector in the space from any two vectors which
belong to the space. This is the Lie algebra of the corresponding orthogonal matrix group.
Hint: insert factors of the identity matrix I = G−1G in between the two matrices and express
all the factors of the two matrices in terms of their index-lowered form so that one can use the
antisymmetry of the factor matrices to infer the antisymmetry of the commutator matrix.

�

Suppose ej is a general frame on Rn and we consider a transformation to another such frame
ēi = A−1jej with dual frame ω̄i = Aijω

j, where A is a position dependent matrix. Then it
is straightforward to calculate step by step a transformation law for expressing how the new
components of the covariant derivative are related to the old components. Starting with the



366 Chapter 6. Covariant derivatives

definition of the new components, we have

Γ̄kij = ω̄k
(
∇ēi ēj

)
(definition)

= Akpω
p
(
∇A−1m

iem
(A−1n

jen)
)

(substitution)

= AkpA
−1m

iω
p(∇em(A−1n

ien)︸ ︷︷ ︸
(∇emA−1n

i)en + A−1n
j∇emen︸ ︷︷ ︸
Γqmneq

) (linearity of ∇: ∇
X iei

Y = X i∇eiY )

(product rule)

(definition)

= AkpA
−1m

i[(∇emA−1n
j)δ

p
n + A−1n

jΓ
q
mnδ

p
q)] (evaluation: ωp(eq) = δpq)

= AkpA
−1m

i[(∇emA−1p
j) + A−1n

jΓ
p
mn] (contraction with delta)

= AkpA
−1m

i[(∇emA−1p
q)A

q
n + Γpmn]A−1n

j (clever, see afternote)

= AkpA
−1m

i[(dA
−1p

qA
q
n)(em) + Γpmn]A−1n

j , (definition: ∇emf = df(em))

= AkpdA
−1p

j(em)A−1m
i + AkpΓ

p
mnA

−1m
iA
−1n

j , (expand out)

where in the second to last line we introduced the Kronecker delta in a clever way

∇emA−1p
j = (∇emA−1p

q)δ
q
j = (∇emA−1p

q)A
q
nA
−1n

j .

The right term of the final line of the previous calculation corresponds exactly to the tensor
transformation law for a

(
1
2

)
-tensor field Γijk, but the first inhomogeneous additive term breaks

this transformation law. This means that the components of the connection are the components
of a different tensor in each different choice of frame.

Introducing the connection 1-form matrix

Γ̄kij = Akp[(dA
−1p

qA
q
n)(em) + [ω(em)]kn]A−1m

iA
−1n

j

= Akp[(dA
−1p

qA
q
n)(ēi) + [ω(ēi)]

k
n]A−1n

j ,

this takes the matrix form ω̄ = ω̄(ēi)ω̄
i, namely the transformation law for the connection

1-form matrix

ω̄ = A(ω + dA−1A)A−1 = AωA−1 + AdA−1

= B−1 ωB +B−1dB .

where the last line merely restates the result in terms of the inverse matrix B = A−1.

Exercise 6.3.4.
efficient use of connection 1-forms

By using the matrix of connection 1-forms, we can effortlessly reduce the previous somewhat
involved calculation (reminiscent of the ugly coordinate calculation in section 6.1) to a few lines.
Assume we have already evaluated the connection 1-form matrix ω1 = B1

−1dB1 for a frame
(e1)i = B1

j
i∂j related to some Cartesian coordinate frame, and consider a new such frame

(e2)i = (B2)ki(e1)k = (B2)ki(B1)jk∂j = (B1B2)j i∂j.
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Use the product rule and the product property of the inverse matrix to expand and simplify
in three successive lines arriving at

ω2 = (B1B2)−1d(B1B2)

= . . .

= . . .

= B2
−1ω1B2 +B2

−1 dB2

= A2 ω1A2
−1 + A2 dA2

−1 .

This shows the power of combining matrix notation with frame quantities. The first linear
term represents the tensor transformation law for the connection components (supressing one
explicit covariant index transformation by the contraction with the dual frame 1-forms), while
the second inhomogeneous term is essential for being able to make those components vanish in
a covariant constant frame.

�

Exercise 6.3.5.
properties of the vector covariant derivative component formula

a) Use the frame component formula

∇XY = Y i
;jX

jei = (Y i
,j + ΓijkY

k)Xj

to show that
[∇XY ]i = dY i(X) + ωij(X) .

This relies on the linearity of the covariant derivative in the differentiating vector field X, a
fact used at the beginning of the above long derivation for the transformation of the connection
components.

b) The covariant derivative is not linear over scalar function coefficients in the field being
differentiated but satisfies a product rule ∇X (fY ) = (∇Xf)Y + f∇XY . Show this using the
component formula.

c) Furthermore, show that ∇X (Y + Z) = ∇XY + ∇XZ, just to remind ourselves of the
sum rule for covariant differentiation.

�

The flat space Rn is characterized by the fact that it has a class of globally constant frames
for which the connection 1-form matrix is identically zero, but if one starts out in a general
frame expressed in general coordinates on Rn, not knowing how it is expressed in terms of
some Cartesian coordinate system, it is not obvious that the geometry defined by this covariant
derivative is really flat, and we will need some test of this. Characterizing flatness in this way
leads to the idea of curvature, which will be in a later chapter.
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6.4 Covariant constant tensor fields

SupposeX has is a constant vector field having constant components with respect to our original
standard Cartesian coordinates on Rn: Xm

,n = 0. We saw above that the new coordinate
component derivatives are

X̄ i
,j̄ ≡

∂X̄ i

∂x̄j
=
∂xn

∂x̄j
∂x̄i

∂xm
Xm

,n +
∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm =

∂xn

∂x̄j
∂2x̄i

∂xn∂xm
Xm .

These vanish only if
∂2x̄i

∂xn∂xm
= 0 .

The general solution of this condition viewed as a differential equation with unknowns x̄i is

x̄i = Ai j x
j + bi ,

where Aij and bj are constants. This corresponds to allowing new Cartesian coordinates adapted
to any basis of the vector space Rn (thus without any orthonormality restrictions) and with
any choice of origin. The mathematical structure associated with this larger class of Cartesian
coordinate systems for which no preferred origin exists is called an “affine structure”. An affine
space is basically a vector space modulo a choice of origin. Difference vectors between points in
the space make sense, but no absolute position vector does since that requires first an arbitrary
choice of origin.

When we think of “physical 3-space” whether doing calculus or physics, it is really this
affine space (since we have to arbitrarily choose an origin for our axes) together with the
Euclidean inner product for difference vectors that we work with. This inner product picks
out the orthonormal Cartesian coordinate systems as preferred, and are always assumed in
undergraduate multivariable calculus.

The general Cartesian coordinate systems are tied to the global Euclidean geometry of
flat space. Any constant vector field simply has constant components with respect to such
a coordinate system, thus enabling the identification of all the tangent spaces with the same
vector space which in turn can be identified with the whole space, hiding the distinction between
vectors and tangent vectors that is typical of the first pass at undergraduate multivariable
calculus. The covariant derivative enables us to maintain this connection among the tangent
spaces at different points of space even in non-Cartesian coordinate systems.

A Cartesian coordinate frame {ei} is globally covariant constant in the sense that its co-
variant derivatives ∇ei are everywhere zero. We will see below that the existence of such a
globally constant frame is what characterizes the flatness of space.

Some covariant constant tensors: ∇T = 0

The zero tensor of any rank is obviously covariant constant, but this is rather uninteresting.
Nonzero covariant constant tensors may not even exist in curved geometry, as we will see below,
so they are worth examining.
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Some tensors are automatically covariant constant. The Kronecker delta tensor field δ =
δij ei⊗ωj = ei⊗ωi has constant components 1 or 0 in every frame {ei}, not only in a Cartesian
coordinate frame, so the component derivative term in the formula for its covariant derivative
is zero and the remaining terms automatically cancel

δij;k = δij,k︸︷︷︸
δij ,k=0

+Γik`δ
`
j − Γ`kjδ

i
` = Γikj − Γikj = 0 .

This confirms its covariant constancy, i.e., 5δ = 0. This constancy allows the covariant deriva-
tive to commute with contraction, which is the fundamental operation associated with linearity
that leads to the idea of a tensor in the first place.

The covariant derivative is defined to satisfy a product rule applying to tensor products of
tensors

∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S)

as well as to be linear: the covariant derivative of a constant coefficient linear combination of
tensor fields equals that linear combination of the covariant derivatives of those tensor fields.
Thus any tensor constructed from tensor products of covariant constant tensor fields or from
constant linear combinations of such constant tensor fields will be covariant constant. The
generalized Kronecker deltas are constructed from ordinary Kronecker deltas in this way

δ(p) = δ
i1···ip
j1···jpei1 ⊗ · · · eipωj1 ⊗ · · ·ωjp , δ

i1···ip
j1···jp = p! δi1 [j1δ

ip
jp] .

All of these are therefore constant tensor fields on Rn.

Exercise 6.4.1.
covariant constancy of generalized Kronecker delta

Use the component formula for the covariant derivative to calculate the covariant derivative
of δ(2) for an arbitrary frame {ei} to convince yourself that this is true

δ(2) = δijmnei ⊗ ej ⊗ ωm ⊗ ωn , δijmn;k = . . . = 0 .

�

Exercise 6.4.2.
constant fields in cylindrical coordinates

The only nonzero connection components in cylindrical coordinates are Γ̄ρφφ = −ρ, Γ̄φφρ =
ρ−1 = Γ̄φρφ. Since the connection has no components along z, the covariant derivatives of
∂/∂z = ēz and dz = ωz are zero:

∇ēi ēz = Γ̄j iz ēj = 0 , ∇ēidω
z = −Γzikω

k = 0 ,

i.e., ∂/∂z and dz are covariant constant as we already knew before from our definition of covari-
ant differentiation as ordinary differentiation in Cartesian coordinates. This is not obvious for
the remaining two Cartesian coordinate derivatives when expressed in cylindrical coordinates.
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From the expressions given above, the nonzero cylindrical coordinate components are

∂

∂x
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
↔
[
∂

∂x

]ρ
= cos ρ ,

[
∂

∂x

]φ
= −sinφ

ρ
,

∂

∂y
= sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
↔
[
∂

∂y

]ρ
= sin ρ ,

[
∂

∂y

]φ
=

cosφ

ρ
.

Use the coordinate formula X i
;j = X i

,j + Γ̄ijkX
k = 0 to show that the covariant derivatives of

both ∂/∂x and ∂/∂y are zero. Repeat for the dual 1-forms, whose nonzero components are

dx = cosφ dρ− ρ sinφ dφ↔ [dx]ρ = cosφ , [dx]φ = −ρ sinφ ,

dy = sinφ dρ+ ρ cosφ dφ↔ [dy]ρ = sinφ , [dy]φ = ρ cosφ .

�



6.5. The clever way of evaluating the components of the covariant derivative 371

6.5 The clever way of evaluating the components of the

covariant derivative

Suppose {xi} are Cartesian coordinates on Rn, and g = gijdx
i ⊗ dxj is any constant metric on

Rn coming from an inner product on the vector space Rn, i.e., the constant matrix g = (gij) is
symmetric and has nonzero determinant so that it can be inverted. Then its covariant derivative
must vanish. Expressing this in a general coordinate system leads to

0 = 5g ←→ 0 = ḡij;k = ḡij,k − ḡ`jΓ̄`ki − ḡi`Γ̄`kj
≡ ḡij,k − Γ̄jki − Γ̄ikj ,

where the last two terms have been rewritten using the index lowering notation, so solving for
the metric derivative term leads to

ḡij,k = Γ̄jki + Γ̄ikj = 2Γ̄(j|k|i) ,

where the vertical lines exclude the middle index k from the symmetrization over the outer
indices. The left hand side must be symmetric in these indices ij so the right hand side must
agree and it does.

This result expresses the ordinary derivatives of the metric components in terms of a certain
symmetric part of the index-lowered form of the components of the covariant derivative. By
definition

Γ̄ijk =
∂x̄i

∂xm
∂2x̄m

∂x̄j∂x̄k
= Γ̄ikj

is symmetric in its lower index pair (since partial derivatives commute) which have n(n+ 1)/2
independent components for each of the n values of the upper index for a total of n2(n+ 1)/2
independent components. But the collection of partial derivatives of ḡij (namely n(n+ 1)/2 in-
dependent components times n independent derivatives) has the same number of independent
components, so it is not surprising that they are equivalent, i.e., contain the same informa-
tion in different packaging—in other words one can invert the above relationship to express
the components of the covariant derivative in terms of the ordinary derivatives of the metric
components.

This is a classic calculation of differential geometry. One forms the “anticyclic” linear
combination (suggestively: ijk− jki+ kij compared to the cyclic combination ijk+ jki+ kij)
of this same equation

ḡij,k = Γ̄ikj + Γ̄jki ,

−ḡjk,i = −Γ̄jik − Γ̄kij ,

ḡki,j = Γ̄kji + Γ̄ijk ,

adding them and regrouping terms in pairs which have the same first index, using the symmetry
in the last two indices to get the simple result

(>) ḡij,k − ḡjk,i + ḡki,j = (Γ̄ikj + Γ̄ijk) + (Γ̄jki − Γ̄jik)− (Γ̄kij − Γ̄kji) = 2Γ̄ijk
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so

Γ̄ijk =
1

2
(ḡij,k − ḡjk,i + ḡki,j)

and then by raising the first index back to its original position

Γ̄ijk = ḡi`Γ̄`jk =
1

2
ḡi`(ḡ`j,k − ḡjk,` + ḡk`,j) .

In other words as long as the metric is a covariant constant nondegenerate symmetric(
0
2

)
-tensor field on Rn (corresponding to a symmetric nondegenerate inner product on the

vector space Rn), the components of the covariant derivative can be represented in terms of
the components of the metric and their derivatives in a given coordinate system. This can be
turned around. If a connection is to have the property that a given metric is covariant constant,
and if it is a symmetric connection as automatically occurs for the flat space Rn, then it must
have exactly the coordinate components given in this formula. Such a connection is called a
metric connection. Every metric determines a symmetric connection through this condition of
covariant constancy and symmetry of the connection, defined in a coordinate system by this
formula.

No matter what nonsingular constant symmetric matrix (gij) we start with, the connection
components in a Cartesian coordinate system will be all zero and hence the class of covariant
constant tensor fields will not change. The covariant derivative on Rn is really only connected
with the symmetry of Rn under the inhomogeneous general linear group of translations and
linear transformations about any point, not with the Euclidean inner product.

Key to Riemannian geometry and surface geometry in R3

The fact that the components of the connection are completely determined by the metric means
that if all we know about a space is its metric in some coordinate system, we can introduce the
associated symmetric connection and covariant differentiation and study the geometry exactly
as in R3 in a non-Cartesian coordinate system. It is not necessary to have an underlying flat
geometry that gives rise to the metric as in our development.

In fact the first example where we can use this idea which we encounter already in multivari-
able calculus is the case of parametrized surfaces in R3, where the three Cartesian coordinates
are parametrized by two variables (u, v)

x = x(u, v) , y = y(u, v) , z = z(u, v) ,

or using indexed coordinates

x1 = x1(u1, u2) , x2 = x2(u1, u2) , x3 = x3(u1, u2) .

If we substitute these expressions into the Euclidean metric and expand the differentials, we
collapse the metric to a 2-dimensional metric describing only the geometry of the surface dis-
placements

ds2 = δij dx
i(u1, u2) dxj(u1, u2) = δij

∂xi

∂uM
∂xj

∂uN
duMduN = gMNdu

MduN ,
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where M,N = 1, 2. This is the starting point for the study of the intrinsic geometry of the
surface, which is one of the key topics of classical differential geometry. The expression ds2 is
called the line element associated with the metric but often is sloppily referred to as the metric,
which of course is instead the second rank tensor

g = gMN du
m ⊗ duN .

In particular we can fix our attention on any two of the three new coordinates in cylindrical
or spherical coordinates, holding the remaining one fixed, to get the intrinsic metric on the
coordinate surfaces, the most interesting of which describes the geometry of the spheres of radius
r0 in spherical coordinates, although the cones of constant θ0 are also interesting. Appendix
A.4 discusses parametrized surfaces in R3 with both the Euclidean and Minkowski geometry.

Exercise 6.5.1.
orthogonal coordinate connection components

For an orthogonal coordinate system the metric component matrix is diagonal, so index
shifting amounts to scaling components by certain diagonal metric component factors, so the
above formula is easy to evaluate in practice. Show that it reduces to the following formula

Γ̄ijk =
1

2
[(ln ḡii),jδ

i
k + (ln ḡii),kδ

i
j − ḡiiḡjj,iδjk] .

�

Exercise 6.5.2.
symmetry of connection components

Show that the general formula for Γ̄ijk is symmetric in its lower indices jk.
�

Exercise 6.5.3.
differential log metric determinant

Contract the following formula with gij

ḡij,k = Γ̄jki + Γ̄ikj = 2Γ̄(j|k|i)

and use the previously derived formula d ln(det ḡ)1/2 = 1
2
ḡijdḡij to derive the relation(

ln(det ḡ)1/2
)

;k
= Γ̄iki .

This relation is needed below to show that the unit volume n-form is covariant constant, and
to simplify the expression for the divergence of a vector field in general coordinates.

Note that although εi1...in has the same numerical values in each frame, it represents different
tensors in different frames, so it is not covariant constant. However, the unit n-form η with



374 Chapter 6. Covariant derivatives

components η̄i1...in is covariant constant, as are the metric ḡij and its inverse ḡij. Suppose ei is
an oriented coordinate frame so that the formula

η̄i1...in = (det ḡ)1/2εi1...in

holds. Now evaluate η̄i1...in;k using the previous result to show that it vanishes. To simplify the
resulting formula, it is enough to evaluate the component η1...n;k since it remains antisymmetric
in those indices and this is the only nonvanishing component. Notice that the n negative terms
which follow the first derivative term in the formula end up combining into the trace Γ̄iki of
the outer indices of the components of the covariant derivative, which exactly cancels the first
term.

�

Exercise 6.5.4.
trace of the connection components

Using the relation

dḡ−1 = ḡ−1dḡ ḡ−1 , ḡij ,k = −ḡimḡmn,kḡnj

which follows from the differential of ḡ−1ḡ = I, show that

Γ̄ikk = Γ̄ijkḡ
jk = ḡik,k .

�

Exercise 6.5.5.
cylindrical coordinate connection components

Use the formula involving the metric partial derivatives to recalculate the nonzero com-
ponents Γ̄ijk of the covariant derivative in cylindrical coordinates in terms of the nonzero
components ḡρρ = 1 = ḡzz, ḡφφ = ρ2 of the Euclidean metric. If you feel ambitious, repeat for
spherical coordinates.

�

Exercise 6.5.6.
covariant constant tensor

For either polar coordinates in the plane or cylindrical coordinates in space, the constant
symmetric tensor

T = dx⊗ dx = (cosφ dρ− ρ sinφ dφ)⊗ (cosφ dρ− ρ sinφ dφ)

= cos2 φ︸ ︷︷ ︸
Tρρ

dρ⊗ dρ+ ρ2 sin2 φ︸ ︷︷ ︸
Tφφ

dφ⊗ dφ−ρ sinφ cosφ︸ ︷︷ ︸
Tρφ=Tφρ

(dρ⊗ dφ+ dφ⊗ dρ)

is covariant constant: T̄ij;k = 0. Verify that all components of this covariant derivative are
indeed zero in cylindrical coordinates using the result of the previous exercise.

�
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6.6 Noncoordinate frames

Well, we are in good shape for computing the components of the covariant derivative in a
coordinate frame entirely in terms of the metric in that coordinate system alone, but what is
the corresponding formula for a more general frame with nonzero structure functions?

The expression for the Lie bracket in a coordinate frame

[X, Y ]k = XY k − Y Xk = Y k,iX
i −Xk

,iY
i

is the “ordinary derivative” commutator of two vector derivatives. Suppose we introduce the
corresponding covariant derivative commutator still in a coordinate frame, which is the “comma
goes to semi-colon” version of the previous formula

[∇XY −∇YX] = Y k
;iX

i −Xk
;iY

i

= Y k
,iX

i −Xk
,iY

i + ΓkijX
iY j − ΓkijY

iXj︸ ︷︷ ︸
ΓkjiX

iY j

= [X, Y ]k + 2 Γk [ij]︸︷︷︸
= 0

X iY j

where a convenient relabeling of the indices permits a factoring of the vector field factors,
leading to the antisymmetric part of the covariant components of the connection, which are
zero in a coordinate frame, so we have the result

∇XY −∇YX = [X, Y ] .

Although obtained in a coordinate frame, this equation is valid for arbitrary vector fields X and
Y since it is a frame independent formula involving tensor fields. Another way of obtaining this
result is to notice that in a Cartesian coordinate frame, there is no difference between ordinary
and covariant differentiation so the equation which holds there must be a tensor equation valid
independent of what frame we choose to use.

Thus applying it to the frame vectors of a general frame

[ei, ej] = Ck
ijek ,

whose Lie brackets define the structure functions Ck
ij for the frame, we obtain

∇eiej︸ ︷︷ ︸
Γkijek

−∇ejei︸ ︷︷ ︸
Γkjiek

= [ei, ej]︸ ︷︷ ︸
Ck

ijek

[Γkij − Γkji]ek = Ck
ijek → Γkij − Γkji = Ck

ij

or

Γk [ij] =
1

2
Ck

ij .
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In a noncoordinate frame, the antisymmetric part of the components of the covariant derivative
in the lower index pair equals the corresponding structure function which is itself antisymmetric
in those indices. The symmetry of the connection components in those indices in a coordinate
frame then follows from the vanishing of the structure functions for a coordinate frame.

Let us reconsider the above derivation of the formula for the components of the connection
in terms of the metric components in a coordinate frame. There we used the symmetry of Γ̄ijk
in its lower indices in a coordinate frame to go on and invert the relationship between Γ̄ijk
and the derivative of the metric. Let’s drop the bar notation. The anticylic combination of
the condition resulting from the covariant constancy of the metric is the point where we can
continue the derivation in a noncoordinate frame but now using the result for the antisymmetric
part of the connection components

gij,k − gjk,i + gki,j = ( Γikj︸︷︷︸
Γijk − Cijk

+Γijk) + (Γjki − Γjik︸ ︷︷ ︸
Cjki

)− (Γkij − Γkji︸ ︷︷ ︸
Ckij

) ,

where we extend index-shifting to the structure functions

Cijk = gi`C
`
jk

so that the antisymmetric part is

Γijk − Γikj = Cijk or Γijk = Γikj + Cijk .

Solving the above equation for Γijk in terms of the derivatives of the metric components
now yields

Γijk =
1

2
[gij,k − gjk,i + gki,j + Cijk − Cjki + Ckij]

=
1

2
[gij,k − gjk,i + gki,j + Cijk + Cjik + Ckij] ,

Γijk =
1

2
gi`(gij,k − gjk,i + gki,j)︸ ︷︷ ︸

≡ { i
jk
}

+
1

2
(Ci

jk + Cj
i
k + Ck

i
j) .

Exercise 6.6.1.
antisymmetric part of connection components

The first part of this formula { i
jk
} is called a Christoffel symbol and we saw above that it

is symmetric in its lower indices. Show that the antisymmetric part of the second contribution
involving the structure functions reduces to 1

2
Ci

jk as it should. In the early stages of differential
geometry only coordinate frames were used, so there was no distinction between Christoffel
symbols and connection components.
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�

The formula for the components of the connection in a general frame has two extremes. In
a coordinate frame Ci

jk = 0 so the components of the connection reduce to the Christoffel
symbols alone Γijk = { i

jk
}. In an orthonormal frame gij = δij so the component derivative terms

are zero gij,k = 0 and { i
jk
} = 0 and only the contributions from the structure functions remain

Γijk = { i
jk
} , (coordinate frame)

Γijk =
1

2
(Ci

jk − Cjki + Ckj
i) . (orthonormal frame)

(or constant metric components)

In any other kind of frame in which the metric components are not constants, both parts
contribute. Such frames on the rotation group manifold SO(3,R) are necessary to describe the
motion of a rigid body, and will serve as a useful example of many aspects of metric geometry
that we will explore later.

For an orthonormal frame {ei}, the covariant constancy of the metric gij;k = 0 and constancy
of its components gij,k = 0 imply

0 = gij;k = gij,k − g`jΓ`ki − gi`Γ`kj = 2Γ̄(j|k|i) .

In other words the symmetric part of the index-lowered connection 1-form matrix is zero, so
that it is an antisymmetric matrix

ω = (ωij) = (Γikjω
j) , ωij + ωji = 0 .

When the metric is positive-definite as in the Euclidean metric on Rn, index raising does not
change components so that the original connection 1-form matrix is antisymmetric.

Exercise 6.6.2.
cylindrical coordinate orthonormal frame connection components

As an alternative to example 6.6.2??, use the above formula and the values of the structure
functions evaluated in an earlier exercise to evaluate the components of the covariant derivatives
of the orthonormal frame vector fields {eρ̂, eφ̂, eẑ} associated with cylindrical coordinates.

Then express your results in terms of the matrix of connection 1-forms, obtaining the result

ω =

0 −1 0
1 0 0
0 0 0

 dφ .

�
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Exercise 6.6.3.
constant metric component connection

Some applications have orthogonal frames with constant inner products which are not equal
to ±1 like orthonormal frames, but simply constants of the appropriate sign. Suppose we have
a new metric on a 3-dimensional space in such an orthogonal frame {ea} with a constant metric
component matrix g = diag(g11, g22, g33) and having constant structure functions Ca

bc which
vanish unless (a, b, c) is a permutation of (1, 2, 3).

a) Show that

Γ(ca)b =
1

2
(gccC

c
ab − gaaCa

bc) .

b) Show that for a vector field X = Xaea

[∇XX[]a = Xb∇bXa = . . .

= Xa,bX
b − 1

2
(gccC

c
ab − gaaCa

bc)X
cXb .

c) Assume Cc
ab = ±εcab and gaa ≡ Ia. Show that this becomes

[∇XX[]a = IadX
a(X)− (Ic − Ia)Cc

abX
cXb︸ ︷︷ ︸

(a, b, c) cyclic permutation of (1,2,3), no sums

.

This turns out to be the key to the equations of motion of a rigid body in terms of the
diagonalized moment of inertia tensor, called Euler’s equations. We’ll get to this in chapter 8.
Note that for the isotropic case when I1 = I2 = I3 = I, this reduces to simply to I dXa(X). For
a symmetric body two of the three are equal, say I1 = I2, so only the last formula simplifies:
[∇XX[]3 = I3dX

3(X).
�

Exercise 6.6.4.
the torsion tensor

We showed above that the right hand side of the following expression defines an antisym-
metric tensor since it is bilinear in X and Y and changes sign with their interchange

T (X, Y ) = ∇XY −∇YX − [X, Y ] = −T (Y,X)

whose components are defined by (twice) the antisymmetric part of the connection components
on the lower indices in a coordinate frame, or that quantity minus the structure function
components in the general case, namely

[T (X, Y )]k = [∇XY −∇YX − [X, Y ]]k = (2Γk [ij] − Ck
ij)X

iY j ≡ T kijX
iY j ,
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leading to the formula
2Γk [ij] = Ck

ij + T kij .

This “torsion tensor” is identically zero for the flat geometry of Rn with any covariant constant
metric. The structure component functions Ck

ij are the components of a (1
2)-tensor, but which

depends on the frame, in contrast with this torsion tensor which is independent of the frame
or coordinate system used to evaluate it. It can be introduced as an additional independent
field to generalize the geometry in a way that is compatible with a metric, which remains
covariant constant. In that case using this last formula to replace the antisymmetric part of
the connection components in our above general derivation adds one more anticyclic set of
terms to the general formula for the components of the connection entering exactly like the
structure functions. Show that you get

Γijk =
1

2
gi`(gij,k − gjk,i + gki,j) +

1

2
(Ci

jk + Cj
i
k + Ck

i
j) +

1

2
(T ijk + Tj

i
k + Tk

i
j) .

Torsion theories of gravity attempted to relate this additional field to spin densities in matter,
but were not too successful.

�
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Figure 6.2: Starting from an initial point and flowing along the flow lines of two vector fields
in succession in opposite orders in general leads to two different terminal points. The failure of
the quadrilateral formed by these flow lines for the same value t = ε of the flow line parameter
to close at the far corner is described by the tangent vector ε2[X, Y ] as ε→ 0.

6.7 Geometric interpretation of the Lie bracket

We introduced the Lie bracket as a convenient computational quantity first for characterizing
the coordinate frame vector fields and second for evaluating the components of the connection
in a noncoordinate frame, but the Lie bracket is actually a fundamental geometrical operation
associated with the mathematics of transformation groups like the group of rotations and
translations of ordinary space. Its geometrical interpretation also tells us something about the
formula for the curvature tensor in a noncoordinate frame.

In section 5.3 we introduced the flow lines of a vector field X and its one-parameter group
of transformations that allow points of space to simultaneously flow along these flow lines by
natural parameter intervals

xi → x̄i = f iX(x, t) = etXxi = xi + tX i + . . . .

Suppose we have two vector fields and consider flowing first along one by a parameter interval
t and then along the other by the same interval. If instead we switch the order of the vector
fields in this sequence, we end up in general at different final points, starting from the same
initial point, as illustrated in Fig. 6.2. In the limit t→ 0 we can identify this difference with a
difference vector in the tangent space at the starting point, and it is easily evaluated using the
simple approximate formula which amounts to a power series approximation to the change in
any function F along a vector field, equivalently the interpretation of the directional derivative
along X via the chain rule

F (etX) = etXF (x) = (1 + tX +
t2

2
X2 + . . .)F (x) = F (x) + tXF (x) +

t2

2
X2F (x) . . . .
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We can apply this to the transformation functions themselves, keeping only terms up to order
two in the series expansion. The difference is given by

f iY (fX(x, t), t)− f iX(fY (x, t), t)

= etXf iY (x, t)− etY f iX(x, t) = (etXetY − etY etX)xi

= (1 + tX +
t2

2
X2 + . . .)(1 + tY +

t2

2
Y 2 + . . .)xi

− (1 + tY +
t2

2
Y 2 + . . .)(1 + tX +

t2

2
X2 + . . .)xi

= (1 + tY +
t2

2
Y 2 + . . .)xi − (1 + tX +

t2

2
X2 + . . .)

+ (tX + t2XY + . . .)xi − (tY + t2Y X + . . .)

+ (
t2

2
X2 + . . .)xi − t2

2
Y 2 + . . .)

≈ t2[X, Y ]xi = t2[X, Y ]i .

In other words if the two vector fields do not commute, the four curve segments do not
close at second order in t. This does not occur for a pair of coordinate vector fields, where this
forms a parallelogram through all orders in t since the translations along one coordinate line
and then along another coordinate line commute.

Lie brackets and transformation groups

When a set of vector fields does not commute, the next more general special relationship they
can have is to be a set which is closed under the Lie bracket. In other words the Lie bracket
of any two elements of the set again belongs to the set. When the set of vector fields forms a
finite-dimensional vector space g with a basis {E(a)}, a = 1, . . . , r such that any element of the
space can be represented as X = XaE(a), where Xa are constants, then closure means that the
Lie bracket defines a (1

2)-tensor (antisymmetric in its lower indices) on this vector space called
the structure constant tensor, whose components are defined by

[E(a), E(b)] = Cc
abE(c) , Cc

ab = −Cc
ba .

These components Cc
ab are constants called the structure constants of the Lie algebra, and

they transform like a (1
2)-tensor under a change of basis of this Lie algebra. The Lie brackets

of any two elements of the Lie algebra are then evaluated by multilinearity, using the fact that
the components with respect to this basis of the Lie algebra are constants

[X, Y ] = [XaE(a), Y
bE(b)] = XaY b[E(a), E(b)] = Cc

abX
aY bE(c) .

Because of the cyclic Jacobi identity satisfied by any commutation operation, these structure
constants satisfy a quadratic identity. By multilinearity

[[E(a), E(b)], E(c)] = Cd
ab[E(d), E(c)] = Cd

abC
e
dcE(e)
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Figure 6.3: Starting from an initial point and flowing along the flow lines of two vector fields
of a Lie algebra in succession should be equivalent to flowing along the flow lines of a third
vector field of the Lie algebra.

so using this in the Jacobi identity one has

0 = [[E(a), E(b)], E(c)] + [[E(b), E(c)], E(a)] + [[E(c), E(a)], E(b)]

= [Cd
abC

e
dc + Cd

bcC
e
da + Cd

caC
e
db]E(e) ,

so
Cd

abC
e
dc + Cd

bcC
e
da + Cd

caC
e
db = −2Cd

[abC
e
c]d = 0 .

Exercise 6.7.1.
Jacobi identity components

Use the antisymmetry of the structure constant tensor in its lower indices, plus the definition
of the antisymmetric part of a 3 index tensor to verify the previous shortened component form
of the Jacobi identity.

�

Any vector field on Rn determines a 1-parameter group of transformations defined by allow-
ing the points of the space to flow along its flow lines as discussed in section 5.3 for the case of
vector fields whose Cartesian coordinate components are linear functions of those coordinates.
The vector field is said to “generate” this group of point transformations, each of which is a
1-1 map of the space into itself. In terms of the Cartesian coordinates, the coordinates of the
new points are related to their old coordinates locally by an exponential relationship

xi → etXxi .
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This is true for each element of a Lie algebra g. If the set of these 1-parameter groups themselves
form a group together, then following one such transformation by one for another vector field
in the set should be equivalent to a single transformation associated with a third vector field
in the set as illustrated in Fig. 6.3.

One of the most important results about transformation groups is that the set of all 1-
parameter groups associated with the vector fields in an r-dimensional Lie algebra of vector
fields form an r-dimensional group of transformations called a Lie group. The vector fields of
the Lie algebra are said to generate this group of transformations. When the structure constant
tensor vanishes, the vector fields commute and they generate an Abelian group of commuting
transformations, and one can find local coordinates in which a basis of those commuting vec-
tor fields are coordinate derivatives and the transformations reduce to translations in those
coordinates (i.e., adding constants to those coordinates).

For example consider the case of R3 where we have introduced three commuting vector
fields pi = ∂/∂xi, just the standard Cartesian coordinate derivatives, and three noncommuting
vector fields Li = εijkx

j∂/∂xk, which satisfy the cyclic commutator relationships

[Li, Lj] = −εijkLk , [Li, pj] = −εijkpk , [pi, pj] = 0 .

Remark.
The translation vector fields are denoted by the suggestive notation ~p, in terms of which the
rotation vector fields are ~r× ~p. This is the notation reserved for linear momentum and angular
momentum respectively. There is good reason for this but we are not ready to appreciate the
reasons why yet. N

Exercise 6.7.2.
commutators of rotations and translations

We already calculated the first subset of these commutation relations earlier, which corre-
spond to the (nonzero independent) structure constant values C1

23 = C2
31 = C3

12 = −1, while
the final subset are obvious since the pj are partial derivative operators and commute. Verify
the second subset of commutation relations for the generators of the translations and rotations.

�

These relationships tell us that {pi} are the basis of the 3-dimensional Abelian Lie algebra
of the constant vector fields on R3, while the three vector fields {Li} are the basis of the 3-
dimensional Lie algebra associated with the rotations of the space into itself, and together they
form a 6-dimensional Lie algebra in which both are Lie subalgebras. The flow of the first set
of vector fields are the translations of space into itself

xi → ea
jpjxi = xi + ai ≡ T i(x, a) .

The flow of the second set are the rotations of the space about the origin

xi → eθn
kLkxi = [eθn

kSk ]ijx
j ≡ Ri(x, θ n) .
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since

Lkx
i = εkjmx

j ∂

∂xm
xi = εkjmx

j ∂x
i

∂xm
= εkjmx

jδim = εkjix
j = εikjx

j ≡ [Sk]
i
jx
j .

This transformation represents a rotation of space by an angle θ about the axis through the
origin with direction equal to the unit vector n, with the direction of the rotation about this axis
determined by the right hand rule. Together the rotations and translations form a 6-dimensional
group called the Euclidean group or inhomogeneous orthogonal group E(3) = IO(3,R) of R3.

Exercise 6.7.3.
Lie brackets of linear trasformation generating vector fields

Consider the action of a matrix group on Rn by matrix multiplication. For any n × n
matrix A in the Lie algebra of the matrix group, its family of matrix exponentials act on Rn

with group parameter t which is additive for successive matrix multiplications, making this an
Abelian group

x→ etA x .

For each matrix in its Lie algebra we can associate a linear vector field

ξ(A) = Aijx
j∂i .

a) Show that the map −ξ is a Lie bracket isomorphism, namely that it maps the matrix Lie
bracket onto the corresponding vector field Lie bracket

[−ξ(A),−ξ(B)] = −ξ([A,B]) ↔ [ξ(A), ξ(B)] = −ξ([A,B]) .

b) Show that this explains the opposite signs of the Lie brackets for the rotation group
vector fields Lk = (Lk)

i
jx
j∂i = εikjx

j∂i = εkjix
j∂i compared to the matrix commutators of the

corresponding matrices. We will understand the significance of this sign below.
�

Exercise 6.7.4.
polar coordinate vector fields

We already showed in Exercise 5.4.6 that the vector field Dr = (xi/r)∂/∂xi (where r =
(δijx

ixj)1/2) commutes with all three Li vector fields generating rotations in R3. Show that
the analogous vector field in R2 commutes with L3. This means that locally one can find
coordinates in which they reduce to coordinate derivatives, and locally the two vector fields
generate an Abelian transformation group. However, the adapted coordinates are just polar
coordinates in the plane (in terms of which Dr = ∂/∂r, L3 = ∂/∂φ), and while translations
in the polar angle are fine, translations in the radial direction have a big problem with the
origin where points inside a circle about the origin crash into each other under translations by
a negative number, and under translations by a positive number, some points inside a circle
near the origin have no point from which they are translated. Thus such transformations fail
to be 1-1. Clearly, one needs some global considerations as well to avoid such problems.
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Figure 6.4: Needs figure.

�

Exercise 6.7.5.
3-sphere vector fields

We investigated the 2-to-1 relationship between the rotations SO(3,R) and the unit 3-sphere
S3 in R4 through the group SU(2) in Exercise 4.5.9. The 3-sphere with its antipodal points
identified is in a 1-1 correspondence with the 3-dimensional rotation group.

a) We investigated the 4-dimensional rotation group SO(4,R) action on the 3-sphere in
Exercise 4.5.6. There we defined its matrix generators by

(Lij)
mn = −δmnij or (Lij)

m
n = −δmkij δkn

and introduced the following new basis of the Lie algebra

Ea =
1

2
(L4a − Lbc) , Ẽa =

1

2
(L4a + Lbc) . (a, b, c) cyclic permutation of (1, 2, 3)

If you did not do so then, use a computer algebra system to show that the two vector subspaces
spanned by {Ea} and {Ẽa} are mutually commuting matrix Lie subalgebras with the following
commutation relations

[Ea, Eb] = −εabcEc , [Ea, Ẽb] = 0 , [Ẽa, Ẽb] = εabcẼc .

which have the same commutation relations under the correspondence Ea ↔ −Ẽa. Thus the
6-dimensional Lie algebra of SO(4,R) is the direct sum of two mutually commuting copies of
the 3-dimensional Lie algebra of SO(3,R). These turn out to correspond to the right and left
translations of the group SU(2) into itself, which we will not pursue here.

b) Define the corresponding vector field generators by

Lij =
(
Lij
)m

nx
n∂m = xi∂j − xj∂i , i, j, k, . . . = 1, 2, 3, 4

(check this evaluation!) and the related vector fields

ea =
1

2
(L4a − Lbc) , ẽa =

1

2
(L4a + Lbc) , (a, b, c) cyclic permutation of (1, 2, 3)

which have the sign-reversed commutation relations compared to the corresponding matrices

[Ea, Eb] = εabcEc , [Ea, Ẽb] = 0 , [Ẽa, Ẽb] = −εabcẼc .
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c) Show that the Cartesian components of these vector fields are

~e1 =
1

2
〈x4, x3,−x2,−x1〉 , ~̃e1 =

1

2
〈x4,−x3, x2,−x1〉 ,

~e2 =
1

2
〈−x3, x4, x1,−x2〉 , ~̃e2 =

1

2
〈x3, x4,−x1,−x2〉 ,

~e3 =
1

2
〈x2,−x1, x4,−x3〉 , ~̃e3 =

1

2
〈−x2, x1, x4,−x3〉 ,

satisfying

ea · eb =
1

4

(
δijx

ixj
)
δab = ẽa · ẽb .

Then show that these are all orthogonal to the radial position vector field

er = xi∂i .

Thus {2ea} and {2ẽa} are both orthonormal 3-frames on the unit 3-sphere tangent to the 3-
sphere which both reduce to {∂a} at the North pole (0, 0, 0, 1) which corresponds to the identity
matrix of SU(2).

d) Defining the radius r = (δijx
ixj)1/2, show that lowering the index on the above frame

vectors with the Euclidean metric and dividing by the square of the length yields the dual
3-frame

ω1 =
2

r2
(x4dx1 + x3dx2 − x2dx3 − x1dx4) ,

ω2 =
2

r2
(−x3dx1 + x4dx2 + x1dx3 − x2dx4) ,

ω3 =
2

r2
(x2dx1 − x1dx2 + x4dx3 − x3dx4) ,

with similar expressions for {ω̃a}. Thus the metric on the unit sphere is

1

4
δabω

aωb =
1

4
δabω̃

aω̃b .

This is no accident. For this group the components of the metric in either frame are proportional
to

Cc
adC

d
bc = Tr(ka kb) = εcadεdbc = −2δab ,

where Cc
ab = εcab. As the group manifold of SU(2), the 3-sphere with its natural geometry as a

hypersurface in Euclidean space has a metric which is invariant under left and right translations
on the group, an interesting fact which we do not have time to explore here. [It turns out that
under the correspondence of Exercise 4.5.9, the Lie algebra of “left invariant” vector fields
{ea} generates the right translations under which the “right invariant” vector fields {ẽa} are
invariant, while the latter generate the left translations under which the former are invariant,
and since the left and right translations on any group commute since they do not interfere with
each other, these Lie algebras must commute.]

Who would have ever guessed that the equation of a sphere in 4-dimensions could hide so
much mathematical structure?

�



6.8. Isometry groups and Killing vector fields 387

6.8 Isometry groups and Killing vector fields

The symmetry of the geometry we know in our everyday lives is one of its defining characteristics
and hence is a fundamental aspect of the metric geometry which reflects its properties in the
limiting domain of the differential geometry of curves, surfaces, and their generalizations to
higher dimensional spaces and unfamiliar settings. The rotations and translations of space
are symmetries of its Euclidean geometry which have important physical consequences for how
nature works. Conservation laws for linear and angular momentum hold for systems with such
symmetry, while for systems exhibiting invariance under time translation (i.e., are independent
of time), the law of conservation of energy holds. These are the underlying principles which
enable us to make sense of the world.

In the large, rotational and translational symmetry means that we can move things around
with these symmetry operations without changing their size or shapes. The distance formula of
Euclidean space enables us to quantify these statements. The metric tensor field of Euclidean
space reflects that geometry in the small, in the tangent spaces at each point of space. Invariance
of the metric tensor under these transformations reflects the symmetry which holds in the large.
But how do vectors and tensors transform under transformations of space into itself?

In section 5.7 we described passive coordinate transformations xi
′

= xi
′
(x) of the compo-

nents of tensor fields in which the points of space do not move, but we change the coordinate
grid underneath the points so that the component functions must be re-expressed in the new
coordinates (step a) below) and then remapped by the appropriate linear transformation as-
sociated with the change in the coordinate frames used to express those components (step b)
below)

X i′(x′) =
∂xi

′

∂xj
(x(x′)︸ ︷︷ ︸

a)

)

︸ ︷︷ ︸
b)

Xj(x(x′)︸ ︷︷ ︸
a)

)

Xi′(x
′) = Xj(x(x′)︸ ︷︷ ︸

a)

)
∂xj

∂xi′
(x′)︸ ︷︷ ︸
b)

.

For a general tensor field suppressing coordinate dependence of the component functions one
has the transformation law for (pq) tensor field components

T i
′...
j′... =

∂xi
′

∂xm
· · · ∂x

n

∂xj′
· · ·Tm...n... = [ρ(p,q)(∂x′/∂x)T ]i···j··· .

In contrast we would like to see how to transform tensor fields under an active transformation
of the points of a space xi → ϕi(x) = xi(ϕ(x)) = (xi ◦ ϕ)(x) where the points x move to ϕ(x)
but the coordinate system (i.e., the coordinate functions xi) remains fixed.

To understand this geometry, we introduce the coordinate system dragged along by the
transformation so that the new point has values of the new coordinates there which equal the
values of the old coordinates at the old point

xi
′
(ϕ(x)) = xi(x) .
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This is exactly what we see when we take a polar coordinate grid and rotate it around the
origin by some fixed angle. The grid associated with the dragged along coordinates is the
result of that rotation of the original grid. From the coordinate grid, all the tangent structure
is dragged along, since the coordinate frame vectors are obtained from the tangents to the
coordinate grid, so this automatically provides a way to drag along tangent vectors from the
old point to the new point. The new coordinate line of xi

′
through the new point ϕ(x) with old

coordinates ϕi(x) = xi(ϕ(x)) is ϕ(xj + δj it), so by definition its derivative there of a function
is the derivative by the tangent vector at t = 0, namely

∂f

∂xi′
(ϕ(x)) =

d

dt

∣∣∣∣
t=0

f ◦ ϕ(xj + δj it)

=
∂f

∂xj
(ϕ(xj + δj it))

∂ϕj

∂xk
(xj + δj it)

d

dt
(xk + δkit)

∣∣∣∣
t=0

=
∂f

∂xj
(ϕ(x))

∂ϕj

∂xk
(x)δki =

∂ϕj

∂xi
(x)

∂f

∂xj
(ϕ(x))

or suppressing coordinate dependence

∂f

∂xi′
=
∂ϕj

∂xi
∂f

∂xj
,

where the left hand side is at the new point and the right hand side is at the old point, so
that if X i∂i is a tangent vector at x, the corresponding tangent vector dragged along to ϕ(x)
is defined to be the new tangent vector which has the same components as at the old point
(anchored into the new grid in exactly the same way as the original tangent vector is anchored
into the old grid)

X i(x)
∂f

∂xi′
(ϕ(x)) =

∂ϕj

∂xi
(x)X i(x)︸ ︷︷ ︸

≡ dϕ(X(ϕ(x)))j

∂f

∂xj
(ϕ(x)) .

The expression defined by the underbrace is the value of the components of the dragged along
tangent vector at the new point in the old coordinates.

dϕ(X(ϕ(x)))j =
∂ϕj

∂xi
(x)X i(x)

or since this is a vector field X defined on the whole space, we can drag along from ϕ−1(x) to x
by this same transformation to get the value of the dragged along field ϕX at x in the original
coordinates

[ϕX(x)]i =
∂ϕj

∂xi
(ϕ−1(x))X i(ϕ−1(x)) .

This transformation law has the same form as a coordinate transformation but has a completely
different interpretation, and has two crucial parts as well, first the evaluation of the component
functions and the Jacobian matrix at the old point which is sent to the new point x by the
transformation ϕ and second the linear transformation of those components due to the change
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of the coordinate grid under the dragging along from the old point to the new point, using the
Jacobian matrix. To get the point dependence of the component functions for dragged along
1-forms, consider the identity and its derivative

ϕi(ϕ−1(x)) = xi → ∂ϕi

∂xk
(ϕ−1(x))

∂ϕ−1k

∂xi
(x) = δj i ,

which tells us exactly what the inverse Jacobian matrix components are as functions. Sup-
pressing this point dependence we can extend these two transformations to any (pq) tensor field
in the obvious way

[ϕT ]i...j... =
∂ϕi

∂xm
· · · ∂ϕ

−1n

∂xj
· · · Tm...n... ◦ ϕ−1 = [ρ(p,q)(∂ϕ/∂x)T ]i...j... ◦ ϕ−1 .

This is most interesting to evaluate for the 1-parameter family of transformations

ϕi(x) = etξxi = xi + tξi + . . .

generated by a vector field ξ whose Jacobian matrix is

∂ϕi

∂xj
= δij + t

∂ξi

∂xj
+ . . .

so that

− d

dt

∣∣∣∣
t=0

∂ϕi

∂xj
= − ∂ξ

i

∂xj
,

and since t→ −t inverts the transformation, we get

− d

dt

∣∣∣∣
t=0

∂ϕ−1i

∂xj
=
∂ξi

∂xj
.

One can evaluate the derivative of the dragged along fields etξT with respect to the parameter
t at t = 0 to obtain a derivative operator on tensor fields, reversed in sign for good reason

[£ξ T ]i...j... = − d

dt

∣∣∣∣
t=0

[etξT ]i...j...

In section 5.3 it was shown that for a scalar

d

dt

∣∣∣∣
t=0

f(etξx) = ξf ,

so the Lie derivative of a scalar is just the ordinary derivative along ξ

£ξ f = − d

dt

∣∣∣∣
t=0

f(e−tξx) = ξf .
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For a general tensor field one merely has to add the terms for the derivatives of the Jacobian
matrix

[£ξ T ]i...j... = ξT i...j... + ξi,k T
k...
j... + . . .− ξk,j T i...k... + . . . = ξT i...j... + [σ(p,q)(∂ξ)T ]i...j... .

For a vector field this reduces to the Lie bracket

[£ξ X]i = ξX i − ξi,jXj = [ξ,X]i .

For a metric tensor field, the formula is

[£ξ g]ij = ξgij + ξk,igkj + ξk,jgik .

This is the key formula.
A tensor field T is invariant under a transformation ϕ when the dragged along field equals

the original field ϕT = T . When T is invariant under the 1-parameter family of transformations
generated by the vector field ξ, clearly its t-derivative must be zero, so the Lie derivative is zero

£ξ T = 0 .

For a metric g, this is called Killing’s equation

£ξ g = 0 ,

named after the mathematician who first introduced it. When a metric is invariant under a
transformation, the transformation is called an isometry, and a vector field which generates a
1-parameter family of isometries is called a Killing vector. A Lie algebra of r linearly inde-
pendent Killing vector fields generates an r-parameter family of isometries. The generators of
translations and rotations of R3 are all Killing vector fields.

Note that a coordinate frame vector itself is a Killing vector field when the metric compo-
nents don’t depend on that coordinate, since all the terms in the formula are then identically
zero. Such coordinates are said to be adapted to the Killing vector field, like the azimuthal
angle θ in polar coordinates in the plane or φ in cylindrical or spherical coordinates in space.

Exercise 6.8.1.
(pseudo-) orthogonal group generators are Killing vector fields

Show that for metric whose coordinate components gij are constant and a matrix linear
transformation x → etA x generated by a matrix A with generating vector field ξ = Aijx

j∂i,
the Killing vector condition reduces to

0 = gkjA
k
i + gikA

k
j = Aji + Aij = 2A(ij) .

Thus those matrices whose index-lowered form is antisymmetric lead to Killing vector fields.
For a vector field ξ whose coordinate components are constants, the Lie derivative formula
reduces to the scalar formula since ξi,j = 0, so the vector fields ∂i which generate translations
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in these coordinates are automatically Killing vectors. This describes the Lie algebras of the
continuous isometry groups of all the metrics on Rn whose metrics have constant components
in the Cartesian coordinates of the space, namely the (pseudo-) orthogonal groups (describing
the isotropy of the space) together with the translations (describing the homogeneity of the
space) forming the combined inhomogeneous (pseudo-) orthogonal groups IO(P,M).

�

Exercise 6.8.2.
comma to semicolon rule for Lie derivative of a metric

Confirm the “comma to semicolon rule” for the Lie derivative of the metric in a coordinate
frame where one can replace the partial derivative in the Lie derivative component formula by
the covariant derivative to get the same result due to the cancellation of the extra connection
components due to their symmetry Γkij = Γkji

[£ξ g]ij = gij,kξ
k + ξk,igkj + ξk,jgik = gij;kξ

k + ξk ;igkj + ξk ;jgik = ξi;j + ξj;i .

This just says that the matrix of covariant components of the covariant derivative of the vector
field must be antisymmetric if the metric itself is invariant, i.e., has zero Lie derivative, so
Killing’s equation takes the equivalent form

£χ gij = ξi;j + ξj;i = 0 .

For vector fields whose component matrix is linear as in the previous Exercise, like the gen-
erators of rotations (or pseudo-rotations) on Rn, this just reduces to the requirement that
the index-lowered matrix of components is antisymmetric, as we know already know. However,
Killing’s equation is very useful in nonflat geometries where the idea of linear component vector
fields does not apply.

�

Exercise 6.8.3.
1-form Lie derivative

a) The coordinate frame components of the Lie derivative of a 1-form are

[£ξ σ]i = ξσi + σjξ
j
,i .

Show that this agrees with the coordinate independent formula

(£ξ σ)(X) = ξσ(X)− σ([ξ,X]) .

b) Use this last formula to evaluate the Lie derivatives of the dual frame 1-forms {ωi} to a
frame {ei} (

£ξ ω
c
)

(eb) = −ωc([ξ, eb]) = −[£ξ eb]
c ↔ £ξ ω

c = −[ξ, eb]
cωb .

c) Use the same formula to evaluate the Lie derivatives of the dual frame 1-forms {ωi} to a
frame {ei} with respect to the same frame vectors

(£ea ω
c) (eb) = −Cc

ab ↔ £ea ω
c = −Cc

abω
b .
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�

The set of nice (differentiable) functions (scalar fields) on Rn is an infinite-dimensional vector
space: linear combinations of functions with constant coefficients define new functions in the
same space. Any group which acts as a Lie transformation group on Rn generated by some Lie
algebra of vector fields {ξa} also acts on this infinite-dimensional vector space as well as the
corresponding vector spaces of tensor fields of a given rank. These are all therefore infinite-
dimensional representations of the Lie group on these vector spaces with a corresponding Lie
algebra representation for its corresponding Lie algebra. In other words, the discussion of
Section 6.3 for the action of GL(n,R) on Rn as a vector space and on the tower of tensor
spaces above it can be extended to the corresponding discussion of its action on each of the
infinite-dimensional vector spaces of tensor fields of all possible types (including scalar fields)
which live over R as a manifold.

The 1-parameter subgroups x→ etθ
aξax for fixed constants θa of this transformation group

are represented on these infinite dimensional spaces by

T → e−t£θaξaT .

Recall that when we dragged functions along by an active point transformation we had to
compose them with the inverse transformation in order to bring the value at the old point to
the new point where we evaluate the dragged along field. This is true for dragging along any
tensor field, which explains why we need that minus sign in front of the generating vector field
Lie derivative.

For the action of a matrix group with matrix Lie algebra basis ξ
a
, we saw that the corre-

sponding vector field generators ξa had an extra minus sign in their commutators, or reversing
all their signs, we got the same commutation relations

[ξ
a
, ξ
b
] = Cc

ab ξc ↔ [ξa, ξb] = −Cc
ab ξc ↔ [−ξa,−ξb] = Cc

ab(−ξc) .

In fact this generalizes to the corresponding Lie derivative operators for any tensor field as it
must since they are the generators of the representations on those spaces

[−£ξa ,−£ξb ] = Cc
ab

(
−£ξc

)
,

which can be rewritten in the form

[£ξa ,£ξb ] = −£Cc
ab ξc

= £[ξa, ξb]
.

This just states that the Lie derivative operation on tensor fields is a direct representation
of the vector field Lie algebra, both of which are reversed in sign compared to the original
matrix Lie algebra generators. For scalar fields the Lie derivative just reduces to the vector
field derivative, so this Lie algebra operator relation just reduces to the corresponding group
generating vector field Lie bracket relations, which have to have that minus sign compared to
the original matrix generators used to define them in order to represent their action on the
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space of scalar fields. The Lie derivative extends this action to tensor fields whose indices also
transform under dragging along.

For ordinary Euclidean space R3 the Lie derivative with respect to the generators of the
translations and rotations act on scalar, vector and 2nd rank tensor fields. Consider only vector
fields where the Lie derivative formula for ξ = La = Sa

i
jx
j∂i and ξi,j = Sa

i
j becomes

[−£La X]i = −ξX i︸ ︷︷ ︸
−LaX i

+ξi,jX
j︸ ︷︷ ︸

(Sa)
i
jX

j

≡ [(−La + Sa)X]i ≡ [JaX]i .

The opposite signs here make sense because the active component transformation is generated
by Sa (forward direction), while the dragging of the function values comes from reaching back
by the inverse transformation (backwards direction). Indeed the commutation relations of
the sign-reversed vector fields −La agrees with that of the corresponding matrices Sa. The
term involving the derivative of the components is said to be the result of the orbital angular
momentum operator, while the term involving the linear transformation of the components is
said to be the result of the spin angular momentum operator and their “sum” is called the
“total angular momentum” operator. Indeed in physics with applications to complex-valued
wavefunctions, one defines

L = −iLa , Sa = iSa , Ja = La + Sa
to find the classic angular momentum commutation relations that appear in every text on
quantum mechanics

[La,Lb] = iεabcLc , [Sa,Sb] = iεabcSc , [Ja,Jb] = iεabcJc .
This makes the operators “Hermitian” as described for matrices alone in Exercise 4.5.8 and in
the Remark following it. For scalar fields one must extend the inner product to an integral over
space of the pointwise product Ψ̄1Ψ of two complex fields in order to speak about Hermitian
operators.

Similarly we could decompose the Lie derivative of a tracefree symmetric (0
2)-tensor field on

which the spin 2 representation of the rotation group would transform the components. Spin 1/2
“spinor fields” are necessarily complex, but we could extend this discussion to them as well since
we know how to “rotate” their components with SU(2) which is rigidly linked to the rotation
group. None of these issues is ever very well explained in either classical electrodynamics or
in quantum mechanics because there simply isn’t time and typical students don’t have the
mathematical tools to handle it. Unfortunately neither do we have the time here to do justice
to these claims, but we are so close, you may follow this up on your own if it interests you.

Exercise 6.8.4.
Lie derivative and the Jacobi identity

For vector fields the Lie derivative is the vector field Lie bracket and applying the above
identity for the Lie derivative commutator to another element of the vector field Lie algebra is
just the Jacobi identity

[−£ξa ,−£ξb ]ξc = −£[ξa, ξb]
ξc .
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Expand this out in terms of the Lie brackets and rearrange the terms all to the left hand side
to obtain

[ξa, [ξb, ξc]] + [ξb, [ξc, ξa]] + [ξc, [ξa, ξb]] = 0

to confirm this.
�

Exercise 6.8.5.
complex numbers and rotations

When we approach the problem of finding the flow lines of a vector field generating a
rotation through first order differential equations, we are confronted with the fact that the
eigenvalues and eigenvectors of the corresponding antisymmetric matrix are complex. The basic
difference between real exponentials eλt and the pair cosω t, sinω t is that the linear derivative
operator d/dt acting on the real exponential “eigenfunction” eλt generates a real eigenvalue λ:
d/dt eλt = λ eλt, while when acting on the other pair it exchanges them in addition to producing
the coefficient ω:

d

dt
(cosω t, sinω t) = ω (− sinω t, cosω t)↔ d

dt
(cosω t+ i sinω t) = iω (cosω t+ i sinω t)

↔ d

dt
eiωt = iω eiωt .

The eigenfunctions of the derivative involving these functions are only the complex linear com-
binations which define the complex exponential and the eigenvalues are purely imaginary. The
rotation group is intimately connected with complex numbers.

Suppose we introduce purely imaginary angular momentum operators

La = −iLa , Sa = iSa , Ja = −i£La .

and their corresponding “squares” which then reverse in sign compared to the original real
operators

L2 = δabLaLb = −L2 , S2 = δabSaSb = −S2 , J 2 = δabJaJb = −J2 .

Note that the Lie derivative dragging operator then takes the form

e−θ n
a£La = e−iθ n

a£Ja .

a) Show that the first two have the same commutation relations

[La,Lb] = iεabcLc , [Sa,Sb] = iεabcSc .

b) For the Lie derivative of a (p, q)-tensor field T define

[SaT ]i...j... = [σ(p,q)(Sa)T ]i...j... = SaikT k...j... + . . .− SakjT i...k... − . . . ,
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and
[LaT ]i...j... = LaT i...j... .

Show that now we can add orbital angular momentum and spin angular momentum to get
total angular momentum with all positive signs

Ja = La + Sa .

c) Suppose we consider the function eimφ in either cylindrical or spherical coordinates. Then

L3 = x ∂y − y ∂x =
∂

∂φ
→ L3 = −i ∂

∂φ
.

Show that eimφ is an eigenfunction of L3 with eigenvalue m. To consider eigenfunctions of L2

we need to wait for the expression in spherical coordinates for the Laplacian operator in the
next chapter, but we already saw that S2 = −S2 has positive eigenvalues s(s+ 1) for s = 0, 1, 2
in Exercise 1.7.12. Part of quantum mechanical calculations involve the “addition of angular
momentum” in wave function states. In fact one can show that J 2 has eigenvalues j(j + 1)
where j = `−s . . . `+s corresponding to geometrical combinations from antiparallel to parallel
addition of the angular and spin angular momentum states. All of this is terribly interesting
but we have to put on the brakes for now.

�

Exercise 6.8.6.
gauge invariant derivative

We have seen how each tangent space undergoes a local action of the group GL(n,R) in
the sense that each tangent space undergoes a general linear transformation through an active
change of frame independently at each point (the identity representation on each tangent space)
and this induces an infinite-dimensional representation on each space of tensor fields of a given
type. By introducing the connection 1-form matrix and the covariant derivative, we are able
to define a derivative operator that is “covariant” under transformations of the frame.

Suppose that instead of the tangent space, we associate some vector space V with each point
of the space, and allow some subgroup of its general linear group to act locally on those vector
spaces through its identity representation. For example, consider the 1-dimensional complex
vector space V = C, for which we can choose the basis E = 1 thought of as a 1 × 1 column
matrix attached to each point of space. A complex field on our space can then be expressed
as a multiple of this basis vector Ψ = ΨE, where the inclusion of the symbolic basis vector E
anchors the values of the complex field to the points where they are evaluated.

The group of unit complex numbers U(1) acts on C by multiplication Ψ → eiΛΨ with Lie
algebra consisting of purely imaginary numbers, preserving the squared magnitude: |Ψ|2 =
Ψ̄Ψ, useful in quantum mechanics when that represents a physically meaningful probability
distribution. The “argument” θ of a complex number Ψ = |Ψ|eiθ is called its phase: changing
the phase does not change the magnitude. A complex function, also called a complex scalar
field, is a choice of complex number at each point of a space. As a 1-dimensional complex
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vector space at each point, there is no reason why we have to use the same basis complex
number to express all other complex numbers as multiples (we are always free to choose a new
basis of any vector space, including 1-dimensional ones), and there is no reason to expect that
there should be any natural relationship between the vector spaces at different points, like the
tangent spaces. The only way to compare vectors at different points is to parallel transport
them to the same point, true for concrete tangent vectors tied to the differential structure of
our space or abstract complex vectors that are not. If we assign ∇iE = −iAiE, then the
covariant derivative of the scalar field thought of as anchored to our space through the basis
field E is

∇i(Ψ) = ∇i (ΨE) = (∂iΨ)E + Ψ∇iE = (∂iΨ− iAi) E .
When this correction term is nonzero, it means that we have an association of the complex
numbers with our space which depends on the point somehow. Compare this to the covariant
derivative of a vector field

∇iX
j = ∂i + (ωjk)iX

k ,

where the correction term just arises from the covariant derivative of the basis {ei} of the
tangent space

∇iej = (ωjk)i ek .

Suppose on Minkowski spacetime we consider the local action of U(1) on a complex scalar
field Ψ by a position-dependent transformation Ψ(x)→ eiΛ(x)Ψ(x), reflecting a local change of
basis of C from E = 1 to the unit complex number e−iΛ(x) whose choice depends on position
x: z = z 1 = (eiΛz)e−iΛ. Then the transformed scalar field will yield the same probability
distribution, i.e., the same physical state. Thus this local action of U(1) corresponds to the
freedom in the scalar field to change its phase which does not affect physical measurements.
The problem is that field equations necessarily depend on derivatives of Ψ which do change
under such a change of Ψ. We can fix this by introducing a “gauge covariant derivative” which
transforms exactly like Ψ under this local “gauge transformation” of the phase of the field by
adding the above connection-like linear transformation term to the derivative which has values
in the Lie algebra of the gauge group, namely purely imaginary numbers (so the 1-form field
A = Ai dx

i should be real).

∇iΨ = (∂i − iAi)Ψ .

The connection 1-form −iA = −iAi dxi is like the gauge covariant derivative of the basis
vector of C as a complex vector space, analogous to the connection 1-form ω for the general
linear group Lie algebra-valued 1-form (namely a matrix-valued 1-form) which we add to the
partial derivative in a coordinate frame as a linear transformation of the components of a vector
field arising from the derivatives of the frame vector fields.

a) Show that when simultaneously we let

Ψ→ eiΛΨ , Ai → Ai + ∂iΛ (namely A→ A+ dΛ) ,

then the phase change of the field passes right through the covariant derivative, so that condi-
tions on the covariant derivative of the field before and after the gauge transformation are also
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mapped by the same phase transformation and so do not depend on a choice of gauge

∇iΨ→ eiΛ∇iΨ .

b) Equivalently show that the product rule to the new basis vector

∇i

(
e−iΛE

)
= −i(Ai + ∂iΛ)

(
e−iΛE

)
leads to the same transformation of the 1-form A.

This freedom to add the differential of a function to the gauge potential 1-form A = Ai dx
i

is exactly the freedom to redefine the vector potential of the electromagnetic field F = dA
without changing the physical field F , but we don’t yet know how to take the differential of
a 1-form, which will be called the exterior derivative and studied in Chapter 11 after a sneak
preview in the next Exercise. The gauge covariant derivative allows one to write down field
equations for a complex scalar field that couples to the electromagnetic field in such a way that
those equations are “gauge invariant,” i.e., have the same form in any choice of “gauge,” which
is a particular choice of the phase of the field. Thus the electromagnetic field vector potential
appears as the connection associated with this local group action on complex scalar fields. Real
scalar fields are said to be associated with neutral fields that do not carry charge. We will
see later that the field 2-form F = dA will be the curvature associated with this connection.
Thus we have a nice coupling of the phase of a complex scalar field with the freedom to choose
different vector potentials to represent the electric and magnetic fields. To actually quantify
the charge in terms of a quantum of charge q which is an integer multiple of the electron charge,
we actually have to make a further substitution (A,Λ)→ (qA, qΛ) into this geometry.

�

Exercise 6.8.7.
vector potential for electromagnetic field

For the electromagnetic 2-form field F = 1
2
Fij dx

i ∧ dxj expressed in inertial coordinates on
Minkowski spacetime, introduce a “vector 4-potential” 1-form field A = Ai dx

i and define twice
the antisymmetrized derivative of the 1-form to be its “exterior derivative,” which we set equal
to the electromagnetic 2-form

Fij = 2∂[iAj] = 2A[j,i] ≡ [dA]ij .

Show that by identifying A = −φdt+Aadx
a, A] = −φ∂t+Aa∂a with a, b = 1, 2, 3, this leads

to the relations

Ea = F0i = A0,a − Aa,0 = −φ,a − ∂tAa , Ba = εabcFbc = εabcAc,b = [curlA]a .

Thus φ is the ordinary scalar potential for the electric field, and Aa dx
a is the vector potential

(1-form!) for the magnetic field. The reason for introducing the vector 4-potential is that it
solves half of Maxwell’s equations.
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�

Exercise 6.8.8.
non-Abelian gauge theories

Exercises 1.7.12 and 4.5.9 discuss the special unitary group SU(2), whose Lie algebra consists
of anti-Hermitian matrices K† = −K, a basis for which is provided by the Paoli matrices
multiplied by i, rescaled to have the same commutation relations as the standard basis of
SO(3,R)

Ea = 1
2
iσa , [Ea, Eb] = Cc

abEc , Cc
ab = εcab ,

and a, b, c = 1, 2, 3. Consider V = C2 and complex-vector-valued fields Ψ = 〈Ψ1,Ψ2〉 = Ψαeα ∈
C2, α, β = 1, 2 on Minkowski spacetime, and let the matrix group SU(2) act on these fields
locally in its identity representation

Ψ→ U Ψ = eθ
aEa Ψ .

Note that this action leaves the magnitude of the complex-vector field (field of complex vectors,
not a complex “vector field”) invariant (vector field in a quite different sense than we have been
using the term so far, since it is not connected to the underlying points of the space)

Ψ†Ψ ≡ Ψ̄
T

Ψ = |Ψ1|2 + |Ψ2|2

since U †U = I is the unitary condition on the matrix group. recall that the combined transpose
and complex conjugate operation † is called the Hermitian conjugate.

If the physical observations of a theory involving these complex fields do not depend on
the “phase”, i.e., only the magnitude of the field matters, then nothing should depend on the
particular choice of “gauge,” i.e., what transformation U we apply to the field. All physical
theories involve the derivatives of the fields so we need a “gauge covariant derivative” which
has the same transformation behavior as Ψ itself

Ψ→ U Ψ implies ∇Ψ→ U∇Ψ = ∇ (U Ψ) .

This is the same condition we impose on the covariant derivative in terms of the component
matrices of vector fields under a change of frame on the tangent spaces, so it is not surprising
that the same mathematics characterizes the connection 1-forms for local changes of basis on
the complex vector spaces of the fields.

Show that the following gauge invariant derivative

∇iΨ = (∂i + AaEa) Ψ

is invariant provided that the gauge field 1-form matrix A = AaEa transforms exactly like the
connection 1-form matrix ω of a metric connection as discussed in Section 6.3

A→ U AU−1 + U dU−1 .
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This identifies the gauge connection with the gauge covariant derivative of the basis vectors of
V = C2

∇ieα = Aci(Ec)
β
α eβ = Γβiα eβ .

Thus this leads to three 1-form fields Aai dx
i which describe this geometry.

The electroweak unified field theory is based on the direct product group SU(2)×U(1) which
introduces three 1-form SU(2) gauge fields in addition to the U(1) gauge field A = Ai dx

i of
electromagnetism, with a linear transformation on the combined Lie algebra coupled to the
so called Higgs mechanism involving the now famous Higgs field which “gives mass” to three
of these four 1-form fields (the W± and Z bosons), leaving the vector potential A for the
electromagnetic field massless. Covector fields are spin 1 fields which quantum mechanically
correspond to particles called bosons, like the spin 1 photon which is the quantum particle
corresponding to the classical electromagnetic vector potential A. All of this is beyond us,
but the basic setup as a gauge covariant derivative associated with a “non-Abelian gauge
field theory” is not. This geometrification of physical theories was one of the great successes
of the last century. The strong interactions correspond to the group SU(3) acting on C3

(the quark field space) with eight “gluon” gauge fields (3-dimensional Lie algebra) and grand
unified theories to the direct product of the electroweak and strong interaction theories. [One
must further introduce a charge coupling constant by replacing A by gA in the covariant
derivative, where g is the basic charge unit of the theory, like the electronic charge e > 0 in
electromagnetism, but that is a detail requiring a more in-depth treatment of this topic.]

�

Exercise 6.8.9.
angular momentum ladder operators and representation theory for SU(2) ∼ SO(3,R)

When the rotation group acts on integer spin tensor fields or the more fundamental group
SU(2) acts on spin 1/2 complex spinor fields, we have an infinite-dimensional representation,
but it can be decomposed into an infinite-direct sum of finite-dimensional representations char-
acterized by eigenvalues of the angular momentum operators which represent the matrix gen-
erators of their isomorphic Lie algebras so(3,R) ∼ su(2). Let’s consider the scalar field case
for simplicity and consider the spherical harmonics on the unit sphere on which the rotation
vector generators act. While the following matrix calculations can be done by hand, there is
little to be gained by doing so. A computer algebra system makes them painless.

a) Starting with the angular momentum operators (Cartesian components of orbital angular
momentum) La satisfying [La,Lb] = iεabcLc, introduce the ladder operators first introduced in
Exercise 5.9.9

L± = L1 ± iL2 ,

and derive their commutator relations from those of La

[L3,L±] = ±L± , [L+,L−] = 2L3 .

Since all the La commute with L2, so to do these ladder operators [L2,L±] = 0. Applying this
last equality to Y`m leads to L2L±Y`m = `(`+ 1)Y`m (check it!) so the result of applying these
operators leads to functions with the same eigenvalue ` as we started with.
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b) Suppose Y`m is an eigenfunction of the operators L2 and L3:

L2Y`m = `(`+ 1)Y`m , L3Y`m = mY`m .

Then apply these commutation relations expanded out ([A,B] = AB − BA) to the functions
Y`m in order to conclude that

L±Y`m = (m± 1)Y`m ,

so that (assuming the eigenfunctions are unique as is the case when you study these matters
with more time than we have)

L±Y`m = C(`,m,±)Y`m±1

which means that we have increased/decreased the eigenvalue m by 1, although we don’t know
the coefficient of the result.

c) Show by expanding out that

L− L+ = L2 − L3(L3 + 1) , L+ L− = L2 + L3(L3 + 1) ,

so that

L− L+Y`m = [`(`+ 1)−m(m+ 1)]Y`m , L+ L−Y`m = [`(`+ 1) +m(m+ 1)]Y`m .

Thus if we apply the first relation when m = `, the result is 0, but that can only be true if
L+Y`` = 0 since otherwise the result should be a nonzero multiple of Y``. Similarly applying the
second relation when m = −`, it implies L−Y`−` = 0. (We really need to go a little deeper into
this argument than we can afford here to draw these conclusions.) The result (when explained
with more details) is that for each integer value of `, we get 2` + 1 different eigenfunctions
that belong to a finite-dimensional representation of SO(3,R) of dimension 2`+1 on which the
rotation group acts as a linear transformation group, indeed when expressed in terms of the
basis {Y`m} of this space for a given fixed value of `, as a matrix group with the same matrix
product relations as the rotations they represent. The ladder operators move us from each
eigenfunction to the nearest neighbor in terms of its value of m, terminating at the endpoint
values ±`.

The identity representation ` = 1, 2` + 1 = 3 has m = −1, 0, 1 allowing us to have a
mental picture of the spin vector in that representation to be aligned with the z-axis (m = 1),
aligned with the negative z-axis (m = −1), or aligned with neither direction (m = 0), thought
of as in some horizontal direction. This is the fundamental representation of the Lie algebra
so(3),R ∼ su(2) and its commutation relations and the mental picture that we have of its
eigenstates, whether they are functions on the sphere as in this example, or points in space as
in the defining representation.

�

Remark.
The group SU(3) acting on C3 (the quark color charge space of quantum chromodynamics) has
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Figure 6.5: The octet diagram of the 8 Lie algebra basis matrices of the Lie algebra su(3)
consists of two commuting matrices at the center and three pairs of ladder operator matrices
associated with the three su(2) subalgebras. The horizontal axis corresponds to the usual su(2)
matrices.

three SU(2) subgroups just like SO(3,R) has three SO(2,R) subgroups (rotations about the
three independent axes, or in the three orthogonal planes) so its matrix Lie algebra consists
of the union of these three subalgebras in each 2 × 2 submatrix of the 3 × 3 matrix of the
Lie algebra, BUT we have to remove one because the three copies of the diagonal matrix
σ3 = 〈〈1|0〉, 〈0,−1〉〉 in each of these three blocks of the matrix are not independent since
there are only two independent tracefree real diagonal matrices. The bases T a = I

2
λa of the

Lie algebras of these three copies of SU(2) expressed in terms of the 8 Gell-Mann matrices λa
analogous to the original 3 Pauli matrices are here given row by row, with the diagonal matrix
last in each case

1,2 block: λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

1,3 block: λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 i
0 0 0
−i 0 0

 ,

1 0 0
0 0 0
0 0 −1

 ,

2,3 block: λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 ,

0 0 0
0 1 0
0 0 −1

 ,

λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .
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For a basis of the tracefree diagonal matrices, λ3 is kept and joined by the combination λ8 which
reduces to a multiple of the identity matrix on the first SU(2) subalgebra. The corresponding
two matrices T 3, T 8 are simultaneously diagonal so their representatives in any representation
will also be so, i.e., one can classify the bases of the representation spaces by their pair of
eigenvalues. The remaining 3 pairs of SU(2) matrix generators can be combined into the ladder
combinations which then step through the lattice of discrete values of those two eigenvalues,
leading to the famous 7 point octet plane diagram of Fig. 6.5 with T 3, T 8 both at the origin
and the three pairs of ladder operators located at grid points lying on a circle along three lines
corresponding to the angles which are multiples π/3 along which the ladder operators move in
the space of the pairs of eigenvalues of (T 3, T 8).

An su(3) Lie algebra valued-connection 1-form AaT a thus involves 8 coefficient fields Aa

which are the gluon fields of the strong interactions which mediate the forces between the
fundamental quark particles in the same way the photon field (electromagnetic field) medi-
ates the electromagnetic forces between the electromagnetic fundamental charges. But that is
theoretical physics and way beyond our scope! N

Exercise 6.8.10.
Gell-Mann matrices

Show that like the Pauli matrices, the Gell-Mann matrices listed above are an orthonormal
set modulo a common factor of 2 under the trace inner product: Trλa λb = 2δab.

�
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6.9 Noncoordinate frames and SO(3,R)

The best example of geometry where noncoordinate frames are crucial is the rotation group
itself which has its own family of geometries which are compatible with the group structure
itself. Recall Exercise 1.7.10 in which we described the orientation of a rigid body like a
symmetrical top with one point fixed on which it spins by an active rotation R = eφk3eθk1eψk3

of the space-fixed axes {ê1, ê2, ê3} to the time-dependent body fixed axes {ê1′ , ê2′ , ê3′} whose
corresponding coordinates are related by xi

′
= R(θ)−1i

jx
j, xi = R(θ)ijx

j′ and we calculated the
components of the angular velocities of the points fixed in the body in both coordinate systems

Ωa =
ωa

dt
, Ωa′ =

ω̃a

dt
,

where
ω1 = cosψ dθ + sin θ sinψ dφ , ω̃1 = cosφ dθ + sin θ sinφ dψ ,

ω2 = − sinψ dθ + sin θ cosψ dφ , ω̃2 = sinφ dθ − sin θ cosφ dψ ,

ω3 = dψ + cos θ dφ , ω̃3 = dφ+ cos θ dψ ,

were defined by

R−1dR = ωaLa , dRR−1 = ω̃aLa .

The isotropic combination of the first two of each set yields

(ω1)2 + (ω2)2 = dθ2 + sin2 θ dφ2 ,

(ω̃1)2 + (ω̃2)2 = dθ2 + sin2 θ dψ2 ,

which shows clearly the metric on unit 2-spheres where θ is the polar angle down from the
vertical and respectively φ and ψ are azimuthal angles.

In Exercise 1.7.10 followed by Exercise 4.5.7 it was shown that if we left translate the
rotation group by left multiplying its matrix R by a fixed rotation R → R0R corresponding
to a fixed rotation of the space-fixed axes xi → xi = (R0R(θ))i jx

j′ = R0
i
jx
j, then notice that

R−1dR does not change, so the 1-forms ωa are invariant under left translation of the group
into itself. Similarly the 1-forms ω̃a are invariant under right translation of the group into
itself, corresponding to a fixed rotation of the body-fixed axes. xi

′ → xi
′

= (R(θ)R0)−1i
jx
j =

R0
−1i

jx
j′ . Finally it was shown that the bi-invariant metric

ds2 =
a2

4
δabω̃

aω̃b =
a2

4
δabω

aωb

corresponds to the metric on a 3-sphere of radius a in R4 through a 2-to-1 correspondence
between the group SU(2) whose group manifold is the unit 3-sphere and the rotation group
SO(3,R) in which antipodal points on S3 are identified to yield the projective 3-sphere PS3.

The two sets of respectively left invariant and right invariant 1-forms

ωa = ωaidθ
j , ω̃a = ω̃aidθ

j = R(θ)abω
b
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which coincide at the identity matrix are each dual to a correspondingly invariant frame of
vector fields obtained by simply inverting the matrix of coordinate components of these 1-
forms, easily done with a computer algebra system. Define the unhatted vector fields by

e1 = cosψ ∂θ −
sinψ

sin θ
(cos θ ∂ψ + ∂φ) , ẽ1 = cosφ ∂θ +

sinφ

sin θ
(∂ψ − cos θ ∂φ) ,

e2 = − sinψ ∂θ +
cosψ

sin θ
(− cos θ ∂ψ + ∂φ) , ẽ2 = sinφ ∂θ +

cosφ

sin θ
(−∂ψ + cos θ ∂φ) ,

e3 = ∂ψ , ẽ3 = ∂φ .

Exercise 6.9.1.
angular momentum commmutation relations

Verify the Lie bracket relations

[ea, eb] = Cc
abec , [ẽa, ẽb] = −Cc

abẽc , [ea, ẽb] = 0 , Cc
ab = εcab .

�

These 3-dimensional vector field Lie algebras each generate a 3-dimensional transformation
group. The left invariant vector fields generate the right translations of the group into itself,
while the right invariant vector fields generate the left translations of the group into itself.
These two groups commute with each other, which is reflected in the fact that the two Lie
algebras commute. The inverse map takes the above left invariant frame and maps it into the
sign reversed right invariant frame, so the left and right invariant metrics describe the same
abstract geometry.

Consider diagonal metric component matrices in each of these frames

ds2
L = gL11(ω1)2 + gL22(ω2)2 + gL33(ω3)2 ,

ds2
R = gR11(ω̃1)2 + gR22(ω̃2)2 + gR33(ω̃3)2 .

In the special cases when the first two coefficients are equal, these become

ds2
L = gL11

(
dθ2 + sin2 θ dφ2

)
+ gL33(dψ + cos θ dφ)2 ,

ds2
R = gR11

(
dθ2 + sin2 θ dψ2

)
+ gR33(dφ+ cos θ dψ)2 ,

These are both independent of the coordinates ψ, φ, making ∂ψ and ∂φ both Killing vector
fields as we will learn about in Chapter 6. This will enable us to understand the dynamics of
a symmetric top in Chapter 8.



Chapter 7

More on covariant derivatives

Partial differential equations govern many aspects of our real world. Partial differential equa-
tions on space or spacetime are key to quantify how fields behave as a function of position in
space or in spacetime. However, these equations are not arbitrary but associated with the basic
geometry of space and its symmetries. Vector analysis deals with first and second order partial
differential operators that enter into these geometrically related partial differential equations
that describe Newtonian gravity, electromagnetism, fluid dynamics, quantum mechanics, etc.,
all of which deal with fields and their differential properties examined both in orthonormal
Cartesian coordinates as well as the common curvilinear coordinate systems associated with
common symmetries of space. The first order vector operators of gradient, curl and divergence
and the second order Laplacian are key players in this game, and the Laplacian also reconnects
with the idea of total angular momentum whose description leads to the spherical harmonics
which are crucial in characterizing how functions on the sphere behave under rotation. In this
chapter we explore the way these operators are related to the Euclidean metric of R3, but some
aspects of these operators do not need the metric and instead have to do with the differential
properties of differential forms. In chapter 11 we will extend the differential operator d from
0-forms (scalar fields) to define the exterior derivative d on the algebra of differential forms
which is necessary for understanding and generalizing the line, surface and volume integrals of
scalar and vector fields in space and their interrelationships with the differential operators of
this chapter through the vector theorems known as Gauss’s law and Stokes’ theorem, as well
as the line integral theorem for conservative vector fields.

405
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7.1 Gradient, curl and divergence

In multivariable calculus the operations of gradient (“grad”), divergence (“div”) and their
composition called the Laplacian (“div grad”), together with the curl, play important roles in
the various integral theorems which relate line, surface and volume integrals on R3. These turn
out to all be connected together in a beautiful relationship that is hidden in a first course on
the topic but which will be uncovered in Chapter 11.

The differential of a function (“scalar field”)

df = f,idx
i , f,i =

∂f

∂xi
= df

(
∂

∂xi

)
, (coordinate frame)

df = f,iω
i , f,i = eif = df(ei) (arbitrary frame)

is a covector field or 1-form field or simply a 1-form in the standard terminology.
In Cartesian coordinates on Rn, the gradient ~∇f ≡ grad f is a vector field whose components

are the corresponding partial derivatives of f

[grad f ]i = [~∇f ]i = δijf,j ,

grad f = ~∇f = δijf,j
∂

∂xi
= df ] .

The Kronecker delta is necessary to respect index positioning and tells us that we are actually
using the Euclidean metric to raise the index on the 1-form df to obtain a vector field ~∇f .

The same relation can be used to evaluate the gradient in general coordinates or in an
orthonormal frame with respect to the Euclidean metric or with respect to any other metric

grad f = ~∇f = df ] = gijf,jei .

While the differential df is completely independent of a metric, the gradient only can be defined
with the use of a metric.

For a function, covariant and ordinary differentiation coincide, so one can also write

[~∇f ]i = gijf;j ≡ f ;i ≡ ∇if .

In other words the composed operator ~∇ = ] ◦ ∇ (usually called “del”) consists of covariant
differentiation followed by raising the derivative index when acting on functions.

Evaluating the differential of a function on a vector field (no metric needed) or taking the
inner product of the gradient and a vector (metric required) leads to the derivative of the
function along that vector field

df(X) = Xf = ∇Xf = X i∇if (no metric required)

= X · ~∇f = gijX
i∇jf . (metric required)

If a vector field X is tangent to a level hypersurface f = const of the function f , then the
derivative of f along X is zero which implies that X is orthogonal to ~∇f , or turning it around,
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Figure 7.1: Visualizing the gradient vector with the plane representation of the differential of
a function in R3.

the gradient is orthogonal to the space of tangent vectors which are in fact tangent to the level
surface of f at each point—it is a normal to the tangent plane. Without a metric one only has
the differential df whose hyperplanes in the tangent space describe the linear approximation to
the increment of f away from each point, and no normal vector !

Exercise 7.1.1.
gradient in cylindrical and spherical coordinates

Evaluate ~∇f for f = x2 − y2 on R3 in both cylindrical and spherical coordinates.
�

In Cartesian coordinates on R3, the curl of a vector field is given by

curlX = εkij∂iXj ∂k = ηkij∂iXj ∂k = ηkijXj,i ∂k = ηkijXj;i ∂k , Xj = gj`X
` .

Since the Christoffel symbols are symmetric in the lower indices Γk [ij] = 0, the relation

ηkijXj;i = ηkij(Xj,i +XkΓ
k
ij) = ηkijXj,i

means that the final two representations of the curl are equivalent in any coordinate system and
reveal that the curl of a vector field is a sequence of three (four?) operations: lowering of its
index to obtain a 1-form, the antisymmetric derivative of the 1-form coordinate components,
and the metric dual on that pair of antisymmetric indices to give the resulting 1-form whose
index raising yields a vector field. If we introduce the cross product in any coordinate frame by

X × Y = ηijkX
jY k ∂

∂xi
,

then we can represent the curl as “grad cross” (usually called “del cross”)

curlX = ~∇×X ,

where the covariant indexed covariant derivative operator ∇ = “~∇ · ” can be thought of as the
result of taking the inner product with the contravariant indexed covariant derivative in the
sense ∇jX

i = gjk∇kX i.
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In Cartesian coordinates on R3, the divergence of a vector field (“del dot”) is given by

divX =
∂X i

∂xi
= X i

,i = X i
;i = ~∇ ·X .

The formula involving the covariant derivative for divX

divX = X i
;i = X i

,i + ΓiijX
j

is well-defined in any frame or coordinate system and indeed for any dimension n.
An alternative formula can be derived for the divergence of a vector field by re-expressing

the contraction Γiij in terms of the metric. The result is somewhat simpler to use in practice.
Contracting the general formula for Γkij gives

Γiik =
1

2
gi`[g`i,k − gik,` + gk`,i] +

1

2
( Ci

ik︸︷︷︸
−Ci

ki

+ Ci
i
k︸︷︷︸

Ci
ik

+ Ck
i
i︸︷︷︸

Ckjig
ji

)

=
1

2
gi`g`i,k−

1

2
gi`gki,` +

1

2
g`igk`,i︸ ︷︷ ︸
gi`gki,`︸ ︷︷ ︸

= 0

−1

2
Ci

ki −
1

2
Ci

ki︸ ︷︷ ︸
−Ci

ki

+
1

2
Ckjig

ji︸ ︷︷ ︸
= 0

=
1

2
gi`g`i,k︸ ︷︷ ︸

[ln(det g)1/2],k

−Ci
ki ,

where we have used three facts: first, for any pair of contracted indices the order of the upper
and lower indices in the contracted pair does not matter, i.e., T ii = gijT

ij = Ti
i, and second,

when a pair of antisymmetric indices is contracted with a pair of symmetric indices XijY
ij the

result is zero, so the contraction of the final two indices of the structure function symbol is zero,
and finally we recognized the derivative of the square root of the determinant of the metric
component matrix in the last line, a fact derived in Section 2.3

d ln(| det g|1/2) =
1

2
d ln(| det g|) =

1

2
Tr g−1dg .

Thus we get the final formula

Γiik = [ln(| det g|1/2)],k−Ci
ki .

Inserting this in our formula for the divergence we get

divX = X i
,i + ΓiikX

k︸ ︷︷ ︸
[ln(| det g|1/2)],kX

k − Ci
kiX

k

= | det g|−1/2[| det g|−1/2X i],i − Ci
kiX

k ,
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where the final form of the right hand side is just a consequence of the product rule for differ-
entiation.

Summarizing

divX = X i
;i = | det g|−1/2[| det g|1/2X i],i (coordinate frame)

= | det g|−1/2[| det g|1/2X i],i−Ck
ikX

i . (arbitrary frame)

These formulas for the divergence operator are valid for any dimension n, while the cross
product crucially depends on the dimension n = 3 for the dual of an antisymmetric pair of
indices to result in a single index object.

Notice that the divergence operator only involves the metric through the factor | det g|1/2 =
η1···n which is the only independent nonzero component of the unit volume n-form associated
with the metric. It does not care about the individual metric components. Any metrics whose
unit volume forms coincide will yield the same divergence operator for vector fields.

Exercise 7.1.2.
curl and div in cylindrical coordinates

In Section 5.7 and the following vector field on R3 was evaluated in cylindrical coordinates
as a byproduct of evaluating ∂ρ in Cartesian coordinates, and then in spherical coordinates in
Exercise 5.7 with the result

X = x
∂

∂x
+ y

∂

∂y
= ρ

∂

∂ρ
= r sin θ

[
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

]
.

a) Check that curlX = 0, divX = 2 in cylindrical coordinates as is clear from the Cartesian
coordinate expression.

b) If you are feeling ambitious, repeat for spherical coordinates.
�

Exercise 7.1.3.
more curl and div in cylindrical coordinates

Consider the function from Exercise 5.8.3

f = xy = ρ2 sinφ cosφ =
1

2
ρ2 sin 2φ =

1

2
r2 sin2 θ sin 2φ ,

expressed respectively in Cartesian, cylindrical and spherical coordinates. Then in Cartesian
coordinates it is obvious that

df = y dx+ x dy = X[ ,

~∇f = [df ]] = y
∂

∂x
+ x

∂

∂y
= X ,
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where the vector field X was transformed to cylindrical and spherical coordinates in Example
5.7.1 and in spherical coordinates in Example 5.8.1

X = ρ sin 2φ
∂

∂ρ
+ cos 2φ

∂

∂φ
= r sin θ sin 2φ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
+ cos 2φ

∂

∂φ
,

X[ = ρ sin 2φ dρ+ ρ2 cos 2φ dφ = sin θ sin 2φ (r sin θ dr + r2 cos θ dθ) + r2 sin2 θ cos 2φ dφ .

Lowering its indices just rescales each component by the corresponding diagonal metric com-
ponent.

a) This vector field clearly has zero divergence and curl from the easy Cartesian coordi-

nate evaluation. Compute df and grad f = ~∇f in cylindrical coordinates and confirm these
evaluations.

b) If you are feeling ambitious, repeat for spherical coordinates. If not, wait for easy formulas
in an exercise in the next section.

�

Exercise 7.1.4.
still more curl and div in cylindrical coordinates

Repeat the previous exercise for f = x2 − y2.
�

Exercise 7.1.5.
still more curl and div in cylindrical and spherical coordinates

Consider the following vector field expressed in Cartesian and cylindrical/spherical coordi-
nates

x
∂

∂y
− y ∂

∂x
=

∂

∂φ
.

This vector field clearly has 0 divergence and curlX = 2 ∂/∂z from the easy Cartesian coordi-
nate evaluation. Confirm this in cylindrical and spherical coordinates.

�
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7.2 Second covariant derivatives and the Laplacian

The notation for a second covariant derivative

T ij;k` ≡ T ij;k;` ≡ [∇∇T ]ijk`

is always abbreviated to T ij;k`. In other words the semi-colon is used to separate the addi-
tional covariant derivative indices from the original tensor indices, no matter how many extra
derivative indices are added.

For a function ∇f = df = f;i ω
i = f, i ω

i is the first covariant derivative and

∇∇f = f ;ij ω
i ⊗ ωj

is the second covariant derivative. The same notation is extended to the comma for repeated
ordinary differentiation: f, i, j ≡ f, ij.

The Laplacian of a function is defined in Cartesian coordinates on Rn by

∇2f = ~∇ · ~∇f = div grad f = δijf, ij

(
=

∂2f

∂(x1)2
+ · · ·+ ∂2f

∂(xn)2

)
.

Therefore in any frame or coordinate system one has

∇2f = div grad f = gijf;ij = (gijf;i);j

since both the metric and inverse metric are covariant constant: gij ;k = 0. For this reason,
raising the first derivative index and then differentiating again is equivalent to differentiating
twice and then contracting with the inverse metric.

Using the formula for the divergence, letting X = ~∇f = grad f , we get

∇2f = div grad f = (det g)−1/2[(det g)−1/2gijf,j],i −Ck
ikg

k`f,l︸ ︷︷ ︸
vanishes for coordinate frame

Exercise 7.2.1.
harmonic coordinates

Suppose we apply the previous formula to the coordinate functions themselves in their
coordinate frame

∇2xk = div gradxk = (det g)−1/2[(det g)−1/2gijxk,j],i .

This can be simplified with the relations xk,j = δkj. On the other hand one can simply evaluate
the covariant derivative formula for a covector field Xk = f;k = f,k

Xj;i = Xj,i −XmΓmij
gij→ X i

;i = Xi
,i −XmΓmii ,

∇2f = f;i
;i = f,i

,i − f,mΓmii ,
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and apply this formula directly, and comparison leads to a formula we derived in a previous
problem for the contraction of the final two indices of the components of the connection. Thus
one arrives at two versions of the formula for the Laplacian of the coordinates themselves

∇2xk = −| det g|−1/2
(
| det g|1/2gki

)
,i = −Γkii .

These turn out to be important in general relativity. Coordinates for which the Laplacian of the
coordinates themselves vanishes are called harmonic coordinates. The Cartesian coordinates on
Rn are such coordinates, with covariant constant frame vector fields. On curved spaces where
covariant constant coordinate frames are not possible, harmonic coordinates can be used to get
as close to Cartesian-like coordinates as possible, with respect to some of their properties.

�

Exercise 7.2.2.
harmonic function

On R3 we compute

∇2(x2 − y2) =
∂

∂x
(2x)− ∂

∂y
(2y) = 2− 2 = 0 ,

and then transform the function to cylindrical and spherical coordinates

f = x2 − y2 = ρ2(cos2 φ− sin2 φ) = ρ2 cos 2φ = r2 sin2 θ cos 2φ .

Confirm that ∇2f = 0 in cylindrical and spherical coordinates.
�

Exercise 7.2.3.
grad, curl and div in cylindrical and spherical coordinates

Suppose {xi} are orthogonal coordinates on R3 so the metric, inverse metric and unit volume
3-form are of the form

g = (h1)2dx1 ⊗ dx1 + (h2)2dx2 ⊗ dx2 + (h3)2dx3 ⊗ dx3 ,

g−1 = (h1)−2 ∂

∂x1
⊗ ∂

∂x1
+ (h2)−2 ∂

∂x2
⊗ ∂

∂x2
+ (h3)−2 ∂

∂x3
⊗ ∂

∂x3
,

η = h1h2h3 dx
1 ∧ dx2 ∧ dx3 ,

where h1, h2, h3 > 0 are three positive scale factors needed to normalize the coordinate frame
vector fields. Let ei = ∂/∂xi and eî = (hi)

−1∂/∂xi be the coordinate frame and its associated

normalized orthonormal frame, with ωi = dxi and ωî = hiω
i (no sum on i). Let X î = hiX

i (no
sum on i) denote the orthonormal components of a vector field.
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Verify the following formulas for the gradient, curl, divergence and Laplacian operators

~∇f =
1

h1

∂f

∂x1
e1̂ +

1

h2

∂f

∂x2
e2̂ +

1

h3

∂f

∂x3
e3̂ ,

curlX =
1

h1h2h3

εijk
∂

∂xj

(
hkX

k̂
)
eî ,

divX =
1

h1h2h3

[
∂

∂x1

(
X 1̂h2h3

)
+

∂

∂x2

(
X 2̂h3h1

)
+

∂

∂x3

(
X 3̂h1h2

)]
,

∇2f =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂f

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂f

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂f

∂x3

)]
.

�

The gradient, curl and divergence are all first order differential operators which appear
to be very different from each other, but in Chapter 11, we will see how they are actually
very closely related by the simple idea of the “exterior derivative” d which generalizes the
differential of a function (0-forms) to an operator on any p-forms or “differential forms,” namely
the antisymmetric covariant tensor fields of various ranks.

Exercise 7.2.4.
Laplacian and angular momentum

a) Using the formula

(det g)1/2 =

{
ρ , (cylindrical coordinates)

r2 sin θ , (spherical coordinates)

verify the divergence formula

∇2 = ρ−1 ∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+
∂2

∂z2
(cylindrical coordinates)

= r−2 ∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (spherical coordinates)

b) In cylindrical coordinates show that any function of the form f = k ln ρ satisfies the
Laplace equation ∇2f = 0. [This is important for inverse square force fields like electromag-
netism or gravity due to an infinite line or axially symmetric distribution of the source: charge
or mass.]

c) In spherical coordinates show that any function of the form f = k/r satisfies the Laplace
equation ∇2f = 0. [This is important for inverse square force fields due to a point or spherically
symmetric distribution of the source.]

d) In each case show that ~∇f is a purely radial vector field as defined by the radial coordinate

in the respective coordiante system whose magnitude |~∇f | is respectively inversely proportional
to the first and second powers of that radial variable.
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These vector fields describe the electric or gravitational fields due to concentration of charge
or mass respectively along the vertical axis ρ = 0 or at the origin r = 0 where the magnitude of
the vector field goes infinite. In the latter case we get the inverse square force field associated
with a point charge or point mass.

e) Show that in spherical coordinates, radial functions of the form rn for integer powers n
are eigenfunctions of the rescaled Laplacian with eigenvalue n(n+ 1)

r2∇2rn =

{
n(n+ 1)rn , n 6= −1 ,

0 n = −1 .

f) In Exercise 5.4.6 the squared angular momentum operator was defined by

∇2 =
L2

r2
+
Dr(r

2Dr)

r2
,

where Dr = r−1xi∂i = ∂r. Thus we can identify the purely angular part of the Laplacian

−L2 = L2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
,

which obviously commutes with L3 = ∂φ or L3 = −i∂φ, which has eigenfunctions

L3e
imφ = meimφ .

For these functions to be continuous in the periodic coordinate φ where φ+ 2πn for any integer
n must represent the same point, they must be periodic in the azimuthal angle, which requires
that m be an integer

cos(2πm) + i sin(2πm) = e2πmi = e0 = 1 .

Ignoring the radial derivative terms in the Laplacian and setting r = 1 in the remaining
terms yields the corresponding operator on the unit sphere, which is the Laplacian of the
intrinsic geometry of that sphere, namely −L2. If we look for eigenfunctions of L2 of the form

Y`m(θ, φ) = N`mP`(cos θ)eimφ

with eigenvalues `(`+1) and normalization constants N`m, show that the functions P`(µ) where
µ = cos θ must satisfy the Legendre function condition

d

dµ

(
(1− µ2)

d

dµ
P`(µ)

)
=

(
`(`+ 1)− m2

1− µ2

)
P`(µ) .

The functions Y`m(θ, φ) on the unit sphere are called the spherical harmonics, and one finds
for each nonnegative integer `, the 2` + 1 values m = −` . . . `. The integer condition on the
eigenvalues comes from the requirement that these functions be regular along the axis θ = 0, π
or µ = cos θ = ±1 (let’s just accept this fact).
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g) Solutions of the Laplace equation ∇2f = 0 are called harmonics, already encountered in
the multipole moment discussion of Section 2.5, where we saw that functions of the form

r−(2N−1)

(
xi1 · · ·xiN−1 − r2

3
δ(i1i2xi3 · · ·xiN−1)

)
= r−NY i1...iN−1

are harmonic functions, so that tracefree symmetric tensor combinations of the tensor products
of the Cartesian coordinates, rescaled to remove their dependence on r, must be eigenfunctions
of the Laplacian on the unit sphere. These are the Cartesian harmonics. If instead we look
for product function solutions of this equation in the form of a product of functions of the
individual coordinates rnY`m(θ, φ), show that one finds n(n+ 1) = `(`+ 1) using the spherical
coordinate decomposition of the Laplacian. Then show that this quadratic relationship has
two solutions: n = `,−(`+ 1) or equivalently ` = n,−(n+ 1). This means essentially that the
independent Cartesian harmonics for a given N = (` + 1) are simply a different basis of the
same eigenspace of L2 with eigenvalue `(`+ 1).

Since the Laplace equation is linear, we can get real solutions by taking the real and imag-
inary parts of these solutions, and expand a general solution as an infinite series in powers of
r and the spherical harmonics. This can be used to expand the potential for a static electric
field or gravitational field with boundary conditions on a sphere or generated by an isolated
charge distribution with prescribed multipole moments. The nonpositive powers rn of r with
n = −`(` + 1) are regular at infinity. For the Schroedinger equation describing the complex
wave function of an electron orbiting a nucleus, one adds a spherically symmetric inverse radius
potential function to the Laplace equation, leading to new radial wave functions of r called
generalized Laguerre polynomials replacing the power functions of r.

�

Remark.

We have talked about the vector space structure of the infinite-dimensional space of real
or complex functions (scalar fields) or tensor fields over R3. The rotation group acts on this
space by dragging along as a group of linear transformations of the fields so we get an infinite-
dimensional representation of both the rotation group and its Lie algebra, the latter of which
are represented by the sign-reversed Lie derivatives by the corresponding generating vector
fields. When we discussed decomposing the representation of the rotation group on the finite-
dimensional space of (0

2)-tensors over R3, we were able to find an orthogonal direct sum of so
called irreducible representations, each characterized by a single value s of the squared spin
operator. The one missing element of our discussion at the infinite-dimensional level is an inner
product on the space of fields. For a pair of complex scalar fields Ψ and Φ, allowing for the
most general case needed for describing quantum mechanical wave functions, we can integrate
the product Φ̄Ψ over the space

〈Φ,Ψ〉 =

∫ ∫ ∫
Φ̄Ψ dV = 〈Ψ,Φ〉 .
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Fields which are “square integrable” have a finite value for the self-inner product

〈Ψ,Ψ〉 =

∫ ∫ ∫
|Ψ|2 dV <∞ .

and are said to belong to the Hilbert (vector) space of square-integrable functions over space.
Since rotating a field does not change its integral, the rotation group acts on this space as
a symmetry group of its inner product geometry and one can decompose this action into an
orthogonal direct sum of representations with respect to this geometry. If we restrict ourselves
to the unit sphere, we consider the space of square-integrable differentiable functions on that
sphere. The spherical harmonics Y`m are an orthonormal basis of this space adapted to the
decomposition of the rotation group action into an orthogonal direct sum characterized by the
values of the spin parameter `. The normalization factor spoken of above is chosen to make
these functions have unit “norm” (length).

N

Exercise 7.2.5.
angular momentum and Cartesian coordinate functions

The position vector on the unit sphere 〈x1, x2, x3〉 = 〈sin θ cosφ, sin θ sinφ, cos θ〉 is rotated
to another point on the sphere by any rotation R: xi → Ri

jx
j (the identity representation

of the matrix group on R3), which means that the three component functions of this vector
are rotated among themselves in the spin ` = 1 representation. Indeed in Exercise 1.7.12 we
showed that every 3-vector had the eigenvalue −`(` + 1) = −2 with ` = 1 of the squared spin
matrix S2 and hence the eigenvalue `(` + 1) = 2 of S2, where Sa = iLa. To get a standard
basis of the representation in terms of eigenfunctions of the operator L3 = −iL3 = −i∂/∂φ, we
just need to find the eigenvectors of its corresponding matrix.

a) Confirm that L2 expressed in terms of spherical coordinates in Exercise 7.2.4 has eigen-
value 2 acting on these three functions.

b) Show that

L3

x1

x2

x3

 =

 0 i 0
−i 0 0
0 0 0

x1

x2

x3

 = −S3

x1

x2

x3


so that we can find the eigenvalues and eigenvectors of the corresponding matrix and then
transform the coordinates to the new components in this (complex) basis of eigenvectors. Here
is the result for the eigenvalues and eigenfunctions of L3 and the eigenvector of the corresponding
matrix −S3 to save time

m = ±1 : x±1 = x1 ± ix2 , e±1 = e1 ∓ ie2 ,

m = 0 : x0 = x3 e0 = e3 .

Express these in terms of the spherical coordinates (and purely imaginary exponentials) and
the use a computer algebra system to evaluate the following integrals

〈xm′ , xm〉 =

∫ 2π

0

∫ π

0

xm′xm dθ dφ
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for (m′,m) = (1, 1), (−1, 1), (−1,−1) to verify that they are orthogonal and evaluate their
“norms” (the length with this inner product, the square root of the self-inner product)

||xm|| =
√
〈xm, xm〉 .

Divide each by its norm (“normalize” this orthogonal basis of functions). Denote the corre-
sponding normalized basis of eigenfunctions by Y`m. Compare them with the ` = 1 spherical
harmonics Y`m you find on the web. If they agree modulo sign, you did this correctly. One
can “change the phase” of the harmonics by multiplying them by any constant unit complex
number eΦ

lm since this leaves the inner products invariant. The spherical harmonics are usually
defined with an extra sign (−1)m called the CondonShortley phase to make the ladder operator
formulas simpler.

c) Check that the differential equation for the generalized Legendre functions is correct by
evaluating it on the two θ factor functions appearing in these Y`m functions.

d) To visualize the spherical harmonics, we can take do a 45 degree rotation among the
complex pairs Y`m, Y`−m, where Y `m = (−1)mY`−m, to obtain a real orthonormal basis in the
same way we can take the real and imaginary parts of a complex eigenvector of a rotation
matrix to get an orthogonal basis of the plane of the rotation. The only complication is the
sign convention used to fix the phase of the spherical harmonics, which is not universally agreed
upon. This rotation takes the form

〈y`m, y`−m〉 = 〈
√

2 ReY`m,
√

2 ImY`−m〉
〈

1√
2

(Y`m + Y `m),
1

i
√

2
(Y`−m − Y`−m)

〉
.

The usual spherical harmonics one finds listed in reference discussions of their properties are

〈y11, y10, y1−1〉 =

√
3

4π
〈−x, z,−y〉

expressed in spherical coordinates on the unit sphere, showing the relationship between the
Cartesian and spherical harmonics for ` = 1. Use a computer algebra system to plot these by
plotting the radial coordinate r versus (θ, φ) in spherical coordinates using the absolute value
of these real harmonics for r. If you have the patience to separate the plots for positive and
negative values, you can color them differently and you will then have reproduced the three
double lobe graphics you find on the web.

�

Remark.
The Cartesian components of the position vector on the unit sphere coincide with the compo-
nents of the rotationally symmetric radial unit vector field ∂/∂r, whose Lie derivatives with
respect to the rotation generators therefore vanish

0 = £La

∂

∂r
= −Ja

∂

∂r
= −(L3 + S3)

(
xi

r

∂

∂xi

)
.

This explains the relation (L3 + S3)〈x1, x2, x3〉 = 0 found above.
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As already mentioned above the relation between the components of the position vector
on the sphere, namely the Cartesian coordinate functions, and the ` = 1 spherical harmonics
generalizes to tensor products of the position vector, leading to the Cartesian harmonics, which
are a basis for polynomials in the Cartesian coordinates. The five ` = 2 sperhical harmonics
correspond to the spin 2 tracefree symmetric coefficient matrices used to form quadratic func-
tions from the tensor product xixj, investigated in Exercise 1.6.9. The trace inner product
orthogonality discussed there in fact corresponds to the orthogonality on the spaces of spheri-
cal harmonics. In short the decomposition of the representations of the rotation group on the
space of harmonic functions over R3 which are regular at infinity, when restricted to the sphere,
mirrors exactly the subspace of symmetric tracefree tensors over R3, and the natural inner
products on these two very different spaces correspond one to the other in this relationship.

N



7.3. Spherical coordinate orthonormal frame 419

7.3 Spherical coordinate orthonormal frame

The orthonormal frame associated with the orthogonal spherical coordinate frame is related to
the orthonormal Cartesian coordinate frame by a rotation

(er̂ eθ̂ eφ̂) = (ex ey ez)

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


︸ ︷︷ ︸

B = A−1

The columns of the orthogonal matrix B are the Cartesian coordinate frame components of
the new orthonormal frame vectors and are obtained by normalizing the columns of the matrix
B which represents the Cartesian coordinate components of the spherical coordinate frame
vectors.

Since B is an orthogonal matrix then

A = B−1 = BT

This gives the matrix needed to transform components from the Cartesian frame to the spherical
one

(ex ey ez) = (er̂ eθ̂ eφ̂)

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


︸ ︷︷ ︸

B−1 = A

.

The columns of the orthogonal matrix B−1 are the new orthonormal frame components of
the Cartesian orthonormal frame vectors and are obtained by normalizing the columns of the
matrix B−1 which represents the spherical coordinate components of the Cartesian coordinate
frame vectors.

In Exercise 6.2.1 the connection 1-form matrix ω̂ for the spherical coordinate orthonormal
frame was easily interpreted in terms of the rate of change of the frame rotation as one moves
in the two angular directions. The matrix component along dφ simply rotates the orthonormal
frame about the vertical direction at the rate dφ/dt under a translation φ → φ + t along an
azimuthal coordinate circle, while the matrix component along dθ generates a rotation about
eφ̂ at the rate dθ/dt when applied to a translation θ → θ + t along a polar coordinate circle.
A finite rotation by these 1-parameter subgroups corresponds to a finite translation along the
coordinate lines. Thus incrementing φ by ∆φ rotates the frame by that increment about the
vertical axis, while incrementing θ by ∆θ rotates the frame by that increment about the fixed
azimuthal axis to the r-θ plane. Thus we can start with the Cartesian frame on the positive
vertical axis at some radius r > 0, and angles (θ, φ) = (0, 0) and move in the angular coordinate
plane either first to (0, φ) and then to (θ, φ) or in the opposite order: first to (θ, 0) and then to
(θ, φ). The first order is simpler although we stay fixed on the vertical axis under a translation
by the azimuthal angle.

Thus we can understand the matrix B = 〈er̂, eθ̂, eφ̂〉 of as resulting from the following
sequence of simpler transformations, using an obvious shorthand for the trig functions: Cφ =
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cosφ, etc. As already explored in Exercise 5.8.2, we start with a point with z = r on the
positive z-axis and rotate both the point and the Cartesian frame at that point to a general
position with coordinates (r, θ, φ) in two moves.

(
er̂ eθ̂ eφ̂

)
|(r,θ,φ) =

(
ex ey ez

)
|(r,θ=0,φ=0)

Cφ −Sφ 0
Sφ Cφ 0
0 0 1

 Cθ 0 Sθ
0 1 0
−Sθ 0 Cθ

0 1 0
0 0 1
1 0 0


≡
(
ex ey ez

)
|(r,θ=0,φ=0) R3(φ)R1(θ)P .

The first matrix on the left rotates the initial vectors (ex, ey, ez = er̂) at a point on the positive
z-axis by an angle φ about the ez-axis to (eθ̂, eφ̂, er̂) still on that axis. The next matrix factor
then rotates the point and frame by the angle θ away from the z-axis in the half-plane for
the coordinate value φ to its final location. However, to have a right handed frame, a further
permutation of the frame vectors is required to get the order (er̂, eθ̂, eφ̂) where er̂ × eθ̂ = eφ̂.

Figure 7.2: Getting from the Cartesian coordinate frame at a point on the positive z-axis to
the spherical coordinate frame at a general point.

Now it is a straightforward problem to evaluate the connection 1-form matrix in the spherical
orthonormal frame using this product representation (even by hand, but a computer algebra
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system is better). Using the abbreviations Cu = cosu, Su = sinu one finds

ω̂ = B−1 dB = (Γîk̂ĵω
k̂)

=

SθCφ SθCφ Cθ
CθCφ CθSφ −Sθ
−Sφ Cφ 0


CθSφ SθCφ 0
CθCφ CθSφ 0
−Sφ Cφ 0

 dθ +

CθSφ −CθSφ −CφSθCφ CθCφ −Sφ
0 0 0

 dφ


= · · · =

0 −1 0
1 0 0
0 0 0

 dθ +

 0 0 −Sθ
0 0 −Cθ
Sθ Cθ 0

 dφ

=

 0 −r−1 0
r−1 0 0
0 0 0

ωθ̂ +

 0 0 −r−1

0 0 −r−1 cot θ
r−1 r−1 cot θ 0

ωφ̂

=

0 −1 0
1 0 0
0 0 0

 dθ +

 0 0 − sin θ
0 0 − cos θ

sin θ cos θ 0

 dφ ,

so that
Γ1̂

θ̂2̂ = Γr̂ θ̂θ̂ = −r−1 ,

Γ2̂
θ̂1̂ = Γθ̂ θ̂r̂ = r−1 ,

Γ1̂
φ̂3̂ = Γr̂ φ̂φ̂ = −r−1 ,

Γ3̂
φ̂1̂ = Γφ̂φ̂r̂ = r−1 ,

and finally

Γ2̂
φ̂3̂ = Γθ̂ φ̂φ̂ = −r−1 cot θ ,

Γ3̂
φ̂2̂ = Γφ̂φ̂θ̂ = r−1 cot θ

.

This last expression gives the six nonzero orthonormal components of the connection 1-forms
found directly in Exercise 6.2.1 using a computer algebra system.

Exercise 7.3.1.
matrix product representation of orthonormal frame

a) Check that the matrix product of these three factor matrices is B.
b) Fill in the dots in the subsequent step by step evaluation of B−1dB using this product

representation, evaluating and simplifying the matrix products and re-expressing the coordinate
differentials in terms of the orthonormal 1-forms.

c) Check the resulting components of the connection by reading them off from the penulti-
mate matrix.

�

Exercise 7.3.2.
spherical coordinate orthonormal frame connection vector

a) As first explored in Exercise 1.2.4, the sign-reversed dual vector of a 3× 3 antisymmetric
matrix in an orthonormal frame

Ωi
jx
j = −εijk[∗Ω]kxj = [~Ω× ~x]i = [∗Ω]k[kk]

i
jx
j
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gives the axis of the rotation it generates, with the angle given by its magnitude in the direction
around the axis given by the right hand rule provided the orthonormal frame in which it is
expressed is right-handed. Recall that the three matrices kk with components [kk]

i
j = εikj are

the natural basis of the Lie algebra of rotations. The previous calculation can be expressed in
terms of these matrices as follows

ω̂ =

0 −1 0
1 0 0
0 0 0

 dθ +

cos θ

 0 0 0
0 0 −1
k0 1 0

− sin θ

 0 0 1
0 0 0
−1 0 0

 dφ
= [cos θ k1 − sin θ k2] dφ+ k3 dφ ≡ Ωk̂kk ,

which defines a vector-valued connection 1-form by taking the sign-reversed dual of the con-
nection components on their antisymmetric pair of indices

Ω = Ωk̂ek̂ = −1

2
ηk̂îĵω̂îĵek̂ = −1

2
eî ⊗ ηî ĵ k̂ωĵ k̂ .

The coefficients of the basis rotation matrices in the square brackets are the components of the
vector

〈cos θ,− sin θ, 0〉 .
Compare this with the final column of the matrix B−1 at the beginning of this section to show
that these are the orthonormal spherical components of the unit vector field eẑ. Conclude from
this that

Ω = (cos θ er̂ − sin θ eθ̂)⊗ dφ+ eφ̂ ⊗ dθ = eẑ ⊗ dφ+ eφ̂ ⊗ dθ ,
This shows concisely how the orthonormal vectors are affected by changes in the angular di-
rections. Increasing the polar angle θ while holding φ fixed rotates er̂ and eθ̂ in their plane
about eφ̂ by the increment in that angle, while increasing the azimuthal angle φ holding θ fixed
rotates all of the frame vectors about the vertical axis by the increment in that angle.

This same approach to interpreting the connection 1-forms will work for any orthonormal
frame (of Euclidean signature).

�

We can also derive expressions for the components of the connection in the orthonormal
spherical frame from the metric formula for the components of the connection in a frame. For
an orthonormal frame {eî}, then gîĵ = g(eî, eĵ) = δij, i.e., the components of the metric are
constants so the metric component derivative terms in the formula vanish, leaving only the
structure function terms

Γî ĵk̂ =
1

2
(C î

ĵk̂ + Cĵ
î
k̂ + Ck̂

î
ĵ) =

1

2
(C î

ĵk̂ − C ĵ
k̂î + C k̂

îĵ) ,

where the final formula holds since index shifting is trivial in an orthonormal frame. The
structure functions were evaluated above in an exercise. The results should have been

C θ̂
r̂θ̂ = −1

r
= −C θ̂

θ̂r̂ , C
φ̂
r̂φ̂ = −1

r
= −C φ̂

φ̂r̂ , C
φ̂
θ̂φ̂ = −1

r
cot θ = −C φ̂

φ̂θ̂ .
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The nonzero components of the connection must have indices which are at most a permutation
of the index positions on the nonzero structure functions. Forgetting for a moment that we
know which six components of the connection are nonzero, we can use the following reasoning
to avoid evaluating the formula for many components which turn out to be zero.

We saw above that the covariant constancy of the metric implies the relation gij,k = Γjki +
Γikj. For an orthonormal frame, gij = δij and gij,k = 0 (constant components) so

Γjki = −Γikj ,

i.e., the components of the connection are antisymmetric in their outer indices. This remains
true when we raise the index since the metric component matrix is the identity matrix and
explains why the matrix ω̂ = (Γ̂îk̂ĵω

k̂) evaluated above for the spherical orthonormal frame
is antisymmetric—its matrix indices are the outer pair of indices on the components of the
covariant derivative.

Thus the outer pair of indices (̂i, ĵ) on Γîk̂ĵ must be distinct for this quantity to be nonzero,
and antisymmetry tells us its value for one index ordering of the pair in terms the other ordering.
Given the three independent nonzero structure functions (six nonzero components equal in pairs
by antisymmetry), there are only three independent nonzero components of the connection that
we need to write down. Using the antisymmetry of the structure functions in the lower index
pair, we get

C θ̂
r̂θ̂ = −C θ̂

θ̂r̂ −→ Γθ̂ θ̂r̂ = −Γr̂ θ̂θ̂

=
1

2
(C θ̂

θ̂r̂ − Cθ̂r̂ θ̂ + Cr̂
θ̂
θ̂) =

1

2
(C θ̂

θ̂r̂ + C θ̂
r̂θ̂ + C r̂

θ̂θ̂) = C θ̂
θ̂r̂

= r−1

C φ̂
r̂φ̂ = −C φ̂

φ̂r̂ −→ Γφ̂φ̂r̂ = −Γr̂ φ̂φ̂

=
1

2
(C φ̂

φ̂r̂ − Cφ̂r̂ φ̂ + Cr̂
φ̂
φ̂) =

1

2
(C φ̂

φ̂r̂ + C φ̂
φ̂r̂ + C r̂

φ̂φ̂) = C φ̂
φ̂r̂

= r−1

C φ̂
θ̂φ̂ = −C φ̂

φ̂θ̂ −→ Γφ̂φ̂θ̂ = −Γθ̂ φ̂φ̂

=
1

2
(C φ̂

φ̂θ̂ − Cφ̂θ̂ φ̂ + Cθ̂
φ̂
φ̂) =

1

2
(C φ̂

φ̂θ̂ + C φ̂
φ̂θ̂ + C θ̂

φ̂φ̂) = C φ̂
φ̂θ̂

= r−1 cot θ ,

and we do not have to waste time verifying that the remaining components are zero.

What is the significance of the antisymmetry property of the matrix ω = (Γikjω
k) in an

orthonormal frame? Well, from the definition

∇ekei = Γjkiej ,

we can calculate the derivative of the frame vector fields along a vector field X using the fact
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that it is linear in X (i.e., ∇XY
i = Y i

;jX
j = Xj∇ejY

i), which in this context says

∇Xei = ∇Xkekei = Xk∇ekei = Γjki Xk︸︷︷︸
ωk(X)︸ ︷︷ ︸

ωj i(X)

ej

so
∇Xei = ωj i(X)ej .

Summarizing this calculation, the value of the matrix-valued 1-form ω on X gives the matrix
of the linear transformation of the frame vectors which describes their covariant derivative in
that direction, i.e., how they change relative to a Cartesian frame as we move in that direction.
The fact that this matrix is antisymmetric tells us that in 3-dimensions it can be represented
by the cross-product of a vector and that it generates a rotation.

What is the interpretation of the connection 1-form matrix ω = A dA−1 for the spherical
coordinate frame which is not orthonormal? Doing the following calculation

ω =

 SθCφ SθSφ Cθ
r−1CθCφ r−1CθSφ −r−1Sθ
−r−1 Sφ

Sθ
−r−1Cφ

Sθ
0

 d

SθCφ rCθCφ −rSθSφ
SθSφ rCθSφ rSθCφ
Cθ −rSθ 0


= · · · =

0 0 0
0 r−1 0
0 0 r−1

 dr +

 0 −r 0
r−1 0 0
0 0 cot θ

 dθ +

 0 0 −r sin2 θ
0 0 − sin θ cos θ
r−1 cot θ 0

 dφ ,

we can read off the following connection coordinate component formulas

Γθrθ = Γφrφ = r−1 ,

Γrθθ = −r , Γθθr = r−1 , Γφθφ = cot θ ,

Γrφφ = −r sin2 θ , Γθφφ = − sin θ cos θ ,

Γφφr = r−1 , Γφφθ = cot θ .

Exercise 7.3.3.
spherical coordinate connection 1-forms

Check these. A computer algebra system makes this less painful.
�

The appearance of r in the θ and φ components of the 1-form ω just takes into account
the fact that for fixed r, eθ and eφ are not unit vectors, so the existing nonzero components of
the covariant derivative in the associated orthonormal frame are simply rescaled by factors of
r, except for the additional component Γφθφ = cot θ = ωφ(∇eθeφ). This describes the change
in the length of eφ as we change θ. Similarly the extra components Γθrθ and Γφrφ describe the
change in the length of eθ and eφ as we change r.
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7.4 Rotations and derivatives

RECONSIDER THIS SECTION IN VIEW OF PREVIOUS ROTATION MATRIX DISCUS-
SIONS

We review the properties of orthonormal bases and rotations that have been discussed at
length above. This allows us to interpret the connection 1-form matrix in terms of a differential
angular velocity.

For the Euclidean inner product on Rn, the components of the inner product are just

g(ei, ej) = ei · ej = δij

in the standard basis or in any orthonormal basis. If

ei = A−1j
iej = Bj

iej , ei = Aj iej = B−1j
iej

is a transformation relating any two orthonormal bases, whereB actively transforms the starting
basis, while its inverse A transforms indices in the corresponding passive coordinate transfor-
mation, then the inner products of the basis vectors transform in the following way

δij = A−1m
iA
−1n

jδmn or δij = AmiA
n
jδmn

or in matrix form
δij = AmiδmnA

n
j

I = AT IA = ATA

This just says that the transpose of A is its inverse

AT = A−1 = B .

This condition characterizes the matrices of linear transformations between orthonormal
bases. Such matrices are called orthogonal, and consist of a set of either rows or columns which
form an orthonormal set of vectors with respect to the usual dot product on Rn. They represent
rotations and reflections of Rn into itself.

Note that from the product rule for determinants, taking the determinant of the equation
ATA = I

1 = det(ATA) = det(AT ) detA = (detA)2 ,

so detA = ±1. Those with detA = 1 represent rotations, while those with detA = −1 consist
of a rotation plus a reflection.

Suppose A depends on a parameter λ so we get a family of orthogonal matrices. Then

d

dλ
[ ATA = I ]

dA

dλ

T

A︸ ︷︷ ︸[
AT

dA

dλ

]T
+AT

dA

dλ
= 0
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using the obvious properties of the transpose (A B)T = BT AT , (AT )T = A. Next using the
orthogonal condition AT = A−1, this becomes

A−1dA

dλ
+

[
A−1dA

dλ

]T
= 0 .

This just says that the matrix

P ≡ A−1dA

dλ
= −P T

is antisymmetric: P i
j = −P j

i but to respect index positioning we should really rewrite this as:
δikP

k
j = −δjkP k

i or finally with index lowering notation Pij = −Pji.
The same thing is true if we take the differential

A−1dA = A−1dA

dλ
dλ

instead of the derivative. This explains why the derivative of the spherical coordinate frame
orthogonal transformation matrix

ω̂ = A dA−1 = (A−1)−1 d(A−1)

is antisymmetric, namely with correct index positioning

ωîĵ = −ωĵî .

The connection 1-form matrix ω(X) evaluated on a given vector field X tells us the rate of
change of the rotation which the orthonormal frame undergoes as we move in the direction of
X.

However, the rate of change of a rotation can be described by an angular velocity which is
more helpful in visualizing its geometry. To understand this suppose a point of R3 with initial
Cartesian coordinates xi(0) undergoes an active rotation

xi(t)︸︷︷︸
position at t

= Aij(t) xi(0)︸ ︷︷ ︸
position at t=0

.

Then using the consequence (dA/dt)A−1 = −A(dA−1/dt) of differentiating AA−1 = I one finds

dxi

dt
(t) =

dAij(t)

dt
xi(0)︸ ︷︷ ︸

A−1j
k(t)x

k(t)

=
dAij(t)

dt
A−1j

k(t)x
k(t) = −Aij(t)

dA−1j
k(t)

dt︸ ︷︷ ︸
≡ P i

k(t)

xk(t) ,

but since P is antisymmetric, it can be represented by its dual

P i
k(t) = εikmΩm(t)
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ignoring the index positioning since we are working in an orthonormal basis so

dxi

dt
(t) = −εikm︸ ︷︷ ︸

εimk

Ωm(t)xk(t) = εimkΩ
m(t)xk(t)︸ ︷︷ ︸

[~Ω(t)× ~x(t)]i

or in vector notation
d−→x
dt

(t) =
−→
Ω (t)×−→x (t) .

The vector
−→
Ω (t) = ||−→Ω (t)||n̂(t) is the angular velocity vector, which corresponds to an instanta-

neous rotation about the instantaneous axis n(t) (its direction) with an angular rate of change

||−→Ω (t)|| (its magnitude), where the sense of the rotation about the axis is determined by the
right hand rule.

Figure 7.3: The right hand rule from ~Ω to ~x(t) gives the direction in which ~x(t) is instanta-
neously rotating. [add vector n to new diagram]

However, this little detour into the rotation group is all we can spare time for at this
point. It helps explain why the rate of change of an orthonormal frame must be described by
an antisymmetric matrix, which is what the connection 1-form matrix ω represents. Letting

the vector
−→
Ω (X) be the dual of the antisymmetric matrix ω(X), the rate of change of the

frame vectors along X is described by this angular velocity acting on them by cross product
multiplication.

Okay, so you didn’t do rotation and angular velocity in your physics courses, or maybe you
never understood the right hand rule, or maybe you’re just not patient enough to read this
stuff about derivatives of orthogonal matrices and duals of antisymmetric matrices—OKAY, it
doesn’t matter. The cross-product and right hand rule only work in 3 dimensions where a pair
of antisymmetric indices can be swapped for a single index by the duality operation. In any
other dimension, you are stuck with a 2-plane in which a rotation takes place, so it is enough
to look at rotations of R2 to understand how they work.

By trigonometry

ē1 = cos θe1 + sin θe2 ,

ē2 = − sin θe1 + cos θe2 ,
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- e1
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�

6

	?

Figure 7.4: A finite and infinitesimal rotation in the plane.

or

(ē1 ē2) = (e1 e2)

(
cos θ − sin θ
sin θ cos θ

)
,

d

dθ
(ē1 ē2) = (e1 e2)

(
− sin θ − cos θ
cos θ − sin θ

)
,

d

dθ

∣∣∣∣
θ=0

(ē1 ē2) = (e1 e2)

(
0 −1
1 0

)
−→ (∆ē1,∆ē2) ≈ (e1 e2)

(
0 −1
1 0

)
∆θ .

The interpretation of this is that as you begin to rotate the basis vectors through a small angle
4θ, the vector ē1 begins to rotate toward e2 and ē2 towards −e1 as shown in Fig. 7.4, explaining
the antisymmetry of the matrix B = dA/dθ|θ=0.

Now look at

ω̂ = A dA−1 =

0 −1 0
1 0 0
0 0 0

 dθ +

 0 0 − sin θ
0 0 − cos θ

sin θ cos θ 0

 dφ

which tells us how the spherical orthonormal frame vectors begin to change as we make small
increments ∆θ and ∆φ in the angular variables, or alternately, tells us the rate at which these
frame vectors are rotating as we change the angular coordinates. The fact that these 1-forms
have no component along dr means that they don’t rotate as we change r, i.e., as we move
radially, and that is exactly right.

If we hold φ fixed and increase θ, eφ̂ remains fixed while (er̂, eθ̂) rotate by exactly the
increment of θ in their 2-plane in the usual counterclockwise sense, so the 2 × 2 part of the
matrix with r̂, θ̂ indices is exactly the matrix of our two dimensional discussion.

If we hold θ fixed and increase φ, what happens depends on the value of θ. For θ = π/2
we are in the x-y plane and eθ̂ remains equal to −ez as we change φ but (er̂, eφ̂) undergoes the
same 2-dimensional rotation by exactly the increment in φ.
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Figure 7.5: The spherical coordinate unit vectors.

Figure 7.6: The spherical coordinate unit vectors in the x-y plane. er̂ and eφ̂ are obtained
from the Cartesian unit vectors by a rotation by angle φ.

This is just what

ω̂|θ=π/2,dθ=0 =

0 0 −1
0 0 0
1 0 0

 dφ

describes.
At the other extreme θ → 0 we approach the z-axis, where er̂ ≈ eẑ remains fixed and (eθ̂, eφ̂)

rotate by exactly the increment in φ which is what describes

ω̂|θ≈0,dθ=0 =

0 0 0
0 0 −1
0 1 0

 dφ

Are you convinced?
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Figure 7.7: The spherical coordinate unit vectors near the z-axis rotate by exactly the incre-
ment in φ.



Chapter 8

Parallel transport and geodesics

Figure 8.1: A vector (cyan) pointing to the Northeast at the Equator of the sphere at the
positive x-axis is moved East along the Equator maintaining its 45◦ angle with the Equator till
it gets to the positive y-axis, then moved up the longitude to the North Pole where it points
along the φ = 180◦ + 45◦ longitude line. Bring the vector down the φ = 0◦ longitude line back
to the positive x-axis, where it now points Northwest (black). It has rotated by 90◦ due to the
curvature of the sphere. If we had moved along such a great circle triangle with an increment
∆φ between the longitude lines instead of 90◦, the vector would rotate by that angle relative
to its original direction.

431
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The covariant derivative on Rn is a local way of encoding the global flatness that allows one
to identify all of its tangent spaces with itself. Given a tangent vector at one point of space,
there is a unique tangent vector at every other point of space that is “the same,” meaning having
the same length and direction. Having the same length is no big deal. It is the correlation of
all the directions which is the real trick. A flat space has a global parallelism that enables a
vector to be translated all around on any path keeping its direction “constant” and still arrive
at a given point with the same direction. On a curved space, this is not possible. Think about
taking a vector that is tangent to the unit sphere and moving it around the unit sphere so that
it remains tangent to the sphere as illustrated in Fig. 8.1. Even though you try to keep its
direction fixed along the surface as you move, different paths between two points lead to final
vectors whose directions are generally rotated with respect to each other.

To investigate this we need to be able to transport tangent vectors along curves keeping them
“covariant constant.” In general coordinates on Rn, this will enable us to keep the direction (and
length) of a vector constant along a curve even though its components are forced to change
continuously to compensate for the changing directions and lengths of the coordinate frame
vectors. In curved spaces, this will lead to a way of measuring curvature.
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8.1 Covariant differentiation along a curve and parallel

transport

Figure 8.2: A parametrized curve and its tangent vector.

Suppose we have a parametrized curve c(λ) in Rn with tangent vector c ′(λ). The com-
ponents of the tangent vector with respect to the Cartesian coordinate frame vectors are the
ordinary derivatives of the composition of the Cartesian functions with that tangent vector

c(λ) = (c1(λ), ..., c n(λ)) ,

c ′(λ) = ci ′(λ)
∂

∂xi

∣∣∣∣
c(λ)

, ci(λ) = xi ◦ c(λ) .

The directional derivative along the tangent vector of a real-valued function f is then

∇c′(λ)f = c′(λ)f = ci′(λ)
∂f

∂xi

∣∣∣∣
c(λ)

=
d

dλ
[f ◦ c(λ)] ,

namely just the derivative of the function composed with the parametrized curve, as follows
from the chain rule for this composed function.

In a general coordinate system {xi} define analogously

c̄i(λ) = x̄i ◦ c(λ) (evaluate coordinate functions on curve)

so that

c ′(λ) = c̄i ′(λ)
∂

∂x̄i

∣∣∣∣
c(λ)

.

In sloppy notation typically used in physics, the composition with c would be suppressed and
these coordinate functions and components along the curve would just be designated by xi(λ),
x̄i(λ) and xi ′(λ), x̄i ′(λ), and the directional derivative of a function

∇c′(λ)f =
dxi(λ)

dλ

∂f

∂xi

∣∣∣∣
c(λ)

=
dx̄i(λ)

dλ

∂f

∂x̄i

∣∣∣∣
c(λ)

.
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Figure 8.3: A parametrized circle about the vertical axis in a horizontal plane. [add tangent
vectors, transported vectors, angle lambda]

The equivalence of the two expressions for the directional derivative follows from the chain rule
applied to the change of variables, which became the transformation law for the components of
the vector field

c̄i ′(λ) =
∂x̄i

∂xj

∣∣∣∣
c(λ)

cj ′(λ) ,

which implies

c̄i ′(λ)
∂

∂x̄i

∣∣∣∣
c(λ)

= cj ′(λ)
∂x̄i

∂xj

∣∣∣∣
c(λ)

∂

∂x̄i

∣∣∣∣
c(λ)

= cj ′(λ)
∂

∂xj

∣∣∣∣
c(λ)

.

This is the foundation of our interpretation of tangent vectors as first order derivative operators.
In multivariable calculus we usually let t be the parameter variable for a parametrized curve

in the plane or in space, a variable which we can think of as the time in a physical problem in
which the curve represents a path in a space of some variables as a function of time, but here
we use the Greek letter lambda to allow any interpretation of the parametrization of the curve.
Since the prime is also used to denote the derivative of a function of a single variable, it is now
particularly useful to let the overbar denote a new system of coordinates instead of putting a
prime on the indices, which would be confusing if both were used together.

Example 8.1.1. On R3 consider a parametrized curve c(λ) shown in Fig. 8.3 representing one
revolution around a circle of radius ρ0 = r0 sin θ0 centered on the z axis lying in a horizontal
plane of constant z = z0 = r0 cos θ0, parametrized by the angle λ of revolution from the
positive x-direction in the counterclockwise direction as seen from above: λ : 0 → 2π. This
circle is a coordinate line of the φ-coordinate in both cylindrical and spherical coordinates (with
physicist rather than calculus conventions for the coordinates), and it starts and ends at the
point (x, y, z) = (r0 sin θ0, 0, r0 cos θ0) above the x-axis. We can describe this (two parameter
family of) parametrized curve(s) in all three coordinate systems.
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Cartesian: (x1, x2, x3) = (x, y, z)

x = r0 sin θ0 cosλ ≡ c1(λ) dx/dλ = −r0 sin θ0 sinλ = c1′(λ)

y = r0 sin θ0 sinλ ≡ c2(λ) dy/dλ = r0 sin θ0 cosλ = c2′(λ)

z = r0 cos θ0 ≡ c3(λ) dz/dλ = 0 = c3′(λ)

Cylindrical: (x̄1, x̄2, x̄3) = (ρ, φ, z)

ρ = r0 sin θ0 ≡ c̄1(λ) ≡ cρ(λ) dρ/dλ = 0 = c̄1′(λ) = cρ′(λ)

φ = λ ≡ c̄2(λ) ≡ cφ(λ) dφ/dλ = 1 = c̄2′(λ) = cφ′(λ)

z = r0 cos θ0 ≡ c̄3(λ) ≡ cz(λ) dz/dλ = 0 = c̄3′(λ) = cz ′(λ)

Spherical: (x̄1, x̄2, x̄3) = (r, θ, φ)

r = r0 ≡ c̄1(λ) = cr(λ) dr/dλ = 0 = c̄1′(λ) = cr ′(λ)

θ = θ0 ≡ c̄2(λ) = cθ(λ) dθ/dλ = 0 = c̄2′(λ) = cθ ′(λ)

φ = λ ≡ c̄3(λ) = cφ(λ) dφ/dλ = 1 = c̄3′(λ) = cφ′(λ)

The tangent vector is then

c′(λ) = r0 sin θ0

(
− sinλ

∂

∂x

∣∣∣∣
c(λ)

+ cosλ
∂

∂y

∣∣∣∣
c(λ)

)
︸ ︷︷ ︸

Cartesian

=
∂

∂φ

∣∣∣∣
c(λ)︸ ︷︷ ︸

cylindrical

=
∂

∂φ

∣∣∣∣
c(λ)︸ ︷︷ ︸

spherical

.

�

Since the covariant derivative of a function by a tangent vector is the ordinary derivative of
the function by the tangent vector, this establishes a relation between that covariant derivative
of the function as a function of all the coordinates to the derivative of the same function only
along the curve. We can extend this operation to tensor fields to measure their change along
the curve with respect to covariant constant tensor fields. An explicit preliminary example
helps make this more concrete.

Example 8.1.2. Consider the function from Exercise 7.1.3

f = xy =
1

2
ρ2 sin 2φ =

1

2
r2 sin2 θ sin 2φ .

We calculate its derivative along the horizontal circle of the previous example in all three
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coordinate systems, obtaining the same result in three different ways

∇c′(λ)f = r0 sin θ0

(
− sinλ

∂

∂x
+ cosλ

∂

∂y

)∣∣∣∣
c(λ)

(xy)

= r0 sin θ0(− sinλ y + cosλ x)|c(λ)

= r0 sin θ0(− sinλ [r0 sin θ0 sinλ] + cosλ [r0 sin θ0 cosλ])

= r2
0 sin2 θ0(cos2 λ− sin2 λ) = r2

0 sin2 θ0 cos 2λ

or =
∂

∂φ

(
1

2
ρ2 sin 2φ

)∣∣∣∣
c(λ)

=
1

2
(r2

0 sin θ0)22 cos 2φ|c(λ) = r2
0 sin2 θ0 cos 2λ

or =
∂

∂φ

(
1

2
r2 sin2 θ sin 2φ

)
|c(λ) = r2

0 sin2 θ0 cos 2λ .

�

Exercise 8.1.1.
directional derivative along a curve

Evaluate ∇c′(λ)f for the function f = x2− y2 of Exercise 7.1.4 along the same parametrized
curve.

�

Now suppose Y is a vector field, i.e., defined everywhere, not just along the curve. Then in
general coordinates the covariant derivative of Y along the tangent vector to the curve is

[[∇c′(λ)Y ] ◦ c(λ)]i = Ȳ i
;j ◦ c(λ) c̄j ′(λ) = (Ȳ i

,j + Γ̄ijkȲ
k) ◦ c(λ) c̄j ′(λ)

= Ȳ i
,j ◦ c(λ) c̄j ′(λ) + Γ̄ijk ◦ c(λ) Ȳ k ◦ c(λ) c̄j ′(λ)

=
d

dλ
[Ȳ i ◦ c(λ)] + Γ̄ijk ◦ c(λ)c̄j ′(λ)︸ ︷︷ ︸

ω̄ik ◦ c(λ) (c′(λ))

Y k ◦ c(λ)

≡
[
D

dλ
(Y ◦ c(λ))

]i
.

where the correction term is given by the value of the connection 1-form matrix on the tangent
vector describing the rate of change of the frame along the curve. Usually the dependence on the
curve c(λ) is suppressed in sloppy notation but understood implicitly to make the expressions
look less busy. One writes sloppily

DȲ i

dλ
=
dȲ i

dλ
+ Γ̄ijk

dx̄j

dt
Ȳ k ,

or ignoring the choice of frame to express this equation, as

DY

dλ
= ∇c′ Y .
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Notice that at a given point on the curve, all we need to know about the vector field being
differentiated in order to evaluate its covariant derivative along the curve are the values of its
component functions along the curve and nowhere else. Their values at all points of Rn off the
curve are irrelevant. This enables us to extend the idea of covariant differentiation to a vector
function which is only defined along a curve and nowhere else. The covariant derivative along
the parametrized curve indicated by the notation D/dλ is sometimes referred to as the intrinsic
derivative or the “total covariant derivative” along the curve.

Example 8.1.3. Continuing the previous two examples, consider the covariant derivative of
the vector field from Example 5.7.1

X = y
∂

∂x
+ x

∂

∂y
= ρ sin 2φ

∂

∂ρ
+ cos 2φ

∂

∂φ

along the horizontal circle c(λ) given above. In Cartesian coordinates D/dλ just reduces to
d/dλ of the components of X along c(λ), i.e.,

D

dλ
(X ◦ c(λ)) =

d[y ◦ c(λ)]

dλ

∂

∂x

∣∣∣∣
c(λ)

+
d[x ◦ c(λ)]

dλ

∂

∂y

∣∣∣∣
c(λ)

=
d[r0 sin θ0 sinλ]

dλ

∂

∂x

∣∣∣∣
c(λ)

+
d[r0 sin θ0 cosλ]

dλ

∂

∂y

∣∣∣∣
c(λ)

= r0 sin θ0 cosλ
∂

∂x

∣∣∣∣
c(λ)

− r0 sin θ0 sinλ
∂

∂y

∣∣∣∣
c(λ)

=

(
x
∂

∂x
− y ∂

∂y

)∣∣∣∣
c(λ)

.

In cylindrical coordinates

c̄i′(λ) = δ̄i2 , or (cρ′(λ), cφ′(λ), cz ′(λ)) = (0, 1, 0) ,

so
ω̄ik(c

′(λ)) = Γ̄iφk ◦ c(λ)cφ ′(λ)

and

Xρ = ρ sin 2φ , Xρ ◦ c(λ) = r0 sin θ0 sin 2λ ,

Xφ = cos 2φ , Xφ ◦ c(λ) = cos 2λ ,

so the covariant derivative of X along c is (refer to the connection components listed in Exercise
6.2.1)

DXρ

dλ
=
dXρ

dλ
+ Γρφφ︸︷︷︸
−ρ

Xφ = 2r0 sin θ0 cos 2λ− r0 sin θ0 cos 2λ = r0 sin θ0 cos 2λ ,

DXφ

dλ
=
dXφ

dλ
+ Γφφρ︸︷︷︸
ρ−1

Xρ = − sin 2λ+
1

r0 sin θ0

(r0 sin θ0 sin 2λ) = − sin 2λ ,

DXz

dλ
= 0 ,
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so
DX

dλ

∣∣∣∣
c(λ)

= r0 sin θ0 cos 2λ
∂

∂ρ

∣∣∣∣
c(λ)

− sin 2λ
∂

∂φ

∣∣∣∣
c(λ)

.

�

Exercise 8.1.2.
directional derivative along curve in cylindrical coordinates

Verify that this cylindrical coordinate result is the value along this curve of the Cartesian
expression DX/dλ|c(λ) = (x∂/∂x− y∂/∂y)|c(λ) following Example 5.7.1.??

�

One can do this for any tensor field T , defining its covariant derivative along a parametrized
curve by the analogous formula which follows from evaluating∇c′(λ)T , or in terms of components

[∇c′(λ)T ] i···j··· = T̄ i···j··· ;k ◦ c(λ) c̄k ′(λ)

= T̄ i···j··· ,k ◦ c(λ) c̄k ′(λ) + Γ̄ik` ◦ c(λ) c̄k ′(λ)T̄ `···j··· ◦ c(λ) + · · ·
− Γ̄`kj ◦ c(λ) c̄k ′(λ)T̄ i···`··· ◦ c(λ)− · · · ,

and using the chain rule to re-express the first term representing the ordinary derivative of the
components along the curve[

DT ◦ c(λ)

dλ

]
i···
j··· =

d

dλ

(
T̄ i···j··· ◦ c(λ)

)
+ Γ̄ik` ◦ c(λ) c̄k ′(λ)T̄ `···j··· + · · ·

− Γ̄`kj ◦ c(λ) c̄k ′(λ)T̄ i···`··· − · · · .

This formula defines the intrinsic derivative or total covariant derivative of the tensor field along
the parametrized curve, but it only requires the values of the components of the tensor field
along the curve for its evaluation. It is usually written simply DT/dλ, suppressing reference to
the curve, which makes the formulas look more complicated. Thus in sloppy notation

D

dλ
T̄ i···j··· =

d

dλ
T̄ i···j··· + Γ̄ik`T̄

`···
j··· + . . .− Γ̄`kjT̄

i···
`··· − . . . .

The metric is covariant constant so

Dḡij
dλ

=

[
Dg ◦ c(λ)

dλ

]
ij

= [∇c′(t)g]
ij

= 0 ,

i.e., the intrinsic derivative of the metric along any curve is zero.
If Y is any covariant constant vector field, ∇Y = 0, then it too will have vanishing covariant

derivative along any curve

0 =

[
DY ◦ c(λ)

dλ

] i

=
dȲ i ◦ c(λ)

dλ
+ Γ̄ijk ◦ c(λ)c̄j ′(λ)Ȳ k ◦ c(λ) .
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Notice that everything in this system of first order linear ordinary differential equations for the
functions Ȳ i ◦ c(λ) is a function of λ alone. Suppose we just specify arbitrary particular values
at λ = 0

Ȳ i(c(0)) ≡ Ȳ i
(0) .

These are initial conditions for this system of differential equations. Together they represent
an initial value problem which is guaranteed to have a unique solution Ȳ i(λ) as covered in
any first course in differential equations. We have therefore succeeded in defining a vector
Y (λ) = Ȳ i(λ)∂/∂x̄i|c(λ) along the curve which doesn’t change its components with respect to a
Cartesian frame as we move along the curve and is just the composition of the original vector
field with the curve: Y (λ) = Y ◦ c(λ). This process describes the “parallel transport” of the
initial tangent vector along the curve, sometimes called “parallel translation” and can be used
in any space provided a metric is available, even if covariant constant vector fields are not.

Example 8.1.4. Continuing the previous example, the equations DY/dλ = 0 expressed in
cylindrical coordinates are explicitly

dY ρ

dλ
− r0 sin θ0Y

φ = 0

dY φ

dλ
+

1

r0 sin θ0

Y ρ = 0

dY z

dλ
= 0

↔



dY ρ

dλ
= (r0 sin θ0Y

φ)

d

dλ
(r0 sin θ0Y

φ) = −Y ρ

dY z

dλ
= 0

↔



du1

dλ
= u2

du2

dλ
= −u1

du3

dλ
= 0

,

where we have introduced the orthonormal component combinations

(Y ρ̂, Y φ̂, Y ẑ) = (Y ρ, ρY φ, Y z) = (u1, u2, u3)

along the curve where ρ = r0 sin θ0 (suppressing the dependence on λ) which simplifies the
equations. This is a constant coefficient system of first order linear differential equations which
is studied in every first course in differential equations. The last variable u3 = u3

0 is just a
constant, and the first two satisfy the matrix differential equation

d

dλ

(
u1

u2

)
=

(
0 1
−1 0

)(
u1

u2

)
.

We verify that its solution (
u1

u2

)
=

(
cosλ sinλ
− sinλ cosλ

)(
u1

0

u2
0

)
satisfies the system of differential equations

d

dλ

(
u1

u2

)
=

(
− sinλ cosλ
− cosλ − sinλ

)(
u1

0

u2
0

)
=

(
0 1
−1 0

)(
cosλ sinλ
− sinλ cosλ

)(
u1

0

u2
0

)
=

(
0 1
−1 0

)(
u1

u2

)
.
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This solution represents a clockwise rotation by angle λ = φ of the components in the eρ̂-eφ̂
horizontal plane in the tangent space, which exactly compensates the counterclockwise rotation
of those axes along the circle as one rotates around it as the azimuthal angle φ increases. At
λ = 0, the orthonormal cylindrical coordinate frame at the point c(0) above the x-axis coincides
with the Cartesian coordinate frame there.

All together we have explicitly

u1 = cosλu1
0 + sinλu2

0

u2 = − sinλu1
0 + cosλu2

0

u3 = u3
0 .

which we can convert back to Y ρ, Y φ, Y z to get the solution for initial conditions

(Y ρ
(0), r0 sin θ0Y

φ
(0), Y

z
(0)) = (u1

0, u
2
0, u

3
0)

corresponding to the initial tangent vector

Y (0) = u1
0

∂

∂x

∣∣∣∣
c(0)

+ u2
0

∂

∂y

∣∣∣∣
c(0)

+ u3
0

∂

∂z

∣∣∣∣
c(0)

.

Of course we know Y (λ) along the curve c(λ) just represents the components of the constant
vector field

Y = u1
0

∂

∂x
+ u2

0

∂

∂y
+ u3

0

∂

∂z
,

and so is independent of the parametrized curve which takes us from our initial to our final
point.

This example gives you an idea how parallel transport process can be done explicitly when
the differential equations are manageable.

�

Suppose we have two points P and Q and two curves c(λ) and ζ(λ) with c(0) = ζ(0) = P
and c(λ1) and ζ(λ1) = Q. If we transport a tangent vector Y(0) at P along each curve to Q, of
course we’ll get the same result. This path independence of parallel transport on Rn is a feature
of its flat geometry.

“Parallel transport” is called “parallel” because at each point on the curve we move the
vector to the next tangent space so that it remains parallel to itself (and also has constant
length). This operation provides a “connection” between any two tangent spaces to points
connected to each other by a simple curve. Every vector in the first tangent space can be
transported along the curve to the tangent space at the second point (indeed any other point
on the curve), establishing a vector space isomorphism between them. (This mapping also
preserves lengths and angles so it maps the Euclidean geometry of the first onto that of the
second.) For this reason a covariant derivative on a space is often called a “connection,” and
Γijk are called the “components of the connection.”
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Inner products (and so all lengths and relative angles) of tangent vectors are preserved
under this operation since the metric is covariant constant

gij;k = 0 −→ D

dλ
gij = [∇c′(λ)g]ij = gij;kc

k ′(λ) = 0 ,

d

dλ
(gijX

iY j) =
D

dλ
(gijX

iY j) =

(
Dgij
dλ

)
︸ ︷︷ ︸

= 0

X iY j + gij
DX i

dλ
Y j + gijX

iDY
j

dλ
.

Thus if X and Y are parallel transported along the curve

DX i

dλ
= 0 =

DY i

dλ
,

we get
d

dλ
(gijX

iY j) = 0 ,

i.e., their inner product is a constant along the curve. For the case X = Y , this shows
that lengths are preserved, and hence the inner products of unit vectors, i.e., angles are also
constant under this transport. All of these properties are obvious if we work in terms of
Cartesian coordinates where parallel transport amounts to defining a tensor along a curve whose
Cartesian coordinate frame components are constants, but they are not obvious working in a
non-Cartesian coordinate system or in a general frame where everything depends on position.

Everybody’s favorite example of a curved surface is a sphere in R3, which we can take to
be a coordinate sphere r = r0 in spherical coordinates, leaving the angles θ and φ to serve as
coordinates on the 2-dimensional space of points on that sphere. Their coordinate lines are the
mesh of lines of longitude and latitude, although for the latter we measure the latitude as an
angle from the equator instead of the North Pole.

As illustrated in Fig. 8.5, suppose we take a unit vector at the North Pole tangent to the
sphere and making an angle 30◦ with the φ = 0 coordinate line. If we move this vector down
the line of longitude φ = 0, so that the vector remains tangent to the sphere, but maintains a
30◦ angle with respect to the direction in which we are moving, then of course the direction of
the vector has to change in order to remain in the 2-dimensional tangent plane to the sphere
at each point, but apart from this necessary rotation no further unnecessary rotation occurs.
Keep on going around the equator as shown and then come back up to the North Pole, where
it will now be at an angle of 30◦ to the line of longitude φ = φ0. But it will be rotated by an
angle φ0 with respect to its initial direction!

This is the manifestation of curvature. If you transport a vector around a closed curve in a
curved space, it will undergo a rotation in general. Of course on some curves it may not— for
example on any great circle, take the equator to be explicit, the above exercise will not change
the initial vector upon completion of one revolution.

Exercise 8.1.3.
covariant derivative in spherical coordinates
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Figure 8.4: Parallel transport is path independent in a flat geometry.

Figure 8.5: Parallel transport on a curved geometry like the sphere depends on the path.
Around a closed loop the final vector is rotated with respect to the initial vector.

Figure 8.6: er̂ is clearly parallel transported along its own straight coordinate lines, and
eθ̂, eφ̂ are also parallel transported along those lines. This also is clear since their Cartesian
components do not depend on r and hence do not change as r changes.
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It is clear from the geometry of spherical coordinates that the orthonormal frame {er̂, eθ̂, eφ̂}
is parallel transported along the r coordinate lines. These curves may be parametrized in
spherical coordinates {x̄i} = {r, θ, φ} by

r = cr(λ) = λ cr ′(λ) = 1

θ = cθ(λ) = θ0 cθ ′(λ) = 0

φ = cφ(λ) = φ0 cφ′(λ) = 0 ,

and their tangent vectors are

c′(λ) = c̄i′(λ)
∂

∂x̄i

∣∣∣∣
c(λ)

=
∂

∂r

∣∣∣∣
c(λ)

= er̂|c(λ) .

Since er̂ is itself the unit tangent vector, the covariant derivative along this curve expressed
in the orthonormal frame is

DX î

dλ
=
dX î

dλ
+ Γîk̂ĵc

′k̂X ĵ =
dX î

dλ
+ Γîr̂ĵX

ĵ .

Letting X be one of the vectors {er̂, eθ̂, eφ̂} results in constant components X î (for example

[er̂]
î = δ îr̂ ), so the term dX î/dλ vanishes.

The components Γî ĵk̂ were given previously in section 7.3

Γr̂ θ̂θ̂ = −r−1 = −Γθ̂ θ̂r̂ ,

Γr̂ φ̂φ̂ = −r−1 = −Γφ̂φ̂r̂ ,

Γθ̂ φ̂φ̂ = −r−1 cot θ = −Γφ̂φ̂θ̂ .

Thus for example

D

dλ
[er̂]

î =
d

dλ
[er̂]

î + Γîr̂ĵ[er̂]
ĵ = Γîr̂r̂ = 0 −→ D

dλ
[er̂] = 0

says that er̂ is parallel transported along this curve. Verify that eθ̂ is also parallel transported
along r in the following two different ways.

a) First use the orthonormal frame as in the radial unit vector example.
b) Next use the coordinate frame, where c′(λ) = er̂ = er and

[eθ̂]
r = 0 , [eθ̂]

θ = r−1 , [eθ̂]
φ = 0 ,

and
Γθrθ = Γφrφ = r−1 , Γrθθ = −r , Γθθr = r−1 ,

Γrφφ = −r sin2 θ , Γφφr = r−1 ,

Γθφφ = − cos θ sin θ , Γφφθ = cot θ ,

and one has the formula
DX i

dλ
=
dX i

dλ
+ ΓirjX

j .

�
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8.2 Parallel transport within coordinate surfaces in space

Cylindrical and spherical coordinates are constructed using some interesting surfaces whose
intrinsic geometry is worth studying: cylinders, cones and spheres. Cylinders and cones are
flat in the sense that they can be cut open and laid flat on a plane, but spheres are truly
curved intrinsically since flattening them out requires a deformation. Since these surfaces are
coordinate surfaces in one of these coordinate systems, it is very easy to restrict our attention
to a particular surface where the corresponding coordinate X = xm is constant. Then by
setting dX = 0 in the metric line element, we get the line element of the metric on the surface
(called the “induced metric”), and to consider parallel transport on this surface, we can simply
consider vectors with no X component and ignore the components of the connection Γijk which
have an X index. In this way we can study a cylinder ρ = ρ0 in cylindrical coordinates, or a
sphere r = r0 or cone θ = θ0 in spherical coordinates. As an instructive example, we consider
such a sphere of radius r = r0.

It is convenient to work in the orthonormal frame

eθ̂ =
1

r0

∂

∂θ
, eφ̂ =

1

sin θ0 r0

∂

∂φ

on the sphere since parallel transport results in a rotation, easily described in that frame.
Consider one revolution of a φ-coordinate line θ = θ0, already used above as an example curve
for parallel transport of general vectors in space around a circle in the flat space geometry.
Now we want to consider instead how tangent vectors in the tangent planes to the sphere
can be transported around the circle, always remaining within those tangent planes, using the
components of the connection that only involve the two angular coordinates θ, φ. The only
nonzero orthonormal components of the connection

Γθ̂ φ̂φ̂ = −r−1
0 cot θ0 = −Γφ̂φ̂θ̂

correspond to the two nonzero orthonormal components of the connection φ component of the
connection 1-form matrix restricted to the sphere

ωφ̂ = (Γîφ̂ĵ) = r−1
0 cot θ0

(
0 −1
1 0

)
which generates rotations in the θ-φ tangent plane in spherical coordinates as one moves along
the φ-coordinate lines.

The parametrized curve representing the φ-coordinate line in this sphere is

c(λ) : θ = θ0 , φ = λ , 0 ≤ λ ≤ 2π ,

with tangent vector

c′(λ) =
∂

∂φ

∣∣∣∣
c(λ)

= r0 sin θ0 eφ̂|c(λ) .
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For a tangent vector with orthonormal components 〈Y θ̂, Y φ̂〉 along this curve the parallel
transport equations are

dY î

dλ
= −Γîk̂ĵc

′(λ)k̂Y ĵ = −r0 sin θ0Γîφ̂ĵY
ĵ .

Exercise 8.2.1.
parallel transport along lines of latitude

Show that these parallel transport equations along the φ coordinate circles take the matrix
form

d

dλ

(
Y θ̂

Y φ̂

)
= − cos θ0

(
0 −1
1 0

)(
Y θ̂

Y φ̂

)
,

which implies that the angular velocity of the parallel transported vector with respect to the
spherical frame is − cos θ0. The solution of these equations is just an active rotation by the
angle Φ = −(cos θ0)λ (where in turn λ = φ)(

Y θ̂

Y φ̂

)
=

(
cos Φ − sin Φ
sin Φ cos Φ

)(
Y θ̂(0)

Y φ̂(0)

)
.

After one revolution from λ = 0 to λ = 2π, we return to our starting point with the final values(
Y θ̂(2π)

Y φ̂(2π)

)
=

(
cos ∆Φ − sin ∆Φ
sin ∆Φ cos ∆Φ

)(
Y θ̂(0)

Y φ̂(0)

)

where the net rotation relative to this orthonormal frame is

∆Φ = −2π cos θ0 ,

which is a clockwise rotation in the upper hemisphere. In a subsequent exercise we will use a
tangent cone to the sphere at a φ coordinate circle to derive this result without solving any
differential equation.

�

Exercise 8.2.2.
parallel combed hair on the sphere

Take the unit vector eφ̂ along the line of longitude φ = 0 (orthonormal components 〈0, 1〉)
and parallel transport it along the line of latitude one revolution of the circle. According to
the preceding exercise this generates a vector field on the sphere with orthonormal components
〈sin(φ cos θ), cos(φ cos θ)〉, namely

V (θ, φ) = sin(φ cos θ) eθ̂ + cos(φ cos θ) eφ̂ .
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a) Show that its Cartesian components as a column matrix are

V (θ, φ) =

sin(φ cos θ) cos θ cosφ− cos(φ cos θ) sinφ
sin(φ cos θ) cos θ sinφ+ cos(φ cos θ) cosφ

− sin(φ cos θ) sin θ

 .

b) Use a computer algebra system to plot this field of unit vectors on an equally spaced
grid of points on a sphere of radius 4 (so that the arrows are relatively small compared to the
sphere itself. This gives a nice visualization of the parallel transport and its effect on the initial
direction at φ = 0 after one revolution about the vertical axis.

c) To mark the points where the rotation has progressed through a multiple of π/2, plot
on your “sphere with hair” (the previous plot) the space curves at which φ cos θ = jπ/2 for
j = 1, 2, 3. This partitions the sphere into zones of comparable rotation intervals.

�

At the equator θ = π/2 where cos θ0 = 0, parallel transported vectors have constant com-
ponents in the orthonormal frame, which means that this frame is itself parallel transported
around the equator in the internal geometry of the sphere. Of course these vectors must rotate
relative to the corresponding vectors parallel transported in the geometry of the surrounding
space in order to remain within the tangent planes to the sphere, but no further rotation occurs
within those tangent planes. As we approach the North Pole at small polar angles 0 < θ0 � 1
then ∆Φ approaches −2π since the orthonormal frame itself makes on complete rotation around
the vertical axis compared to the parallel transported vectors which are approximately aligned
with the horizontal tangent plane at the North Pole and approximately try to maintain their
direction fixed in that tangent plane in the limit of very small polar angle. eθ̂ is approximately
pointing radially outward in that limiting tangent plane, while as always eφ̂ is tangential to
the φ coordinate circle. These both rotate one complete revolution 2π in the counterclockwise
direction about the vertical axis in this limit, so the parallel transported vectors compensate
by rotating by −2π relative to that frame. The parallel transported vector falls short of one
complete backwards (clockwise) revolution by the small positive angle

∆Φ + 2π = 2π(1− cos θ0) ,

which is the net angle forward in the counterclockwise direction that the final vector makes with
its initial value. This is a prograde rotation in the sense that each time the vector returns to its
original location going around the circle, it rotates by a small amount in the same direction as
one traces out the circle. As one increases the polar angle to π/2, this forward counterclockwise
rotation grows to nearly 2π, so that near the Equator the comparison of final and initial values
leads to a small clockwise rotation with respect to the orthonormal frame, which then vanishes
at the Equator itself.

These two limiting cases fit with our intuition about what happens at the Equator and
North Pole, which is satisfying. In between the formula must interpolate between the two
behaviors, which is what the cosine factor does for us. This result can be calculated without
solving any differential equations or using any fancy differential geometry by considering the
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Figure 8.7: A plane cross-section of the cone tangent to a polar circle on a sphere of radius
r through the vertical symmetry axis of the cone. The right triangle V PC with vertices equal
to the center C of the sphere, the vertex V of the cone, and the point P of contact makes the
conical opening angle χ and the polar angle θ complementary angles: χ+θ = π/2, which in turn
makes χ equal to the “latitude” polar angle measured up from the Equator. Note cos θ = sinχ.

Figure 8.8: A cone can be created from a circle by removing a sector of angle ∆φ called
the defect angle and pulling the two edges of the sector together to identify them. A fixed
vertical vector (red) in the plane of the circle, after removal of the sector, has its value from
the point A rotated counterclockwise by the defect angle relative to its original value at B.
Thus parallel transport of a vector counterclockwise around such a circle in the cone leads to a
counterclockwise rotation of its direction by the defect angle relative to its original value after
one revolution.
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tangent cone to the sphere whose intersection with the sphere is the φ coordinate circle. One
only needs high school trigonometry.

Exercise 8.2.3.
Tangent cone to a sphere

a) By comparing the partial circumference of the circle of radius R in Fig. 8.8 with the
circumference of the polar circle at angle θ on the cone of half-opening angle χ in Fig. 8.7,
which are equal, show that the defect angle is related χ by

∆φ = 2π(1− sinχ) .

b) Since the polar angle and the opening angle are complementary angles in Fig. 8.7, this
means that sinχ = cos θ so for the tangent cone to a polar circle on the sphere, we then have

∆φ = 2π(1− cos θ) .

Imagine the upward pointing vertical vector at point A in Fig. 8.8 moving around the circle
to point B, relative to the orthonormal frame associated with polar coordinates in that plane.
It rotates in the clockwise direction as moves around the circle counterclockwise. Convince
yourself that we must subtract 2π from ∆φ to get the net angle that the parallel transported
vector has rotated with respect that orthonormal frame on the sphere. This net rotation angle
is therefore

∆Φ = ∆φ− 2π = −2π cos θ .

To confirm the first equality of this pair here, if the defect angle ∆φ is an acute angle as in
Fig. 8.8, then the parallel transported vector falls short of a complete rotation backwards with
respect to the spherical orthonormal frame by this acute defect angle, which is what this formula
implies. Thus we have recovered the previous result obtained by solving the parallel transport
differential equations, but with simple geometry, a satisfying accomplishment. This works
because the geometry in the limiting strip about the circle on the sphere is indistinguishable
from the flat geometry of the tangent cone in an infinitesimal neighborhood of the circle.

�

We can also consider parallel transport along the θ coordinate circles, but these are great
circles, and as we will see next, they are what we will call geodesics along which the tangent vec-
tor is parallel transported and other parallel transported vectors maintain their inner products
with the tangent vector and with each other. Since eθ̂ is the unit tangent to those coordinate
circles, it and its orthogonal partner eφ̂ are both parallel transported along them. This explains
the vanishing of the θ-component of the connection 1-form matrix

ωθ̂ = (Γîθ̂ĵ) = 0 .

In the original spherical coordinate system in space, the vanishing of the r component of the
connection 1-form matrix similarly implies that the spherical orthonormal frame is parallel
transported along the r-coordinate lines.
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In cylindrical coordinates the orthonormal frame associated with the coordinate system only
undergoes a rotation along the φ-coordinate circles, with the radial and azimuthal unit vectors
rotating in the horizontal plane of constant z. This corresponds to the vanishing of all but the
φ-component of the connection 1-form matrix (see Exercise 6.2.1)

ωφ̂ = (Γîφ̂ĵ) = ρ−1

(
0 −1
1 0

)
.
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8.3 Geodesics

“Straight lines,” “autoparallel curves,” “geodesics”!
How can we characterize the straight lines of Rn? The tangent vector “follows its nose” as

it moves along such a line. The tangent vector itself is parallel transported along the line, i.e.,
its intrinsic derivative along the line vanishes

Dc′(λ)

dλ
= 0 ,

which in any coordinate system takes the component form (dropping the barred notation which
distinguished non-Cartesian coordinates)

0 =
Dci ′(λ)

dλ
=
dci ′(λ)

dλ
+ Γikj ◦ c(λ)ck ′(λ)cj ′(λ)

=
d2ci(λ)

dλ2
+ Γikj ◦ c(λ)ck ′(λ)cj ′(λ)

=
d2ci(λ)

dλ2
+ Γikj ◦ c(λ)

dck(λ)

dλ

dcj(λ)

dλ

or in sloppy notation where ci(λ) becomes just xi

D2xi

dλ2
=
d2xi

dλ2
+ Γikj

dxk

dλ

dxj

dλ
= 0 ,

or in terms of the tangent vector ui = dxi/dλ

Dui
dλ

=
dui

dλ
+ Γikju

kuj = 0 .

In the Cartesian coordinates where Γikj = 0, this reduces to

d2xi

dλ2
= 0

with solution
xi = aiλ+ bi

or more precisely ci(λ) = aiλ+ b. The Cartesian coordinates are linear functions of the param-
eter, while the Cartesian components of the tangent vector are constants ci ′(λ) = ai.

Example 8.3.1. We saw above that the tangent vector c ′(λ) = er to the r coordinate lines in
their natural parametrization λ = r is parallel transported along them. This is clear since these
coordinate lines are straight half-lines. Since dxk/dλ = δkr holds for these curves in spherical
coordinates, one can write

D2xk

dλ2
=
d2xi

dλ2
+ Γirr = Γirr = 0

in this “sloppy notation.”
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�

A parametrized curve whose tangent vector is parallel transported along the curve is called
a geodesic. The straight lines in Rn are geodesics of the Euclidean metric on that space. The
same “geodesic equations” characterize the geodesics for any metric

D2xi

dλ2
=
d2xi

dλ2
+ Γikj

dxk

dλ

dxj

dλ
= 0 .

Exercise 8.3.1.
covariant geodesic equation

a) One can express the geodesic equation in terms of the contravariant or covariant tangent
vector ui = dxi/dλ. Show that

dui

dλ
+ Γijku

juk = 0 ,
dui
dλ
− Γjkiu

juk = 0 .

b) Show that in a coordinate frame one has the simpler formula Γ(jk)i = 1
2
gjk,i so that

dui
dλ
− gjk,iujuk = 0 ,

which can be written

d

dλ

(
∂

∂ui

(
1

2
gjku

juk
))
− ∂

∂xi

(
1

2
gjku

juk
)
.

If we introduce the kinetic energy function T (x, u) = 1
2
gjku

juk as an explicit function of xi and
ui so we can use partial derivatives with respect to these two variables, this becomes

d

dλ

(
∂T (x, u)

∂ui

)
− ∂T (x, u)

∂xi
= 0

�

Exercise 8.3.2.
geodesic coordinate lines

Using the cylindrical coordinate expressions for the components of the covariant derivative,
verify that the ρ and z coordinate lines are geodesics (i.e., straight lines).

�

A “curve” is a set of points with no parametrization, described geometrically or as a solution
of a set of equations among the coordinate functions, like our example circles: x2 + y2 =
r2

0, z = r0 cos θ0. A curve is a geodesic if it admits a parametrization which is a geodesic as
a parametrized curve according to our previous definition. Solving the geodesic conditions
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led to straight lines in space parametrized linearly in Cartesian coordinates, but nonlinear
parametrizations can also be used.

Suppose c(λ) is a parametrized curve whose tangent vector c′(λ) is parallel transported
along the curve, namely

Dc′(λ)

dλ
= 0 ,

and suppose we consider a new parametrization

C(λ) = c(f(λ))

of the curve, where f(λ) is a real valued function of λ. Then

C ′(λ) = f ′(λ)c′(f(λ))

is the new tangent vector, multiplied by the function f ′(λ) according to the chain rule. Its
covariant derivative along the parametrized curve C(λ) is

DCi ′(λ)

dλ
=

dCi ′(λ)

dλ︸ ︷︷ ︸︷ ︸︸ ︷
(f ′(λ)ci ′(f(λ)) ′ = f ′′(λ) + (f ′(λ)2ci ′′(f(λ))

+Γikj ◦ C(λ) Ck ′(λ)Cj ′(λ)︸ ︷︷ ︸︷ ︸︸ ︷
f ′(λ)2ck ′(λ)cj ′(λ)

so
DCi ′(λ)

dλ
= [f ′(λ)]2 [ci ′′(f(λ)) + Γikjc

k ′(λ)cj ′(f(λ))︸ ︷︷ ︸︷ ︸︸ ︷[
Dci ′

dλ

]
(f(λ)) = 0

] + f ′′(λ) ci ′(f(λ))

= f ′′(λ)
Ci ′(λ)

f ′(λ)
=

(
f ′′(λ)

f ′(λ)

)
Ci ′(λ) .

Instead of the covariant derivative of the tangent vector being zero, it is instead proportional
to the tangent vector. In other words, the tangent vector to the curve still “follows its nose” by
maintaining its direction parallel to the curve, but also changes its length as it moves along the
curve following the arbitrary parametrization. Thinking of this as the path of a point particle
in Rn as a function of the time λ, where the tangent vector has the interpretation of the velocity
of the particle in motion, instead of having constant velocity, it has variable velocity tracing
out the same path in space. The path is still the same, i.e., it is independent of the way it is
traced out in time.

A parametrization of a geodesic curve for which

Dc′(λ)

dλ
= 0

is called an affine parametrization of the geodesic. For such a parametrization, all three factors
in the inner product g(c′(λ), c′(λ)) are covariant constant along the curve

D

dλ
|c′(λ)|2 =

D

dλ
(gijc

i ′cj ′)

=

(
Dgij
dλ

)
ci ′cj ′ + gij

Dci ′

dλ
cj ′ + gijc

i ′Dc
j ′

dλ
= 0
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so the length |c′(λ)| of the tangent vector is constant

D

dλ
|c′(λ)| = D

dλ
(|c′(λ)|2)1/2 =

1

2
(|c′(λ)|2)−1/2 D

dλ
(|c′(λ)|2) = 0 .

We already know this since parallel transport preserves length

D

dλ
|c′(λ)| = d

dλ
|c′(λ)| = 0 .

If we introduce the arclength parametrization as one does in multivariable calculus

ds

dλ
= |c′(λ)| ,

this just says
d2s

dλ2
=

d

dλ
|c′(λ)| = 0 ,

i.e., the arclength and the parameter λ are linear related. If we use the arclength itself as a
parameter we must have

ds

dλ
= |c′(λ)| = 1 ,

so the tangent vector is a unit vector, as we recall from multivariable calculus. Given a particular
arclength parametrization of the curve by an arclength s measured from some reference point
on the geodesic, any affine parametrization must be linearly related: λ = as+ b. The constant
factor a rescales the arclength (or reverses it if negative) while the term b changes the zero of the
arclength function along the curve, i.e., changes the reference point from which the arclength
is measured.

It is convenient to represent this constant scale factor as a = (2E)1/2 as will be explained
below, namely

dλ

ds
= (2E)1/2 .

The condition of constancy of the square of the length of the tangent vector for an affinely
parametrized geodesic then takes the sloppy notation form

|c′(λ)|2 = gij
dxi

dλ

dxj

dλ
= 2E or

1

2
|c′(λ)|2 =

1

2
gij
dxi

dλ

dxj

dλ
= E .

Choosing initial data for the system of differential equations for which the constant 2E = 1
corresponds to choosing an arclength parametrization.

While our point of departure for this discussion is Rn where the geodesics are just straight
lines, nothing prevents us from applying this discussion to curved spaces with a given metric
and associated covariant derivative. However, whether we are using general coordinates on Rn

whose associated frame vector fields are not covariant constant, or whether we are working
with any coordinates on a curved space with a metric and its associated covariant derivative,
the calculations are essentially the same. In each case we have to solve nontrivial systems of
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ordinary differential equations to determine the geodesics in that coordinate system. To be
able to represent them explicitly in the given coordinate system, we must get explicit solutions
of those systems of differential equations, which will only be possible for such systems which
are simple enough that solutions can be found in closed form. Otherwise we have to solve
them by numerical integration, in which case the choice of coordinate system is not really a
consideration.

Conserved momentum, symmetries and Killing vector fields

Quantities which are constant along a parametrized curve are said to be “conserved” in the
language of physics when applied to curves in space as a function of time. Conservation laws
of energy and momentum are key to solving many physical problems.

Suppose ξ is a Killing vector field of a metric gij, therefore satisfying ξ(i;j) = 0, and con-
sider the intrinsic derivative of its inner product with the tangent ui = dxi/dλ to an affine
parametrized geodesic c(λ), for which Dui/dλ = 0. Then

D

dλ
(ξiu

i) =
Dξi
dλ

ui + ξi
Dui

dλ
= ξi;ju

jui = ξ(i;j)u
jui = 0 .

The quantity

P (ξ) = ξiu
i = ξi

dxi

dλ

is referred to as the conserved momentum associated with the Killing vector ξ.
For Euclidean space R3 and Cartesian coordinates xi, the translation Killing vector fields

are pi∂i while the rotation Killing vector fields are Li = εijkx
j∂k. Then

P (pi) = ui = δik
dxk

dλ
=
dxi

dλ

are the components of linear momentum which agree with our idea of momentum as the product
of the mass and the velocity if we choose a parametrization where λ = t/m and t is the time.
Similarly

P (Li) = εijkx
juk = εijkx

j dx
k

dλ
= [~x× ~P (pi)]i .

Finally our use of the word momentum operators for the vector field generators of the symme-
tries of Euclidean space connects with what we know from high school physics.

A common situation is that a Killing vector field arises from the circumstance that the
metric components are independent of a particular coordinate, say the first one

ξ = ∂1, gij,1 = 0 = ξi,j = 0 → £ξ gij = 0 .

Then the corresponding momentum is just the covariant component of the tangent vector along
this coordinate

P (ξ) = ∂1 · u = δi1giju
j = g1ju

j = u1 = g1j
dxj

dλ
.
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Suppose instead of geodesic equations we have equations for the parametrized curve of the
form

Dui

dλ
= F i ,

where F = F i∂i is a force field. Then the above relation becomes

D

dλ
(ξiu

i) = ξiF
i ,

which means the component of momentum along the Killing vector field is still conserved
(constant along the curve) if the force field is orthogonal to the Killing vector field F iξi = 0. If
the force field arises as the gradient of a potential function

F [ = −dU ↔ Fi = −U,i ↔ F i = −gijU,j ,
then

D

dλ
(ξiu

i) = ξiF
i = ξiFi = −ξiU,i = −ξU = −£ξ U .

If the potential is invariant under the 1-parameter family of transformations generated by ξ,
then this is zero and the momentum along ξ is conserved.

We can also evaluate how the length of the tangent vector changes

D

dλ
(uiu

i) = 2
Dui

dλ
ui = 2uiF

i ,

which requires that the tangent be orthogonal to the force field to be conserved.

Exercise 8.3.3.
Lorentz force

For the Lorentz force law on a particle of mass m and charge q in an electromagnetic field
F along a world line in Minkowski spacetime parametrized by its proper time

Dui

dτ
=

q

m
F i

ju
j ,

the antisymmetry of the electromagnetic field guarantees that u remains a unit vector since
Fiju

iuj = 0. However, the condition that we have conserved “momenta” arising from Killing
vectors ξ of the Lorentz metric requires further that

ξiF
i
ju
j = 0 .

a) Suppose we have a uniform electric field along the z-direction so that only F 0
1 = E1

is nonzero. Show that the linear momentum components P (p2), P (p3) are conserved, but not
E = −P (p0) unless the motion is orthogonal to the electric field. Show that the component
P (L3) of angular momentum is conserved.

b) Suppose we have a uniform magnetic field along the z-direction so that only F 1
2 is

nonzero. Show that the linear momentum components E = −P (p0), P (p3) are conserved.
�
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8.4 Surfaces of revolution

As already noted in Section 6.5 and as briefly discussed in Appendix D, for any parametrized
surface in R3 we can evaluate the metric on the surface by simply substituting the parametriza-
tion for the Cartesian coordinates into the Euclidean metric g = δij dx

i⊗ dxj tensor expression
and expanding. In slightly different notation and language, the same result can be accomplished
by substituting the parametrization for the Cartesian coordinates into the Euclidean squared
differential of arclength ds2 = δij dx

i dxj, called the “line element,” yielding the line element
the surface. This is exactly what we do to get the differential of arclength on a parametrized
curve. Sloppily the line element is also referred to as the metric, since it contains the same
information as the metric. Given this metric or line element on the surface, we can then eval-
uate the components of the connection and then the geodesic equations to study the geodesics
of the intrinsic geometry of the surface. The easiest class of such surfaces to investigate are
surfaces of revolution and indeed many interesting surfaces we commonly deal with are surfaces
of revolution, including the flat plane, the cylinder and the sphere, as well as the hyperboloids
or pseudospheres of 3-dimensional Minkowski spacetime. The fact that such surfaces have a
1-parameter group of symmetries makes it easier to derive some analytic results about their
geometry. This common feature also applies to the screw-symmetric surfaces where the rotation
symmetry is replaced by a screw-rotation symmetry. We will consider this generalization next.

Suppose we take a surface of revolution about the vertical axis in R3, starting from some
plane curve in any plane passing through the vertical axis and revolving it completely around
this axis to sweep out the surface. This surface is most simply expressed in cylindrical coor-
dinates with z = Z(ρ) or ρ = R(z) or even (ρ, z) = (R(u), Z(u)) describing the plane curve
in the ρ-z plane used in the construction as an arbitrary parametrized curve, the most general
situation, leading to the most general case of a parametrized surface in which both ρ and z are
functions of a third variable

(i) 〈x, y, z〉 = ~r(ρ, φ) = 〈ρ cosφ, ρ sinφ, Z(ρ)〉
(ii) 〈x, y, z〉 = ~r(z, φ) = 〈R(z) cosφ,R(z) sinφ, z〉

(iii) 〈x, y, z〉 = ~r(u, φ) = 〈R(u) cosφ,R(u) sinφ, Z(u)〉 .

We keep the azimuthal coordinate φ as one of the two parameters of the parametrized surface
since it is adapted to the rotational symmetry, which is realized as translations in that variable.
The azimuthal coordinate derivative is a Killing vector field generating those symmetries, so
the component of an affinely parametrized geodesic on the surface along this Killing vector
field, namely the covariant φ coordinate component of the tangent vector, is a constant along
the geodesic.

The cylinder and sphere are surfaces of revolution and some of the terminology that is
natural for a sphere can be extended to general surfaces of revolution. In terms of the general
surface parametrization by (u, φ), which serve as coordinates on the surface, the coordinate
grid is automatically orthogonal, consisting of horizontal plane circles of revolution for the φ
coordinate lines naturally called the “parallels” (lines of latitude on the sphere) and the u
coordinate lines consisting of the vertical plane cross-sectional curves at constant φ, naturally
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called the “meridians.” The radius R(u) of the parallels, or ρ itself when u = ρ, plays an
important role in the geometry of the surface.

By symmetry the meridians are geodesics since clearly the tangent to a meridian cannot
rotate to one direction or the other to stay self-parallel within the surface: the surface is
reflection-symmetric about the plane containing the meridian. It takes a little bit more con-
vincing to see that parallels for which the azimuthal radius R(u) has an extremum as a function
of u are also geodesics, like the equator of a sphere whose symmetry axis coincides with the
z-axis. We will confirm this explicitly with the geodesic equations below.

Exercise 8.4.1.
metric for a surface of revolution

a) For a surface of revolution in these adapted parametrizations, evaluate the differentials
of the Cartesian coordinates d~r = (∂~r/∂ui) dui in terms of the two parameters (u1, u2) =
(ρ, φ), (φ, z), (u, v) respectively and substitute the results into the Euclidean metric g = dx ⊗
dx+ dy ⊗ dy + dz ⊗ dz. Then expand the products and collect terms to show that the metric
takes the form

g
(i)
= (1 + Z ′(ρ)2)dρ⊗ dρ+ ρ2dφ⊗ dφ
(ii)
= (1 +R′(ρ)2)dz ⊗ dz +R(ρ)2dφ⊗ dφ
(iii)
= (R′(u)2 + Z ′(u)2)du⊗ du+R(u)2dφ⊗ dφ = guu du⊗ du+ gθθ dθ ⊗ dθ .

b) By introducing an arclength coordinate r along the meridians in the vertical half-planes
of constant φ

dr
(i)
= (1 + Z ′(ρ)2)1/2dρ

(ii)
= (1 +R′(z)2)1/2dz

(iii)
= (R′(u)2 + Z ′(u)2)1/2du = g1/2

uu du

and letting θ = φ to compare this to polar coordinates in the flat plane, one finds the common
form

g = dr ⊗ dr +R(r)2dθ ⊗ dθ ,

provided one can re-express ρ = R(r) in terms of the new coordinate r. Verify this. The final
result makes perfect sense since the r and θ coordinate lines on the surface are orthogonal
and one needs the “azimuthal radius” ρ of the θ coordinate circle to convert increments of the
azimuthal angle into an arclength: R(r)dθ = dsθ.

c) For the nonzero metric components grr = 1, gθθ = R(r)2, show that the only nonvanishing
components of the covariant derivative are

Γrθθ = −R′(r)R(r) , Γθrθ = Γθθr =
R′(r)

R(r)
.
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d) Show that the affinely parametrized geodesic equations are

d2r

dλ2
+ Γrθθ

(
dθ

dλ

)2

=
d2r

dλ2
−R′(r)R(r)

(
dθ

dλ

)2

= 0 ,

d2θ

dλ2
+ 2Γθrθ

dr

dλ

dθ

dλ
=
d2θ

dλ2
+ 2

R′(r)

R(r)

dr

dλ

dθ

dλ

= R(r)−2 d

dλ

(
R(r)2 dθ

dλ

)
= 0 .

Verify the final equality, which shows that the quantity ` = R(r)2dθ/dλ is a constant along
the geodesic. The next section will interpret this as a constant of the motion for the moving
particle approach to interpreting parametrized geodesic curves.

Note that is we eliminate dθ/dλ from the r equation using the constancy of ` we find

d2r

dλ2
= R′(r)R(r)

(
dθ

dλ

)2

=
`2R′(r)

R(r)3
= − d

dr

(
`2

2R(r)2

)
.

This allows us to think of the quantity in parentheses as a potential for the effective radial force
that causes that coordinate to be accelerated. We will develop this further in the next section.

e) Now consider an extremal point on a meridian: R′(r0) = 0. Show that geodesic equations
are both easily satisfied for the parallel r = r0, θ = θ0 + λ, which has θ′′(λ) = 0.

f) When grr 6= 1, show that only the first geodesic equation changes by an additional term

d2r

dλ2
− R′(r)R(r)

grr(r)

(
dθ

dλ

)2

+
1

2
(ln grr(r))

′
(
dr

dλ

)2

= 0 ,

or equivalently

grr(r)
1/2 d

dλ

(
grr(r)

1/2 dr

dλ

)
−R′(r)R(r)

(
dθ

dλ

)2

= 0 .

�
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Figure 8.9: A “straight line” tangent vector follows its nose so that it maintains its fixed
direction.

Figure 8.10: Left: The parametrized meridian is rotated around the z-axis to form a surface
of revolution. The tangent line to this cross-section rotates into a cone tangent to the point of
tangency of the tangent line, with vertex on the z-axis. Right: Opening up the tangent cone to
a flat plane, leads to a defect angle ∆ϕ. A constant vector initially along the radial direction on
the horizontal axis rotates backwards with respect to the radial direction as we follow the circle
around counterclockwise but when one folds the flattened cone back into its original shape, by
joining the two edges shown in the figure, this vector has advanced counterclockwise by exactly
the defect angle with respect to the initial radial direction.



460 Chapter 8. Parallel transport and geodesics

Exercise 8.4.2.
tangent cone to surface of revolution

The tangent line to a cross-sectional meridian at a given parallel rotates into a tangent cone
to the surface of revolution there. The tangent cone has the same parallel transport properties
along the parallel in the flat geometry of the cone as in the curved geometry of the surface
of revolution, so we can easily compute the rotation of a tangent vector along such a parallel
under parallel transport without solving any transport differential equations.

a) From Fig. 8.10 (left) we can determine the hypotenuse R(u) of the conical right triangle
shown, with χ as the opening angle of the cone, by using similar triangles with the right
triangle whose hypotenuse is instead the tangent vector to the parametrized meridian tangent
line: tanχ = |R′(u)/Z ′(u)|. One then has determined the vertical leg Z(u) of this triangle and
the opening angle χ = arcsin(R(u)/R(u)) of the cone. Show that

sinχ =
|R′(u)|

(R′(u)2 + Z ′(u)2)1/2
, R(u) =

R(u)

sinχ
=

g
1/2
uu

|(lnR(u))′| ≡
1

κ(u)
,

where the significance of the curvature

κ(u) =
|(lnR(u))′|

g
1/2
uu

≥ 0

of the azimuthal circle will become clear below, making its reciprocal

R(u) =
1

κ(u)
≥ R(u)

the radius of curvature of the circle, necessarily larger than the actual radius of the circle within
R3 due to the tilting of the plane of that circle relative to the tangent plane to the surface of
revolution which stretches out the circle of best fit in the tangent plane compared to the actual
circle Note that the absolute value sign is necessary when R′(u) < 0 as occurs in the lower part
of the profile curve of Fig. 8.10 if u increases in the upwards direction along it. In general the
ratio of these two radii (circumferential radius to intrinsic radius) is

R(u)

R(u)
= sinχ =

|R′(u)|
g

1/2
uu

≤ 1 .

This defines the opening angle of the tangent cone in terms of the intrinsic metric quantities.
b) From Fig. 8.10 (right) show that the defect angle of the cone is given by

∆ϕ

2π
= 1− R(u)

R(u)
= 1− sinχ .

This is the total angle forward that a constant vector in the plane of the flattened out cone
rotates during one revolution of the azimuthal circle. This gives the angle a vector is rotated
during parallel transport around this circle.
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Notice that for case of a horizontal plane where Z(r) = 0, R(r) = r, one finds R(r) = R(r)
so that sinχ = 1 and ∆ϕ = 0. In the flat plane, no rotation takes place under parallel transport
around a closed loop. On the other hand at an extremum of the azimuthal radius R′(u) = 0,
then the curvature κ(u) vanishes and the tangent cone opens up into a cylinder, along which
parallel transport is simple: horizontal vectors stay horizontal, vertical vectors stay vertical. In
particular the unit tangent to the azimuthal circle remains horizontal, so it transported parallel
to itself, making such a circle a geodesic as already noted.

c) Introduce the orthonormal frame and evaluate their Lie bracket commutator

eû =
1

g
1/2
uu

∂

∂u
, eθ̂ =

1

R(u)

∂

∂θ
,

[eû, eθ̂] = − sgn(R′(u))κ(u) eθ̂ → C θ̂
ûθ̂ = − sgn(R′(u))κ(u) ,

and then use the frame formula for the connection components to verify that the only nonzero
components of the connection in this orthonormal frame are

Γûθ̂θ̂ = −Γθ̂ θ̂û = C θ̂
ûθ̂ .

Show that letting ε = sgn(R′(u)), these translate into the relations

∇eθ̂eθ̂ = −ε κ(u)eû , ∇eθ̂eû = ε κ(u)eθ̂ .

d) Verify that the orthonormal frame connection 1-form is

ω̂ =

(
0 −1
1 0

)
εκ(u)ωθ̂ =

(
0 −1
1 0

)
εκ(u)R(u) dθ =

(
0 −1
1 0

)
R′(u)

g
1/2
uu

dθ .

e) Since T̂ = eθ̂ is the unit tangent along the azimuthal circles, we can re-interpret ∇eθ̂ =
D/ds as the arclength derivative of fields along those circles, enabling us to rewrite these
covariant derivative equations in the following form

Deθ̂
ds

= −εκ(u) eû ,
Deû
ds

= εκ(u) eθ̂ ,

or since ds = R(u) dθ along these circles,

Deθ̂
dθ

= −dΦ

dθ
eû ,

Deû
dθ

=
dΦ

dθ
eθ̂ ,

dΦ

dθ
= εκ(u)R(u) =

R′(u)

g
1/2
uu

.

This allows us to identify N̂ = −εeû as the unit normal within the surface and therefore κ(u) is
the covariant curvature of these circles (the length of the arclength derivative of the unit tangent
vector, exactly as in multivariable calculus except for the use of the covariant derivative here,
see Appendix C) and determines the angular rate of rotation along the curve (with respect to
arclength) of the orthonormal frame vectors within the intrinsic surface geometry. Its associated
radius of curvature R(u) determines the osculating circle in the tangent plane in the same way,
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a distance R(u) along the normal. What is interesting here is that the center of the osculating
circle is the vertex of the tangent cone. Of course in the extrinsic geometry of the surface within
the enveloping space R3, the radius of curvature of the azimuthal circle is just its actual radius
R(u). This points to an important difference between the intrinsic and extrinsic geometry of
surfaces. We will study the extrinsic geometry later on.

f) We cannot leave these calculations without finishing them off. Show that a general parallel
transported vector in the surface is described by(

X û

X θ̂

)
=

(
cos Φ sin Φ
− sin Φ cos Φ

)(
X û

0

X θ̂
0

)
=

(
cos(Ω θ) sin(Ω θ)
− sin(Ω θ) cos(Ω θ)

)(
X û

0

X θ̂
0

)
where the “theta angular velocity” Ω is given by

Ω =
dΦ

dθ
= εκ(u)R(u) = ε

R(u)

R(u)
= ε sinχ =

R′(u)

g
1/2
uu

,

where each of its different representations is useful in different contexts. Notice that this rotation
of the components of the vector corresponds to an active rotation by the angle−Φ corresponding
to a theta angular velocity −Ω compared to the active rotation of the orthonormal frame by
the angle Φ with theta angular velocity Ω relative to parallel transported axes.

�

Remark.
parallel transport around symmetry circles

The failure of parallel transport around a parallel of a surface of revolution to return a vector
to its original direction has a simple interpretation—there is a mismatch between the osculating
circle in the enveloping geometry of R3 and the intrinsic osculating circle which can only be
defined in the tangent plane to the point of the circle, and which is necessarily bigger due to
the stretching which occurs as one tilts the original horizontal circle to align it with the tangent
plane and yet still fit the curvature of the the original circle. Vectors must rotate backwards
by the angle one moves forward around the circle to stay parallel to their original direction,
but it is the radius of curvature which determines this backwards rotation angle through the
usual relation of angle to arclength Φ = s/R. The circumference of the closed circular parallel
is instead determined by its actual radius R(u) in space as s = 2πR(u) so the final backwards
rotation angle after one revolution is 2πR(u)/R(u) ≤ 2π. The amount by which it comes up
short is

∆ϕ = 2π − 2π
R(u)

R(u)
= 2π

(
1− R(u)

R(u)

)
.

But this is exactly the amount by which the vector moves forward with respect to its original
direction. This is illustrated for an azimuthal coordinate circle on a sphere in Fig. 8.22. The
previous discussion may be interpreted in terms of the osculating circle in the tangent plane
rolling without slipping around the azimuthal circle.

N
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Exercise 8.4.3.
planes, cylinders and cones

The simplest surfaces of revolution come from rotating a straight line in a plane containing
the vertical axis of rotation. If the line is also vertical we get a cylinder with R(z) = R0

(case (ii)), but if the line is horizontal Z(ρ) = Z0 (case (i)) we get an ordinary plane, while if
the line is oblique (neither vertical nor horizontal), we get a cone. Using the geometry of the
tangent cone of Fig. 8.10, this corresponds to Z(ρ) = ρ cotχ (case (i)). To compare with polar
coordinates in the plane, let us revert back to the notation (ρ, φ)→ (r, θ).

a) Use Exercise 8.4.1 to evaluate the metric in each of these cases. Of course in the second
case we just get the usual polar coordinate expression in the plane ds2 = dr2+r2dθ2, while in the
second case we can introduce the rescaled coordinate X = R0θ to get orthonormal coordinates
(X, z) on that intrinsically flat surface. For the conical case show that we get

ds2 = csc2 χdr2 + r2dθ2 ,

where χ is the opening angle of the cone.
b) Introduce an arclength radial coordinate by r̃ = cscχ r and show that the resulting form

of the metric is
ds2 = dr̃2 + r̃2 sin2 χdθ2 → R(r̃) = r̃ sinχ .

c) Use Exercise 8.4.2 to evaluate the curvature and radius of curvature of the parallels.
Show that you get

R(r̃) = r̃ =
r

sinχ
.

This shows the relationship between the intrinsic radius of curvature R(r̃) of the parallel circle
and its actual radius R(r̃) = r.

�
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Figure 8.11: A parabola of revolution but revolved about an axis perpendicular to the symme-
try axis, and on the convex side of the vertex of that parabola, which is the classic “wormhole
surface.”
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Exercise 8.4.4.
black hole embedding surfaces

An interesting 2-surface geometry that can be realized as a surface in R3 is the curved
equatorial plane in a nonrotating black hole spacetime. In spherical coordinates restricted to
the plane θ = π/2 just as in ordinary Euclidean space spherical coordinates, again using θ for
the azimuthal angle to compare with the situation in polar coordinates in the flat plane, the
metric is

ds2 =
1

1− 2m

r

dr2 + r2 dθ2 , m > 0 .

The radial coordinate r is no longer an arclength coordinate but is tied to the circumference of
azimuthal circles by the usual flat space one of the plane in polar coordinates: C = 2πr. This
explicit metric is all that is needed to investigate the geodesics in its intrinsic geometry, but it
is pretty easy to create a surface of revolution in R3 which has this geometry, allowing us to
visualize better its properties.

a) Introduce an arclength coordinate r∗ measuring arclength from the “horizon” r = 2m by
solving the initial value problem using a computer algebra system

dr∗

dr
=

1(
1− 2m

r

)1/2

, r∗(2m) = 0 , r > 2m.

The expression you find clearly cannot be inverted to express r as a function of r∗, so we cannot
explcitly introduce an arclength radial coordinate for this surface of revolution.

b) Suppose we let (r, θ, z) be cylindrical coordinates in R3 and look for a surface graph
z = Z(r) such that substituting this into the metric allows us to identify the result with the
above expression

ds2 = dr2 + r2dθ2 + dZ(r)2 =
(
1 + Z ′(r)2

)
dr2 + r2 dθ2 ,

leading to the differential equation

1 + Z ′(r)2 =
1

1− 2m/r
→ Z ′(r) =

(
1

1− 2m/r
− 1

)1/2

=

(
2m

r − 2m

)1/2

,

choosing the positive root for the derivative. This is integrated by a trivial u-substitution for the
antiderivative, discarding an additive constant (equivalent to the initial condition Z(2m) = 0)
to yield

Z =
√

8m(r − 2m) .

Verify this.
Notice this can easily be extended to

Z2 = 8m(r − 2m) ,
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yielding the entire smooth surface of revolution whose cross-section is a parabola rotated from
its usual position (graph of the square function) by 90 degrees. This is the “wormhole” surface
of the popular literature. This is exactly the surface depicted in Figs. 8.10 and 8.11.

c) Use the results of Exercise 8.4.2 to show that the intrinsic radius of curvature of the
azimuthal circle is

R(r) =
r

(1− 2m/r)1/2

and then evaluate the formula for the total rotation ∆ϕ under parallel transport after one
azimuthal revolution found there. Finally consider the approximation for m/r � 1 by Taylor
expanding your result to first order in this quantity to show that

∆ϕ

2π
≈ m

r
,

m

r
� 1 .

This is just 2/3 of the so called geodetic precession effect for a gyroscope in Earth orbit measured
by the GP-B satellite experiment which took place in a satellite in a polar orbit h = 650 km
above the Earth’s surface: r = Rearth + h. To evaluate this using the mass and radius of the
Earth we need to put back in the factors of the speed of light c and Newton’s constant G which
have been set to 1 in our geometrical units:

∆ϕ(geodetic)

2π
≈ 3Gm

2c2r
.

Note that this ratio has the same units as

Gmms/r

msc2
=
−Upot

Erest

,

which is the dimensionless ratio of the potential energy of the satellite in the Earth’s Newtonian
gravitational field to the satellite’s rest energy, so the reappearance of G and c which we had
set to 1 makes sense without going through the detailed unit analysis.

This is the amount of precession angle that occurs during one revolution, i.e., one orbit
of the Earth. To get the precession rate you have to divide this by the orbital time, called
the period. The Newtonian speed of a circular orbit balances the gravitational and centrifugal
forces (the satellite mass cancels out!), leading to its period

Gm

r2
=
v2

r
→ v =

(
Gm

r

)1/2

→ ∆t =
2πr

v
= 2π

(
r3

Gm

)1/2

.

Thus
∆ϕ(geodetic)

∆t
≈ 3Gm

2c2r2

(
Gm

r

)1/2

.

If you plug in the numbers you can easily find on the internet for Newton’s constant G, the
speed of light c and the mass m of the Earth and convert the units of this value from radians
per second to arcseconds per year, do you get the number 6.6 arcsec/yr that you can also find
on the internet (although it takes a bit more work to locate)?
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�

Exercise 8.4.5.
parallel transport along circles

To make the previous exercise more concrete, use a computer algebra system to make a
plot similar to the one illustrating parallel transport along the lines of latitude (parallels) of
the sphere suggested in Exercise 8.2.2 but now for the 2-dimensional situation of the parallel
transport of the original frame at θ = 0 around one revolution of the azimuthal coordinate
circle, plotted on the r-θ coordinate plane. Show this using the exact formulas this the circles
r/m = 2, 3, 4, 5 near the horizon r = 2m of the black hole. First evaluate the theta angular
velocity Ω exactly. What is the net precession angle ∆ϕ/(2π) after one revolution?

a) Then plot the two vector fields(
e

(||)
r̂ e

(||)
θ̂

)
=
(
er̂ eθ̂

)( cos(Ω θ) sin(Ω θ)
− sin(Ω θ) cos(Ω θ)

)
, 0 ≤ θ ≤ 2π

in a ring of radius r/m = 5 together with the 4 circles r/m = 2, 3, 4, 5 (the first to indicate the
horizon) but first divide the vector fields by 2 so they do not overlap with each other as they
rotate. What seems to be happening at the limiting radius r/m = 2?

b) Just plot the initial and final vectors along the axis θ = 0 for unit intervals from r/m = 2
to r/m = 12 to see how the precession angle after one revolution decreases with distance from
the horizon. Repeat for 10 divisions of the interval 2 ≤ r/m ≤ 3 dividing your vector fields by
20 so they do not overlap to study the limiting behavior near the horizon at r/m = 2.

c) In the embedding diagram, the circle r = 2m is called the throat of the worm hole.
According to our general considerations for a surface of revolution, it is an extremum of the
distance from the axis of rotation, so it should be a geodesic. Does that explain this limiting
behavior at r/m = 2?

d) If you are feeling ambitious, plot the vector fields of part a) on the embedding surface of
revolution for 2 ≤ r/m ≤ 10 at unit ring intervals.

�
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8.5 Parametrized curves as “motion of point particles”

and the geodesic motion approach

Tracing out a given parametrized curve is most naturally imagined as a process occurring in
time. In fact in computer algebra systems, one can easily animate such curves in time using the
parameter as a time variable with some constant rate converting the parameter intervals into
time intervals. This visualization aid is very useful in understanding the behavior of geodesics
and nongeodesic paths alike, so it is worth taking seriously. One imagines the parametrized
curve as the motion of a point particle in the space under consideration, interpreting λ = t as
the time. The parametrized curve c(λ) specifies the “position” xi(λ) of the particle at time λ as
expressed in the given coordinate system, the tangent vector c′(λ) = v(λ) is the “velocity” with
coordinate components vi(λ) = xi ′(λ) and its magnitude or length is the speed |v(λ)| = |c′(λ)|.

In ordinary space R3, if the point particle has mass m, Newton’s force law in Cartesian
coordinates states that mass times acceleration equals applied force

m
d2xi

dλ2
= F i

or dividing through by the mass, acceleration equals specific force, namely force per unit mass

d2xi

dλ2
=
F i

m
.

These are called the “equations of motion” for the particle. Since the ordinary derivative in
Cartesian coordinates translates into the covariant derivative in any coordinate system, then
in a general coordinate system this becomes

D2xi

dλ2
=
F i

m
= F i ,

so the covariant derivative of the tangent vector along the curve Dc′(λ)/dλ = Dv(λ)/dλ is
the “acceleration” in this context and the vector field F is the specific force, namely the force
per unit mass. Since no mass is relevant to our particle motion analogy, all the usual physics
quantities that involve mass as a factor will be divided through by the mass to become the
specific such quantities, equivalent to setting the mass m equal to 1 everywhere.

A so-called conservative force field is one which can be represented as the gradient of a
function F i = −U ;i or in terms of specific quantities F i = −U ;i, leading to the equations of
motion

D2xi

dλ2
= −U ;i .

One can introduce a total energy function consisting of a kinetic energy term (half the mass
times the square of the speed) and a potential energy term, with the corresponding specific
quantities in the same relation, introducing the specific energy E = E/m

E = K + U , K =
1

2
mgijx

i′xj ′ ,

E = K + U , K =
1

2
gijx

i′xj ′ .
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This is useful since the energy or specific energy are both constant along a geodesic (are “con-
stants of the motion”) as a simple calculation shows, explaining as well the factor of 1

2
in its

definition. By working with specific quantities, no mention of mass is required, appropriate
for purely geometric problems like solving geodesic equations of motion, while allowing useful
intuition about particle motion to be brought into the discussion.

To evaluate the derivative of the energy function along a geodesic, one must use the chain
rule to differentiate functions of position along it: D/dλ = (dxi/dλ)∇i = xi′∇i , which for
scalars reduces to Df/dλ = df/dλ = f,ix

i′ = f;ix
i′. Thus using the covariant constancy of the

metric, one has

dE
dλ

=
DE
dλ

=
1

2

Dgij
dλ

xi′xj ′ +
1

2
gij
Dxi′

dλ
xj ′ +

1

2
gijx

i′Dx
j ′

dλ
+ U;jx

j ′

= gij

(
Dxi′

dλ
−F i

)
xj ′ = gij

(
D2xi

dλ2
−F i

)
xj ′ = 0 .

Furthermore, this can be rewritten to describe the rate of change of the speed

D

dλ
(gijx

i′xj ′)1/2 =
1

2
(gijx

i′xj ′)−1/22Fjxj ′ = (gijx
i′xj ′)−1/2Fjxj ′ ,

which is zero only when the velocity is orthogonal to the force: Fjxj ′ = 0. Thus the speed is
constant in the force-free case of geodesic motion, while the velocity is covariant constant.

In the case of ordinary space R3, one more particle motion concept is needed: the angular
momentum ~L = m~r × ~v or specific angular momentum ~L/m = ~r × ~v in the notation of
multivariable calculus. The component of specific angular momentum about the z-axis is
simply expressed in cylindrical coordinates as ` = ρvφ̂ = ρ2dφ/dλ. For motion in force fields
which are rotationally symmetric about the z-axis, we know from high school physics that this
angular momentum is a constant.

Remark.
In physics notation time derivatives are always denoted with an overdot instead of a prime
superscript

ḟ = f ′ .

This would be useful for us here since then we would not have to look closely to distinguish
between primed coordinate superscripts and a prime indicating a derivative of a component:
xi
′

or (xi)′ = xi′ but let’s just stick with the more familiar prime derivative symbol. N

Exercise 8.5.1.
geodesics on a surface of revolution

a) Suppose we take a surface of revolution about the vertical axis in R3 and consider the
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affinely parametrized geodesic equations derived above.

d2r

dλ2
+ Γrθθ

(
dθ

dλ

)2

=
d2r

dλ2
−R′(r)R(r)

(
dθ

dλ

)2

= 0 ,

d2θ

dλ2
+ 2Γθrθ

dr

dλ

dθ

dλ
=
d2θ

dλ2
+ 2

R′(r)

R(r)

dr

dλ

dθ

dλ

= R(r)−2 d

dλ

(
R(r)2 dθ

dλ

)
= 0 .

From the angular equation we therefore conclude that the specific angular momentum ` =
R(r)2dθ/dλ is a constant for solutions of the geodesic equations. Substituting this result into
the radial equation of motion leads to

d2r

dλ2
= `2 R

′(r)

R(r)3
= −dU(r)

dλ
= −U(r),r

dr

dλ
= 0 .

where

U(r) =
`2

2R(r)2

is the so called “centrifugal potential,” whose sign-reversed derivative gives the specific force
(centripetal acceleration) in the radial direction for radial motion due to the angular motion.
This is an example of an “effective potential” not for a real applied force, but for an effective
force due to another degree of freedom, in this case the angular motion.

b) The length of the tangent vector remains constant under parallel transport, so the specific
energy E ≥ 0 is a constant for solutions of the geodesic equations

1

2
|c′(λ)|2 =

1

2

(
dr

dλ

)2

+
1

2
R(r)2

(
dθ

dλ

)2

= E =
1

2

(
ds

dλ

)2

.

One can introduce an arclength parametrization by

ds

dλ
= (2E)1/2

or simply by choosing the constant 2E = 1 by choosing a unit tangent vector (unit speed
motion) as initial data for the differential equations.

Eliminate the angular velocity from this equation to find

1

2
|c′(λ)|2 =

1

2

(
dr

dλ

)2

+
`2

2R(r)2
= E ,

where the term in the kinetic energy representing the contribution from the angular motion
now acts like an “effective potential” for the radial motion. This equation can be directly
integrated in principle (or numerically integrated in practice), thus sidestepping integrating the
second-order differential equation for r

λ =

∫
dr

(2E − `2/R(r)2)1/2
.
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If in turn this relation can be inverted to give r = r(λ), then one can integrate the angular
momentum relation dθ/dλ = `/R(r)2

θ =

∫
`

R(r(λ))2
dλ ,

which gives the solution formally up to “quadrature,” an old-fashioned word for doing these
two integrals.

c) If we are only interested in the path of a geodesic, we can instead use θ as a non-affine
parameter by a chain rule re-expression of the derivative in the radial first order equation by
substituting

dr

dλ
=
dr

dθ

dθ

dλ
=
dr

dθ

`

R(r)2

into

E =
1

2

(
dr

dλ

)2

+
`2

2R(r)2
=

1

2

(
dr

dθ

`

R(r)2

)2

+
`2

2R(r)2
=

1

2

(
dr

dθ

)2
`2

R(r)4
+

`2

2R(r)2
.

This can be used to solve for dθ/dr and integrate to find θ = θ(r) and if possible, inverted to
get r as a function of θ. Solve this energy equation for dθ/dr, modulo sign, and express θ as
function of r using an integral formula as above.

In the case of zero specific angular momentum ` = 0, i.e., of purely radial motion for constant
θ, this just tells us instead that dr/dλ is zero, so r is linearly related to an affine parameter,
and is therefore an affine parameter itself. In fact we know it is an arclength parameter for
purely radial motion, and by choosing 2E = 1, the parameter λ measures increments of r.

�

Remark

To interpret the parameters (E , `) in terms of initial data, we need to consider the tangent
vector, called the velocity in the physics language

v =
dr

dλ
er +

dθ

dλ
eθ =

dr

dλ
er̂ +R

dθ

dλ
eθ̂ = vr̂er̂ + vθ̂eθ̂ .

The speed is just the length of the velocity vector, namely the square root of twice the (specific)
energy: |v| = (2E)1/2. If we introduce the usual polar angle in the er̂-eθ̂ tangent plane measured
counterclockwise from the positive er-axis, call it β, then

v =
dr

dλ
er +R

dθ

dλ
eθ̂ = (2E)1/2(cos β er̂ + sin β eθ̂) ,

so that comparing formulas(
dr

dλ
,R

dθ

dλ

)
= ((2E)1/2 cos β, (2E)1/2 sin β) .
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Recalling that dθ/dλ = `/R2, then we obtain

dθ

dλ
=

(2E)1/2

R
sin β and ` = R2 dθ

dλ
= R(2E)1/2 sin β ,

and hence

(vr̂, vθ̂) =

(
`

R
coth β,

`

R

)
E =

`2

2R2 sin2 β
.

Note that the combination

Rext =
|`|

(2E)1/2
= R(λ)| sin β(λ)|

is a constant length which reduces to the distance from the z-axis of a point on a geodesic
where a radial turning point occurs, namely where dr/dλ = 0 = cos β and | sin β| = 1.

Thus once one picks the energy which determines the affine parametrization for a geodesic
(the choice E = 1/2 is the arclength parametrization), then picking the initial angle β completely
determines the initial data for the second order geodesic differential equations at a given starting
point (r0, θ0), namely the initial values of the two components of the velocity (dr/dλ, dθ/dλ).
This also determines both the initial value of dr/dλ and the constant value of ` needed for the
radial motion problem, ignoring the angular motion. Alternatively one can determine the choice
of parametrization for “nonradial” motion by fixing ` 6= 0, say |`| = 1, and then determining the
energy parameter E from the initial values of (R, β) through the above relations, as illustrated
in figure 8.12. This allows us to use a single potential plot with a variable energy level to
describe all possible motions.

Figure 8.12: Holding R0 = R(r(λ0)) and ` fixed while considering different initial velocities,
the initial velocity has a constant azimuthal (horizontal) orthonormal component but a variable
speed (2E)1/2 and radial (vertical) orthonormal component. On the other hand, fixing the speed
and varying the angular momentum would change both the radial and azimuthal component
and the graph of the effective potential.
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Figure 8.13: A great circle through the equator makes an angle with the vertical at those
intersection points which equals the polar angle of the nearest point on that great circle to one
of the poles, or its complement, modulo absolute value since 0 ≤ θ ≤ π. This is clear from
this edge on view looking down the diameter connecting the two intersection points with the
equator.

Remark.

Suppose we consider a great circle on the unit sphere in spherical coordinates passing
through the equator at polar angle θ = π/2, where R = sin θ. If we look edge on down
the diameter which connects antipodal points on this great circle on the equator, it is clear
that the absolute value of the angle β0 from the vertical at the equator of a tangent vector to
this curve equals the extremal polar angle closest to one of the poles on that great circle. This
is exactly what the conserved angular momentum quantity tells us since the product sin θ sin β
is constant. At the equator (θ, β) = (π/2, β0), while at the extremal point (θ, β) = (θext, π/2),
so sin θ = sin β0. Since 0 ≤ θext ≤ π, one must have θext = |β0| or π − |β0|.

N

Exercise 8.5.2.
surface of revolution meridian arclength
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Figure 8.14: When a 1-dimensional potential energy function has a “potential well,” namely
an interval with a concave up graph surrounding a minimum, then the minimum point like at r0

is a stable equilibrium solution r = r0 of the equation of motion, while energy levels above that
minimum energy have “turning points” rmin, rmax where the energy level intersects the graph
of the potential U(rmin) = E = U(rmax) and the kinetic energy must be zero, corresponding to
points where the motion must be momentarily stopped.

For practice in evaluating arclengths of curves in the x-y plane, calculus books use very
special parametrized curves or graphs of functions y = f(x) parametrized by x = t, y = f(t)
such that the length of the tangent vector is a perfect square and the integration can actually
be performed. For some of these examples the resulting relationship between the arclength
function s with respect to some arbitrary reference point on the curve can be inverted in terms
of the curve parameter so that one can actually find an arclength parametrization of the curve.
Revolving these special example curves (re-expressed in terms of the r-z plane) around the
vertical axis, we get actual examples of surfaces where the preceding problem can be worked
explicitly. Find an interesting example in such a book and construct a surface of revolution
where one can express R(r) explicitly and apply the preceding general theory.

�
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8.6 The Euclidean plane and the Kepler problem

Figure 8.15: A straight line in the plane not passing through the origin seen in polar coordi-
nates, using energy considerations. [Change r0 to rp in new figure.]

Continuing the particle motion analogy for the simpler case of the flat Euclidean plane in
polar coordinates is very instructive since we know that the geodesics are just straight lines.
The specific energy equation

1

2
|c′(λ)|2 =

1

2

(
dr

dλ

)2

+
`2

2R(r)2
= E

leads to a very useful visualization of the radial motion, thinking of the problem in terms of
the motion of a point in space with respect to the time t = λ. The first term is the specific
kinetic energy K = 1

2
(dr/dλ)2 and the second term the specific potential energy U = 1

2
`2/R(r)2.

Their sum is a constant along a geodesic, namely the specific energy. If we graph the potential
function and the constant of energy, then only values of r are allowed where the potential
falls below the “energy level” so that the kinetic energy is nonnegative. Where they intersect,
the kinetic energy and hence the radial derivative itself must be zero, which corresponds to a
turning point of the radial motion where the radial motion must reverse direction, unless it
is an equilibrium solution at a critical point of the potential where the radius is fixed by the
equation of motion.

For example, take the case of the flat plane as a surface of revolution. Just rotate the line
z = 0 in the ρ-z plane around the z-axis in clyindrical coordinates (ρ, φ, z), and let (r, θ) = (ρ, φ),
where R(r) = r and (r, θ) are the usual polar coordinates. The first order geodesic equations
are

1

2

(
dr

dλ

)2

+
`2

2r2
= E , dθ

dλ
=

`

r2
.

Figure 8.15 illustrates the situation for a straight line not passing through the origin, seen from
the point of view of polar coordinates. The turning point rp (“p” for perihelion) is defined
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by setting the radial velocity dr/dλ to zero, so that 1
2
`2/r2

p = E or rp = |`|/(2E)1/2. This is
just the distance of closest approach to the origin, and in the physics language is the “orbit
perihelion.” The geodesic starts at λ → −∞ at the angle θ−∞ and monotonically increments
by ±π to its limiting final value θ∞ while the radius decreases from ∞ to its turning point and
then increases back out to infinity as λ→∞. We can envision the radial motion taking place
in the r-E plane as a point coming in from infinity moving to the left along the line of constant
energy, decreasing its radial speed as the kinetic energy shrinks, until its radial motion stops
at the turning point and then reverses and then it moves back out (symmetrically in λ with
respect to the turning point) to infinity again. Since dθ/dλ = `/r2, the angular velocity has
its largest values near the turning point where the angle is changing the most rapidly as one
moves along the straight line in an affine parametrization that is proportional to its arclength.

Figure 8.16: Initial data for the geodesic represented in the preceding figure, making an angle
β1 with respect to the horizontal axis. The initial direction can be specified by the angle
α− > β0 made by the tangent vector c′ with respect to the orthonormal frame associated with
the polar coordinates.

To specify initial data for a nonradial geodesic like the one illustrated in figure 8.15, one
needs an initial position and initial tangent vector (r0, θ0, r

′
0, θ
′
0), or equivalently (r0, θ0, β0, E).

To interpret this geometrically, see figure 8.16. Since we have defined the “specific energy” by
setting E = 1

2
|c′|2 (remember the kinetic energy is E = 1

2
mv2, so E/m = 1

2
v2 thinking of c′

as the velocity), then turning this around: |c′| = (2E)1/2. Thus we can define the initial unit
tangent vector to be

ĉ′|0 = cos β0 er̂ + sin β0 eθ̂ = cos β0 er +
sin β0

r0

eθ ,

which implies

c′|0 = (2E)1/2(cos β0 er +
sin β0

r0

eθ) = r′0er + θ′0 eθ ,

and finally the specific angular momentum is

` = r2
0θ
′
0 = r0(2E)1/2 sin β0 .
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Thus if we fix the specific angular momentum instead of requiring arclength parametrization
(which would instead fix 2E = 1), then letting sin β0 → 0 means E → ∞. This allows us to plot
a single fixed potential and vary the energy (i.e., initial angle β0) to characterize the different
kinds of nonradial geodesics which are possible, instead of fixing the energy and plotting a
whole family of potentials (by varying instead the coefficient `2).

Of course we know explicitly how to express the geodesics of the Euclidean plane which
pass through an arbitrary point (x0, y0). They are straight lines which may be parametrized
by the angle β1 they make with respect to the direction unit vector e1 in the tangent space at
that point, measured in the usual counterclockwise direction

c(s, x0, y0, β1) = 〈x0, y0〉+ s〈cos β1, sin β1〉 = 〈x0 + s cos β1, y0 + s sin β1〉 ,
c′(s, x0, y0, β1) = 〈cos β1, sin β1〉 , |c′(s, x0, y0, β1)| = 1 .

Clearly these families of straight lines are not very compatible with a coordinate system built
on concentric circles about the origin unless the point in question is the origin itself, so using
polar coordinates to describe the geodesics of the plane is a doomed exercise. However, it is
an instructive stepping stone to a more interesting problem of motion in the plane under the
influence of a central force, i.e., a force field which is radially directed and spherically symmetric
about a point, e.g., the gravitational force on a “point particle” like the earth around the sun,
or the classical electric force of an electron orbiting the nucleus.

Substituting these expressions for x and y in the polar coordinate map (i.e., Φ◦c(s, x0, y0, β1)
in precise notation), one finds a pretty complicated relationship

r = [(x0 + s cos β1)2 + (y0 + s sin β1)2]1/2 , tan θ =
y0 + s sin β1

x0 + s cos β1

.

These represent the general solution of the geodesic equations expressed in polar coordinates,
where invoking the “square peg in a round hole” saying might be in order.

Exercise 8.6.1.
plane geodesics in polar coordinates

To simplify the formulas, we express these geodesics for the nonradial motion case in terms
of an arclength parametrization s = (2E)1/2λ with s = 0 at the initial data point (r0, θ0) with
initial angle β0. The first order equations are then(

dr

ds

)2

+
rp

2

r2
= 1 ,

dθ

ds
=

(sgn `)rp
r2

,

recalling the definition of the radius of closest approach to the origin and conserved quantity

rp = |`/(2E)1/2| = r| sin β| = r0| sin β0| .

Introduce also sp = r0 cos(π − β0) = −r0 cos β0, which satisfies r0
2 = rp

2 + sp
2. Notice that

the sign of dθ/ds cannot change for nonradial geodesics, but that of dr/ds must change since
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Figure 8.17: The geometry of straight lines in polar coordinates as a geodesic solution. This
shows the case where β0 = β1 − θ0 is a positive obtuse angle and the point P (r, θ) is on the
other side of the point of closest approach to the origin from the initial point P (r0, θ0) so that
sp = r0 cos(π − β0) > 0.

it always decreases as one comes in from infinity and then increases after passing the point of
closest approach to the origin.

a) Solve the radial equation to find

dr

ds
= sgn

(
dr

ds

)√
1− rp2

r2
,

and then solve this for ds and integrate, imposing the initial condition s = 0 at r = r0 to find

s = sgn

(
dr

ds

) ∫ r

r0

u√
u2 − rp2

du+ sp = sgn

(
dr

ds

) √
r2 − rp2 + sgn(sp)

√
r0

2 − rp2 ,

which is equivalent to the Pythagorean relation

(s− sp)2 + rP
2 = r2 .

Note that the sign sgn(dr/ds) here changes when s passes the value sp corresponding to the
point of closest approach to the origin, while sp can have any sign.

b) Re-express the previous result for r2 using the definition of sp to find

r2 = s2 + r0
2 + 2r0s cos β0 .
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c) Use a computer algebra system to integrate the resulting angular equation

dθ

ds
=

sgn(`)rp
s2 + r0

2 + 2r0s cos β0

with the initial condition θ = θ0 when s = 0 to find

θ − θ0 = sgn(`)

[
arctan

(
s+ r0 cos β0

r0| sin β0|

)
− arctan

(
cos β0

| sin β0|

)]
≡ sgn(`)[γ + δ] .

Convince yourself that for 0 ≤ β0 ≤ π, the second angle δ inside the square brackets equals the
complementary angle δ = π/2− |β0|.

d) Now refer to Fig. 8.17. See that the radial solution for r as a function of s is just the
law of cosines for the triangle OP0P applied to the angle ∠OP0P , while the angular solution
for θ − θ0 is exactly the sum of the two angles γ and δ shown there

γ = arctan

(
s− sp
r0

)
, δ = arctan

(
sp
r0

)
.

e) Substitute (x0, y0) = r0(cos θ0, sin θ0) into the Cartesian expression for r2 given originally
for the straight line, and show that it reduces to the law of cosines result given above.

f) In a similar way, try to reconcile the Cartesian expression for θ with the expression
resulting from the integration above. Warning: I have not yet done this myself. It may be
tricky.

�

Exercise 8.6.2.
orbit equation for plane geodesics in polar coordinates

Suppose we wish only to determine the path of a geodesic as in Exercise 8.4.1 with the
azimuthal radius function R(r) = r, expressing r as a function of θ along the geodesic, i.e.,
using θ as a nonaffine parameter. What would the result look like? Starting from the known
solution for an arclength parametrized geodesic in polar coordinates, use a computer algebra
system to invert the relationship between θ and s and then use it to replace s in the expression
for r and simplify the result. You will see that it is not very simple.

�

Kepler’s problem

These manipulations are typical of elementary mechanics in the physics world, and while per-
haps a bit pointless here in the case of the flat plane, we are only a step away from being able
to solve Kepler’s problem of determining the orbits of the planets using the same approach. A
radially inward pointing specific force which is proportional to the inverse square of the distance
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Figure 8.18: The effective potential for the radial motion in the Kepler problem for the variable
r. The r-axis (black) describes the zero energy solutions (parabolas), while the minimum energy
(blue) at the bottom of the negative energy potential well describes the circular orbit. The two
green lines describe the positive energy solutions (hyperbolas) and the negative energy solutions
(ellipses). Turning points are indicated by the dashed vertical lines. The solid vertical line
represents the kinetic energy for the negative energy orbit.

from the origin in the plane is described by a potential inversely proportional to that distance
with a negative constant of proportionality in each case

F r = − k
r2

= −dU
dr

, U = −k
r
, k > 0 .

The new energy equation is then

1

2

(
dr

dλ

)2

+
`2

2r2
− k

r
= E , U(eff) =

`2

2r2
− k

r
,

where U(eff) is an effective potential for the radial motion. Note that now the angular momentum
is an essential parameter in determining the shape of the total radial potential, while in the
geodesic case it only scaled the single potential term, so that simultaneously scaling the energy
could compensate for that first scaling. The extra real potential term decouples the scaling
freedom in the affine parameter from the scaling of the total radial potential.

The following approach can be used to study any rotationally symmetric conservative force
field in the plane. A simple toy example that often appears in classical mechanics textbooks is
the 2-dimensional harmonic oscillator, which actually pops up in the Kepler problem with an
obvious change of variable (reciprocal radius). One can also explore other powers for the radial
potential.
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To get the orbits for the Kepler problem, we use the nonaffine parameter θ and re-express
the energy equation for the new radial variable u = 1/r

E =
1

2

(
dr

dθ

)2
`2

r4
+

`2

2r2
− k

r
=
`2

2

[(
du

dθ

)2

+ u2 − 2k

`2
u

]
,

or (
du

dθ

)2

= −u2 +
2E + 2ku

`2
= −(u− A)2 + A2

(
1 +

2E`2

k2

)
,

where A = k/`2 comes from completing the square on the quadratic expression. This has the
easy solution

1

r
= u = A+B cos(θ − θ0) = A(1 + e cos(θ − θ0)) , (A,B, e) =

(
k

`2
,
k

`2
e,

(
1 +

2E`2

k2

)1/2
)

representing a conic section of eccentricity e and semi-latus rectum p = 1/A. For the elliptical
case of bound orbits E < 0, the major and minor semi-axes are a = p/(1− e2), b = p/

√
1− e2,

while the perihelion and aphelion are rmin = a(1− e), rmax = a(1 + e).

Exercise 8.6.3.
quadratic potential motion

a) Verify this solution by substituting it into the differential equation and simplifying it to
the fundamental trig identity.

b) Derive this solution using a computer algebra system. You will get different results if
you input literally the above differential equation, or if you solve it for one of the two roots for
du/dθ and solve that, or if you first solve for dθ/du and integrate. In each case the computer
algebra system tries to express the solution in terms of the tangent (or arctangent in the latter
case) instead of the cosine (or the arccosine) which is much simpler.

�

This form of the solution is nearly obvious if we think about the new form of the potential.

1

2

(
du

dθ

)2

+ V(u) =
E
`2
, V(u) =

1

2
u2 − ku

`2
=

1

2
u

(
u− 2k

`2

)
.

This is just a quadratic potential displaced from the origin describing a linear Hooke’s law force
with a displaced origin, so its solutions are just oscillations about the minimum point u = k/`2,
which leads to the general form of the solution given above. Fig. 8.19 shows the same situation
as the previous figure.

For negative energy E < 0, then the eccentricity e is a proper fraction and the orbit is an
ellipse with major and minor axes

a =
p

(1− e2)
=

k

2E , b =
p

(1− e2)1/2
=

`

(2E)1/2
,
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Figure 8.19: The effective potential for the radial motion in the Kepler problem for the recip-
rocal radial variable variable u = 1/r. The r-axis (black) describes the zero energy solutions
(parabolas), while the minimum energy (blue) at the bottom of the negative energy potential
well describes the circular orbit. The two green lines describe the positive energy solutions
(hyperbolas) and the negative energy solutions (ellipses). Turning points are indicated by the
dashed vertical lines.

and perihelion and aphelion

r(min) = a(1− e) , r(max) = a(1 + e) .

If E = 0, the eccentricity e = 1 and the orbit is a parabola with minimum radius

r(min) =
p

2
=
`2

k
.

For positive energy E > 0, then the eccentricity e is an improper fraction and the orbit is a
hyperbola with minimum radius and orthogonal semi-axis

r(min) =
p

(1 + e)
= a(1− e) =

`2

k
, a =

p

(e2 − 1)
=

k

2E .

To get relation between the orbit and the affine parameter (time), one must integrate the
energy equation, solved for dλ/dr

dr

dλ
=

(
2E +

2k

r
− `2

r2

)1/2
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and integrated

λ− λ0 =

∫
r dr

(2Er2 + 2kr − `2)1/2
.

Exercise 8.6.4.
radius versus time

a) Evaluate this integral with a computer algebra system. Find the period T for an elliptical
orbit by doubling the definite integral from r(min) to r(max).
b) If this is not successful try plan B:
Supply the missing steps in completing the square and factoring the quadratic expression in
the numerator of the expression for the square of the speed:(

dr

dλ

)2

= −|2E|+ 2k

r
− `2

r2

==
|2E|
r2

(
−r2 +

2k

|2E|r −
`2

|2E|

)
=
|2E|
r2

(
−(r − a)2 + a2e2

)
=
|2E|
r2

(
(r(max) − r)(r − r(min))

)
,

where a = k/|2E|, e = (1 − |2E|`2/k2). Then solve for dλ and integrate from r(min) to r(max)

and double to get the period:

T =
2

|2E|1/2
∫ r(max)

r(min)

r dr√
(r(max) − r)(r − r(min))

easy

=

2

|2E|1/2
π

2
(r(max) + r(min))

=
2πa

|2E|1/2 =
2πk

|2E|3/2 .

With all this help, the computer algebra system easily spits out the easy integral with the
assumptions r(max) > r, r > r(min), r(min) > 0. Notice that the result is independent of the
angular momentum, only depending on the energy. This means that at a given initial radius,
all the elliptical orbits have the same period as the circular orbit with the Kepler speed vK =
(k/r)1/2, namely T = 2πr/vK = 2πa3/2/k1/2.

�

Exercise 8.6.5.
black hole orbits

The general relativistic orbits corresponding to the Kepler problem are described by geodesics
in the Schwarzschild spacetime representing a nonrotating black hole. Only a small change in
our nonrelativistic equations is required to adapt them to their relativistic versions. Read chap-
ter 25 of Gravitation by Misner, Thorne and Wheeler to investigate this problem, or wait until
Section 8.12 where we will derive the relativistic equations. The affinely parametrized geodesics
in the equatorial plane of a spherical coordinate system in which the point source mass M of
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Figure 8.20: The effective potential for the relativistic Kepler problem, compared with the
Newtonian potential. The additional inverse third power term in the attractive relativistic
gravitational potential overcomes the repulsive inverse square centrifugal potential term at
small radii, leading to orbits which fall into the center if the energy is high enough to pass over
the barrier. The maximum of the relativistic potential represents an unstable circular orbit,
while the minimum represents a stable circular orbit.

the gravitational field is located at the origin, reverting back to polar coordinate notation in
that plane, are described by the same angular equation and a radial energy equation with one
factor slipped into the formula

dθ

dλ
=

`

r2
,

1

2

(
dr

dλ

)2

+
1

2

(
1− 2M

r

)(
1 +

`2

r2

)
=

1

2
E2 .

This factor multiplying the effective potential term associated with the angular momentum
(“the centrifugal potential” associated with the repulsive centrifugal force) has the value 1 at
large radii compared to the “Schwarzschild radius” r = 2M , but goes to 0 as one approaches
this radius from larger values, thus cutting off the repulsive effects of the centrifugal potential.
Thus very close to the black hole, the attractive gravitational force overcomes the centrifugal
force and pulls test particles (whose speed tops out at the speed of light c = 1) into the hole
no matter what their angular momentum is.

a) Expand out the radial energy equation and rearrange terms to find the result

1

2

(
dr

dλ

)2

+
`2

2r2
− M

r
− M`2

r3
=

1

2
(E2 − 1) .

Thus an additional inverse third power term in the potential is the only change needed to find
the orbits, and such a term simply causes the precession of the Newtonian orbits around the
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central mass. This corresponds to an effective radial force which increases the attraction to the
center for very small radii, thus overcoming the centrifugal potential barrier of the corresponding
Kepler problem

Fr = −M
r2
− 3M`2

r4
.

b) Re-express the radial equation in terms of the variable u = M/r and the ratio ˜̀ = `/M
and reparametrize the orbits by the azimuthal angular variable θ to find(

du

dθ

)2

=
E2 − (1− 2u)(1 + ˜̀2u2)

˜̀2
= −u2 +

E2 − 1 + 2u+ 2˜̀2u3

˜̀2
.

This is almost the same as the Newtonian expression except that the Newtonian specific energy
corresponds to the function 1

2
(E2 − 1) of the relativistic specific energy E and there is an extra

cubic term in u responsible for the famous precession of the corresponding Newtonian conic
section orbits.

�
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8.7 2-spheres, pseudospheres and other conics of revo-

lution

Figure 8.21: The 2-sphere in Euclidean 3-space and the two pseudospheres in 3-dimensional
Minkowski spacetime: hyperboloids of two and one sheets, which are spacelike and timelike
surfaces respectively, corresponding to all unit timelike and spacelike separations respectively
from the origin of inertial coordinates at the center of the hyperboloids.

The sphere is our most familiar surface in ordinary Euclidean space which is both intrinsi-
cally and extrinsically curved as well as maximally symmetric under the 3-parameter group of
rotations which leave its geometry invariant, including translations between any two points on
the sphere (homogeneity symmetry) and a rotation about every point on the sphere (isotropy
symmetry). We normally study spheres centered at the origin of our Cartesian coordinate
system, where they occur as the level surfaces of the distance function from the origin.

The pseudospheres in 3-dimensional Minkowski spacetime have similar properties in their
Lorentzian geometry, but come in two different types. The single sheeted hyperboloid consists
of all points a fixed spacelike separation from the origin of the inertial coordinates, which can
be viewed as a world sheet of a circle as it accelerates away outward from the origin in the
2-dimensional space cross-sections. The double sheeted hyperboloid consists of all points at
a fixed timelike separation from the origin in the future or in the past. These pseudospheres
have a rotational symmetry about the time axis and two boost symmetries which allow motion
along the radial direction within these surfaces.

These surfaces can be studied easily using the spherical/pseudospherical coordinates which
parametrize the family of such surfaces of different radii/pseudoradii

x = r sin θ cosφ , x = τ coshχ cosφ , x = ` sinhχ cosφ ,

y = r sin θ cosφ , y = τ coshχ cosφ , x = ` sinhχ cosφ ,

z = r cos θ , t = τ sinhχ , t = ` coshχ ,
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where r ≥ 0, ` ≥ 0 but τ ∈ R allows positive and negative values of τ to describe the future and
past pseudospheres respectively, while 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (or −π < φ ≤ π of convenient)
and finally the hyperbolic angle or “rapidity” χ ≥ 0 for the two sheeted hyperboloids, but
χ ∈ R for the one sheeted hyperboloid.

spheres

The Euclidean metric in spherical coordinates is

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz
= dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ
= ωr̂ ⊗ ωr̂ + ωθ̂ ⊗ ωθ̂ + ωφ̂ ⊗ ωφ̂

with coordinate frame and dual frame

er =
∂

∂r
, eθ =

∂

∂θ
, eφ =

∂

∂φ
, ωr = dr , ωθ = dθ , ωφ = dφ

and associated orthonormal frame and dual frame

er̂ =
∂

∂r
, eθ̂ =

1

r

∂

∂θ
, eφ̂ =

1

r sin θ

∂

∂φ
, ωr̂ = dr , ωθ̂ = r dθ , ωφ̂ = r sin θ dφ .

The coordinate surface r = r0 is a sphere of radius r0 on which {θ, φ} serve as local coordinates
with coordinate singularity at the poles θ = 0, π where φ is undefined. We can live with this
problem as long as we are careful.

The 2-sphere is a space in its own right and we can use all the machinery we have developed
for Rn in general coordinate systems to study it. We can also picture the 2-dimensional tangent
spaces to the 2-sphere as subspaces of the full 3-dimensional tangent space of R3 at each point.
The sphere has “intrinsic” or internal geometry of a 2-dimensional nature, plus “extrinsic” or
external geometry that has to do with how it sits inside the larger space, i.e., how it bends. For
example, a cylinder locally has the same flat 2-dimensional geometry as a plane (cut it along
a seam and roll it out flat), but clearly it is bent as a subspace of R3. To study the intrinsic
geometry we simply use the 2-dimensional coordinate system and calculate as though we were
studying R2 in non-Cartesian coordinates.

Setting r = r0 and dr = 0 in the full metric gives us the “induced metric” on the sphere of
radius r0, which tells us the inner products of the frame vectors eθ, eφ or eθ̂, eφ̂

(2)g = g|r=r0,dr=0 = r0
2dθ ⊗ dθ + r0

2 sin2 θdφ⊗ dφ
= r0

2[dθ ⊗ dθ + sin2 θdφ⊗ dφ︸ ︷︷ ︸
metric for unit sphere r = 1

] ,

where the factor r2
0 scales up lengths in the geometry by the scale factor r0 compared to the unit

sphere. The sphere is a surface of revolution, and by defining (r, θ, R(r)) = (r0θ, φ, r0 sin(r/r0)),
the metric on the sphere of radius r0 takes the standard form

(2)g = dr ⊗ dr +R(r)2dθ ⊗ dθ ≡ gαβ du
αduβ
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that we can compare with polar coordinates in the plane, remembering of course that now r
refers to the rescaled polar angle on the sphere in order to make this comparison. To refer to
indexed expressions in the 2-dimensional context, Greek indices will be understood to range
from 1 to 2 (namely u1 = r and u2 = θ) only to distinguish them from the Latin indices which
run from 1 to 3 here. Notice that the azimuthal radius function R(r) has the limiting value
limr→0R(r) = r, so for values of r much less than r0 (near its North Pole, where it intersects the
positive z-axis), the metric is almost the metric of the flat plane expressed in polar coordinates.

On the 2-sphere without reference to the flat 3-dimensional Cartesian coordinates, we could
use the general formula which defines the components of the unique covariant derivative for
which this 2-dimensional metric (2)g is covariant constant

Γαβγ =
1

2
gαδ(gδβ,γ − gβγ,δ + gγδ,β + Cδβγ − Cβγδ + Cγδβ) , α, β = 1, 2

applied either in the coordinate frame or in the associated orthonormal frame. However, we have
already evaluated all of these components in the 3-dimensional context of spherical coordinates,
so we will continue to use the angular coordinates symbols (u1, u2) = (θ, φ) to specialize the
full spherical coordinate formulas to these coordinate surfaces. All we have to do is confine our
attention to the components of the covariant derivative in spherical coordinates with no radial
indices and set r = r0 in their expressions, which leads to the only nonvanishing coordinate
components

Γθφφ = − cos θ sin θ , Γφφθ = cot θ = Γφθφ

in the coordinate frame {eθ, eφ}, while

Γθ̂ φ̂φ̂ = −r0
−1 cot θ = −Γφ̂φ̂θ̂ ≡ ε κ (where ε = sgn(cos θ))

are the only nonvanishing components with respect to the associated orthonormal frame {eθ̂, eφ̂}.
These corresponding to the relations

∇eφ̂eφ̂ = −ε κ eθ̂ , ∇eφ̂eθ̂ = ε κ eφ̂ ,

where

κ = ε
R′(r)

R(r)
= ε

cot(r/r0)

r0

= ε
cot θ

r0

↔ R =
1

κ
=

r0

| cot θ| =
R(r0θ)

| cos θ|
are the intrinsic curvature and intrinsic radius of curvature of the azimuthal circles explored
in Exercise 8.4.2. Note that the equator at θ = π/2 has zero curvature since it is a great
circle and therefore a geodesic. Also the unit normal εeθ̂ points towards the North Pole in
the Northern Hemisphere θ < π/2, but towards the South Pole in the Southern Hemisphere
θ > π/2. As shown in Fig. 8.22, the division of the actual radius R of a φ coordinate circle by
the cosine corresponds exactly to the vertical projection of that radial vector from the z-axis
to the coordinate circle onto the tangent plane to the sphere there, stretching that radius from
its actual radius in the limit near the North Pole to an infinite radius at the Equator. This
exactly captures the parallel transport around one loop of the coordinate circle. If one rolls this
“intrinsic osculating circle” in the tangent plane around the coordinate circle without slipping,
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Figure 8.22: The intrinsic radius of curvature R of the azimuthal coordinate circles of con-
stant θ is stretched from the actual radius R of the circle by its vertical projection onto the
tangent plane. The unit normal to those circles points towards the North Pole in the Northern
Hemisphere and towards the South Pole in the Southern Hemisphere, while the Equator is a
geodesic with infinite radius of curvature bridging the two cases. The mismatch of these two
radii leads to the net rotation of a vector under parallel transport around one loop of these
coordinate circles.

since its radius is longer than the coordinate circle, the angle it has reached on the intrinsic
osculating circle is smaller than 2π by the ratio R/R, but a parallel transported tangent vector
has to rotate in the opposite direction from the orthonormal coordinate frame to compensate
for its rotation and by an angle equal to the change of angle on the intrinsic osculating circle
relative to the orthonormal coordinate frame, which means it comes up short in the backwards
direction, and thus the parallel transported vector has moved forward by the difference with
2π.

Exercise 8.7.1.
intrinsic osculating circle

We can easily parametrize the intrinsic osculating circle shown in Fig. 8.22 at the point
~r(r, θ, φ) locating the tangent plane under consideration. If we use the notation eθ̂ to denote
the 3-vector in the enveloping space R3 corresponding to the tangent vector eθ̂ in the tangent
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plane, then the center of this intrinsic osculating circle is at the point

C(r, θ, φ) = ~r(r, θ, φ)− εR(r, θ, φ) eθ̂ ,

while the osculating circle itself can be parametrized in the standard multivariable calculus way
in terms of the radius of curvature R, the unit normal N̂ = ε eθ̂, and the unit tangent T̂ = eφ̂,
namely

OC(r, θ, φ, t) = C(r, θ, φ) +R(r, θ, φ)(cos t ε eθ̂ + sin t eφ̂) .

Use a computer algebra system to make a plot of the unit sphere and the intrinsic osculating
circle at the point (θ, φ) = (π/6, 0). Rotate it around and zoom in to see the pixels merge with
the coordinate circle. This is a perfect example of the fact that we can use any quadratically
parametrized curve in R3 to approximate the curvature of a given parametrized curve.

�

The nonzero components of the connection correspond to the antisymmetric connection
1-form matrix

ω̂ = (ωα̂φ̂β̂)ωφ̂ =
1

r0 sin θ

(
0 − cos θ

cos θ 0

)
(r0 sin θ dφ) =

(
0 −1
1 0

)
cos θ dφ .

This just tells us that as we move along the φ coordinate lines, the orthonormal frame vectors
begin to rotate with respect to parallel transported vectors on the sphere. Near the North
Pole θ ≈ 0 as shown in Fig. 8.23, this rotation is nearly a rotation by the angle φ. On the
other hand on the equator θ = π/2, the connection 1-form matrix vanishes, and both eθ̂ and
eφ̂ are parallel transported along the equator. The fact that the connection 1-forms have no
1-form components along θ tells us that these frames are also parallel transported along the θ
coordinate lines.

For very small θ, this picture looks just like the polar coordinate frame in the plane z = r0

tangent to the sphere at the North Pole. You can see that the orthonormal frame rotates by
(approximately) the angle φ as we move around the φ coordinate circle from φ = 0, which is
exactly what the antisymmetric matrix (

0 −1
1 0

)
describes the rate of change of as we begin moving from any particular φ value along the
φ direction. Parallel transported vectors around this circle, however, try to maintain their
direction with respect to the enveloping R3 as best they can while still remaining tangent to
the sphere.

In general, the components of the covariant derivative tell us how to parallel transport
vectors along the {θ, φ} coordinate lines. In particular the θ coordinate circles (great circles
through the poles) and the single φ coordinate circle θ = π/2 (the equator) are all great circles
which we know to be geodesics on the sphere.

The equation
∇eθ̂eα̂ = Γr̂ θ̂αer̂ = 0
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Figure 8.23: Visualizing the covariant derivatives of eθ̂ and eφ̂ along the φ coordinate lines
near the vertical axis.

tells us that the orthonormal frame is covariant constant along the θ coordinate circles where
eθ̂ is a unit tangent vector, so these are also geodesics. The equations

∇eφ̂eθ̂ = r0
−1 cot θeφ̂ , ∇eφ̂eφ̂ = r0

−1 cot θeθ̂

tell us the same thing is true for the orthonormal frame along the equator where cot θ =
cot(π/2) = 0, and since eφ̂ is a unit tangent along the equator, Deφ̂/dλ = 0 confirming that it
too is a geodesic.

Thus suppose

Y(0) = Y θ̂
(0)eθ̂|θ=0

is some tangent vector at the North Pole. If we parallel transport it down a line of longitude,
its orthonormal components remain constant, i.e., it maintains its length and its angle with the
line of longitude.

The same remains true as we move along the equator, and then back up along a line of
longitude to the North Pole again, resulting in the final tangent vector Y(f) which has rotated
by the increment in φ between the two lines of longitude, exactly as we described from intuition.

Notice that this tells us that the 2-sphere cannot admit a covariant constant vector field,
since if it did, it would coincide with its parallel transport along every such loop and thus the
final value would have to equal the original value of the North Pole, which we have just shown
will not happen in general.

Exercise 8.7.2.
geodesics on the cylinder
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Figure 8.24: Visualizing parallel transport around a particular closed loop on the sphere.

Suppose we do an analogous discussion with a cylinder ρ = ρ0 in cylindrical coordinates
{ρ, φ, z} on R3. Then {φ, z} are local coordinates on this 2-dimensional space.

a) What are the nonvanishing components of the connection in the coordinate and associated
orthonormal frame?

b) Do covariant constant vector fields exist?
c) Does a covariant constant orthonormal frame exist?
d) Write out the geodesic equations

D2φ

dλ2
= 0 ,

D2z

dλ2
= 0 .

Can you solve these equations? Can you explain the solutions?
If we define X = r0φ, we obtain orthonormal coordinates (X, z) whose coordinate frame

vector fields are covariant constant. These are just Cartesian coordinates on the strip of the flat
plane obtained if we cut the cylinder along the line φ = π and flatten it out: r0π ≤ X ≤ r0π,
but we must identify the edges of this strip. If we also identified two horizontal lines cutting
off this strip into a rectangle, we would obtain the “flat torus.”

�

Exercise 8.7.3.
geodesics on the unit sphere

Investigate the geodesic equations on the unit 2-sphere as a surface of revolution following
the example of Exercise 8.4.1, in terms of which (r, θ) = (θ, φ). Figure 8.25 shows the relevant
energy plot corresponding to a geodesic starting at the equator at (θ, φ) = (π/2, 0), rising to a
minimum value θ1 and then falling to a maximum value θ2 = π− θ1 in the “radial coordinate”
(with respect to the North Pole) θ, while the azimuthal angular coordinate φ undergoes one
full revolution by an increment of 2π. From the point of view of particle motion, the geodesics
are “bound orbits” (orbit = path) trapped in the “potential well.” The point at the bottom
of the well, when the energy is E = 1/2, is a stable equilibrium solution representing moving
around the equator at fixed θ = π/2.
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Figure 8.25: A great circle line on the unit sphere not passing through the North Pole,
studied using energy considerations, for unit specific angular momentum in the given affine
parametrization: dφ/dλ = 1/ sin2 θ. This geodesic crosses the equator at φ = 0, making an
angle β with the vertical direction which is just the polar angle of the point on the great circle
closest to the North Pole.

What angle should the initial unit tangent vector make with the vertical in order that the
minimum and maximum angles be (θ1, θ2) = (π/6, 5π/6) as shown in the potential figure? One
can figure this out just by looking down the x-axis so the initial point is at the origin of the
projection onto the y-z plane, which is parallel to the tangent plane at the initial point. How
can one use the energy equation to find the same result?

�

Exercise 8.7.4.
geodesics on the unit sphere: orbit equation

Computer algebra systems still need help sometimes to integrate a simple differential equa-
tion that can be done with a bit of change of variable manipulation that we no longer teach but
which is occasionally necessary to remember. Use the approach of part c) of Exercise 8.5.1 to
find the geodesic orbit equation φ = φ(θ) for the unit sphere and then invert it in the following
steps.

a) Show that the energy equation re-expressed using θ as the independent variable and
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introducing the constant c = `/(2E) becomes(
dθ

dφ

)2

= sin2 θ (c−2 sin2 θ − 1)↔
(
dφ

dθ

)2

= csc4 θ (c−2 − csc2 θ)

→ φ =

∫
csc2 θ dθ√
c−2 − csc2 θ

.

b) The numerator is just du = d cot θ = − csc2 θ dθ so it suggests the variable substitution
u = cot θ, for which csc2 θ = 1 + u2. Make this change to arrive at

φ− φe =

∫ −du√
a2 − u2

= arccos(u/a) = arccos(cot θ/a) ,

where a2 = c−2 − 1 > 0. Beware if your computer algebra system delivers a more complicated
(but equivalent) result involving the arctan. We are ignoring signs here until the final result,
inverted to yield

cot θ =
√
c−2 − 1 cos(φ− φe) = cot θe cos(φ− φe) .

The value φ = φe is the azimuthal coordinate where cot θe = a which means csc θe = c−1 =√
2E/` = 1/Re which implies that the denominator of the above integrals after the first are zero,

and so the reciprocal integrand dθ/dφ = 0 vanishes, which is at a turning point of the “radial”
motion along the meridians at which θ has an extreme value θe, π− θe. Midway between these
lies the equator at θ = θ0 = π/2, where φ = φ0 = φe±π/2, φe± 3π/2. Thus if we choose initial
conditions at the equator (θ, φ) = (π/2, 0), we get the two solutions

θ = arccot(cot θe cos(φ∓ π/2)) ,

where sgn cot θe = sgn ` leads to the four possible paths from the initial data point having the
same energy and same absolute value of the angular momentum. (This solution is courtesy of
the DAMPT at Cambridge University, and obscure differential geometry texts one might find
with much greater effort in some library without being able to use Google.)

c) If 〈dθ/dλ, dφ/dλ〉 = E〈cos β, sin β〉, express θe in terms of the initial value of β0 at
(θ, φ) = (π/2, 0).

d) Is there any hope of integrating the integral for λ versus θ? (I have not checked this out
yet.)

�

Exercise 8.7.5.
orthonormal coordinate frame connection 1-form matrix by transformation

For the 2-sphere of radius r0, the nonvanishing coordinate components of the metric are

gθθ = r2
0 , gφφ = r2

0 sin2 θ

and the nonvanishing components of the connection are

Γθφφ = − cos θ sin θ , Γφφθ = cot θ = Γφθφ ,
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the associated connection 1-form matrix is

ω =

(
ωθθ ωθφ
ωφθ ωφφ

)
=

(
0 Γθφφ dφ

Γφφθ dφ Γφθφ dθ

)
=

(
0 − cos θ sin θ dφ

cot θ dφ cot θ dθ

)
.

The normalization of the orthogonal coordinate frame is accomplished by the diagonal rescaling
matrix change of frame

A =

(
gθθ

1/2 0
0 gφφ

1/2

)
,
(
eθ̂ eφ̂

)
=
(
eθ eφ

)
A−1 ,

(
ωθ̂ ωφ̂

)
=
(
ωθ ωφ

)
A .

Use the formula for the differential of the inverse of a matrix stated in Exercise 2.3.6

ω̂ = A (ω + dA−1A)A−1 = AωA−1 + AdA−1

to evaluate the components of the connection 1-form matrix in the corresponding orthonormal
frame, thus reproducing the result stated in the text which was obtained by considering the
θ-φ components of the connection 1-form matrix for the orthonormal frame associated with all
three spherical coordinates.

�

Minkowski geometry

If we change the metric by making the vertical z-axis into the vertical time t-axis through a
switch in sign of the self-dot product of vertical vectors, the spheres of constant distance from
the origin are mapped to the pseudospheres of constant spacetime interval from the origin, which
can be either a spacelike separation or a timelike separation or a null separation, corresponding
to the one sheeted hyperboloids, the two-sheeted hyperboloids and the double cone respectively.
The null cone has a degenerate induced metric since it contains a null direction and a spacelike
direction, which has interesting implications for light rays emanating from a point source.

However, one can use the 3-dimensional Lorentz group (one rotation about the time axis,
2 independent boosts along the two spacelike axes) to understand all the geodesics in terms
of more basic ones oriented more simply with respect to the inertial coordinate axes. Any
plane through the origin cuts these surfaces in a curve which is a geodesic of the surface in the
same way that the planes through the origin in Euclidean space cut spheres in great circles,
and the equator (a parallel) and prime meridian (a meridian) provide two simply oriented such
geodesics with respect to the Cartesian coordinate system.

For the timelike pseudospheres (hyperboloid of two sheets) inside the light cone, any merid-
ian is a geodesic and they are all equivalent under rotations about the time axis. Boosting
these maps them into geodesics which have a minimum distance from the time axis, which
corresponds to the effects of the centrifugal potential barrier around that axis in the motion
point of view. For the spacelike pseudospheres (hyperboloid of one sheet), the horizontal circu-
lar cross-section (“equator”) is a geodesic, and boosting this produces an elliptical-like shape
which in the local rest frame of the boost looks like a circle. In fact it is an ellipse in the
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Euclidean geometry since the boost scales the lengths in the direction of the boost, which
appears to stretch out the circle in the direction of the boost when viewed in the Euclidean
geometry, but this actually contracts the circle in that direction in the Lorentzian geometry.
This describes all the spacelike geodesics on those spacelike surfaces. The timelike geodesics on
the other hand are all essentially like one of the meridians, which pass through the equator and
extend out to infinity in both directions, while not making a complete revolution of the time
axis. They are in fact hyperbolas. There are two special null hyperbolas corresponding to the
two unique null directions at each point of the timelike surface.

unit spacelike pseudosphere

The pseudospheres inside the light cone of M3 have a positive-definite induced metric, and are
said to be spacelike surfaces since their tangent vectors along the surface are all spacelike. The
unit such pseudosphere can be handled nearly exactly as the unit sphere with the change from
trigonometric to hyperbolic functions. With the pseudospherical coordinates

x = τ coshχ cosφ , y = τ coshχ cosφ , t = τ sinhχ ,

one evaluates the Minkowski metric inside the light cone to be

g = dx⊗ dx+ dy ⊗ dy − dt⊗ dt
= −dτ ⊗ dτ + τ 2dχ⊗ dχ+ τ 2 sinh2 χdφ⊗ dφ
= −ωτ̂ ⊗ ωτ̂ + ωχ̂ ⊗ ωχ̂ + ωφ̂ ⊗ ωφ̂

with coordinate frame and dual frame

eτ =
∂

∂τ
, eχ =

∂

∂χ
, eφ =

∂

∂φ
, ωτ = dτ , ωχ = dχ , ωφ = dφ

and associated orthonormal frame and dual frame

eτ̂ =
∂

∂τ
, eχ̂ =

1

τ

∂

∂χ
, eφ̂ =

1

τ sinhχ

∂

∂φ
, ωτ̂ = dτ , ωχ̂ = τ dχ , ωφ̂ = τ sinhχdφ .

The pseudospheres are coordinate surfaces τ = τ0. We can study the unit pseudosphere
τ = 1, dτ = 0 with metric

g(2) = dχ⊗ dχ+ sinh2 χdφ⊗ dφ
where (r, θ) in the surface of revolution discussion becomes (χ, φ) here, with R(χ) = sinhχ and
an effective potential

Ueff =
`2

2 sinh2 χ

which goes to zero as χ→∞. One can analyze this to obtain an orbit equation for initial data
at some nonzero value χ0 as done in Exercise 8.7.4 for the unit sphere. Let’s spare ourselves
this calculation.
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Exercise 8.7.6.
connection in spacelike pseudospherical coordinates

Like the unit sphere, all the meridians emanating from the time axis at χ = 0 are geodesics.
Similar to that case, one can rotate the inertial coordinate frame on the vertical time axis to
align it with the φ direction and then boost it to a general χ value to get the full 3-dimensional
orthonormal frame matrix B and connection 1-form matrix ω̂ = B−1dB, from which one can
see that the meridians for the pseudospheres are indeed geodesics. Do this.

�

Exercise 8.7.7.
connection on the spacelike pseudosphere

a) Specialize the previous result to evaluate the orthonormal frame matrix B(2) and obviously
antisymmetric connection 1-form matrix ω̂(2) = B(2)−1dB(2) for the unit spacelike pseudosphere.

b) Interpret this result in terms of the intrinsic curvature of the parallels. We can introduce
an osculating circle in the tangent space to points on these parallels just as we did for the unit
sphere. Use a computer algebra system to show the osculating circle at (χ, φ) = (arccosh 2, 0).

c) Evaluate directly the unnormalized coordinate frame matrix B and connection 1-form
matrix ω for the full frame, then specialize to the unit spacelike pseudosphere and read off the
nonzero connection components, or use the formulas already developed for an arbitrary surface
of revolution.

�

unit timelike pseudosphere

The pseudospheres outside the light cone of M3 have a Lorentzian induced metric with a timelike
direction along the meridians, and are said to be timelike surfaces since their tangent vectors
along the surface are both timelike and spacelike. The unit such pseudosphere can be handled
like the previous case but taking into account this crucial sign change. With the pseudospherical
coordinates (` ≥ 0)

x = ` sinhχ cosφ , y = ` sinhχ cosφ , t = ` coshχ ,

one evaluates the Minkowski metric outside the light cone to be

g = dx⊗ dx+ dy ⊗ dy − dt⊗ dt
= d`⊗ d`− `2dχ⊗ dχ+ `2 cosh2 χdφ⊗ dφ
= ω

ˆ̀⊗ ω ˆ̀− ωχ̂ ⊗ ωχ̂ + ωφ̂ ⊗ ωφ̂

with coordinate frame and dual frame

e` =
∂

∂`
, eχ =

∂

∂χ
, eφ =

∂

∂φ
, ω` = d` , ωχ = dχ , ωφ = dφ
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and associated orthonormal frame and dual frame

eˆ̀ =
∂

∂`
, eχ̂ =

1

`

∂

∂χ
, eφ̂ =

1

` coshχ

∂

∂φ
, ωτ̂ = d` , ωχ̂ = ` dχ , ωφ̂ = ` coshχdφ .

Exercise 8.7.8.
connection in timelike pseudospherical coordinates

a) Like the previous case, all the meridians are geodesics. Similarly one can rotate the
inertial coordinate frame on the positive x axis to align it with the φ direction and then boost
it to a general χ value to get the full 3-dimensional orthonormal frame matrix B and connection
1-form matrix ω̂ = B−1dB, from which one can see that the meridians for the pseudospheres
are indeed geodesics. Represent B in terms of the product of these two symmetry operations
and a permutation as in the unit sphere case.

b) Interpret your result for the connection 1-form matrix as generating a boost along the
meridians and a rotation about the time axis. Interpret the part of the connection 1-form along
dχ for the full spacetime connection as an intrinsic curvature for the meridians. What about
the intrinsic curvature of the parallels?

c) The meridians are timelike world lines. For the unit pseudosphere ` = 1, χ is a proper
time coordinate along these world lines. Evaluate their spacetime velocity (unit tangent u = eχ̂
) and acceleration (a = ∇eχ̂eχ̂). Show that they undergo unit acceleration corresponding to
their unit curvature, with a spacelike normal vector. Thus one can interpret the unit timelike
pseudosphere as the world tube (history) of a circle which accelerates outward from the origin
of the spatial inertial coordinates (x, y). One can introduce an osculating hyperbola for points
on the meridians as discussed in Appendix C.

�

Exercise 8.7.9.
geodesics on the unit timelike pseudosphere

The energy equation now takes the form

1

2

(
dχ

dλ

)2

− cosh2 χ

2

(
dφ

dλ

)2

= −E ,

reversing its overall sign to make the first term positive. Now we have a potential well shown
in Fig. 8.26 which traps geodesics with negative energy E < 0 corresponding to closed spacelike
geodesics (which are related by a boost to the circular cross-section χ = 0)

Ueff = − `2

2 cosh2 χ

and also nonclosed timelike geodesics for positive energies E > 0, and finally null geodesics for
E = 0. Are there any games we can play here? Perhaps life is too short for this.
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Figure 8.26: Left: The centrifugal potential for a unit timelike pseudosphere of one sheet
which has an stable equilibrium at the equator. Spacelike geodesics have negative energy in
this sign-reversed potential well picture, while timelike geodesics have positive energy and the
null geodesics have zero energy.
Right: The corresponding potential for the unit hyperboloid of one sheet in Euclidean space
with the same parametrization. Now the equatorial circle is an unstable equilibrium at E = 1/2,
and those with less energy do not cross the equatorial circle, while those which have higher
energy cross into negative χ values. A single pair of incoming or outgoing geodesics correspond
the the energy E = 1/2 which wrap an infinite number of times around the hyperboloid.
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�

Exercise 8.7.10.
geodesics on the unit hyperboloid of one sheet

We can compare the previous case with the geodesics on the unit hyperboloid of one sheet
in Euclidean space: x2 + y2− z2 = ρ2− z2 = 1. It has the same parametrization but we instead
use the Euclidean inner product. Call the circle z = 0 the throat of the hyperboloid, which is
a geodesic.

a) Using the same surface parmetrization as above but renaming t to z, evaluate the induced
metric (again using θ for φ)

ds2 = cosh(2χ) dχ2 + cosh2 χdθ2 .

The energy equation now takes the form

cosh(2χ)

2

(
dχ

dλ

)2

+
cosh2 χ

2

(
dφ

dλ

)2

= E ,

with centrifugal potential

Ueff =
`2

2 cosh2 χ
.

The change of gχχ from 1 to cosh(2χ) = cosh2 χ + sinh2 χ means that an increment of χ
corresponds to much greater arclength along the meridian hyperbolas in the Euclidean case,
where equal increments in that variable lead to longer and longer segments of the hyperbola in
the Euclidean geometry.

b) The two infinite wrapping geodesics with the equator χ = 0 as their asymptote correspond
to the conserved quantity `/

√
2E = 1 = Rmin = R(χ) sin β, where R(χ) = coshχ. This offers

a test of the numerical accuracy of the computer algebra system solution of the geodesics.
Consider initial data at (x, y, z) = (2, 0,

√
3) with sin β = 1/2 or β = 5π/6 so that this

condition is satisfied. These geodesics will wrap counterclockwise around the vertical axis an
infinite number of times as they approach the throat of the hyperboloid at z = 0. Since the
throat is an unstable equilibrium for the radial motion, there should be a tendency for small
numerical errors to effectively change the value of this conserved quantity, so that the numerical
solution will either pass through the throat or be reflected away from it. Test this out with a
geodesic numerical solver template.

c) Boomerang game. By trial and error find an angle which makes a geodesic from
the initial point (x, y, z) = (2, 0,

√
3) wrap around the symmetry axis multiple times before

returning to the initial point.
d) Investigate the easier instability by starting on the throat with (uv) = (0, 0) and β =

1.0000000001π/2 and 20 digit accuracy. How many loops around the throat occur before the
geodesic is flung out suddenly?
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�

Exercise 8.7.11.
parabola of revolution geodesics

While we are examining conics of revolution, we might as well consider parabolas of revo-
lution, which come in two varieties depending on whether we rotate the parabola around its
symmetry axis or around an axis perpendicular to its symmetry axis

〈x, y, z〉 = 〈v cosu, v sinu, v2〉 , (circular paraboloid)

〈x, y, z〉 = 〈v2 cosu, v2 sinu, v〉 . (wormhole)

The latter surface pops up as the intrinsic geometry of the equatorial plane of a nonrotating
black hole and will be discussed in a subsequent section.

Investigate the geodesics on a circular paraboloid. Can one loop multiple times around the
symmetry axis?

�

Exercise 8.7.12.
geodesics on ellipse of revolution

Finally consider an ellipse of revolution, or circular ellipsoid parametrized in Cartesian
coordinates by

〈x, y, z〉 = 〈a sin v cosu, a sin v sinu, b cos v〉 ,
or in cylindrical coordinates by

ρ = a cos v , φ = u .

Investigate its geodesics. Is there anything interesting you can say about or do with them?
Are their special obvious solutions of these geodesic equations determined by reflection sym-
metry?

Start by deriving its metric

ds2 = a2 cos2 v du2 + (a2 + (b2 − a2) cos2 v)dv2 .

�
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8.8 The torus

The mathematical torus is the surface that we are all familiar with from eating doughnuts,
except in the mathematical context we probably don’t want to be reminded of dough, so the
alternative spelling donut might be more appropriate. This issue is a moot point if we simply
call it a torus.

The torus is a surface of revolution not typically discussed in multivariable calculus, so it
makes a good surface to examine after planes, cones, spheres and cylinders. Pseudospheres
are definitely not mentioned! Tori also have a hole in them, which makes them interesting for
other reasons, and their family is described by two independent parameters so that one can
actually change the shape, not possible with spheres or cylinders, although in the latter case if
one considers a closed finite cylinder (including its circular disk end caps) with a given height,
one can change the shape. Furthermore, the tori exhibit both positive and negative curvature
as we will see later.

Like spheres and cylinders on which the orthogonal spherical and cylindrical coordinates
are built, tori can also be realized as coordinate surfaces in R3 as the foundation of toroidal
coordinates, which are obtained using bi-polar coordinates (ξ, φ) in the ρ-z coordinate plane of
cylindrical coordinates

x = (a+ b cosχ) cosφ =
c sinh ζ0

cosh ζ0 − cos ξ
cosφ ,

y = (a+ b cosχ) sinφ =
c sinh ζ0

cosh ζ0 − cos ξ
sinφ ,

z = b sinχ =
c sin ξ

cosh ζ0 − cos ξ
.

or directly in terms of cylindrical coordinates,

ρ = a+ b cosχ =
c sinh ζ0

cosh ζ0 − cos ξ
,

z = b sinχ =
c sin ξ

cosh ζ0 − cos ξ
.

The two parameters (a, b) of the standard parametrization of the torus and (c, ζ0) of the alter-
native toroidal coordinate parametrization change the size and shape of the torus. The variable
φ measures the angle by which the circular cross-section is revolved about the symmetry axis,
while the extra variable χ or ξ describes those circular cross-sections. Clearly the above un-
friendly expressions in bi-polar coordinates suggest that we analyze the torus directly through
its induced metric without reference to an adapted coordinate system in which it is a coordinate
surface.

The standard surface parametrization follows from the obvious construction of a torus. See
Fig. 8.27. One takes a circle of radius b > 0 in the ρ-z plane (in cylindrical coordinates, for any
angle φ) centered at the point a on the ρ-axis and rotates it around the z-axis. For a > b one has
a smooth torus with a hole in the middle. In the case a = b, the donut hole pinches to a point.
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If instead 0 < a < b, one has a “conical singularity” on the z-axis pointing towards the origin
where a limiting tangent cone approximates the surface at those points, which smooths out at
a = 0 (by opening up into a tangent plane) when a sphere of radius b is obtained by rotating a
half-circle about the vertical axis. Instead for −b < a < 0 one has conical singularities pointing
away from the origin. Finally when a = −b the circle disappears from the ρ-z half-plane so the
game is over.

φ is the usual azimuthal angular coordinate common to cylindrical and spherical coordinates
with range 0 ≤ φ < 2π or alternatively −π < φ ≤ π, measuring the angle about the vertical
axis. χ is an angular coordinate parametrizing the vertical circle being revolved around the
vertical axis in the usual way in the counterclockwise direction from the positive cylindrical
coordinate ρ direction, with the same range as φ.

The torus has an inner equator (χ = π) of radius a − b and an outer equator (χ = 0) of
radius a + b and a Northern Circle (χ = π/2) and a Southern Circle (χ = −π/2) instead of
North and South Poles like the sphere, both of radius b. The vertical circles of radius a in the
ρ-z plane being revolved are parametrized by χ for fixed φ. The arclength coordinate r = bχ
measures arclength around these circles starting from the outer equator. Each point on these
circles undergoes a circle of revolution about the vertical axis of radius

ρ = a+ b cosχ = a+ b cos(r/b) = a+ b sin(π/2− r/b) = R(r)

The Northern and Southern Circles divide the torus into an outer half −π/2 ≤ χ ≤ π/2 or
equivalently cosχ > 0, where the coordinate lines are concave inward with respect to the interior
of the torus, and an inner half cosχ < 0, where the φ coordinate lines are concave outward
with respect to the interior of the torus, while the χ coordinate remains concave inward.

The only natural candidate for a unit torus analogous to the unit sphere corresponds to the
parameter values (a, b) = (2, 1) in which a unit circle is revolved around the axis with a unit
radius for the inner equator. For the values (a, b) = (1, 1), the torus is pinched so that the hole
has collapsed to a point, not a typical torus configuration.

Exercise 8.8.1.
toroidal coordinates

The hyperbolic functions are needed to make an orthogonal change of coordinates in the
ρ-z half-plane based on two mutually orthogonal families of non-concentric circles which cover
that half-plane (2-dimensional bipolar coordinates)

ρ =
c sinh ζ

cosh ζ − cos ξ
, z =

c sin ξ

cosh ζ − cos ξ
.

Solve the expression for z/ρ for sin ξ and solve the first relation for cos ξ and use the identity
cos2 ξ+ sin2 ξ = 1 to eliminate ξ and obtain the equation of a family of circles parametrized by
ζ. Clear denominators to obtain the quadratic equation of these circles and then complete the
square to find their center aζ and radius bζ , obtaining the result (aζ , bζ) = (c coth ζ, c csch ζ) =
(c/ sinh ζ)(cosh ζ, 1).

Then repeat the process to instead eliminate ζ by solving for cosh ζ and sinh ζ and using
the identity cosh2 ζ − sinh2 ζ = 1. Clear denominators and complete the square to identify the
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z-intercept and z-value of the center of the circle on the z-axis represented by the resulting
family of circles parametrized by ξ.

Google toroidal coordinates to see what the orthogonal coordinate grid looks like. Fortu-
nately it is not necessary to have a new coordinate system on all of space just to understand
the geometry of a single torus—it is enough to consider the parametrization of the surface by
the two variables χ and φ to get its metric. This has already been done for general surfaces
of revolution, so we need only specialize that discussion for the new azimuthal metric scale
function.

�

Exercise 8.8.2.
toroidal coordinates for the torus

As a corollary of the previous problem, for the case ζ = ζ0 which describes a circle, express
the parameters (a, b) for the torus in terms of the parameters (c, ζ0).

�

Exercise 8.8.3.
toroidal coordinate metric

a) Replacing ζ0 by ζ in the toroidal coordinate parametrization of the torus, derive the
Euclidean metric expressed in these coordinates. Google toroidal coordinates to check your
result. A quick route to this result uses a computer algebra system to evaluate the Jacobian
matrix J = (∂xi/∂xj

′
) of the coordinate transformation and then evaluating JTJ .

b) Repeat for the less well known right handed local orthognal coordinate system (β, u, v)
involving concentric circles centered on a point r = a > 0 on the r-axis in the r-z plane

(x, y, z) = ((a+ β cos v) cosu, (a+ β cos v) sinu, β sin ξ) .

This system has no problem for 0 < β < a, but begins to have self-intersections starting at
β = a as the ring tori turn into spindle tori. One finds this coordinate system associated with
the Tokamac magnetic confinement of controlled fusion, but it is not one coordinate systems
on the famous list of separable coordinate systems.

�

Exercise 8.8.4.
surface of revolution connection

a) Following the general approach for a surface of revolution, evaluate the differentials of
the Cartesian coordinates given in the standard parametrization and substitute them into the
Euclidean metric, expanding the result and collecting terms to derive the metric on the torus

g = b2dχ⊗ dχ︸ ︷︷ ︸
(b dχ)⊗ (b dχ)

+ (a+ b cosχ)2︸ ︷︷ ︸
R(r)2

dφ⊗ dφ

= dr ⊗ dr +R(r)2 dφ⊗ dφ ,
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where we have used the simple constant scaling property b dχ = d(bχ) = dr so that b2dχ⊗dχ =
(b dχ)⊗(b dχ) = dr⊗dr. Note that this result for the metric should be obvious since r measures
arclength, explaining the component grr = 1, while ρ = R(r) is the radius of the φ-coordinate
circle needed to convert the angle φ into an arclength: dsφ = R(r) dφ, and geometrically the
surface of revolution construction makes it clear that the two coordinates are orthogonal.

b) Evaluate the formulas developed for a general surface of revolution for the nonzero values
of the connection components

Γrφφ = −1

2
(R(r)2),r = −R(r)R′(r) = (a+ b cosχ) sinχ ,

Γφrφ = Γφφr =
R′(r)

R(r)
= − sinχ

a+ b cosχ
.

c) Continuing to apply the surface of revolution formulas, evaluate the connection 1-forms
in the related orthonormal frame er̂ = er, eφ̂ = R(r)−1eφ using the product rule while differen-
tiating the rescaled azimuthal frame vector field and combine them into the connection 1-form
matrix ω̂ = (ωî ĵ), which should be antisymmetric. For example, more concretely one has for
one of these component calculations

∇er̂ eφ̂ = ∇er
(eφ
R

)
= −R

′

R2
eφ +

1

R
∇er eφ︸ ︷︷ ︸
Γφrφ eφ

=

(
−R

′

R
+ Γφrφ

)
︸ ︷︷ ︸

= 0 = Γφ̂r̂φ̂

eφ
R︸︷︷︸
eφ̂

= 0 ,

which shows that the connection 1-form ω̂φ̂φ̂ = Γφ̂r̂φ̂ω
φ̂ is zero as it should be. Similarly you

can evaluate ∇eφ̂ er̂ and ∇eφ̂ eφ̂ and show that the corresponding connection 1-forms they

determine are related by a minus sign as they should be. Note that we already know that
∇er̂ er̂ = ∇er er = 0.

You should find the result

ω̂ =

(
0 1
−1 0

)
sinχdφ .

Remark

This can be directly compared with the connection 1-form matrix on the 2-sphere, and would
be identical if one measured the angle χ down from the Northern circle: cos(π/2− χ) = sinχ,
at least for the interval −π/2 ≤ χ ≤ π/2 on the outer half of the torus, while switching sign on
the inner half. First notice that when χ = 0, π on the outer or inner equator, this matrix is zero,
indicating that as you move away from a point on an equator, the orthonormal frame does not
rotate to first order compared to parallel transport. When χ = ±π/2, one has the maximum
value of the rate of change of the rotation. Compare this with the rotation of the cylindrical
coordinate orthonormal frame which describes the rotation of the outward horizontal radial
direction and the counterclockwise azimuthal direction as one increases φ. Here the azimuthal
angular coordinate is identical to the cylindrical coordinate, while the increasing radial direction
along the Southern rim of the torus at χ = −π/2 is horizontal and outward so the result is
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exactly the same as in cylindrical coordinates. However, at the Northern Circle at χ = π/2, the
radial direction is inward (see the figure keeping r = bχ in mind) and the sign change at the
Northern Circle of this matrix reflects the flip in the radial direction compared to the Southern
Circle and the usual cylindrical coordinate situation.

�

Exercise 8.8.5.
geodesics on the unit torus

Now specialize to the unit torus (a, b) = (2, 1) shown in Fig. 8.27. Use the analysis of
Exercise 8.4.1 for a surface of revolution to study the geodesics with initial data at r = 0, φ = 0.
To adopt the notation of that section which included the flat plane in polar coordinates, one
must let φ → θ. In other words, just write out the energy equation, the equation of motion
for r, and the first order equation for θ = φ representing conservation of angular momentum.
Verify that the case ` = 0, which corresponds to constant φ, i.e., a radial (r) coordinate
circle, is a geodesic, which we can refer to as a “radial geodesic.” For convenience, for all the
“nonradial” geodesics (nonconstant φ), we can set the specific angular momentum equal to 1
so that different initial angles correspond to different specific energies. What is the potential
U(r) then explicitly? What is its value at the initial point (r, φ) = (0, 0) on the outer equator?
What is its value on the inner equator?

e) Using the relations of the remark following Exercise 8.4.1 with unit specific angular
momentum ` = 1, show that the geodesic with energy E = 1/2 which rises over the Northern
Circle and just grazes the inner equator before rising up again corresponds to the initial angle
β = arcsin(1/3) = arctan(1/

√
8) = arccos(

√
8/3) ≈ 19.74◦. What energy corresponds to the

seven loop geodesic shown in figure 8.28?
f) Investigate the periodic orbits numerically by trial and error. Find the first few angles

admitting 1 or more loops, or at least one such periodic orbit with a low number of loops
through hole, returning to the starting point.

g) Think of something fun to study with this problem if you have time.
�

A fun game is to use a numerical geodesic plotter to find by trial and error the special initial
angles β starting at the outer equator that lead to closed geodesics on a particular torus like
the unit torus. Because of the obvious reflection symmetries ξ → −ξ, φ→ −φ, it is enough to
consider initial angles 0 ≤ β ≤ π/2 to classify these orbits. To get an idea what we are facing,
it pays to first look at the corresponding problem for the so-called flat torus.
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Figure 8.27: The torus is a surface of revolution obtained by rotating about the z-axis a circle
in the ρ-z plane with center off the axis. Illustrated here is the case (a, b) = (2, 1) of a unit
circle which is revolved around the axis, with an inner equator of unit radius. The outer and
inner equators are shown together with the “Greenwich line of longitude” or “Prime Meridian”
φ = 0. The Northern and Southern Circles correspond to the North and South Poles on the
sphere.
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Figure 8.28: The unit specific angular momentum potential (i.e., for ` = 1) for “nonradial”
torus geodesics starting on the outer equator and an experimentally found periodic orbit with
7 loops, corresponding to an initial angle of β ≈ 0.119. If the energy is less than 1/2, the
geodesics do not make it through the hole. Of course the potential is periodic as well, and we
have only shown one period here: −π ≤ r ≤ π. For energy larger than 1/2, the angle φ is
unbounded.
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Figure 8.29: The flat torus represents a pair of points on two unit circles, mapped onto the
flat Euclidean plane by assigning any pair of corresponding angles (measured in units of the
circumference 2π (“revolutions”). Angles outside the interval [0, 2π) in radians, or [0, 1) in
revolutions lead to points outside the fundamental unit square [0, 1) × [0, 1) and can be re-
identified with a point in that square by adding to each angle an appropriate integer multiple
of the circumference (2π radians = 1 revolution).

Example 8.8.1. As illustrated in Fig. 8.29, consider the cross-product set S1 × S1 consisting
of all pairs of angles (χ, φ) with each angle identified modulo multiples of 2π, describing a pair
of points, one on each of two unit circles. By measuring angles in units of the circumference
2π, we get a unique correspondence between all points in the interior of the fundamental unit
square plus two edges: 0 ≤ χ < 1, 0 ≤ φ < 1. Thus the unit Cartesian coordinate grid divides
up the plane into an infinite number of repeated unit squares which are identified with each
other in this way. The straight lines on this plane then project onto a sequence of line segments
crossing the unit square all with the same slope, obtained by resetting each angle appropriately
as it reaches the edge of the fundamental unit square. For example, if we consider a straight
line through the origin with positive slope, when that slope is irrational, it will never return
to the origin, while if it is rational p/q, after a length L = (p2 + q2)1/2, it will have made p
crossings of the unit square in the vertical direction and q crossings in the horizontal direction.
Figure 8.30 illustrates this for slope 3/2.

Thus the flat geometry of the infinite Euclidean plane is inherited by this flat torus and the
straight lines are its geodesics, some of which are closed, returning to their starting point after
a finite length and then retracing their path, and others which are infinite, never returning
to their starting point. The shortest such closed geodesics have length 1: the horizontal and
vertical lines. If one considers all geodesics emanating from the origin with positive slope,
the closed ones occur in pairs with rational slopes p/q or q/p (corresponding to a reflection
symmetry across the diagonal line with slope 1, in turn representing the interchange of the
two angles) and length L = (p2 + q2)1/2, and hence can be partially ordered by their lengths.
(Can the same squared integer be represented in two different ways as the sum of the square
of a pair of integers L2 = p2 + q2 = r2 + s2 so that more than two such closed geodesics have
the same length? This is a question for number theory.) Slopes p/q in which p and q have
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Figure 8.30: The flat torus is obtained by identifying points in the plane differing by a fixed pair
of numbers in the respective Cartesian coordinates, here chosen to the (1, 1). Relabeling (x, y)
as a pair of angles (χ, φ) measured in units of 2π, any point in the plane can be re-identified
with the corresponding location in the fundamental unit square 0 ≤ χ < 1, 0 ≤ φ < 1. Here
the line segment from the origin (0, 0) to (2, 3) is shown projected in this way into this unit
square, corresponding to the polar angle arctan(3/2) ≈ 56.3◦ measured from the horizontal
axis, or β = arctan(2/3) ≈ 33.7◦ from the vertical.

common factors correspond to retracings of a closed geodesic in which those common factors
are removed and so can be ignored. Fig. 8.31 illustrates this for low values of the periods. Note
that each lattice point representing a closed geodesic corresponds to an initial polar angle β
measured from the vertical axis.

�

Now return to the unit torus and its geodesic problem, examining the initial values of
geodesics starting at (χ = r, φ) = (0, 0), making an angle β with the positive vertical axis as
seen from within R3. Because of the reflection symmetries (up-down, sideways), we can assume
0 ≤ β ≤ π/2. The geodesics are divided into 6 disjoint sets which can be categorized. Excluding
the r-coordinate circle geodesic with ` = 0, we can set ` = 1 and classify the remaining 5 sets
by their energy: the outer equator r = 0 with energy E = 1/18, those geodesics which do not
reach the inner equator with energy 1/18 < E < 1/2, the geodesic asymptotic to the inner
equator with energy E = 1/2, the inner equator itself r = π with energy E = 1/2 which does
not correspond to any initial point on the outer equator, and finally those geodesics with energy
E > 1/2 which cross the inner equator and hence “pass through the donut hole” an infinite
number of times if they are not closed and at some point begin retracing their own path.
Similarly the geodesics which do not reach the inner equator with energy 1/18 < E < 1/2 circle
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Figure 8.31: The integer pair lattice points (p, q) in the plane correspond to closed geodesics
of the flat torus, and can be partially ordered by their length (p2 + q2)1/2, shared by both
pairs (p, q) and (q, p). Here we show only the cases (p, q) with p ≥ q (and no common factors)
up to a radius 5 and the corresponding geodesic line segments before re-identification to the
fundamental unit square. The lengths and lattice points of the geodesic segments shown are:√

2 : (1, 1),
√

5 : (2, 1),
√

10 : (3, 1),
√

13 : (3, 2),
√

17 : (4, 1), which defines an interesting
infinite sequence 2, 5, 10, 13, 17, 25, 26, 29, 34, 39, . . . (more number theory).

the torus an infinite number of times if they are not closed.
The closed geodesics can be described by the pair of wave numbers associated with the

separate periods of the individual angular variables: let non-negative integer pairs (m,n) be
the number of oscillations in the vertical and horizontal directions respectively during one
complete period of the geodesic. For example, (1, 0) describes the r-circle geodesics and (0, 1)
the outer equator geodesic. However, there are two kinds of closed geodesics corresponding to
(1, 1): those which pass through the hole and those which do not. The same is true of the
remaining positive integer pairs. This roughly speaking doubles the number of closed geodesics
relative to the same initial value problem for the flat torus. For each pair (p, q) with fixed p,
the closed geodesics with energies approaching 1/2 from above or below can have q values going
off to infinity by getting closer and closer to that transitional energy value.
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8.9 Geodesics as extremal curves: a peek at the calculus

of variations

We have defined geodesics as autoparallel curves. If you imagine a very small toy car moving
on a surface with its steering wheel locked so it can only go straight ahead, it would follow
a geodesic on that surface. However, the other way of characterizing geodesics is that they
are locally the shortest path between two points in a space with a positive-definite metric, or
in general, the extremal path in the more general case of an indefinite metric like a Lorentz
metric, where the paths actually maximize the arclength.

Optimization problems, or max-min problems for short, are touched upon in multivari-
able calculus at least for two independent variables. For example, suppose ~r = ~r(u, v) is a
parametrized surface in R3, an example of which would be simply the graph of a function of
two variables: z = f(x, y), so that 〈x, y, z〉 = 〈x, y, f(x, y)〉 = 〈u, v, f(u, v)〉, for those who never
make it to parametrized surfaces. Given some fixed point P0(x0, y0, z0) not on that surface, one
can ask what point P (x, y, z) on the surface is closest to the given point? We try to extremize the
distance function D(u, v) ≥ 0 defined by D(u, v)2 = (x0−x(u, v))2+(y−y(u, v))2+(z−z(u, v))2.
To solve this problem one looks for the critical points of the function D, but since ∂h(D)/∂u =
h′(D)∂D/∂u, etc., the set of critical points of any function of the distance contain the critical
points of D itself, so usually one extremizes the square of the distance to simplify the calcu-
lation. Once the critical points are found, one can use the second derivative test to test them
for a minimum if there is more than one critical point. At a critical point where the partial
derivatives vanish, the differential of the distance function is zero

dD(x0, y0) =
∂D(x0, y0)

∂u
du+

∂D(x0, y0)

∂v
dv = 0 .

The differential represents the first order change in the function, so critical points are points
where this first order change vanishes.

Now consider two points P1 and P2 on a sphere and ask what differentiable curve c(λ)
between the two given points minimizes the arclength function? The space of unknowns is now
an infinite-dimensional space of all differentiable parametrized curves from P1 to P2 and the
“objective function” (function to be extremized) is a “functional” (function of functions) on
this space, namely the arclength of the curve c

A1(c) =

∫ λ2

λ1

ds =

∫ λ2

λ1

ds

dλ
dλ =

∫ λ2

λ1

|c′(λ)| dλ .

This arclength is clearly independent of the parametrization, symbolically represented by the
cancelling of the differential dλ in the expression. Alternatively we can extremize the integral
of the square of the length of the tangent vector instead of the length itself, but this functional
depends on the choice of parametrization

A2(c) =

∫ λ2

λ1

1

2
|c′(λ)|2 dλ =

∫ λ2

λ1

1

2

(
ds

dλ

)2

dλ =

∫ λ2

λ1

1

2

(
ds

dλ

)
ds ,
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and the factor of a half is included so when we differentiate the square using the power rule, the
twos cancel. This parametrization dependence is symbolized here by the additional factor of
ds/dλ in the integrand with respect to the differential of arclength, a factor which depends on
the parametrization. Physicists call these functionals “action integrals,” for reasons we need not
go into here. Once we have a way to determine the “critical points” of these functionals, which
are curves between the two fixed points, we will see that the same critical points result from
each such choice. However, notice that at least in the first case where the arclength function
is independent of changes of parametrization, for those directions in the space of parametrized
curves which represent the same path between the two given points, the action function does
not change in value, so there is additional freedom in changing the parametrized curve that
does not correspond to a physical change in the path.

The integrand of such an action integral is called a “Lagrangian”

A(c) =

∫ λ2

λ1

L(c(λ, c′(λ)) dλ .

This Lagrangian function is a function of both the position on the curve (explicitly through
the metric, if its components in the coordinate system are not constants, but also implicitly
since each tangent vector depends on its location) and of the tangent vector along the curve,
or in physics language, it is a function on the space of position and velocity. Mathematically
speaking, it is a function of the tangent vectors along the curve, i.e., on the space of all tangent
spaces to the space in which the curves are living. This is called the tangent bundle, or “velocity
phase space” in the physics language. However, a vocabulary lesson will not help us with our
immediate problem, so let’s get back to the details. In the sloppy notation when expressed in
terms of a fixed coordinate system xi on the space in question, like the sphere, for example,
the two Lagrangian functions are respectively

L1(c, c′) =

(
gij
dxi

dλ

dxj

dλ

)1/2

, L2(c, c′) =
1

2
gij
dxi

dλ

dxj

dλ
.

To find the critical points of the action, we find its first order variation by considering
variations of the curve c whose endpoints are fixed, so that the variation at the endpoints must
vanish. To avoid confusion with the ordinary differentials like dxi for the independent variables
of an ordinary max-min problem, we use a delta δxi(λ) for the variation of the coordinate
functions along the curve, but if we let (λ1, λ2) be the fixed values of the parameters at the
fixed endpoints of the curve, then we must have δxi(λ1) = 0 = δxi(λ2). Once we figure out how
to calculate the first order variation of the action, we must require that the coefficient of each
independent variation δxi(λ) for each value of λ in the interval λ1 < λ < λ2, just as we required
the coefficient of each independent differential to vanish in the ordinary max-min problem.

To make this more concrete, one can consider a one-parameter family of curves cσ, i.e.,
cσ(λ) = c(λ, σ), or in terms of the coordinate representation: xi(λ, σ) so that the velocity
(tangent vector) is

dxi

dλ
(λ, σ) =

∂xi(λ, σ)

∂λ
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If we have a curve in this family which extremizes the action, it will also extremize the action on
this family alone, which makes this into a finite-dimensional problem on more familiar ground.
The action becomes a function of a single variable so its derivative with respect to σ must
vanish, or equivalently, its differential with respect to σ. Letting δσ denote the differential in
this context, then since partial derivatives commute we have for the variation of the velocity

δxi =
∂xi

∂σ
δσ , δ

(
dxi

dλ

)
=

∂

∂σ

(
∂xi

∂λ

)
δσ =

∂

∂λ

(
∂xi

∂σ

)
δσ =

∂

∂λ
δxi =

d

dλ
δxi ,

where in the last equality we return to the ordinary derivative notation thinking of σ as a
parameter in the functions rather than another independent variable. Now that we understand
the variation of our fundamental variables, we can consider the variation of a function of those
variables like the Lagrangian, just using the chain rule

δL =
∂L

∂xi
δxi +

∂L

∂(dxi/dλ)
δ

(
dxi

dλ

)
chain rule

=
∂L

∂xi
δxi +

∂L

∂(dxi/dλ)

d

dλ
δxi variation of velocity

=
∂L

∂xi
δxi +

d

dλ

(
∂L

∂(dxi/dλ)
δxi
)
− d

dλ

(
∂L

∂(dxi/dλ)

)
δxi integration by parts

=

(
∂L

∂xi
− d

dλ

(
∂L

∂(dxi/dλ)

))
δxi +

d

dλ

(
∂L

∂(dxi/dλ)
δxi
)
. regroup

The integration by parts refers to using the product derivative rule under the integral sign.
Since the limits of integration are not varied, the variation of the action integral is the integral
of the variation of the Lagrangian

δAc =

∫ λ2

λ1

δL dλ =

∫ λ2

λ1

[(
∂L

∂xi
− d

dλ

(
∂L

∂(dxi/dλ)

))
δxi +

d

dλ

(
∂L

∂(dxi/dλ)
δxi
)]

dλ

=

∫ λ2

λ1

δL dλ =

∫ λ2

λ1

(
∂L

∂xi
− d

dλ

(
∂L

∂(dxi/dλ)

))
δxi dλ+

∂L

∂(dxi/dλ)
δxi
∣∣∣∣λ2
λ1︸ ︷︷ ︸

= 0

.

The integral of the derivative term evaluates to the endpoints of the curve where the variation
is zero (it is crucial that we insist on δxi(λ1) = 0 = δxi(λ2)), so that term which results from
integration by parts vanishes. This is the only reason for still teaching integration by parts in a
beginning calculus course, since we clearly don’t need to teach integration techniques any more
at that level apart from changing the variable of integration. This is not a very good reason to
continue doing so.

Finally the conclusion. If the variation of this integral is to be zero no matter what the
variation δxi(λ) is at each λ, apart from the endpoints where it must vanish, the coefficient of
this variation must be zero. These are called the Lagrangian equations for the problem

∂L

∂xi
− d

dλ

(
∂L

∂(dxi/dλ)

)
= 0 .
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By introducing the so called canonical momentum pi = ∂L/∂xi, this can be written

dpi
dλ

=
∂L

∂xi
.

If we think of the curves in this problem as the paths of a point particle moving on the space
in question, then we can enlarge our problem to include a potential force acting on the point
particle by adding a term to the second action depending only on position and not velocity

L =
1

2
gij
dxi

dλ

dxj

dλ
− U

so that the canonical momentum is unchanged

pi =
∂L

∂(dxi/dλ)
=

∂

∂(dxi/dλ)

(
1

2
gij
dxi

dλ

dxj

dλ

)
= gij

dxj

dλ

and just equals the covariant components of the tangent vector / velocity. Then we get

∂L

∂xi
= gij,k

dxk

dλ

dxj

dλ
− ∂U
∂xi︸ ︷︷ ︸

= −U,i = Fi

,

using the chain rule df/dλ = f,kdx
k/dλ, so the Lagrangian equations are

dpi
dλ
− ∂L

∂xi
=
dpi
dλ
− gij,k

dxk

dλ

dxj

dλ
−Fi ≡

Dpi
dλ
−Fi = 0 ,

where the final step just recognizes the covariant form of the covariant derivative geodesic
condition as discussed in Exercise 8.3.1. This just says that the covariant derivative of the
canonical (specific) momentum equals the covariant component of the (specific) applied force.
Note that when the Lagrangian is independent of a particular coordinate xk, namely ∂L/∂xk =
0, then the corresponding component of the canonical momentum is constant: dpk/dλ = 0.

This simple observation is at the heart of the more general Noether’s theorem, a fundamen-
tal result for both theoretical physics and the calculus of variations due to Emmy Noether, a
woman who taught at Bryn Mawr College after being shut out of a position in the old boy
European academic network. When the coordinate is an angular coordinate like the azimuthal
coordinate in polar, cylindrical or spherical coordinates, the corresponding canonical momen-
tum component is a component of angular momentum, which is a constant of the motion when
the Lagrangian does not depend explicitly on that coordinate. This explains the existence of
the constant angular momentum ` in our 2-dimensional problem for the geodesics of surfaces
of revolution. We have already interpreted this constant in terms of the inner product of the
tangent vector to the geodesic with a Killing vector field, a quantity which is constant along
geodesics.
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Figure 8.32: The simple quadratic harmonic oscillator potential governs harmonic motion.

Exercise 8.9.1.
Lagrangian equations for geodesics

a) For a metric on a surface which admits an orthogonal coordinate system in which the
metric only depends on one variable, like a surface of revolution or a screw-symmetric surface,

L =
Z(r)2

2

(
dr

dλ

)2

+
R(r)2

2

(
dθ

dλ

)2

,

derive the two Lagrangian equations of motion.
b) Show that the equation for θ gives the conservation of the momentum conjugate to that

variable.
�

Exercise 8.9.2.
simple harmonic oscillator

a) One of the simplest forces for 1-dimensional motion is the linear Hook’s law force exhibited
by a spring in its linear regime

F = −kx = −dU
dx

, U =
1

2
kx2
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acting on a mass m, for which the Lagrangian is

L = T − U =
1

2
m

(
dx

dt

)2

+
1

2
kx2 .

This is the simplest potential well shape, just the graph of a parabola at the origin, shown in
Fig. 8.32.

b) Show that the energy function E = T + U is a constant for solutions of the equations of
motion, and the turning points x± of the motion for any positive energy E can be expressed
in terms of that energy by solving the quadratic energy constraint with zero dx/dt for its two
roots.

c) Show that the general solution is an arbitrary linear combination of sines and cosines of
frequency ω =

√
k/m, namely

x = c1 cosωt+ c2 sinωt = A cos(ωt− δ) ,

where
A = (c2

1 + c2
2)1/2 , tan δ =

c2

c1

are called the amplitude and phase shift of the oscillation. Evaluate the energy for these
solutions in terms of these quantities. How is the amplitude related to the turning points?

d) When the variable x = ` θ in the Lgrangian L is interpreted as the small displacement
by an angle θ from vertical equilibrium of a pendulum of mass m and length ` hanging in a
constant gravitational field, the restoring force of gravity has the form

F = −mgx = −mg` θ = −mg` d
dθ

(
1

2
θ2

)
,

this Lagrangian describes a linear pendulum. We need only further set k = mg/L get the
corresponding Lagrangian

L =
1

2
m`2

(
dθ

dt

)2

+
1

2
mg` θ2 .

What is the frequency ω and the period T = 2π/ω of this motion in terms of g and `?
�

Exercise 8.9.3.
principle of least action for a charged particle

Since we know that the Minkowski spacetime interval is maximized along a straight line, and
the Lagrangian principle is often known as the principle of least action (Hamilton’s principle), by
reversing the sign of the arclength we can make it a minimum action, though negative. Consider
a point particle of mass m and charge q moving along an affinely parametrized timelike world
line xi(λ) in an electromagnetic field with inertial components Fij = 2A[j,i] = Aj,i − Ai,j. The
1-form A = Ai dx

i is vector 4-potential for the electromagnetic field introduced in Exercise
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6.8.7, and is needed to add an interaction term to the free particle Lagrangian to take into
account the Lorentz force law exerted on it by the electromagnetic field. This interaction can
be described by the following obviously parametrization independent action

I = −
∫ λ2

λ1

mdτ +

∫ λ2

λ1

qAi dx
i ,

since the second term is a “line integral” which does not depend on the parametrization. Here
by reversing the generic line element differential we get a real differential of proper time when
we take the square root

dτ 2 = −ds2 = −ηijdxidxj ≥ 0→ dτ = (−ηijdxidxj)1/2 =

(
−ηij

dxi

dλ

dxj

dλ

)1/2

dλ ,

where (ηij = diag(−1, 1, 1, 1) is the Minkowski metric component matrix. Since Ai dx
i =

Ai (dx
i/dλ) dλ, this gives us the Lagrangian

L = −m
(
−ηij

dxi

dλ

dxj

dλ

)1/2

+ qAi
dxi

dλ
,

a) In order to evaluate the Lagrange derivative of the first term note that the canonical
momentum is

pk =
∂L

∂(dxk/dλ)
=

m

dτ/dλ
ηkj

dxj

dλ
+ qAk = mηkj

dxj

dτ
+ qAk .

b) At the next step we will need to take the derivative of the vector potential along the
curve, which is a chain rule application

dAi
dλ

= Ai,j
dxj

dλ
.

Use this to combine the two terms involving the derivative of the vector 4-potential into the
electromagnetic 2-form to obtain

d

dλ

(
∂L

∂(dxk/dλ)

)
− ∂L

∂xk
= m

d

dλ

(
1

dτ/dλ

dxi
dλ

)
− qFij

dxj

dλ
= 0 .

c) Since this analysis is independent of the parametrization, we can choose either λ = τ or
λ = t. In the former case dxi/dτ = ui is the unit 4-velocity and this becomes the Lorentz force
law

m
dui

dτ
= qF i

ju
j .

In the latter case show instead that

dxi

dλ
=
dxi

dt
=

(
dt

dτ

)−1
dxi

dτ
= γ−1dx

i

dτ
,
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which rescales the proper time derivative by the gamma factor

γ =
dt

dτ
=

(
−ηij

dxi

dt

dxj

dt

)−1/2

= (1− δijvivj)−1/2

here expressed in terms of the 3-velocity vi = γ−1ui = dxi/dt. The equations of motion are
then

m
d

dt

(
γ
dxi

dt

)
= qF i

j
dxj

dt
= q(Ei + [v ×B]i .

d) Notice that the interaction term in the coordinate time parametrization is

qAi
dxi

dt
= q(−φ+ Aav

a) ,

which reduces to minus the potential energy qφ of the charge in a conservative electric field
when the vector 3-potential vanishes. Consider the quadratic kinetic energy Lagrangian which
is only valid for affinely parametrized curves, keeping the same interaction term but replacing
the previous negative kinetic energy function by half the mass times the self-inner product of
the velocity

L(2) =
1

2
mηij

dxi

dλ

dxj

dλ
+ qAi

dxi

dλ
.

Show that this also produces the correct equations of motion provided that the parameter is
linearly related to the proper time along the world line.

�

Exercise 8.9.4.
spherical pendulum: gravity as geometry

The spherical pendulum generalizes a 1-dimensional pendulum to allow the mass m to move
in two independent directions under the influence of gravity, namely on the surface of a sphere
at a fixed radius r0 from the point at which the pendulum mass is hung.

a) The Lagrangian is the kinetic energy function for motion on a sphere, while the potential
energy is mg times the height above the lowest point on the sphere (the South Pole)

I =

∫
T − U dt =

∫
1

2
mr2

0

((
dθ

dt

)2

+ sin2 θ

(
dφ

dt

)2
)
−mg(1− cos θ) dt

=
mgr0

ω0

∫
1

2

((
dθ

dT

)2

+ sin2 θ

(
dφ

dT

)2
)
− (1− cos θ) dT .

Show that the second expression can be obtained by introducing the dimensionless time T = ω0t,
where ω0 =

√
g/r0 is the frequency of small oscillations about the South Pole, familiar from

high school physics, yielding the recognizable period 2π/ω0 = 2π
√
r0g. By an appropriate

choice of the original time units we can simply set mgr0/ω0 = 1 to make matters simpler, and



520 Chapter 8. Parallel transport and geodesics

Figure 8.33: The spherical pendulum geometry. The height of the mass from the lowest point
on the sphere at the South Pole determines the potential for the restoring gravitational force.
Motion along the meridians describes the ordinary 1-dimensional pendulum. Note that the
polar angle is being measured from the South Pole here, but the expression for the metric on
the sphere remains the same.

an overall constant factor in the Lagrangian does not affect the equations of motion anyway
(though it does affect the definition of the canonical momenta!).

The energy then becomes

E =
1

2

((
dθ

dT

)2

+ sin2 θ

(
dφ

dT

)2
)

+ (1− cos θ) .

When the mass is at rest (zero kinetic energy), the energy is in fact equal to the potential,

E = (1− cos θE) ,

which is the height above the South Pole on the unit sphere. This is the maximum height
to which the mass can rise with this energy. We can also introduce the conserved angular
momentum

` =
∂L

∂(∂φ/∂T )
= sin2 θ

dφ

dT

and re-express it as

E =
1

2

(
dθ

dT

)2

+
`2

2 sin2 θ
+ (1− cos θ) =

1

2

(
dθ

dT

)2

+ Ueff ,

giving an effective potential Ueff for the radial (polar angle) motion along the meridians. Show
that for a given angular momentum, this potential has a minimum at θc determined by

`2

2 sin2 θc

=
sin2 θc

2 cos θc

.
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If in addition dθ/dT = 0, this is a circular orbit, and the energy equation then implies

sin2 θc

2 cos θc

+ (1− cos θc) = (1− cos θE) .

Show that by converting this entirely to µ = cos θc, it becomes a quadratic equation in µ for
which the plus root is relevant(?), determining the critical angle as a function of the energy E
or equivalently of θE . One can then evaluate the angular momentum for that circular orbit.

c) Adding a constant to the Lagrangian also does not affect the equations of motion so add
the energy to it in these units

IE =

∫
1

2

((
dθ

dT

)2

+ sin2 θ

(
dφ

dT

)2
)

+ [E − (1− cos θ)] dT .

Now let’s change the parametrization of the solution curves to make the potential term constant

dλ = [E − (1− cos θ)] dT = (cos θ − cos θE) dT , cos θ > cos θE .

This change is valid for all solutions with this energy except those which are at rest at the
maximum allowed height (corresponding to the extreme value θe of the polar angle) where the
related rate between the time and the new parameter vanishes, making the interval in λ shrink
as that radius is approached by a moving mass. Show that this transforms the new action to

IE =

∫
1

2
(cos θ − cos θE)

((
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
)

+ 1 dλ .

This is a purely kinetic Lagrangian for a new metric on the unit sphere which is “conformally
rescaled”

gE = (cos θ − cos θE)g , cos θ > cos θE .

The equations of motion for the spherical pendulum with energy E are the geodesic equations for
this deformed sphere, which shortens up the circumferential radius R(θ) = sin θ of the parallels
on the sphere by this new factor to become RE(θ) = (cos θ− cos θE) sin θ, squeezing the walls of
the sphere inward until they meet the symmetry axis in the embedded surface which has this
new metric as its induced metric. This conversion of a conservative force motion problem into a
geodesic problem is associated with the key words “Jacobi metric” or “Maupertuis’ principle.”

d) Referring to the discussion of Exercise ??, figure out how to embed the new metric as
a surface in R3. TO DO. The deformed sphere should compress towards the symmetry axis
so that the circular orbit for a given energy is at the place where the new profile curve has
a vertical tangent line. Since constant factors only change the parametrization, one can use
instead the conformal factor (cos θ−cos θE)/(1−cos θE) which equals 1 at θ = 0, so that the new
surface has the same radius of curvature as the original unit sphere for a better comparison.

e) If this proves too difficult, one can try the Jacobi metric technique for the 2-dimensional
rotationally symmetric harmonic oscillator with potential U = 1

2
kr2 to warm up.

in progress...
�
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The boundary value problem for geodesics

The Lagrangian approach shows that the autoparallel condition implies that the arclength of a
geodesic between two fixed points is extremized among all nearby curves. However, there may
be multiple geodesics of different length between these points. For example, on a sphere there
are two directions one can travel along a great circle containing two points, in the short or long
direction. Among all those curves near the long direction, the geodesic will be shortest, but of
course the short direction around the same great circle will be shorter. For antipodal points
there are an infinite number of great circles connecting the two points, all of the same length.
In fact this is an example of focusing of the geodesics by positive curvature. For surfaces which
are not of constant curvature like the sphere, we will see how the intrinsic curvature of a surface
leads to a focusing length for the family of geodesics which emanate from a given initial point.
This is important in modern day astrophysics since the gravitational field acts as a focusing
lens for light rays that can reveal extremely useful information about matter in between the
emitter and receiver. Gravitational lensing is indeed a whole industry these days.

The problem of finding the shortest distance geodesic between two fixed points for a positive-
definite metric is a boundary value problem for the system of differential equations. Such
boundary value problems are rarely discussed, perhaps because they are not so easy to discuss.
The problem is one of aiming to hit a target. If one fires a rifle at a very distant target, one
has to compensate for the falling bullet under the influence of gravity and the drift due to
wind. One can calculate how to compensate for gravity, but without knowing the detailed wind
profile, one has to make some test shots to basically measure the wind effects on the motion
in order to aim with some hope of success. For two points on a surface, one can simply shoot
geodesics at different initial angles from one point, using a binary search trial and error method
to zone in on a geodesic that passes closer and closer to the target point.

The search for closed geodesics on the torus is exactly this problem, as is the boomerang
game for the wormhole-like parabolas of revolution suggested in Exercise 8.7.10. Whenever one
has a surface of revolution with an unstable equilibrium circular geodesic, one can use it as a
sling shot to fling an incoming grazing geodesic off to any desired target point on the same or
opposite sides of that circle. This makes for more interesting target shooting, since one cannot
correlate the initial direction with a guess to head for the target point.
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Figure 8.34: The Euler angles for an active rotation of the standard unit vectors (black) in
their usual orientation looking down from the first octant, first by an angle ψ about the z-axis,
then by a rotation by the polar angle θ about the x-axis, which tilts the circular disk shown,
and then by an azimuthal angle φ about the z-axis again, which rotates that circular disk about
the vertical axis. The new polar axis about which the angle ψ occurs has a direction with polar
coordinates (θ, φ− π/2).

8.10 The rigid body example and SO(3,R)

The problem of a symmetric top is a fun illustration of intertwining the group theoretical
mathematics of the rotation group with Riemannian geometry and dynamics, and is easily
handled by our same approach of an effective potential for 1-dimensional motion after using
the symmetries to reduce the system of differential equations to that case. Recall Exercise 1.7.10
in which we described the orientation of a rigid body like a symmetrical top with one point fixed
on which it spins by an active rotation R = eφk3eθk1eψk3 of the space-fixed axes {ê1, ê2, ê3} to
the time-dependent body fixed axes {ê1′ , ê2′ , ê3′} whose corresponding coordinates are related
by xi

′
= R(θ)−1i

jx
j, xi = R(θ)ijx

j′ and we calculated the components of the angular velocities
of the points fixed in the body in both coordinate systems

Ωa =
ωa

dt
, Ωa′ =

ω̃a

dt
,
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where(
ω1, ω2, ω3

)
= (cosψ θ + sin θ sinψ dφ,− sinψ dθ + sin θ cosψ dφ, dψ + cos θ dφ) ,(

ω̃1, ω̃2, ω̃3
)

= (cosφ dθ + sin θ sinφ dψ, sinφ dθ − sin θ cosφ dψ, dφ+ cos θ dψ)

were defined by
R−1dR = ωaLa , dRR−1 = ω̃aLa .

If we adopt the physics notation of using an overdot for the time derivative instead of the
calculus prime, we get(

Ω1,Ω2,Ω3
)

=
(

cosψ θ̇ + sin θ sinψ φ̇,− sinψ θ̇ + sin θ cosψ φ̇, ψ̇ + cos θ φ̇
)
,(

Ω̃
1
, Ω̃

2
, Ω̃

3
)

=
(

cosφ θ̇ + sin θ sinφ ψ̇, sinφ θ̇ − sin θ cosφ ψ̇, φ̇+ cos θ ψ̇
)
.

In Exercise 1.7.10 followed by Exercise 4.5.7 it was shown that if we left translate the rotation
group by left multiplying its matrix R by a fixed rotation R → R0R corresponding to a fixed
rotation of the space-fixed axes, then notice that R−1dR does not change, so the 1-forms ωa are
invariant under left translation of the group into itself. Similarly the 1-forms ω̃a are invariant
under right translation of the group into itself, corresponding to a fixed rotation of the body-
fixed axes. xi

′ → xi
′

= (R(θ)R0)−1i
jx
j = R−1i

0 jx
j′ . Finally it was shown that the bi-invariant

metric

ds2 =
a2

4
δabω̃

aω̃b =
a2

4
δabω

aωb

corresponds to the metric on a 3-sphere of radius a in R4, investigated in Exercise 4.5.9 and
discussed in Section 6.9.

In Section 2.5 the Cartesian components of the moment of inertia tensor Iab were described
and the kinetic energy function introduced for a rigid body of mass M and volume V .

T =
1

2
IabΩ

aΩb =
1

2
Ia′b′Ω

a′Ωb′ .

The matrix of body-fixed components of the moment of inertia tensor is constant and diagonal
if the body-fixed axes are chosen to be the principal axes of that tensor, in which case the
kinetic energy corresponds to the length of the tangent vector R′(t) to the curve R(t) in the
rotation group with respect to the time-independent right invariant metric

ds2
I =

1

2
Ia′b′ω̃

aω̃b .

The Lagrangian equations for the kinetic energy Lagrangian describes the free motion of a rigid
body about its center of mass, provided the moment of inertia tensor is evaluated about its
center of mass. For a spherical body of mass M and radius a, this was evaluated in Exercise
2.5.3 to be I1′1′ = I2′2′ = I3′3′ = 2Ma2/5 ≡ IM . Thus the motion of this simple body
follows the geodesics of the conformally related bi-invariant metric of the unit 3-sphere. The
conjugate momenta to the body-fixed components of the angular momentum define the body-
fixed components of the angular momentum which differ only by the multiplicative constant
IM , and these are constants by Exercise ??. [EDIT)
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8.11 The screw-symmetric helical tube

Okay, I thought the torus was a lot of fun, but who knew that lurking around the corner
was an even more interesting surface that contains the family of tori as a special case? Some
crazy architect in the UK spent a whole lot of time describing 90 different pasta shapes as
parametrized surfaces in Mathematica and published their results in a neat coffee table book
in 2011: Pasta by Design (by George L. Legendre, not so crazy after all!). As a big pasta fan,
I resisted buying this book until I was looking for a way to give a popular talk in the spring of
2012 using some analogy with autoparallel curves on surfaces to give an intuitive idea of how
general relativity works, as well as tying the mathematical tools of general relativity to their
Italian origins to reflect my life of annual academic commuting to Rome. The cavatappi pasta
jumped out at me since it had some helical geodesics like the world lines of circular orbits in
spacetime, and the rest just fell into place. Of course I got carried away with that surface too,
but will only give a short introduction here. Since this is just a matter of adding one more
parameter to the torus family, everything we did so far generalizes to this surface, although it is
not a closed compact surface like the torus. Furthermore, the screw symmetry which generalizes
the more familiar rotational symmetry is enough different that we can rethink some things we
took for granted in the former case.

Starting from the usual Cartesian coordinates (x, y, z) in Euclidean space where ds2 =
dx2 + dy2 + dz2, a tubular surface built from a helix can be represented by the following
parametrization

x = (a+ b cosχ) cosφ , y = (a+ b cosχ) sinφ , z = c φ+ b sinχ , (8.1)

or equivalently as ρ = a + b cosχ, z = c φ + b sinχ in the usual cylindrical coordinates (ρ, φ, z)
related to the Cartesian ones by x = ρ cosφ, y = ρ cosφ, z = z. It is assumed that a > b > 0,
and for convenience, that c > 0. The “central” helical curve corresponds to setting the radius of
the vertical circular cross-section of the tube to zero: b = 0, where a is the radius of the cylinder
containing that helix, while c is its inclination parameter, with “coiling” angle of inclination
arctan(c/a). Setting c = 0 reduces this surface to a torus.

Fig. 8.35 illustrates the construction and one complete revolution of a helical tubular surface
with its inner and outer equators marked off. The grid shown in the computer rendition of the
surface consists of the constant φ circles which result from the intersection of the torus with
vertical planes through the symmetry axis (the meridians) and the constant χ helices (the
“parallels,” parallel intended in a generalized sense). The Northern (χ = π/2) and Southern
(χ = −π/2) Polar helices correspond to the Northern and Southern Polar circles on the torus
which in turn generalize the North and South Poles on the sphere. The radial arc length
coordinate r = b χ and the corresponding angle χ are measured upwards from the outer equator.

Substituting the differentials of these coordinates into the Euclidean metric ds2 = dx2 +
dy2 + dz2 to evaluate the induced metric on the surface, one finds easily

ds2 =
(
(a+ b cosχ)2 + c2

)
dφ2 + 2c b cosχdφ dχ+ b2dχ2 . (8.2)

This is independent of φ, which means that it is invariant under translations of φ along the fam-
ily of parallels, termed helical symmetry. The vector field ∂/∂φ on the surface which generates
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Figure 8.35: A vertical half-plane cross-sectional circle of the helical tubular surface built
around a helix through the center of this circle whose axis of symmetry is the z-axis. This circle
in the x-z plane is simultaneously rotated around this axis while being translated upwards along
that axis (c > 0), so that the right hand rule wrapping fingers around the helix in the direction
in which it is rising (right figure) puts the thumb up. One can also consider a left-handed helix
with c < 0. Illustrated in the second figure is one turn 0 ≤ u ≤ 2π of the “unit tube” case
(a, b) = (2, 1) of a unit circle which is revolved and translated around and along the z-axis,
with an inner equator always a unit distance from the axis. The inclination angle of the helix
is taken to be that of one version of the smooth cavatappi pasta shape: arctan(4/5) ≈ 21.80◦.
The outer (χ = 0, red) and inner (χ = ±π, green) equators are shown together with the “prime
meridian” (θ = 0, blue).
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these translations is said to be a Killing vector field of this metric. For motion along geodesic
curves within the surface, the component of its affinely parametrized geodesic tangent along the
Killing vector field remains constant, a “contant of the motion,” or a conserved momentum asso-
ciated with this symmetry group. This Killing vector field is just the restriction to the surface of
the Killing vector field of the Euclidean metric ξ = y ∂/∂x−x ∂/∂y+c ∂/∂z = ∂/∂φ+c ∂/∂z ex-
pressed in either Cartesian or cylindrical coordinates, which generates a rotation about a “screw
axis” by an amount which is proportional to a simultaneous translation along the direction of
that axis. In cylindrical coordinates these corkscrew rotations are ρ→ ρ, φ→ φ+ t, z → z+ ct.
Within the surface, these are just translations in φ, so the Killing vector field expressed in the
surface coordinates, namely the intrinsic Killing field, is just χ = ∂/∂φ.

If we introduce the arclength radial coordinate and cylindrical radius function for the helical
center curve

r = bχ , R = a+ b cos(r/b) , (8.3)

the metric can be written in the following form as well as a second form obtained by completing
the square on the differential dφ, for which we give two versions in order to highlight the
conserved momentum combination we shall see emerging for geodesic motion

ds2 =
(
R2 + c2

)
dφ2 + 2c cos(r/b) dφ dr + dr2

= (R2 + c2)

(
dφ+

c cos(r/b)

R2 + c2
dr

)2

+

(
R2 + c2 sin2(r/b)

R2 + c2

)
dr2 (8.4)

=
((R2 + c2)dφ+ c cos(r/b) dr)

2

R2 + c2
+

(
R2 + c2 sin2(r/b)

R2 + c2

)
dr2 .

Completing the square adapts the metric to the orthogonal decomposition of the tangent space
with respect to the intrinsic Killing vector field ξ = ∂/∂φ. Notice that this metric is invariant
under reflections through the origin of the coordinates: (r, φ) → (−r,−φ). This orthogonal
form of the metric allows us to easily read off the metric determinant as the product of the
diagonal metric components in this orthogonal 1-form basis

det(g)1/2 =
√
R2 + c2 sin2(r/b) =

√
(a+ b cos(r/b))2 + c2 sin2(r/b) .

The differential of surface area can be integrated over one revolution of the surface to provide
the surface area of this portion of the surface

S =

∫ ∫
dS =

∫ 2π

0

∫ 2πb

0

det(g)1/2 dr dφ = 2π

∫ 2πb

0

det(g)1/2 dr ,

but the result is an extremely long formula infested with elliptic functions that is of little use
to reproduce.

If (r(λ), φ(λ)) is an affinely parametrized geodesic of this metric on the surface, with tangent

U =
dr

dλ
∂r +

dφ

dλ
∂φ = U r∂r + Uφ∂φ , (8.5)
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then its orthogonal decomposition is

U = U r̂er̂ + U φ̂eφ̂ (8.6)

expressed in terms of its components

U r̂ =

(
R2 + c2 sin2(r/b)

R2 + c2

)1/2
dr

dλ
,

U φ̂ = (R2 + c2)1/2

(
dφ

dλ
+
c cos(r/b)

R2 + c2

dr

dλ

)
(8.7)

with respect to the orthonormal frame

er̂ =

(
R2 + c2 sin2(r/b)

R2 + c2

)−1/2(
∂r +

c cos(r/b)

R2 + c2
∂φ

)
,

eφ̂ = (R2 + c2)−1/2 ∂

∂φ
(8.8)

whose dual frame is

ωr̂ =

(
R2 + c2 sin2(r/b)

R2 + c2

)1/2

dr , ωφ̂ = (R2 + c2)1/2

(
dφ+

c cos(r/b)

R2 + c2
dr

)
. (8.9)

The component of the tangent vector along the Killing vector field is a conserved screw-
angular momentum, i.e., a constant along the geodesic

` =
∂

∂φ
· U =

(
R2 + c2

)(dφ
dλ

)
+ c cos(r/b)

(
dr

dλ

)
=
(
R2 + c2

)1/2
U φ̂ , (8.10)

which is exactly the combination occurring in the last form of the metric adapted to the
orthogonal decomposition with respect to the radial direction along the meridians. In an affine
parametrization, the square of the length of the tangent is also a constant, which we will call
twice the energy (

ds

dλ

)2

=
`2

R2 + c2
+

(
R2 + c2 sin2(r/b)

R2 + c2

) (
dr

dλ

)2

= 2E . (8.11)

The length of the tangent vector in an affine parametrization of a geodesic is a constant along
that geodesic, with E = 1

2
for an arclength parametrization in which this length is 1.

If we interpret this problem as geodesic motion in the surface in the physics language of
motion in space where the affine parameter λ plays the role of the time (and U is then called
the velocity vector and U r, Uφ the velocities), E and ` are called “constants of the motion.”
Since both ` and E are constants of the motion, we obtain a single constraint on the square
of the “radial velocity” dr/dλ, or equivalently the orthonormal component U r̂, which is of the
form

1
2

(
U r̂
)2

+ V = E , (8.12)
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where

V =
`2

R2 + c2
=

`2

(a+ b cos(r/b))2 + c2
(8.13)

acts as an “effective potential” for the radial motion alone. Note that it is an even function
of the radial variable r. Qualitatively, this potential leads to the same kind of radial motion
as for the special case c = 0 of a ring torus thoroughly discussed previously. One can fix the
potential for ` 6= 0 by choosing ` to have a particular value, and then using the freedom of
the affine parametrization to vary the energy E corresponding to energy levels in the graph of
the effective potential to describe the allowed interval of radial motion where E ≥ V . When
E = V , turning points of the motion occur. These intervals are symmetric about r = 0, the
outer equator and the corresponding geodesics may be called bound orbits in analogy with the
torus problem and more generally 1-dimensional motion in a potential well. If there are no
zeros, the motion is unbound with unbounded values of the radial coordinate corresponding
to an infinite number of crossings of the inner equator. Local minima of the potential then
correspond to stable equilibria, while local maxima correspond to unstable equilibria. The
inner and outer equators are themselves geodesics which correspond respectively to a atable
and unstable equilibrium.

Note that solving the energy equation for dr/dλ = f(r), the problem is reduced to a
quadrature

λ =

∫ r

r0

f(t) dt (8.14)

which must be evaluated numerically, after which the screw-momentum equation can be rewrit-
ten for φ = φ(r)

` = F (r, dr/dλ, dφ/dλ) = F (r, f(r)−1, f(r)dφ/dr) (8.15)

and solved for dφ/dr and integrated formally to give φ as a function of r (only amenable
to numerical integration), but this gives no overview of the classification of the orbits which
result from the process. The effective potential instead gives a simple visual description of that
classification and enables particularly interesting orbits to be studied.

The second order geodesic equations are

D d
2r

dλ2
+
c2

b
cos

r

b
sin

r

b

(
dr

dλ

)2

+2 c cos
r

b

(
a+ b cos

(r
b

))
sin

r

b

dr

dλ

dφ

dλ

+

((
a+ b cos

r

b

)2

+ c2

)(
a+ b cos

r

b

)
sin

r

b

(
dφ

dλ

)2

= 0 ,

Dd
2φ

dλ2
− c

b
sin

r

b

(
dr

dλ

)2

+ 2
(
a+ b cos

r

b

)
sin

r

b

dr

dλ

dφ

dλ

+c cos
r

b

(
a+ b cos

r

b

)
sin

r

b

(
dφ

dλ

)2

= 0 ,

D =

((
a+ b cos

r

b

)2

+ c2 sin2 r

b

)2

. (8.16)
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Notice that (dr/dλ, dφ/dλ) → (−dr/dλ,−dφ/dλ) is a symmetry of this system which maps
` → −`, and so its initial data at a given initial position is reflection symmetric about the
origin in the initial tangent space.

Exercise 8.11.1.
cavatappo 2.0

If we are going to screw-rotate a circle around the z-axis, why should we start with a vertical
circle as in the previous construction? No reason other than a clever pasta architect chose that
orientation of the circle. Let’s give ourselves a better choice by enlarging our family of surfaces
by a tilt back angle for the initial circle that we start the construction with.

The geometry of this construction is made clear if we introduce the unit vectors along the
coordinate lines of the cylindrical coordinate system

ρ̂ = 〈cosφ, sinφ, 0〉 , φ̂ = 〈− sinφ, cosφ, 0〉 , ẑ = 〈0, 0, 1〉 .

Our initial circle has its horizontal diameter along the positive x-axis but we tilt its initially
vertical plane around that axis by an angle ψ, i.e., using the right hand rule with the thumb
pointed along the positive x-axis, and the fingers pointing in the direction of the rotation about
that axis.

The new parametrized surface using the new notation (u1, u2) = (u, v) = (φ, χ) for the
surface coordinates isxy

z

 = (a+ b cos(v)) ρ̂ + b sin(v)
(
− sin(ψ) φ̂ + cos(ψ) ẑ

)
+ cu ẑ

= (a+ b cos(v))

cos(u)
sin(u)

0


+b sin(v)

− sin(ψ)

− sin(u)
cos(u)

0

+ cos(ψ)

0
0
1

+ cu

0
0
1


=

(a+ b cos(v)) cos(u) + b sin(ψ) sin(v) sin(u)
(a+ b cos(v)) sin(u)− b sin(ψ) sin(v) cos(u)

b cos(ψ) sin(v) + cu

 (8.17)

≡ ~r(u, v) , (8.18)

with ψ = 0 reducing this to the previous family. The central helix resulting from the screw-
rotation of the center of the initial circle is the curve b = 0, with inclination angle η =
arctan(c/a) up from the horizontal. We can extend the meridian and parallel terminology
to this case in an obvious way associated with this (u, v) coordinate grid, with the special
parallels of the inner and outer equators v = 0, π and the northern and southern polar helices
v = ±π/2, and the prime meridian u = 0. We call this new improved version of the smooth
cavatappo surface the cavatappo 2.0 surface.
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a) Evaluate the two tangent vectors along the coordinate lines

~r1(u, v) =
∂~r

∂u
(u, v) , ~r2(u, v) =

∂~r

∂u
(u, v) .

and their dot products gij = ~ri · ~rj and thus the metric on the surface ds2 = gijdu
iduj.

b) Show that this metric is much simpler if we choose the tilt back angle ψ = η equal to
the angle of inclination of the central helix. Call this family the orthogonally tilted cavatappo
2.0 surface. [Hint: express cos η, sin η in terms of the inclination parameters a, c and replace
them in the surface parametrization.] What is true about g12 = guv for the orthogonal case that
is not true in general? The following explicit parametrization defines the orthogonally tilted
cavatappo surface

~r(u, v) =


(a+ b cos(v)) cos(u) +

bc√
a2 + c2

sin(u)

(a+ b cos(v)) sin(u)− bc√
a2 + c2

cos(u)

+
ab√
a2 + c2

sin(v) + cu

 . (8.19)

Notice that a = 0 reduces this to a cylinder of radius a but with a twisting grid, while c = 0
reduces this to a torus.

c) Find an orthogonal grid of new parallels which are orthogonal to the meridians by complet-
ing the square on dv in the metric to write the metric as a sum of squares and let the one coming
from the completed square define the differential of a new radial coordinate dv⊥ = dv+ . . . and
choose v⊥ = 0 at the origin of the original coordinates. Note, however, that if one re-expresses
the metric in terms of this new coordinate, it will depend on both coordinates, which makes it
less useful for describing the geometry. However, the associated orthonormal frame is useful in
describing directions in the tangent space.

d) The metric coefficients of the orthogonal 1-forms obtained in the previous step multiply
together to yield the metric determinant. Verify this by evaluating the determinant of the
origina metric matrix and compare the two expressions. Evaluate the total surface area of the
surface for one revolution

S =

∫ ∫
dS =

∫ 1π

0

∫ 1π

0

det(g)1/2dv du

and show that it is the product of the circumference C = 2πb of the orthogonal circular cross-
sections and the arclength of the central helix for one revolution

L =

∫
ds =

∫ 2π

0

g1/2
uu |b=0 = 2π

√
a2 + c2 .

This generalizes the theorem of Pappus example of the torus surface area to that of a screw-
symmetric surface.

e) Explore geodesics on this surface using a computer algebra system. What is the effective
potential for this problem?
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�

Exercise 8.11.2.
the Lorentz cavatappo 2.0 surface

We can reconsider the previous orthogonality for the initial circle in the Minkowski geometry
on R3 in which the z-axis becomes the t-axis. For the case of a timelike central curve, which
is then a world line in the spacetime, it makes sense to start with a circle in the horizontal
plane and tilt it up with a Lorentz transformation boost, which can then be specialized to
the direction orthogonal to the central helical world line of the circle used in the construction,
which is the local rest space of the observer following that world line. We then get a timelike
tubular world sheet, which is the history of a circular loop moving in spacetime. This is in fact
a toy model for string theory, with the horizontal plane cross-sections of the world sheet being
the “closed string” as seen at that moment of the observer’s time.

To see the geometry of the construction we need the same cylindrical coordinate unit vectors
except we rename z to t and so t̂ = 〈0, 0, 1〉. Then tilting the plane of the circle up from the
horizontal by the hyperbolic rotation of the angular unit vector φ̂ in its plane with t̂ by the
hyperbolic angle ι, we getxy

t

 = (a+ b cos(v)) ρ̂ + b sin(v)
(

cosh(ι) φ̂ + sinh(ι) t̂
)

+ cu t̂

= (a+ b cos(v))

cos(u)
sin(u)

0


+b sin(v)

cosh(ι)

− sin(u)
cos(u)

0

+ sinh(ι)

0
0
1

+ cu

0
0
1


=

(a+ b cos(v)) cos(u)− b cosh(ι) sin(v) sin(u)
(a+ b cos(v)) sin(u) + b cosh(ι) sin(v) cos(u)

b sinh(ι) sin(v) + cu

 . (8.20)

a) Evaluate the tangent vectors to the grid and their inner products to evaluate the surface
metric ds2 = gijdu

iduj.
b) Express cosh ι and sinh ι in terms of the tilt parameters a, c such that the tilt angle of

the surface equals the hyperbolic inclination angle of the central helix, and replace them in the
above expression to obtain the timelike orthogonally tilted cavatappo surface

xy
t

 =


(a+ b cos(v)) cos(u)− bc√

c2 − a2
sin(v) sin(u)

(a+ b cos(v)) sin(u) +
bc√

c2 − a2
sin(v) cos(u)

ab√
c2 − a2

sin(v) + cu

 . (8.21)
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Show how this tilt condition simplifies the surface metric considerably.

c) Find an orthogonal grid of new parallels which are orthogonal to the meridians by com-
pleting the square on dv in the metric to write the metric as a difference of squares and let
the one coming from the completed square define the differential of a new radial coordinate
dv⊥ = dv+. . . and choose v⊥ = 0 at the origin of the original coordinates. The same reservations
as in the previous problem apply to re-expressing the metric in terms of this new coordinate.

d) The metric coefficients of the orthogonal 1-forms obtained in the previous step multiply
together to yield the metric determinant. Verify this by evaluating the determinant of the
original metric matrix and compare the two expressions. Evaluate the total surface area of the
surface for one revolution

S =

∫ ∫
dS =

∫ 1π

0

∫ 1π

0

det(g)1/2dv du

and show that it is the product of the circumference C = 2πb of the orthogonal circular cross-
sections and the arclength of the central helix for one revolution (proper period of the motion)

To =

∫
ds =

∫ 2π

0

g1/2
uu |b=0 = 2π

√
c2 − a2 .

This generalizes the previous theorem of Pappus example to the Lorentzian case.

e) Explore geodesics on this surface using a computer algebra system. What is the effective
potential for this problem?

�

Remark.
Suppose one considers a spacelike central helix, which corresponds to tachyonic motion at a
speed greater than that of light. The orthogonal direction to a spacelike unit tangent vector
is timelike, and a circle in a timelike plane does not have any physical interpretation since it
corresponds to a closed timelike curve in spacetime, and its equation is not compatible with
hyperbolic rotations as well. Thus there is no analog of the orthogonally tilted cavatappo
surface in this case. N

Exercise 8.11.3.
tilted helical surfaces

We can generalize the helical surfaces of Exercise 8.11.1 by letting (R(v), Z(v)) be a parametrized
profile curve in the tilted back profile plane taking the place of the profile circle of the gen-
eralized cavatappo surface. The general form of such a parametrized surface using the new
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notation (u1, u2) = (u, v) = (φ, χ) for the surface coordinates isxy
z

 = R(v) ρ̂ + Z(v)
(
− sin(ψ) φ̂ + cos(ψ) ẑ

)
+ cu ẑ

= R(v)

cos(u)
sin(u)

0


+Z(v)

− sin(ψ)

− sin(u)
cos(u)

0

+ cos(ψ)

0
0
1

+ cu

0
0
1


=

R(v) cos(u) + Z(v) sin(ψ) sin(u)
R(v) sin(u)− Z(v) sin(ψ) cos(u)

Z(v) cos(ψ) + cu

 (8.22)

≡ ~r(u, v) . (8.23)

We can extend the meridian and parallel terminology to this case in an obvious way associated
with this (u, v) coordinate grid.

a) Use a computer algebra system to evaluate the two tangent vectors along the coordinate
lines

~r1(u, v) =
∂~r

∂u
(u, v) , ~r2(u, v) =

∂~r

∂u
(u, v) .

and their dot products gij = ~ri · ~rj and thus the metric on the surface ds2 = gijdu
iduj.

b) Evaluate the geodesic equations, which are really long and ugly and not manageable
expressions. Show that the simultaneous conditions v′(t) = 0, v = v0, Z(v0) = 0, R′(v0) = 0
reduce them to setting the second derivatives of both variables to zero, which means that
extremals of R(v) on the ρ-axis (Z(v0) = 0) are geodesics, along which u is an affine parameter.

This explains why the inner and outer equators of the generalized cavatappo surfaces are
geodesics and shows how a computer algebra system is essential to derive this result.

�

Exercise 8.11.4.
helicoids

If we take a straight line segment in the initial vertical plane (ψ = 0) with slope m as the
profile curve for a generalized helical surface, we get a helicoid strip

R(v) = a+ v , Z(v) = cu+mv , a ≤ v ≤ b ,

namely
~r(u, v) = 〈(a+ v) cosu, (a+ v) sinu, cu+mv〉 .

a) Evaluate the Gaussian curvature of this surface with a computer algebra system, easily
showing that it is a negative curvature surface.
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b) Evaluate the geodesic equations, easily showing that the profile curves, as expected, are
geodesics.

c) Letting a = 0, show that all other geodesics spiral outward from the axis of symmetry
in both directions due to the conservation of the screw angular momentum which gives them a
minimal value of R(v).

�

Exercise 8.11.5.
cyclides

Another way of arriving at the cavatappo 2.0 surface is by parametrizing a circle of fixed
radius in the normal plane to the central helix using the Frenet-Serret frame along the curve.
In general for any space curve (the “spine”) one can define a tubular surface in exactly this
way, and allowing for a variable circular radius leads to a “canal surface”.

a) Given the helix (see Appendix C)

~r(φ) = 〈a cos(φ), a sinφ, cφ〉 ,

with unit tangent ~T (φ), unit normal ~N(φ), and unit binormal ~B(φ), show that

~R(φ, θ) = ~r(φ) + b
(
− cos θ ~N(φ) + sin θ ~B(φ)

)
gives the previous parametrization of the cavatappo 2.0 surface with (u, v) = (φ, θ). [CHECK??]

b)Define a cyclide from the spine curve circle

~r(φ) = 〈a cosφ, a sinφ, 0〉

by
~R(θ, φ) = ~r(φ) + (b+ c cos(φ)) (cos(θ)〈cos(φ), sin(φ), 0〉+ sin(θ)〈0, 0, 1〉)

Investigate its geodesics for (a, b, c) = (1, 0.4, 0.3). This is a torus with broken symmetry, so
one is stuck with both degrees of freedom in the problem. One has meridians φ = φ0 but no
parallels as in a surface of revolution. Woever, one should be able to classify the geodesics
starting from one of two geodesic circle intersection points with the outer equator geodesic,
geodesics because of the reflection symmetries across the x-z plane y = 0 and the x-y plane
z = 0, namely φ = 0, π, θ = 0. There should be radially bound and unbound geodesics
separated by the unstable inner equator geodesic θ = π, as in the rotationally symmetric ring
torus.

This “Dupin cycloid” shape with a small opening was used by the Italian physicist Tullio
Regge for a modern sofa design actually marketed as the Detechma sofa in the 1970s.

�
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8.12 The Schwarzschild equatorial plane geometry

A relatively simple geometry governs the orbits of planets around the sun in the general theory
of relativity. Since these orbits are planar orbits, we only need 2 space dimensions and of course
the time dimension to describe how things move in this geometry, so a 3-manifold. We won’t
worry about how this particular “Schwarzschild metric” arises from the Einstein equations.
We will just use it to play with its geodesics on a very elementary level. Any plane through
the origin in spherical coordinates would do for describing the plane of an orbit, but we will
choose the equatorial plane θ = π/2 of the polar angle down from the vertical axis in spherical
coordinates (r, θ, φ), but since we have been doing so many 2-dimensional surfaces using (r, θ),
again we will let θ denote the azimuthal coordinate instead, so that we are just using polar
coordinates in the 2-plane of the orbit, plus the time coordinate t. The metric is

ds2 = −(1− 2m/r) dt2 + (1− 2m/r)−1dr2 + r2dθ2 , r > 2m. (8.24)

We have already encountered the planar orbit part of the metric in the black hole embedding
discussion, which is also limited to r > 2m. The value 2m corresponds to the so called horizon
of the black hole represented by this metric, inside of which light cannot escape because the
gravitational field is too strong. A black hole is a vacuum spacetime analogous to a point mass
solution of Newtonian gravitation equations. Spherical mass distributions confined within a
radius R > 2m have a gravitational field described by the Schwarzschild metric outside that
radius.

Along a timelike geodesic world line where the arclength represents the proper time, we
have

− dτ 2 = ds2 = −(1− 2m/r) dt2 + (1− 2m/r)−1dr2 + r2dθ2 , r > 2m, (8.25)

or

− 1 = −(1− 2m/r)

(
dt

dτ

)2

+ (1− 2m/r)−1

(
dr

dτ

)2

+ r2

(
dθ

dτ

)2

, (8.26)

or more generally in an affine parametrization

− µ2 = −
(

1− 2m

r

) (
dt

dλ

)2

+

(
1− 2m

r

)−1(
dr

dλ

)2

+ r2

(
dθ

dλ

)2

. (8.27)

There are two symmetry coordinates t and θ on which the metric does not depend, each
with its conserved momentum, just the covariant components of the tangent vector along those
coordinates (see Section 8.3)

E ≡ −pt =

(
1− 2m

r

)(
dt

dλ

)
, ` ≡ pθ = r2

(
dθ

dλ

)
(8.28)

in terms of which previous constant becomes

− µ2 = −
(

1− 2m

r

)−1

E2 +

(
1− 2m

r

)−1(
dr

dλ

)2

+
`2

r2
. (8.29)
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Rearranging this equation one finds

1

2

(
dr

dλ

)2

+
1

2

(
1− 2m

r

)(
µ2 +

`2

r2

)
︸ ︷︷ ︸

V (r/m) ≡ V2/2

=
1

2
E2 (8.30)

so that setting µ = 1, one obtains the starting point for the study of the radial motion carried
out in Exercise 8.12.1. Setting µ = 0 extends this to the case of null geodesics, the paths of
light rays.

The orbit equation for the variable u = u/r, with ˜̀= `/m of that exercise then corresponds
to (

du

dθ

)2

=
E2 − (1− 2u)(µ2 + ˜̀2u2)

˜̀2
=
E2 − µ2 + µ2u

˜̀2︸ ︷︷ ︸
µ→0−→ b̃−2

−(1− 2u)u2 . (8.31)

For large radii u << 1, one can ignore the cubic term 2u3 in this differential equation and this
reduces to the Newtonian gravity case discussed before Exercise 8.12.1.

A more involved approximation shows how to lowest order the cubic term leads to the
precession of the perihelion (minimum radius point of the orbit) of the conic section orbits,
This nicely describes the anomalous precession of the perihelion of the orbit of Mercury. The
case µ = 0 for null orbits describes instead the deflection of starlight by the Sun, two of the
classic tests of general relativity which brought world wide fame to Albert Einstein.

Consider the timelike geodesics with µ = 1 making λ = τ the proper time, and introduce
the dimensionless variables: r̃ = r/m, ˜̀ = `/m. The graph of the dimensionless potential for
the radial motion is a 1-parameter family of curves

V (r̃) =
1

2

(
1− 2

r̃

)(
1 +

˜̀2

r̃2

)
→ 1

2
as r̃ →∞ .

Normally the geodesics are discussed in terms of the relativistic potential V =
√

2V which
approaches 1 at large radii, but we continue with the equivalent discussion using the potential
V as in the nonrelativistic case.

Exercise 8.12.1.
nonrotating black hole orbits

a) Use a computer algebra system to plot V versus r̃ for 0 ≤ r̃ ≤ 25, for the values
˜̀= 3, 2

√
3,
√

3 + 2, 4, 4.3685, 4.6937, narrowing your vertical viewing window to 0.4 ≤ V ≤ 0.6
to get an idea of this 1-parameter family of potential curves.

b) The critical points V ′(r̃0) = 0 of V represent the circular orbits at constant radius r̃ = r̃0.
Find the critical points r̃± of V as a function of ˜̀by solving a quadratic equation for r̃: r̃− ≤ r̃+.
Show that ˜̀

min = 2
√

3 is the minimum value of the angular momentum parameter for which
a critical point exists, for which r̃− = r̃+ = 6, and two distinct roots exist for larger values.
Show that 3 ≤ r̃− ≤ 6, r̃+ ≥ 6. [Hint. Expand r̃− about 1/` = 0 to find that its high angular



538 Chapter 8. Parallel transport and geodesics

Figure 8.36: Selected values of the family of potential functions V (r) for the radial motion
of geodesics in the equatorial plane of the Schwarzschild spacetime, plotted versus the dimen-
sionless radius r̃ = r/m. The upper two curves have a centrifugal barrier for hyperbolic-like
orbits with relativistic energy parameter E2 > 1 corresponding to energy levels in this diagram
of 1

2
E2 > 1

2
, so that for sufficiently high energy orbits are captured by the black hole. The next

lower curve corresponding to the critical level E = 1 (horizontal line at the value 0.5) corre-
sponds to the case in which the unstable circular orbit at the peak of the centrifugal barrier has
the same energy as the parabolic-like orbit. Below this some of the bound elliptic-like orbits
are also captured until the local maximum and local minimum of the potential come together
at r̃ = 6 and disappear, below which there are no more circular orbits.
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momentum limit `→∞ is 6.] The smaller root describes the unstable equilibrium at the peak
of the potential near the black hole, while the larger root describes the stable equilibrium at
the minimum points which exist farther from the whole. The circular orbit at r̃ = 6 is called
the “last stable circular orbit.”

c) Plot the two parametrized curves (r̃−(`), V (r̃−(`))) and (r̃+(`), V (r̃+(`))) together with
the previous plot of the selected potential profile curves as shown in Fig. 8.36, representing
respectively the unstable and stable circular orbits. Include the vertical lines at r̃ = 3, 6 as
shown.

d) Show that V (r̃+) < 1/2 corresponding to E < 1. Show that ` = 4 corresponds to r̃− = 4
and V (r̃−) = 1/2 or E = 1, and that orbits with E ≥ 1 are unbound. Those unbound orbits
with ` > 4 and E2/2 > V (r̃−) overcome the centrifugal potential energy barrier to fall into the
black hole, while those with smaller energy are reflected by this barrier.

e) Use a computer algebra system to write down the three proper time parametrized geodesic
equations and impose the conditions r = r0, dr/dτ = 0 = d2r/dτ 2 and d2θ/dτ 2 = 0 = d2t/dτ 2

for uniformly rotating circular geodesics, satisfying the time and angular equations. Show that
the remaining radial equation determines the coordinate velocity

ω =
dθ

dt
=
dθ/dτ

dt/dτ
= ±

(m
r3

)1/2

≡ ±ωK .

This is the same as the Newtonian Keplerian angular velocity for circular orbits.
f) Derive the alternative radial equation from the potential by

d2r

dτ 2
= −∂V

∂r
,

and set the right hand side to zero for circular geodesics and solve for `2 to find

` = ±
(

mr2

r − 3m

)1/2

≡ ±`K .

Back substitute this into the energy equation for circular geodesics to find

E =
(r − 2m)

(r(r − 3m))1/2
≡ EK .

Then show that the signed angular speed is

ν = r
dθ

dτ
=
`

r
= ±

(
m

r − 3m

)1/2

︸ ︷︷ ︸
≡ νK

while the corresponding gamma factor is

γ = (1− ν2)−1/2 =

(
r − 2m

r − 3m

)1/2

≡ γK .
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Finally show that

dt

dτ

∣∣∣∣
K

=

(
1− 2m

r

)−1/2

γK

and that the proper time angular velocity is

dθ

dτ

∣∣∣∣
K

=
dθ

dt

dt

dτ
= ±

(
1− 2m

r

)−1/2

γKωK = ±
(

1− 3m

r

)−1/2 (m
r3

)1/2

.

�

Exercise 8.12.2.
parallel transport along a circular geodesic orbit: Frenet-Serret frame along a
timelike helix

For the Schwarzschild equatorial plane spacetime, introduce the orthonormal frame

et =

(
1− 2m

r

)−1/2
∂

∂t
, er =

(
1− 2m

r

)
∂

∂r
, eθ =

1

r

∂

∂θ
.

Introduce the 4-velocity to a timelike helical world line representing a circular orbit in this
spacetime

U =
∂t

∂τ

∂

∂t
+
∂θ

∂τ

∂

∂θ
= γ(et + ν eθ) , γ = (1− v2)−1/2 ,

and let eΘ be the orthogonal vector in the t-θ plane of the tangent space

eΘ = γ(ν et + eθ) .

The three vectors U , er, eΘ are a Frenet-Serret frame along the helix.
a) Use a computer algebra system to derive the connection components in this frame,

assuming ν = ν(r) is a function only of r. The U derivatives of this frame define the curvature
κ and torsion Ω of the helix in spacetime

DU

dτ
= ∇UU = ΓrUU er ≡ κ er ,

Der
dτ

= ∇Uer = ΓUUr U + ΓΘΘUr eΘ ≡ κU + Ω eΘ ,

Deθ
dτ

= ∇Ueθ = −Ω er .

Show that the formulas for these two quantities can be written

κ =

(
1− 2m

r

)1/2
γ2
K

r
(ν2 − ν2

K) , Ω = −
(

1− 2m

r

)1/2
γ2

γ2
K

ν

r
.

The curvature κ is the magnitude of the acceleration, zero for a geodesic. The torsion Ω is proper
angular velocity of the axes er, eΘ which span the local rest space of the world line, called the



8.12. The Schwarzschild equatorial plane geometry 541

Fermi-Walker rotation, measured with respect to axes in the local rest space which are said to
undergo Fermi-Walker transport. Along an accelerated helix Fermi-Walker transported vectors
rotate with the opposite angular velocity with respect to these axes. Along a geodesic helix,
for which

ΩK = −
(

1− 2m

r

)1/2
νK
r

= ∓
(m
r3

)1/2

,

the Fermi-Walker transport reduces to parallel transport. These Fermi-Walker/parallel trans-
ported vectors are

e1 = cos(Ωτ) er − sin(Ωτ) eΘ , e2 = sin(Ωτ) er + cos(Ωτ) eΘ .

b) The proper angular velocity of the geodesic orbit and the Fermi-Walker angular velocity
have opposite signs. Their sum represents the net angular velocity of the parallel transported
axes with respect to Cartesian axes at infinite radius

Ω(net) ≡
dθ

dτ

∣∣∣∣
K

+ ΩK = ∓
(m
r3

)1/2
(

1−
(

1− 3m

r

)−1/2
)
.

The Cartesian axes at infinite radius are represented locally in the local rest space along the
helix by

ex = cos(ωt) er − sin(ωt) eΘ , ey = sin(ωt) er + cos(ωt) eΘ .

By expanding the formula for Ω(net) to first order in the quantity 3m/r, show that one finds
that for large radius

Ω(net) ≈ ∓
3

2

m

r

(m
r3

)1/2

.

c) Two thirds of this result was obtained using the tangent cone to the embedding surface of
the constant time slice of this spacetime in Exercise 8.4.4 evaluated for a circle at fixed radius
and time t. It is not surprising that motion in two of the three dimensions results in 2/3 of the
result for motion in time as well. We can get this result directly by looking at the connection
coefficients in the original orthonormal frame eθ, er, et which in this order is a Frenet-Serret
frame for the spacelike circle of fixed radius where eθ is the unit tangent

Deθ
ds

= ∇eθeθ = Γrθθ er ≡ κ er ,

Der
ds

= ∇eθer = Γθθr eθ + Γrθr er ≡ −κ eθ + τ et ,

Det
ds

= ∇eθet = −τer .

Examining the connection coefficients in this frame, one sees that torsion τ vanishes and the
curvature is

κ =

(
1− 2m

r

)1/2
1

r
≡ 1

R(r)
,
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which at large radius agrees with the flat space curvature of the circle. The radius of curvature
R(r) was found by other means in Exercise 8.4.4. Here κ is the arclength rate of change of the
angle of rotation of the parallel transported axes with respect to the given frame, so adding the
oppositely signed orbital angular velocity leads at large radii to the net angular velocity of the
parallel transported axes

dθ

ds
− κ =

1

r
− 1

r

(
1− 2m

r

)1/2

→ −m
r2
,

so that multiplying by the proper velocity ds/dτ = νK → (m/r)1/2 of the circular orbit as
in that exercise to convert to the proper time rate of change leads to the final result of that
exercise for counter-clockwise motion(

dθ

ds
− κ
)
ds

dτ
→ −m

r2

(m
r

)1/2

= −m
r

(m
r3

)1/2

,

which is 2/3 the correct result.
�



Chapter 9

Intrinsic curvature

Rn with its Euclidean metric is flat. The 2-sphere is not. How do we describe this mathemat-
ically? We need to introduce a quantity that will be called curvature and show how it agrees
with our vague intuitive idea of curvature. We will introduce the “Riemann” curvature tensor
in several steps. Parallel transport of a tangent vector along a curve preserves its constant
length, and its angle with any other vectors which are also parallel transported, but there is
no guarantee that if we transport it around a curve and come back to its initial location that
its final direction will coincide with its initial direction. Because its length is preserved, the
final transported vector has to be related to its starting value by some rotation, and when
this rotation is nontrivial, it is a sign that curvature is present. If we shrink the loop to an
“infinitesimal loop” we get an infinitesimal rotation, which is described by an antisymmetric
matrix.

If we consider infinitesimal loops in a 2-plane, we need a 2-form to pick out the 2-plane,
and we need to associate with that 2-plane an antisymmetric matrix to describe the rotation
of the tangent space that results. As we will discover, an antisymmetric matrix-valued 2-form
is the object we need to do the job, which will lead to a (1

3)-tensor field Ri
jmn, namely a matrix

valued 2-form, antisymmetric in mn, leaving a (1
1)-tensor after the full tensor is evaluated in

these arguments on a pair of vectors which determine the 2-plane. But we are getting ahead of
ourselves. Let’s go slowly.

Before we embark on our journey to understand this parallel transport problem, we must
also recognize that the cylinder is curved. However, it can be cut along a line parallel to its
symmetry axis and rolled out flat onto a plane, so its intrinsic geometry is flat. The cylinder is
instead extrinsically curved within the larger space in which it finds itself. We will study this
other aspect of curvature in the next chapter. We cannot flatten out a sphere, which instead is
truly curved intrinsically.

We begin by introducing a tensor which vanishes identically in flat Euclidean space and
then interpret this “curvature” tensor as a measure of how it characterizes the failure of par-
allel transport around a loop to bring a tangent vector back to its original value in a truly
curved space. This same tensor also characterizes the focusing/defocusing properties of nearby
geodesics. In flat Euclidean space a pair of nearby straight line geodesics, if initially parallel,
remain so, but in a curved geometry positive curvature causes them to converge, while negative

543
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curvature causes them to diverge from each other. If one imagines the geodesics to be analo-
gous to light rays (which is literally realized in general relativity), then curvature causes the
geometry to act like a lens in its affect on families of geodesics, thus providing another way of
measuring curvature.
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9.1 Calculating the curvature tensor and its symmetries

We progress slowly starting with a Cartesian coordinate calculation on Rn with its flat Eu-
clidean metric, then repeating the calculation in a coordinate frame on Rn with any metric,
and then finally we repeat the calculation in a general frame in such a space. We examine how
a second covariant derivative along two vector fields performed in different orders compares to
the corresponding derivative by the Lie bracket of those two fields. With hindsight this is an
almost obvious thing to do since in flat space in Cartesian coordinates, the covariant derivative
along a coordinate frame vector field X = δjk∂j = ∂k for some particular k reduces to the Lie
derivative along that vector field,

[£X Z]i = Zi
,jX

j −X i
,jZ

j = Zi
,jδ

j
k = Zi

,k

and the Lie derivative for vector fields satisfies the Jacobi identity, which can be written in the
form

£X £Y Z −£Y £X Z ≡ [£X ,£Y ]Z = £[X,Y ] Z .

Thus the same identity must hold for the covariant derivative if X = ∂i and Y = ∂j are just
coordinate frame vector fields, so we see what happens for general vector fields. Amazingly it
still holds!

(1) Calculation in Cartesian coordinates on Rn

On Rn in Cartesian coordinates, covariant and ordinary differentiation coincide, so

[∇Y Z]i = Zi
;jY

j = Zi,j Y
j ,

hence

(∇X∇Y −∇Y ∇X )Zi = [∇Y Z]i,kX
k − [∇XZ]i,kY

k

= (Zi
,jY

j),kX
k − (Zi

,jX
j),kY

k

= Zi
,jkY

jXk − Zi
,jkX

jY k

+ Zi
,jY

j
,kX

k − Zi
,jX

j
,kY

k

= [Zi
,jk − Zi

,kj]︸ ︷︷ ︸
0 since partial derivatives commute

XkY j + Zi
,j [Y j

,kX
k −Xj

,kY
k]︸ ︷︷ ︸

[X, Y ]j︸ ︷︷ ︸
[∇[X, Y ]Z]i

.

Thus
[∇X∇Y −∇Y ∇X −∇[X, Y ]]︸ ︷︷ ︸

second order differential operator

Z = 0 .

In other words this second order differential operator on vector fields is identically zero on
Rn. This will be true no matter what coordinates we use to express the operator, since it
represents a tensor field independent of how we choose to evaluate it.
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(2) Calculation in arbitrary coordinates for any metric

We now repeat this calculation for arbitrary coordinates on any space with a metric tensor with
coordinate component matrix (gij) and the associated metric connection components Γijk =
{ ijk}, now including the components of the connection in the formulas. Recall the formula

[∇YZ]i = (Zi
,j + ΓijmZ

m)Y j ,

so we can iterate it, expanding into 6 grouped terms using the product rule and second partial
derivative, which we regroup

[∇X∇Y Z]i = ([∇Y Z]i,k + Γikm[∇Y Z]m)Xk

= {[(Zi
,j + ΓijmZ

m)Y j︸ ︷︷ ︸
expand using product rule

],k + Γikm(Zm
,j + ΓmjpZ

p)Y j}Xk

= {[Zi
,jk

(1)

+ Γijm
(2)

Zm
,k + Γijm,k

(3)

Zm]Y j + (Zi
,j + ΓijmZ

m)︸ ︷︷ ︸
(4) Zi

;j

Y j
,k

+ Γikm(Zm
,j

(5)

+ ΓmjpZ
p

(6)

)Y j}Xk

= [Zi
,jk

(1)

+ Γijm
(2)

Zm
,k + ΓikmZ

m
,j

(5)

+ Γijm,k
(3)

+ ΓikmΓmjpZ
p

(6)

]XkY j + Zi
;jY

j
,k

(4)

Xk

= [· · · ]ijkXkY j + Zi
;jY

j
,k

(4)

Xk .

Observe that term (1) is symmetric in (j, k), while the pair (2) plus (5) together are symmetric
in those indices, so if we switch these indices in the formula and subtract, all these terms will
cancel out. Finally in term (6) for standardization, we can replace the dummy indices (m, p)
by (n,m)

Now if we switch X and Y in these formulas

[∇X∇Y Z]i = [· · · ]ijkXkY j ,

[∇Y ∇XZ]i = [· · · ]ijkY kXj = [· · · ]ikjXkY j

then subtracting cancels out the pairs of terms (1), (2) and (5) since they are symmetric in
these indices (j, k), leaving the remaining terms, with the pair of terms (4) combining to form
the derivative of Z by the Lie bracket [X, Y ]

[∇X∇Y −∇Y ∇X ]Zi = [Γijm,k
(3)

− Γikm,j
(3)

+ ΓiknΓnjm
(6)

− ΓijnΓnkm
(6)

]XkY jZm

+ Zi
;j[Y

j
,kX

k

(4)

−Xj
,kY

k

(4)

]︸ ︷︷ ︸
[∇[X, Y ]Z]i

.

Thus subtracting the last term from the right hand side we get the final result

(∇X∇Y −∇Y ∇X −∇[X, Y ])Z
i = Ri

mkjX
kY jZm ,
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where

Ri
mkj = Γijm,k − Γikm,j + ΓiknΓnjm − ΓijnΓnkm .

This operator is actually linear in X, Y, and Z, i.e., it defines the components of a tensor field

R = Ri
mkjei ⊗ ωm ⊗ ωk ⊗ ωj

which is explicitly antisymmetric in its last pair of indices. It is called the Riemann curvature
tensor and the previous calculation shows that in Rn with the Euclidean metric, this curvature
tensor is identically zero since it is obviously zero in any Cartesian coordinate system.

(3) Calculation in an arbitrary frame

The components of this Riemann curvature tensor in an arbitrary frame are

Ri
mkj = R(ωi, em, ek, ej)

or

[∇ei∇ej −∇ej∇ei −∇[ei, ej]
]ek = R`

kije`

but by definition of the connection components

∇ejek = Γ`jke`

we can iterate this derivative using the product rule (the connection coefficients are just scalars)

∇ei∇ejek = ∇ei(Γ`jke`) = (∇eiΓ`jk)e` + Γ`jk ∇eie`︸ ︷︷ ︸
Γmi`em

= (Γ`jk,i + Γ`imΓmjk)e`

and by linearity in the differentiating vector field

∇[ei, ej]
ek = ∇Cm

ijem
ek = Cm

ij∇emek = Cm
ijΓ

`
mke`

so substituting these two relations into the following combination yields

[∇ei∇ej −∇ej∇ei −∇[ei, ej]
]ek

= (Γ`jk,i − Γ`ik,j − Cm
ijΓ

`
mk + Γ`imΓmjk − Γ`jmΓmik)︸ ︷︷ ︸
R`

kil

e` .

The only difference in this formula compared to the coordinate frame formula is the extra
structure function term which appears compared to the coordinate frame calculation where the
Lie brackets of the coordinate frame vectors vanish.
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If we evaluate this same formula in a coordinate frame where Cm
ij = 0, we can re-interpret

it in terms of the antisymmetrized second covariant derivative of the vector field instead of the
commutator of successive covariant directional derivatives of the vector field

(∇i∇j −∇j∇i)Z
k = ∇i ∧∇jZ

k = Zk
;ji − Zk

;ij = −2Zk
;[ji] = Rk

mijZ
m .

In any frame the components of the curvature tensor can be packaged as a matrix-valued 2-form
called the curvature 2-form

Ω = (Ωi
j) , where Ωi

j =
1

2
Ri

jmnω
m ∧ ωn ,

which in turn are merely the matrix of components of the (1
1)-tensor valued 2-form

Ri
jmn ei ⊗ ωj ⊗ ωm ⊗ ωn =

1

2
Ri

jmn ei ⊗ ωj ⊗ ωm ∧ ωn ,

which emphasizes the different roles played by the first and second pair of indices of the Riemann
curvature tensor.

We can lower the first index on the curvature tensor to obtain a completely covariant (0
4)-

tensor with components Rmnij = gm`R
`
nij. One can show (Exercises below) that this “covariant

Riemann tensor” is antisymmetric in its first pair of indices as well as its second, and it is
symmetric under the interchange of these two pairs

Rnmij = −Rmnij , (first pair antisymmetry)

Rmnji = −Rmnij , (second pair antisymmetry)

Rnmij = Rijmn . (pair interchange symmetry)

For a 2-dimensional space, it has therefore at most one independent nonzero component R1212.
In an orthogonal frame this means that R1

212 is the single independent component.

Exercise 9.1.1.
Riemann, Ricci and Einstein in 3 dimensions

For a 3-dimensional space these three symmetries make the covariant curvature tensor equiv-
alent to a symmetric bilinear function on the 3-dimensional space of 2-vectors, which has only
3(3 + 1)/2 = 6 independent components, the same number of independent components as a
symmetric second rank tensor.

Since each of the two pairs of antisymmetric indices is equivalent to a single index by the
dual operation, taking the “double dual” of the covariant Riemann tensor leads to a symmetric
(0
2)-tensor Hij = Hji

[∗R∗ ]ij =

(
1

2
ηik`

)
Rk`

mn

(
1

2
ηjmn

)
≡ −H i

j

which is easily inverted by taking the double dual of the result

Rij
k` = −ηijmHm

nη
n
k` = −ηijmηk`nHn

m .
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To manipulate this relationship, introduce the Ricci (0
2)-tensor and scalar curvature by the

contractions
Rij = Rk

ikj , R = Ri
i = gijRij = Rik

ki = −Rik
ik ,

and the symmetric Einstein (0
2)-tensor

Gij = Rij −
1

2
Rgij .

Using the pair interchange symmetry to rewrite the above relationship

[∗R∗ ]ij =
1

4
ηik` η

j
mnR

k`
mn =

1

4
ηik`ηjmnRk`

mn =
1

4
ηik`ηjmnR

mn
k` ,

and then expanding the double eta using the identity (recall M is the number of minus signs
in the diagonal matrix of inner products of the vectors in an orthonormal frame)

(−1)Mηik`ηjmn = δik`jmn = εij`εjmn

= δijδ
k
mδ

`
n + δimδ

k
nδ

`
j + δinδ

k
jδ
`
m − δijδknδ`m − δimδkjδ`n − δinδkmδ`j

= δijδ
k`
mn + δimδ

k
nδ

`
j + δinδ

k
jδ
`
m − δimδkjδ`n − δinδkmδ`j ,

show that the sign-reversed double dual of the Riemann tensor is just the Einstein tensor apart
from another possible sign

[∗R∗ ]ij =

(
1

2
ηik`

)
Rk`

mn

(
1

2
ηjmn

)
= (−1)M+1Gi

j .

�

Exercise 9.1.2.
Riemann, Ricci and Einstein in 2 dimensions

a) Now that we have done the harder calculation, do the same double dual derivation for
n = 2 to see that the Riemann curvature tensor can be expressed entirely in terms of the scalar
curvature by

Rij
k` =

R

2
δijkl

which implies

Ri
j =

R

2
δij .

Note that the dual of a pair of antisymmetric indices has no indices—it is a scalar.
b) Show that this implies that the Einstein tensor in 2 dimensions vanishes identically.
The Gaussian curvature of a 2-metric that we will learn about in the next chapter is just

half the scalar curvature, provided the sign conventions are appropriate to make the scalar
curvature positive for spheres (in any dimension).
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�

Exercise 9.1.3.
covariant components of Riemann

a) Starting from the formula for the coordinate components of the curvature tensor

Ri
jmn = Γinj,m − Γimj,n + Γim`Γ

`
nj − Γin`Γ

`
mj ,

and the index-lowered components of the connection

Γijk = gi`Γ
`
jk =

1

2
(gij,k + gkj,i − gik,j) , Γijk = gi`Γ`jk ,

use the inverse matrix derivative formula of Exercise 2.3.6 re-expressed in terms of them

gij ,k = −gimgjngmn,k = −gimgjn(Γmk,n + Γnk,m)

to complete the following derivation of the fully covariant coordinate components of the curva-
ture tensor expressed directly in terms of the second order derivatives of the metric components
by expanding the product rule and using the previous identity, then cancelling some terms (the
“. . .” terms below), and then finally re-expressing the derivatives of the index-lowered connec-
tion components in terms of the second derivatives of the metric

Rijmn = gikR
k
jmn = gik

{
(gkpΓpnj),m − (gkpΓpmj),n

}
+ Γim`Γ

`
nj − Γin`Γ

`
mj

= Γinj,m + . . .− Γimj,n − . . .+ Γim`Γ
`
nj − Γin`Γ

`
mj

= Γinj,m − Γimj,n + Γ`imΓ`nj − Γ`inΓ`mj

=
1

2
(gim,jn − gin,jm + gjn,im − gjm,in) + gk`(Γ

k
imΓ`jn − Γ`inΓkjm) .

b) Using this formula, verify the symmetry property under pair interchange Rmnij = Rijmn.
Note that from the antisymmetry in the last pair of indices of the curvature tensor, this imme-
diately implies antisymmetry in the first pair as a consequence.

�

For an orthonormal frame in which gîĵ = δij, raising the first index of the antisymmetric pair
(i, j) in Rijmn back to its original position does not change the components, so we obtain an
antisymmetric matrix valued 2-form as announced at the beginning of this chapter. However,
we still need to see how this tensor we have found from a derivation unmotivated by any idea of
curvature translates into a description of curvature in terms of parallel transport around loops.

Exercise 9.1.4.
symmetries of Riemann

a) The Riemann curvature tensor has another index symmetry which is less obvious. Using
the coordinate formula for its components, evaluate the following cyclic sum and show that
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its 3 pairs of derivative terms and its three pair of product terms cancel in pairs due to the
symmetry of the components of the connection Γijk = Γikj

Ri
jk` +Ri

k`j +Ri
`jk = 0 , (cyclic symmetry = “Bianchi identity of the first kind”)

or equivalently (since it is already antisymmetric on the last pair of indices)

Ri
[jk`] = 0 .

This reflects a deeper symmetry associated with the symmetry of the metric connection that
is best left to a more sophisticated study.

b) For n = 2 and n = 3 this additional symmetry is not independent of the previous ones
since the four indices of the covariant curvature tensor cannot be distinct. Consider the identity
Rijk` + Rik`j + Ri`jk = 0 for (ijk`) = (1212) to convince yourself of this in the first case, and
for (ijk`) = (3123) in the second case.

c) For n = 4 one can finally have 4 distinct index values and this cyclic symmetry imposes
additional conditions on the number of independent components of the curvature tensor. Since
there is only one set of 4 distinct index values, regardless of which one is in the fixed posi-
tion, the other symmetries imply that there is only one additional condition on the number of
independent components. Convince yourself of this. A 2-vector has 4(3)/2 = 6 independent
components and a symmetric bilinear function on 2-vectors is equivalent to a symmetric 6× 6
matrix which has 6(7)/2 = 21 independent components. This cyclic symmetry subtracts one
more to make only 20 independent components of the Riemann curvature tensor. 4(5)/2 = 10
of these are packaged in the symmetric Ricci or Einstein tensors, leaving an additional 10 inde-
pendent components which determine the so called Weyl curvature tensor in 4 dimensions. This
is a topic for a higher level course and is essential to Einstein’s general theory of relativity for
describing the gravitational field. The Ricci/Einstein tensors are tied to the presence of matter
in spacetime by Einstein’s equations, while the Weyl curvature is analogous to the radiative
part of the electromagnetic field, namely the part which carries gravitational waves.

d) If there were no symmetries, the curvature tensor would have n4 independent components
since it has 4 indices, each one of which can take n values. Imposing symmetries must reduce
that number, but chances are the number of constraints are polynomials of no higher degree,
so the final result is probably a 4th degree polynomial.

Note that if we think of Rijmn as a symmetric bilinear function on the space of 2-vectors,
which has dimension N = n(n−1)/2 the number of independent components of that symmetric
matrix on the N -dimensional vector space is

1

2
N(N + 1) =

1

8
n(n− 1)(n2 − n+ 2) ≡ CnoB(n) ,

only taking into account the three index pair interchange symmetries without taking into ac-
count the Bianchi identity constraint. Now we have to take into account the Bianchi identity
which only kicks in at n = 4 as we saw above (i.e., the number of independent conditions should
be a 4th degree polynomial which vanishes for n = 1, 2, 3). It is easy to find the formula

C(n) =
1

2
n2(n2 − 1)
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counting the number of independent components of the Riemann tensor by searching the web.
Use a computer algebra system to factor the difference

C(n)− CnoB(n) = CB(n)

which defines the number of independent algebraic constraints on the components imposed by
the Bianchi identities (of the first kind). Are you surprised by this simple result? Re-express
this in terms of factorials. There is a simple mathematical symbol for this result involving
n and 4. What is it? Does this offer some clue perhaps to how to untangle the overlapping
symmetry conditions on the independent components of Riemann?

�

Exercise 9.1.5.
curvature of planes, cylinders, spheres

For the following 2-dimensional surfaces in R3:
1) in cylindrical coordinates {ρ, φ} on the plane z = 0 where (2)g = dρ⊗ dρ+ ρ2dφ⊗ dφ,
2) in cylindrical coordinates {φ, z} on the cylinder ρ = r0 where (2)g = r2

0dφ⊗ dφ+ dz ⊗ dz,
3) in spherical coordinates {θ, φ} on the sphere r = r0, where (2)g = r2

0(dθ⊗dθ+sin2 θdφ⊗dφ),
a) calculate the single independent component R1

212 of the curvature tensor in the orthog-
onal coordinate frame, and then raise its index to obtain R12

12 = g22R1
212,

b) and then repeat the calculation in the associated orthonormal frame to get R1̂
2̂1̂2̂ = R1̂2̂

1̂2̂ =
R12

12, showing that the two results are related to each other by the appropriate metric factor
scalings.

It should be no surprise that the first two surfaces lead to zero curvature, while the sphere
has a constant curvature reflecting the fact that all points are equivalent on the sphere as far
as the geometry is concerned; this constant curvature component turns out to be s r−2

0 , directly
analogous to the curvature r−1

0 for a circle of radius r0.
b) If you want another example doable by hand, repeat this calculation in the plane for

parabolic coordinates, which are also orthogonal.
c) You can easily check your work with a computer algebra system. These hand calculations

for very simple metrics are useful to get a flavor of curvature evaluation, but computers are
essential for any serious evaluations. Computing curvature tensors from a metric by hand is
like long division, who needs it?

�

Exercise 9.1.6.
curvature of an ellipsoid of revolution

Consider an ellipsoid of revolution resulting from revolving an ellipse with semiaxes a and
b in the x-z plane around the z-axis

x2

a2
+
y2

a2
+
z2

b2
= 1 ,
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parametrized by a simple extension of the usual parametrization of a sphere by the polar and
azimuthal angles, although for the ellipsoid the polar angle is no longer interpretable as in the
spherical case a = b

~r(θ, φ) = 〈a cos θ cosφ, a cos θ sinφ, b sin θ〉 .
a) Derive the expression for the metric

ds2 = (a2 + (b2 − a2) sin2 θ)dθ2 + a2 cos2 θ dφ2 .

b) Use a computer algebra system to derive the result

Rθφ
θφ =

a2

(a2 + (b2 − a2) sin2 θ)2
.

Notice that for the sphere a = b this reduces to the correct value 1/a2. This is also the value
at the North and South Poles sin θ = 0 where by rotational symmetry the sphere of radius a
resulting from the revolving the osculating circle of best fit is a quadratic approximation of best
fit there.

�

Exercise 9.1.7.
curvature of an elliptical paraboloid

Consider the metric on the surface z = 1
2
(9x2 + 4y2) parametrized by

~r(ρ, φ) = 〈2ρ cosφ, 3ρ sinφ, 18ρ2〉

studied in Exercise 1.6.12.
a) Evaluate the differential d~r = 〈dx, dy, dz〉 in terms of the parametrization variables (ρ, φ),

and then substitute these expressions into the Euclidean metric to obtain the metric on the
surface

(2)g = dx(ρ, φ)⊗ dx(ρ, φ) + dy(ρ, φ)⊗ dy(ρ, φ) + dz(ρ, φ)⊗ dz(ρ, φ)

= gρρdρ⊗ dρ+ gρφ(dρ⊗ dφ+ dφ⊗ dρ) + gρρdφ⊗ dφ .

These coordinates are not orthogonal so one has to do a bit more work to evaluate the general
formulas for the components of the connection and curvature.

b) Identify the metric matrix g and find its inverse g−1 and the corresponding inverse metric

(2)g−1 = gρρ
∂

∂ρ
⊗ ∂

∂ρ
+ gρφ

(
∂

∂ρ
⊗ ∂

∂φ
+

∂

∂φ
⊗ ∂

∂ρ

)
+ gρρ

∂

∂φ
⊗ ∂

∂φ
.

c) Use a computer algebra system to evaluate the components of the connection.
d) Use a computer algebra system to evaluate the Ricci scalar, which in our convention

should be positive (the opposite of Maple’s sign convention). Its value at the origin is 2(4)(9) =
72.
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�

Exercise 9.1.8.
curvature of surface of revolution

a) For a surface of revolution we calculated the metric and components of the connection
in Exercise 8.4.1. Show that the single independent component of the curvature tensor is

Rr
θrθ = −R(r)R′′(r) , Rrθ

rθ = −R
′′(r)

R(r)
.

b) Evaluate this for the torus using Section 8.8 and confirm the formula

1

2
R = Rrθ

rθ = Rr̂
θ̂r̂θ̂ =

cos(r/b)

b(a+ b cos(r/b))
.

Notice that for a = 0 this clearly reduces to the correct expression for a sphere of radius b,
namely the Gaussian curvature 1/b2.

c) For a surface of constant curvature

Rrθ
rθ = −R

′′(r)

R(r)
= R0 ,

leading to the differential equation

R′′(r) +R0R(r) = 0 .

Write down the general solutions for the three cases R0 > 0,= 0, < 0. If we want a surface
of revolution which intersects its symmetry axis to be regular at that intersection point, its
limiting tangent plane must be orthogonal to that axis there, so that in the limit approaching
that point, the metric should approach the form of polar coordinates in that plane, which
imposes 2 conditions on the function R(r): R(0) = 0 and limr→0R(r)/r = 1. With these extra
conditions, what are the three unique solutions to this differential equation?

�

Exercise 9.1.9.
curvature in cylindrical coordimates

Verify that curvature tensor of Euclidean R3 vanishes in cylindrical coordinates. Note that
at most 9 = 3 × 3 independent components {R2

3ij, R
3

1ij, R
1

2ij}ij={23,31,12} need to be checked
because the coordinates are orthogonal, so the antisymmetry on the first index pair when
lowered means that the diagonal index pairs vanish and only these three index combinations
remain independent. In fact because of the pair interchange symmetry, only 6 independent
components need to be checked—we can think of Rijkl = Rklij as defining a symmetric matrix
on the 3-dimensional vector space of antisymmetric matrices, which only has 6 independent
components.
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�

Exercise 9.1.10.
curvature from integrability conditions

Although we have motivated curvature by parallel transport, historically the idea of parallel
transport only came decades after the curvature tensor itself was discovered by looking at the
integrability conditions for the solution of the partial differential equations that follow from the
existence of a covariant constant vector field.

Set the coordinate components of the covariant derivative of a vector field to zero and solve
it for the partial derivatives

∇jZ
k = ∂iZ

k + ΓkjmZ
m = 0 → ∂jZ

k = −ΓkjmZ
m

and then differentiate it again
∂i∂jZ

k = . . .

and evaluate the commutator of the second partial derivatives to obtain the result

0 = ∂i∂jZ
k − ∂j∂iZk = −Rk

mijZ
m .

The vanishing of the mixed partials acting on the vector field Z is a necessary condition for
a covariant constant vector field to exist. Thus Z must be a 0 eigenvalue eigenvector of the
linear transformation-valued curvature 2-form Ω: ΩZ = 0. For a covariant constant frame
to exist, this implies that all the components of the curvature tensor must be zero. This
idea of integrability conditions for the existence of solutions of partial differential equations is
fundamental.

�

Exercise 9.1.11.
Jacobi and Bianchi identities

Most component geometric formulas have a noncomponent, i.e., frame independent counter-
part. For example, the simple symmetry of the coordinate components of the metric connection
Γk [ij] = 0 was seen in Exercise 6.6.4 to be expressible as the vanishing of the torsion tensor
defined without reference to components

T (X, Y ) = ∇XY −∇Y X − [X, Y ] = 0 .

This translates this antisymmetric combination of the covariant directional derivative into a
Lie bracket

∇XY −∇Y X = [X, Y ] .

The Lie bracket in turn satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 .
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Replace Y in the covariant derivative equation by [Y, Z]

∇X [Y, Z]−∇[Y, Z]X = [X, [Y, Z]] ,

and then in the first term replace the vector field [Y, Z] being differentiated by its covariant
derivative representation to obtain a three term left hand side involving two second covariant
derivative terms. Now form the cyclic sum of this equation and use the Jacobi identity to set
the right hand side to 0. Regroup the nine terms into three curvature tensor terms to obtain

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0 ,

where another frequent variation of curvature tensor notation is the following

R(X, Y )Z =
([
∇X,∇Y

]
−∇[X, Y ]

)
Z = Ri

jmnX
mY nZjei .

Express this cyclic curvature identity in terms of its components to see that the Bianchi identity
of the first kind is really just a consequence of the Jacobi identity and the symmetry of the
metric connection (vanishing torsion). In Chapter 11 we will see that this derivation can be
translated from the Jacobi identity for vector fields to the vanishing second exterior derivative
identity for 1-forms.

�
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9.2 Interpretation of curvature

Curvature is a notion inversely related to radius of curvature. A circle is more curved if it has
a small radius, less curved or “flatter” if it has a larger radius. In fact in multivariable calculus
one learns that the curvature κ of a circle is the reciprocal of its radius r0: κ = 1/r0. A straight
line corresponds to the limit r0 → ∞ in which a circle (fixing one point on its circumference)
flattens out to a straight line and has zero curvature.

Figure 9.1: Smaller circles curve more, and have larger curvature. Larger circles curve less,
and have smaller curvature.

For an arbitrary curve c(λ), at each point we can determine a circle of best fit to the curve
(the osculating circle) in the plane of the tangent vector c′(λ) and its derivative c′′(λ) (the
osculating plane) having radius ρ = 1/κ in terms of the curvature κ at the given point on the
curve. All of this is done in both R2 and R3 in a typical multivariable calculus course.

Figure 9.2: Measuring curvature with a circle of best fit at each point.

To handle curvature for surfaces in R3, it turns out we can always find two circles of best fit
at right angles to each other which best describe how the surface curves at each point. These
circles may lie on the same side or on opposites of the tangent plane, as with an ellipsoid (upper
figure) or a saddle surface (lower figure) shown in Fig. 9.3. The so-called Gaussian curvature
of the surface is taken to be

κ = ±
(

1

r 1

)(
1

r 2

)
:

{
+ if same side ,

− if opposite sides .
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Figure 9.3: Two circles of best fit at right angles on the same side of the surface (positive
curvature), or on the opposite sides (negative curvature).

Increasing either radius flattens out the surface at the point. A cylinder is an example where
one of the two radii has become infinite, so one of these two circles of best fit reduces to a
straight line, leading to zero curvature.

Figure 9.4: One of these two circles flattens out to a line for a cylinder (zero curvature).

Since all directions along a sphere at a given point are equivalent (and all points are equiv-
alent in terms of the geometry of the sphere), and the circles of best fit are just great circles
through that point, both radii are equal to the radius of the sphere itself at every point, leading
to a constant curvature κ = 1/r2

0. Notice that curvature has dimensions of inverse length in
the 1-dimensional case and of inverse area in the 2-dimensional case.

The 2-dimensional curvature concept generalizes to a notion of curvature in higher-dimensional
spaces, in a way similar to the generalization from a curve to a surface. For the surface in R3,
we can consider each plane cross-section of the surface by a plane containing the normal line
to the surface, yielding a cross-sectional curve through the given point whose curvature can
be evaluated, so one gets a curvature for each direction in the tangent plane associated with
the plane cross-section curve in that direction. From that family of plane cross-sections one
can show that a pair of orthogonal directions in the tangent plane capture all the curvature
information. For higher dimensional spaces we will again consider all 2-plane cross-sections
of the full tangent space corresponding to 2-surfaces through the given point and transfer our
intuition about the curvature of a surface in R3 to that situation.
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Figure 9.5: The oriented parallelogram formed by an ordered pair of two tangent vectors
(X, Y ) in the tangent space and the counterclockwise loop around that parallelogram starting
at the origin A, moving first along X to its tip at B, then to the tip of X + Y at C, then to
the tip of Y at D, and finally back to the origin along Y .

However, all of these notions of curvature so far describe the bending of curves and surfaces
and are associated with what is called extrinsic curvature, because they depend on how these
spaces fit into a larger space. Intrinsic curvature instead refers only to the effects of curvature
which are measurable within a given space. The failure of parallel transport to be independent
of the path is an obvious consequence of such intrinsic curvature effects and is the basis of a
limiting procedure (the zoom of calculus which leads to all differential structure) which can be
used to measure curvature using a tensor, the so called Riemann curvature tensor. It too relies
on the notion of selecting a 2-surface to measure curvature effects, but within the space. To
pick out a limiting 2-plane in the tangent space to a 2-surface we will need a 2-form. Then
associated with the failure of parallel transport of vectors around a loop in that surface to return
the vector to its original value, we need to associate a linear transformation with that 2-surface.
The curvature tensor must therefore have 2 indices playing the role of a linear transformation
(1 up, 1 down), and 2 indices associated with a 2-form (2 down) for a total of 4 indices (1 up,
3 down).

To preview the mathematical procedure which connects the curvature tensor to parallel
transport around a loop, for a given point in some curved space of dimension 3 or greater
with a positive definite metric, pick a 2-plane in the tangent space at the given point. This
can be done by specifying two linearly independent tangent vectors X and Y . The 2-vector
X ∧Y contains both orientation information as well as length information. Its length using the
2-vector inner product which avoids overcounting gives the area of the parallelogram formed
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Figure 9.6: Parallel transporting a tangent vector Z around an “infinitesimal” parallelogram
formed by two tangent vectors εX, εY in a limiting process leads to an infinitesimal rotation of
Z to Z + ∆Z.

by the two vectors (just the length of their cross-product in multvariable calculus in R3). Now
multiply X and Y by a small enough positive number ε that we can identify them with directed
curve segments in the space itself, i.e., the part of the tangent space they occupy is so small
that we can use it as a good approximation to part of the space itself. The parallelogram in
the tangent space may be interpreted as a closed curve in the space itself beginning and ending
at the point P of our discussion.

Take any tangent vector Z at P and parallel transport it around the loop. Its length must
remain constant so at most it can rotate relative to its original value. The difference is a small
rotation which we have seen is described by an antisymmetric matrix in an orthonormal frame.
This difference is approximately

∆Zi ≈ −Ri
jmn(εX)m(εY )nZj

This approximation gets better as ε → 0. Note that its value is proportional to ε2, or more
precisely, to the area of the parallelogram formed by εX and εY .

The antisymmetry in the last pair of indices means that only the components of X ∧ Y ,
not X ⊗ Y , contribute to this value. The antisymmetry of the first pair of indices, when both
lowered, means that in an orthonormal frame the mixed indices are also antisymmetric and
hence the matrix

Ri
jmn(εX)m(εY )n

represents a small rotation, which when contracted with Zj, rotates it by this small amount to
produce the increment in Z.
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If we fix the indices (mn) on Ri
jmn, we are looking at the subspace of the tangent space

spanned by the frame vectors em and en or ∂/∂xm and ∂/∂xn in coordinate frame. The
remaining 2 indices describe the small rotation (in the sense of the increment of a vector under
the rotation) associated with that 2-plane of directions. We can basically think of the curvature
tensor as a linear-transformation-valued function on 2-planes in the tangent space. As long as
we have a metric with Euclidean signature as we have assumed in these discussions, the linear
transformations describe the rate of change of rotations.

In 2-dimensions, the choice of 2-plane is fixed (the whole 2-dimensional tangent space)
and a single number characterizes the rotation that occurs transporting a vector in a small
parallelogram in that 2-plane, explaining why the curvature tensor has only 1 independent
component R1

212.
So far we have only made claims about the curvature tensor and this parallel transport

process. We must show how the limiting process of parallel transport around a smaller and
smaller loop yields the above curvature tensor formula, which gives curvature its interpretation.
In doing so we will only be using the intrinsic geometry of the space, while our notions of
curvature for curves and surfaces in ordinary space comes from the way they bend in space,
i.e., how their tangent directions and normal directions rotate as we move from point to point on
the surface within the enveloping space. This is the extrinsic geometry of the curve or surface
which relates to how it fits into the larger space. Instead when we talk about how tangent
vectors within our given space behave without reference to some enveloping larger space, we
are dealing with the intrinsic geometry of that space. However, when a space does occur within
a larger space (keep in mind the example of curves and surfaces in R3), the curvature of the full
space can be constructed from the intrinsic curvature of the subspace together with its extrinsic
curvature. In particular when the full space is flat (zero curvature!), the extrinsic and intrinsic
curvature must exactly cancel each other out when combined, so the extrinsic curvature is hard
wired directly to the intrinsic curvature and our initial intuitive remarks about how curvature
is measured for curves and surfaces (an extrinsic curvature discussion) then transfers to how we
measure the intrinsic curvature. On a sphere in ordinary space, for example, we talked about
the radii of curvature of great circles through a given point, which is an extrinsic notion, but
we must tie that to how we transport tangent vectors around so that they remain tangent to
the sphere, an intrinsic notion. The relationship between extrinsic and intrinsic curvature will
be explored in the next chapter.
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9.3 The limiting loop parallel transport calculation of

curvature

Although consulting various derivations in the literature makes this calculation of the parallel
transport of a vector around a loop in the limit in which it shrinks to a point seem a bit com-
plicated, the coordinate calculation is nothing more than the limiting case of Green’s theorem
in the plane R2 in which one finds that the “third component of the curl” of a vector field in
the plane is the limiting value of its line integral around a coordinate rectangle as that rect-
angle shrinks to a point. Let’s first revisit that calculation and then bootstrap it up to our
application.

A line integral of a vector field, really a 1-form X = X1dx
1 + X2dx

2 with coordinate
components 〈X1|X2〉 along a parametrized curve c : xk = xk(λ), k = 1, 2, λ1 ≤ λ ≤ λ2 in the
plane can be thought of as the solution of a first-order differential equation for a scalar quantity
Z = Z(λ) defined along that curve

dZ

dλ
= Xk

dxk

dλ
,∫

c

dZ

dλ
dλ︸ ︷︷ ︸

∆Z|c

=

∫
c

Xk
dxk

dλ
dλ =

∫
c

Xk dx
k ,

where the increment of Z along the curve is ∆Z|c = Z(λ2)− Z(λ1). Notice that the necessary
index positioning tells us we are really integrating a covector field or 1-form here. We will
discuss all of these vector integral topics in Chapter 11. The net change in the quantity Z from
the beginning of a directed curve segment to its end is given by this line integral. For a simple
closed loop curve c, the net change around the loop is the line integral

∮
c
Xk dx

k. To relate
this to the “curl” of the “vector field” (i.e., 1-form), we consider essentially the application of
Green’s theorem to a shrinking Cartesian coordinate rectangle in the plane, but here we will
do the whole calculation without referring to Green’s theorem.

First we set up the piecewise continuous parametrized curve c on a coordinate rectangle
ABCD as illustrated in Fig. 11.1

c =


A→ B : x2 = x2

0 , x
1 : x1

0 → x1
0 + ∆x1 , λ = x1 ,

B → C : x1 = x1
0 + ∆x1 , x2 : x2

0 → x2
0 + ∆x2 , λ = x2 ,

C → D : x2 = x2
0 + ∆x2 , x1 : x1

0 + ∆x1 → x1
0 , λ = x1 ,

D → A : x1 = x1
0, x

2 : x2
0 + ∆x2 → x2

0, λ = x2 .

Next we evaluate the four contributions to the line integral around the loop, but considering
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Figure 9.7: Left: Parallel transporting a tangent vector around a coordinate rectangle leads to
a rotation between the initial and final directions. Right: In the coordinate space in the x1-x2

plane, this rectangle is simple.

opposite sides of the parallelogram in pairs. The first pair is

∆Z|A→B =

∫ x10+∆x1

x10

X1|x2=x20
dx1 ,

∆Z|C→D =

∫ x10

x10+∆x1
X1|x2=x20+∆x2 dx

1 = −
∫ x10+∆x1

x10

X1|x2=x20+∆x2 dx
1 ,

and their sum alone is

∆Z|A→B + ∆Z|C→D =

∫ x10+∆x1

x10

X1|x2=x20
dx1 −

∫ x10+∆x1

x10

X1|x2=x20+∆x2 dx
1

= −
∫ x10+∆x1

x10

(
X1|x2=x20+∆x2 −X1|x2=x20

)
dx1

≈ −
∫ x10+∆x1

x10

(
∂X1

∂x2

)∣∣∣∣
x2=x20+∆x2

∆x2 dx1 ,

where this approximation is valid in the limit ∆x2 → 0 as long as X2 is differentiable as will be
assumed. The contribution from the other two sides has the opposite sign since they are traced
out in the opposite direction from the first pair (check this!), so that combining the two pairs
one finds

∆Z|c = ∆Z|A→B + ∆Z|C→D + ∆Z|B→C + ∆Z|D→A

≈
∫ x20+∆x2

x20

(
∂X2

∂x1

)∣∣∣∣
x1=x10+∆x1

∆x1 dx2 −
∫ x10+∆x1

x10

(
∂X1

∂x2

)∣∣∣∣
x2=x20+∆x2

∆x2 dx1 .

In the limit (∆x1,∆x2)→ (0, 0) assuming the integrands of these integrals are continuous, one
can approximate each of their values by the value of the integrand at any point of the interval
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(this is just the fundamental theorem of calculus!) and just multiply by the increment in the
integrating variable. In particular we can choose these values at the left endpoints of each
coordinate interval

∆Z|c ≈
(
∂X2

∂x1

)∣∣∣∣
x1=x10,x

2=x20

∆x1∆x2 −
(
∂X1

∂x2

)∣∣∣∣
x1=x10,x

2=x20

∆x2∆x1

=

(
∂X2

∂x1
− ∂X1

∂x2

)∣∣∣∣
x1=x10,x

2=x20

∆x1∆x2 .

Thus the “third component of the curl” of a vector field in the plane represents the limiting
ratio of its line integral around the loop divided by the area of the loop in this multivariable
calculus derivation. It immediately generalizes to the interpretation of all three components of
the curl in space as well in a equivalent limiting application of Stoke’s theorem.

The parallel transport equations

dZi

dλ
= −Γijk

dxj

dλ
Zk ≡ X i

k
dxj

dλ
, X i

k ≡ −ΓijkZ
k ,

for each fixed value of the index i, are exactly where the previous derivation starts. Suppose
we consider a coordinate rectangle loop in the first two coordinates (x1, x2) exactly as above
in any coordinate system {xi} on an n-dimensional space with metric gij. The net change in
these components around the loop is therefore just

∆Zi|c ≈
(
∂X i

2

∂x1
− ∂X i

1

∂x2

)∣∣∣∣
x1=x10,x

2=x20

∆x1∆x2 .

Continuing further by evaluating these partial derivatives. First consider the partial derivative
term along ∂1, which comes from the(

∂X i
2

∂x1

)∣∣∣∣
x1=x10,x

2=x20

= −
(
∂

∂x1
(Γi2kZ

k)

)∣∣∣∣
x1=x10,x

2=x20

= −
(
∂Γi2k
∂x1

Zk + Γi2k
dZk

dx1

)∣∣∣∣
x1=x10,x

2=x20

= −(∂1Γi2k Z
k − Γi2kΓ

k
1mZ

m)|x1=x10,x
2=x20

,

using the original differential equation in the form

dZi

dx1
= −Γi1mZ

m

for the rate of change along the x1 sides of the parallelogram. Note that we can’t partial
differentiate Z since it is only defined along the curve by its differential equation along that
curve.



9.3. The limiting loop parallel transport calculation of curvature 565

Then evaluating the difference of this and the expression with the indices 1 and 2 inter-
changed, and then exchanging the dummy indices (k,m) in order to factor out Zk, yields

∆Zi|c ≈ [(Γi1k,2 − Γi2k,1)Zk + Γi2kΓ
k

1mZ
m − Γi1kΓ

k
2mZ

m]|x1=x10,x
2=x20

∆x1∆x2

≈ [(Γi1k,2 − Γi2k,1 + Γi2mΓm1k − Γi1mΓm2m)Zk]|x1=x10,x
2=x20

∆x1∆x2

≈ −Ri
k12Z

k|x1=x10,x
2=x20

∆x1∆x2 .

Thus

lim
(∆x1,∆x2)→(0,0)

∆Zi|c
∆x1∆x2

= −Ri
k12Z

k|x1=x10,x
2=x20

= −Ri
kmnZ

kXmY n|x1=x10,x
2=x20

= −Ωi
k(X, Y )Zk|x1=x10,x

2=x20
,

where X = ∂1, Y = ∂2 are the coordinate frame vector fields and

Ωi
k = Ri

kmndx
m ∧ dxn

is the matrix of curvature 2-forms, whose evaluation on the pair (X, Y ) which determine the
plane in the tangent space corresponding to the plane of the shrinking closed loop yields
Ωi

k(X, Y ) = Ri
kmnX

mXn = Ri
k12. This matrix, when its first index is lowered, is anti-

symmetric, and represents an “infinitesimal rotation,” or more precisely the instantaneous rate
of change of a rotation, which describes how the tangent vector starts to rotate under such a
parallel transport process once the increment factor ∆x1∆x2 is factored in

Z → Z −R(X, Y )Z∆x1∆x2 ,

where
[R(X, Y )Z]i ≡ Ri

jmnX
mY nZj ≡ [(∇X∇Y −∇Y∇X −∇[X,Y ])Z]i ,

although the last term on the right hand side of the last equality does not contribute to the
commuting coordinate frame vector fields.

This result is in fact true for any pair of commuting vector fields [X, Y ] = 0, for a parallelo-
gram formed by using the flow lines of the two vector fields. The sides of these parallelograms
correspond to the increments ∆λ1 and ∆λ2 which refer to the natural parameters along those
flow lines as in the case when the vector fields are actually coordinate frame derivatives. To
see how this derivation generalizes to two vector fields with a nonvanishing commutator, one
needs the geometric interpretation of the Lie bracket.

The limiting loop parallel transport frame curvature calculation

We saw that an additional term involving the commutators of the frame vector fields appears in
the component formula for the curvature tensor in a general frame compared with a coordinate
frame. Suppose we extend the previous calculation to any two vector fields X and Y whose
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Figure 9.8: When parallel transporting around the “open quadrilateral” determined by the
flow lines of a pair of vector fields, one must “close the quadrilateral” by adding the contribution
corresponding to the tangent vector given by the expression −[X, Y ]∆λ1∆λ2.

commutator [X, Y ] may not be zero. To do this, we need the geometric interpretation of the
Lie bracket discussed in section 6.7. In that discussion, Fig. 6.2 generalizes the coordinate
rectangle used above to an open quadrilateral, with the missing fifth side given to lowest order
in the increments ∆λ1 and ∆λ2 along the two flow lines of X and Y by ∆λ1∆λ2[X, Y ] when
identified with a figure in the tangent space.

Virtually the same calculation can be repeated in the component formula which results from
the 4 sides of the parallelogram in the coordinate calculation, leading to the expression for the
contributions from the 4 sides of the open quadrilateral, but one must add the additional Lie
bracket term to close the curve. This extra term provides exactly the extra commutator term
added into the formula previously obtained for the curvature tensor in a coordinate frame.
Letting X = ek and Y = e` and Z = ej so that R(X, Y )Z = R(ek, e`)ej = Ri

jklei, one recovers
that same frame component formula.

Exercise 9.3.1.
frame components of Riemann

Think through these details to convince yourself that they will work out as claimed.
�

The symmetry of the covariant derivative

While we are at it we can close another quadrilateral, formed instead by parallel transporting
each of a pair of vector fields along the other’s flow lines in opposite orders, as shown in Fig. 9.8.
For small enough X and Y at a starting point, we can parallel transport the other vector a unit
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Figure 9.9: Parallel transporting the values of Y and X a unit parameter distance along
the flow lines of X and Y respectively from a common starting point and comparing the final
tangent vectors there (those which appear parallel in the figure) with the actual values of those
vector fields there (which appear slightly changed), one finds a gap between the endpoints, thus
forming an “open quadrilateral” which is closed by the difference vector ∇XY −∇YX.
[TO DO: replace X and Y by εX and εY in caption and in figure.]

parameter distance along their flow line through that point, forming a closed parallelogram at
lowest order in the tangent space in the approximation that we can identify the nearby space
with this portion of the tangent space. If we then compare the parallel transported vector with
the actual value of the vector field at the new point, their difference will equal the covariant
derivative of the one with respect to the other in the limit region near the origin of the tangent
space.
[FIX]
To see this, adopting a sloppy but suggestive notation, we use the fact that the covariant
derivative along X measures the difference between a vector field and its parallel transported
vector along the flow lines of X, etc.

Y (x+X) ≈ Y||(x+X) + [∇XY ](x) , X(x+ Y ) ≈ Y||(x+ Y ) + [∇YX](x) .

The closer of the quadrilateral here is just the difference of the covariant derivatives ∇XY −
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∇YX. Let’s evaluate this quantity in a coordinate frame

[∇XY −∇YX]i = (Y i
,j + ΓikjY

k)Xj − (X i
,j + ΓikjX

k)Y j

= (Y i
,j −X i

,j) + ΓikjY
k)Xj − ΓijkX

jY k

= [X, Y ]i − (Γijk − Γikj︸ ︷︷ ︸
0

)XjY k = [X, Y ]i ,

since the antisymmetric part of the connection components in a coordinate frame vanish iden-
tically for the metric covariant derivative. The connection associated with a metric is called a
symmetric connection for this reason, and this condition is equivalent to the vanishing of the
so called torsion tensor

T (X, Y ) ≡ ∇XY −∇YX − [X, Y ] = T ijkX
jY k .

Returning to our calculation, we conclude that the Lie bracket of X and Y is the closer of
this parallel transport quadrilateral.
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Figure 9.10: Great circles near the equator of the sphere passing through common antipodal
points of the equator. After leaving one such point they refocus at the second point after a
distance of half the circumference of the sphere.

9.4 Positive curvature focusing of geodesics and negative

curvature defocusing

The most symmetric curved surface we know is a part of our daily lives: the sphere. If we
take any point on the sphere and send out geodesics in all directions, any pair of these great
circles are forced to move closer to each other with respect to their original tangent lines in
space at the initial point as one moves farther from that initial point, due to the constraint that
they remain within the surface but try not to veer left or right within the surface until finally
they meet each other at the antipodal point on the other side of the sphere. Because of the
high symmetry of the sphere, all the geodesics emanating from any point all “refocus” at the
same point an equal distance along each one. We can think of the geodesic circles about the
original point, which consists of all points an equal distance along each great circle from that
starting point, and as we move along the family of geodesics at unit speed in the arclength,
these circles expand outward and then contract until they shrink to a point at the antipodal
point. If we think of flashing a light at the initial point which moves outward in the surface
at unit speed, then these geodesic circles are the wave fronts and the geodesics themselves the
light rays which move orthogonally to the wavefront. The positive curvature of the sphere acts
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Figure 9.11: The Gaussian curvature versus polar angle on the unit torus (a, b) = (2, 1).

as a lens to refocus the light rays within a distance equal to the circumference of the sphere.
For any metric on a space, the family of geodesics emanating from a given point in all

directions is called the geodesic spray, as if we sprayed water in all directions and the droplets
kept moving in their original directions in the space without slowing down. As this spray
moves through regions of positive curvature, they are drawn closer together, i.e., are focused,
and the opposite situation holds for negative curvature, they move farther apart. The torus is
a simple surface which interpolates between maximum positive curvature at the outer equator
and maximum negative curvature (a minimum of the curvature which is negative) at the inner
horizon. Those geodesics which start out at the outer equator but fail to cross the inner equator
are reflected by the centrifugal potential barrier and sent back to the outer equator where they
meet their counterparts in the opposite upper/lower hemitorus: geodesics with initial tangent
vectors at equal angles above and below the outer equator meet again a certain distance along
the outer equator, and the same but shorter distance along each other. They are all refocused
together in pairs but the greater their initial separation angle, the farther along the outer
equator is their meeting point. However, as one decreases this angle to zero, the refocusing
point on the equator reaches a limiting point at a certain minimal distance from the starting
point which is a function of the curvature. Consider a point on the sphere itself and consider
shooting a geodesic at a small angle from the equator. No matter how small the angle it does
not come back to the equator until half the circumference of the equator is reached: πr0 is the
minimal refocusing length along that great circle and hence any great circle, since the length
is the same along both great circles.

Recall the result of Exercise 9.1.8 for half the curvature scalar which in the next chapter we
will see equals the Gaussian curvature

1

2
R = Rrθ

rθ = Rr̂
θ̂r̂θ̂ =

cos(r/b)

b(a+ b cos(r/b))
.
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This has the same sign as the cosine cos(r/b) = cosχ of the angle measured around the profile
circle from the outer equator. It is positive on the outer hemitorus and negative on the inner
hemitorus, with reflection symmetry between the upper and lower hemitori across either the
inner or outer equator, and is extremized at the equators themselves. The polar circles of zero
curvature separate the two regions of focusing by positive curvature and defocusing by negative
curvature, with the extreme lensing effect of each type occuring at the equators. Fig. 9.12
dramatically shows how the positive curvature region in the outer hemitorus focuses geodesics
quickest at the outer equator where a minimum distance exists before three geodesics leaving
an initial point on the outer equator at equal angles above and below that equator together
with the equatorial direction itself cross again on the equator, all equidistant from the point of
departure. The pair of orbits which skirt the polar circles mark the boundary inside which all
the geodesics between them intersect with their neighbors in the same upper/lower hemitorus.
Those bound geodesics (don’t cross the inner equator) which are outside this pair cross the
polar circles where they are increasingly distanced from each other until the cross back over in
their return to the outer equator.

Gravitational lensing on spacetime is a manifestation of this phenomenon. Anyone who has
some interest in popular expositions of our understanding of the universe knows the name of
Hawking. In his pre-celebrity days, Stephen Hawking and his collaborator Roger Penrose at
the time proved their singularity theorems which imply that general relativity always focuses
light rays as long as the material source of the gravitational field obeys a certain positive energy
condition, and it never defocuses them under that condition. Because of the rapidly increasing
sophistication of astrophysical instrumentation and clever data analysis, this has become an
important tool of modern theoretical astrophysics. Inflation, however, is caused by a quantum
field which does not obey the positive energy condition, allowing that phase of the universe to
be an exception to this behavior.

We can quantify this lensing effect of geodesics by considering a coordinate system adapted
to an affinely parametrized geodesic curve c(λ) extended to a 1-parameter family C(λ, σ) of
nearby geodesics which initially remain “near” the original geodesic c(λ), with C(λ, 0) = c(λ).
This represents a 2-surface in our space and we can then introduce the tangents to this surface

ui(λ, σ) =
∂Ci

∂λ
(λ, σ) , ηi(λ, σ) =

∂Ci

∂σ
(λ, σ)

so that along the original geodesic we have its tangent u and a “connecting vector” η along
that geodesic

ui(λ) =
∂Ci(λ, σ)

∂λ

∣∣∣∣
σ=0

, ηi(λ) =
∂Ci(λ, σ)

∂σ

∣∣∣∣
σ=0

with the geodesic condition holding for u

Dui

dλ
(λ) = 0 .

We can imagine the tip of ση(λ) for small values of σ as tracing out the path of a nearby
geodesic. Since u and η come from a coordinate grid in the surface, their commutator vanishes
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Figure 9.12: The spray of geodesics leaving the origin of coordinates in the first quadrant on the
unit ring torus (a, b) = (2, 1) for −π ≤ r ≤ π, 0 ≤ θ ≤ 2π (one azimuthal revolution). As one
increases the angle initial tangent vectors make with the meridians at the outer equator, first one
passes through the unbound geodesics which cross the inner equator at r = π (up to the thick
dashed curve which asymptotically approaches the inner equator), then the bound geodesics
with a smaller and smaller turning point radius r(max). Looking at where these geodesics cross
the Northern Polar Circle at r = π/2, starting at θ = 0 the crossing point moves to the right
through unbound geodesics and then into the bound geodesics where their turning point lowers
until it reaches that circle (the thick black geodesic, very close to the [3, 2, 0] closed geodesic
which is slightly higher), after which the geodesics which reach that circle overshoot it first,
crossing over and then returning to that circle as their second crossing point moves to the
right and the turning point rises. Note also the half wavelength ∆θ = π/

√
3 ≈ 1.81 of the

small oscillations about the outer equator. For 0 < θ < ∆θ only the outer equator itself
from this spray reaches points on that outer equator, but for ∆θ < θ < 2∆θ on the outer
equator, a second member of this family reaches the outer equator (with shorter length), while
for 2∆θ < θ < 3∆θ a third member of this family reaches the outer equator. Of course for
π < θ < 2π, shorter geodesics arrive from the opposite azimuthal direction.
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[u, η] = 0 and the symmetry condition on the connection means that on that surface

∇uη −∇ηu = [u, η] = 0 .

This equation makes sense since both vector fields are defined on the surface along which we
are differentiating, and these covariant derivatives equal the corresponding covariant derivatives
along their flow lines (∇u → D/dλ,∇v → D/dσ)) so

Du

dσ
− Dη

dλ
= 0 .

If we apply the definition of the curvature tensor with the commuting vector fields u, η on
the 2-surface, we find (using the geodesic condition on u)

Ri
jmnu

jumηn =
(
∇u∇η −∇η∇u

)
ui

=

(
D

dλ

D

dσ
− D

dσ

D

dλ

)
ui

=
D2ηi

dλ2

Evaluating this at σ = 0 along the original geodesic, we obtain the Jacobi equation of geodesic
deviation

D2ηi

dλ2
= Ri

jmnu
jumηn = −Ri

jmnu
jηmun .

This is particularly simple for a surface where there are no extra dimensions and only one
independent component of the curvature tensor. Note that only the component of η orthogonal
to u contributes to the right hand side since Ri

jmnu
jumun = 0 due to the antisymmetry in

the last index pair, while the right hand side only has a component orthogonal to u since
uiR

i
jmnu

jumηn = 0 due to the antisymmetry in the first index pair. We can then orthogonally

decompose η = ζN̂ +αT̂ along the unit tangent T̂ = û along the geodesic and the intrinsic unit
normal N̂ = η̂ within the surface. Both of these unit vectors are parallel transported along the
geodesic

0 =
DT̂

dλ
=
DN̂

dλ
so we get

D2α

dλ2
T̂ +

D2ζ̂

dλ2
N̂ = −ζRi

jmnu
jN̂munei = − sgn(N̂)

(
N̂iζR

i
jmnu

jN̂mun
)
N̂ ,

where we have projected the right hand side along the unit normal whose sign is sgn(N̂) = N̂ iN̂
i

in the event that our metric is not positive-definite. The tangential component of this equation
D2α/dλ = 0 requires α to be a linear function of the affine parameter, while the normal
component of the equation reduces to the scalar equation

d2ζ

dλ2
+ ζ sgn(N̂)

(
N̂iR

i
jmnu

jN̂mun
)

= 0 .
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If we specialize this to an arclength parametrization λ = s so that u = û = T̂ , then it becomes

d2ζ

ds2
+ ζ sgn(N̂)

(
N̂iR

i
jmnT̂

jN̂mT̂ n
)

= 0 .

In the orthonormal frame (e1̂, e2̂) = (T̂ , N̂) arising from an unnormalized frame (e1, e2), the
curvature component expression

sgn(N̂)R2̂1̂2̂1̂ = R2̂
1̂2̂1̂ = sgn(T̂ )R2̂1̂

2̂1̂ = sgn(T̂ )R21
21 ≡ sgn(?)Rgauss

is just the Gaussian curvature K of the surface up to a sign which is positive in the positive-
definite case. Thus apart from a sign, the Gaussian curvature coefficient plays the role of a
squared frequency when it is positive leading to oscillations in the solutions which is easy to
analyze when the geodesic is a line of curvature along which this coefficient is constant. This
means that a geodesic departing at a small angle from the base geodesic c on which this analysis
is based will reach a maximum displacement from that geodesic and return to cross it. Thus
positive curvature (ignoring the complications of the extra signs in the nonpositive-definite
case) leads to a refocusing effect on the geodesic spray from the given geodesic, causing them
to reconverge on that geodesic at what is called a Jacobi point. On the other hand a negative
curvature spreads out the nearby geodesics exponentially, defocusing them.

The geodesic deviation equation

d2ζ

ds2
+Kζ = 0

has constant K along a geodesic line of curvature and when K > 0 has oscillating solutions

ζ = A cos(Ωs) +B sin(Ωs) = A cos(2πs/Λ) +B sin(2πs/Λ) , Ω =
√
K , Λ = 2π/Ω .

This has a convergence arclength of half a wavelength L = Λ/2 = π/
√
K.

Exercise 9.4.1.
meridians on ellipsoid of revolution

An ellipsoid of revolution was introduced in Exercise 9.1.6. Here we adopt the parametriza-
tion

〈x, y, z〉 = 〈a sin θ cosφ, a sin θ sinφ, b cos θ〉 ,
leading to its metric

ds2 = a2 cos2 θ dφ2 + (a2 + (b2 − a2) cos2 θ)dθ2 ,

namely

gθθ =
b2

a2 + (b2 − a2) cos2 θ
, gφφ = a2 cos2 θ .

a) Evaluate its nonzero connection components

Γφφθ = Γφθφ = − tan θ , Γθφφ =
a2 cos θ sin θ

a2 + (b2 − a2) cos2 θ
, Γθθθ =

(a2 − b2) cos θ sin θ

a2 + (b2 − a2) cos2 θ
.
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b) Evaluate the nonzero curvature component

Rφ
θφθ =

b2

(a2 + (b2 − a2) cos2 θ)2
.

c) The meridians φ = φ0, θ = θ(λ) are geodesics so nearby meridians satisfy the geodesic
deviation equation. If we assume λ is an arclength parametrization then

ui =
dxi

dλ
= δiθ

dθ

dλ
= δiθg

−1/2
θθ .

Why?
d) Let ηi = η0δ

i
φ or η = η0∂/∂φ be a separation vector between nearby meridians. Using

the chain rule df/dλ = f,θdθ/dλ, show that

Dηi

dλ
= δiφΓφθφg

−1/2
θθ .

e) Show that this separation vector satisfies

D2ηi

dλ2
= −δiφRφ

θφθg
θθη0 .

Show that this is equivalent to being a solution of the geodesic deviation equation.
�

Exercise 9.4.2.
minimum convergence length on the ellipsoid of revolution

The equator θ = π/2 is a geodesic along which the curvature is constant with value
Kgauss = b2/a4, so that ω = b/a2 and L = πa2/b. The condition that this be less than
half the circumference of the equator (like a sphere) is

πa2

b
< πa→ b

a
< 1 ,

so oblate ellipsoids b/a < 1 have a shorter convergence length, while prolate ellipsoids b/a > 1
have a longer value. For a simple closed geodesic (which has no self-intersections), at least
two full oscillations about the equator must take place during one azimuthal revolution, which
requires b/a < 1/2.

a) Use a computer algebra system to find the angle of inclination from the equator at
(θ, φ) = (0, 0) of the simple closed geodesic which makes exactly two oscillations about the
equator during one azimuthal revolution for b/a = 0.45 using trial and error. Exactly one such
geodesic exists for 1/3 < b/a < 1/2. Repeat for b/a = 0.4. Raising the departure angle from
the equator lengthens the focal length so for each ellipsoid in this interval, sufficiently increasing
the focal length on the equator to half its circumference leads to this closed geodesic.
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b) For 1/4 < b/a < 1/3 there is a simple closed geodesic with three oscillations away from
the equator during one full azimuthal revolution. Find it for b/a = 0.3. It appears that for
1/(m − 1) < b/a < 1/m there exist simple closed geodesics making m oscillations during one
azimuthal revolution, except for n = 1 where increasing the departure angle to π/2 leads only
to the meridian geodesic at this limiting value.

One can extend this analysis to closed geodesics which makem oscillations about the equator
during n azimuthal oscillations, as for the torus analysis. Similar considerations apply to any
geodesic with constant positive curvature, like the concave inward extremal parallels of a surface
of revolution.

�

Exercise 9.4.3.
minimum convergence length on the torus

a) Evaluate the convergence arclength L for the outer equator of the torus which is a line
of constant curvature

Rgauss =
cos(r/b)

b(a+ b cos(r/b))

∣∣∣∣
r=0

=
1

b(a+ b)

which is the maximum value of the curvature function, and hence leads to the minimum conver-
gence length. What fraction of the total circumference of the outer equator does this represent
in general and for the unit torus (a, b) = (2, 1)?

b) Show that L reduces to half the circumference of a sphere in the degenerate case a = 0.
c) What is the condition on the ratio a/b = c+ 1 for which the outer equator circumference

2π(a + b) is an integer multiple of the convergence length L? Show that it is simply that
c + 2 = (a + b)/b = a/b + 1 = n2 is a perfect square. n = 1 corresponds to the sphere a = 0,
while n = 2 corresponds to the ratio a/b = 3, which allows one complete oscillation between
antipodal points of the outer equator, and n = 3 corresponds to the ratio a/b = 8.

�

Exercise 9.4.4.
minimum convergence length on the cavatappo surfaces

Redo the previous exercise for the cavatappo surfaces 1.0 and 2.0. How does the vertical
stretching out of the torus to create these surfaces affect the minimum convergence length?

�

Exercise 9.4.5.
curvature of elliptic paraboloid

a) Use a computer algebra system to evaluate the curvature scalar for the elliptic paraboloid
of Exercise 1.6.12

z = g(x, y) =
1

2

(
9x2 + 4y2

)
.
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using the parametrization

〈x, y, z〉 = 〈2ρ cosφ, 3ρ sinφ, 18ρ2〉 .

b) Show that the value of half the curvature scalar at the vertex ρ = 0 equals the determinant
of the matrix of second derivatives of the original function g(x, y) with respect to the Cartesian
coordinates.

�

Exercise 9.4.6.
curvature of pseudospheres compared to corresponding hyperboloids in R3

a) Use a computer algebra system to evaluate the curvature scalar for the pseudospheres of
3-dimensional Minkowski spacetime discussed in Section 8.7.

b) Compare the constant negative curvature for the spacelike pseudospheres inside the light
cone to the corresponding positive curvature hyperbolas of revolution in R3. What is the
extremal curvature in the Euclidean case (maximal absolute value of the curvature), which
clearly has to occur at the vertex on the axis of revolution of the surface?

c) Compare the constant curvature for the timelike pseudospheres outside the light cone
with the corresponding negative curvature hyberbolas of revolution R3. What is the extremal
curvature of the latter surfaces (maximal absolute value of the curvature), which clearly has to
exist on the throat of the surface? Can you figure out the correct sign for the geodesic deviation
equation on the pseudospherical surfaces of this type?

d) What can you say about the minimal geodesic convergence length for the positive cur-
vature hyperboloid?

�
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10.1 The extrinsic curvature tensor

a) b) c)

Figure 10.1: Two independent factors cause the surface normal to rotate as one moves along
a curve: the rotation of the normal to the curve itself and the further sideways rotation due to
the tilting of the surface along the curve. In a) only the sideways rotation along the straight
line vertical cross-sectional curve is present. In b) along a line of curvature, the curve normal
coincides with the surface normal so only the first rotation is present. Moving along a general
cross-sectional curve like c), the normal must rotate because the curve itself is bending and
because the surface is tilting underneath the curve with respect to the horizontal direction.

In multivariable calculus we encounter our first quantitative measure of curvature general-
izing the inverse relationship between the radius of a circle and how tightly it is curved—we
define the curvature of a circle to be the reciprocal of its radius to get started, and then we
generalize this to other curves using the machinery of the unit tangent and unit normal to the
curve, reviewed in Appendix C. Given a parametrized curve

x = x(t) , y = y(t) , z = z(t)↔ ~r = ~r(t) ,

and its tangent vector ~r ′(t), we can introduce a differential element of arclength ds along it

ds

dt
(t) = |~r ′(t)|

but in general we cannot integrate this exactly to yield an arclength function along the curve so
that we can reparametrize it by the arclength. However, we can use the chain rule to evaluate
arclength derivatives along the curve without reparametrization. The unit tangent is the first
arclength derivative of the position vector of the curve, and the second derivative of the position
vector (first derivative of the unit tangent) determines the unit normal as its direction and the
nonnegative curvature as its length. The curvature actually measures how fast the unit tangent
and orthogonal unit normal rotate in their plane relative to vectors which are momentarily not
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rotating as one moves along the curve, and so is a kind of angular velocity, a fact not mentioned
in multivariable calculus. The curving of the curve is quantified by how its direction, the unit
tangent, rotates. We visualize this by introducing the osculating circle which is the circle of
best fit to the curve at each point, using the reciprocal of the curvature as its radius, the radius
of curvature of the curve, and its center a distance equal to that radius along the unit normal
vector.

Surfaces are first encountered in multivariable calculus as graphs of functions of two variables
z = f(x, y) realized as surfaces in R3. However, these are very restrictive so to be able to
handle any kind of surface efficiently, we must follow the example of parametrized curves. A
parametrized surface is handled just like a parametrized curve but with two parameters as
reviewed in Appendix D

x = x(u, v) , y = y(u, v) , z = z(u, v)↔ ~r = ~r(u, v) = r(u1, u2) ,

where we can use the indexed parameters when needed for indexed formulas. We can think
of this 2-parameter set of points as a 1-parameter family of curves in two different ways. By
holding v fixed we get a curve parametrized by u, and by holding u fixed we get a curve
parametrized by v. Together these two families of curves form a grid on the surface which is
used by computer algebra systems to give some 3-d perspective to the screen representations
of surfaces in 3-d graphics. An actual grid is taken by showing equally spaced curves in each of
the parameter intervals used to graph the surface. In other words one takes the more familiar
rectangular grid in the u-v parameter plane and maps it onto the surface in R3. One can then
apply all the machinery to analyze the two families of curves, each with their own tangent
vector, unit tangent, unit normal, curvature and osculating circle. From this information we
would like some measure of the curvature of the surface they form. This is the idea of the
extrinsic curvature of a surface.

Each unit normal to each of the grid lines rotates in general but this does not mean the
surface is bending unless the tangent plane formed by the span of the two tangent vectors
changes orientation. (Any nonrectangular parametrization of a flat plane would have a curved
grid, but the surface would still be flat.) This is only reflected in the changing direction of the
normal to the tangent plane. A unit normal is created by taking the cross-product of the two
tangent vectors and normalizing it to a unit vector ~n. The ordering of the two parameters picks
out a unique such unit normal through this cross product of the tangent vectors in that order,
and so associates what is called an outer orientation to the surface, just a choice of one side or
the other of the tangent plane.

The extrinsic curvature of a truly “curved surface” in space (R3) is characterized by the
fact that as one moves about on the surface, the surface bends, which can be qualitatively
measured by the rotation of the direction of the normal to the surface. This is what bending
means. A changing unit normal can only rotate since its length is constant. But if the tip of
the normal rotates, it moves initially in the direction orthogonal to itself, which is to say, along
a direction tangent to the surface, just like the radial unit normal to an ordinary sphere which
rotates in the direction tangential to the sphere as one moves about on that sphere. Figure
10.1 illustrates the situation. Since one can move in any direction in the tangent plane to the
surface to move along the surface, the initial arclength rate of change of the normal in that
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direction is another vector in the tangent plane. In other words to measure the bending of
the surface at a point, we need a function from tangent vectors in the tangent plane to new
tangent vectors in the tangent plane, giving the arclength derivative of the unit normal as a
function of the tangent vector to each curve moving away from that point within the surface.
This turns out to be a linear map from vectors to vectors in the 2-dimensional tangent space to
the surface, namely a mixed second rank tensor. This is called the extrinsic curvature tensor,
and lives in the 2-dimensional tangent space to the surface.

If n is a unit normal vector field defined over a surface, and X is a tangent vector belonging
to the tangent plane to the surface (for short a “surface vector”: n · X = 0) at some point,
then it makes sense to differentiate the normal along X since n is only defined on the surface
itself. A simple calculation then backs up the previous claim about how the normal is allowed
to change

n · n = 1
∇X→ (∇Xn) · n+ n · (∇Xn) = 0→ n · (∇Xn) = 0 .

This result states that the derivative of the normal along the surface must be orthogonal to
the normal and hence it lies in the subspace of the tangent space corresponding to the tangent
plane to the surface. Thus ∇Xn is again a surface vector, so

X → ∇Xn ≡ −K(X) ≡ S(X)

defines a linear transformation of the subspace of the full tangent space which is tangent to
the surface. This linear transformation can be identified with a (1

1)-tensor in the tangent space
which takes surface vectors to surface vectors, and it can be extended by linearity to any
input vector which is not necessarily a surface vector by setting K(n) = 0. K is called the
extrinsic curvature tensor (useful in general relativity), while its sign-reversal S is called the
shape operator, since as we will see it describes the shape of the surface within the enveloping
space in which it sits. Expressed in components we have

K(X)i = Ki
jX

j .

The overall sign of the extrinsic curvature is not really significant except in relation to the
chosen normal, since changing the sign of the normal vector simply reverses the side of the
tangent plane on which it lies and changes the sign of the extrinsic curvature as well. Any
geometry associated with the extrinsic curvature tensor must be understood to be related to
the choice of one of the two possible continuous unit normal vector fields defined on the surface,
assuming that such a continuous choice is possible. Orientable surfaces have this property.

If Y is another surface vector, then we can dot it into this expression using the metric

−Y · ∇Xn = Y ·K(X) = Y kgkiK
i
jX

j ≡ KkjY
kXj = K[(Y,X) ,

which leads to the value of the index lowered (0
2)-tensor on the two vectors. However, if Y is a

surface vector, it is orthogonal to the normal

Y · n = 0 ,
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so if one differentiates this condition, one finds

0 = ∇X(Y · n) = (∇XY ) · n+ Y · ∇Xn = n · (∇XY )− Y ·K(X) = n · (∇XY )−K[(Y,X) ,

and therefore
K[(Y,X) = n · (∇XY ) = −S[(Y,X) .

This says that the full evaluation of the covariant form of the extrinsic curvature tensor on two
surface vectors is the normal component of the derivative of one surface vector along the other.

In fact this covariant extrinsic curvature tensor is a symmetric tensor

K[(X, Y ) = K[(Y,X)↔ Kij = Kji ,

whose sign-reversal S[ = −K[ is called the second fundamental form of the surface in classical
differential geometry, the first fundamental form being the metric tensor of the surface. These
two tensors are both symmetric covariant tensors, which are called quadratic forms in the
old language, just another name for a quadratic function of a vector variable. The intrinsic
metric of the surface determines its intrinsic geometry, while the extrinsic curvature tensor
determines its extrinsic geometry within the larger space, so they are both fundamental to the
geometry of the surface in the context of the larger space. Since a symmetric 2× 2 matrix has
three independent components, these six functions associated with these two symmetric tensors
on the surface determine the local geometrical properties of the surface. The sign difference
between the extrinsic curvature and the second fundamental form is a matter of convention
related to converging versus diverging world lines in general relativity (the gravitational field
is attractive).

To show this symmetry property of the extrinsic curvature tensor easily, consider two vector
fields X and Y defined throughout space whose values on the surface are surface vectors, and
whose Lie bracket [X, Y ] on the surface is also a surface vector. If X and Y truly are surface
vectors, they can be represented in terms of coordinates on the surface, and in those coordinates
one can compute their Lie bracket, which will be a linear combination of the surface coordinate
frame vectors, and hence will also be a surface vector. In fact the condition that two vector
fields which are linearly independent at each point be tangent to 2-surfaces is that their Lie
bracket be expressible as a linear combination of the two vector fields themselves on those
2-surfaces for exactly this reason.

The condition that the metric connection be symmetric was shown to be

∇XY −∇YX = [X, Y ]↔ Γkij = Γkji (coordinate components only) .

Now dot this equation with n to get the covariant extrinsic curvature on the left hand side

K[(Y,X)−K[(X, Y ) = n · ∇XY − n · ∇YX = n · [X, Y ] = 0 ,

which vanishes if [X, Y ] is also a surface vector as assumed.
Is it a problem to have assumed that X, Y , and [X, Y ] are vector fields defined throughout

space whose values on the surface belong to the subspace of the tangent space along the surface,
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rather than only being defined on the surface itself? No. Suppose we take any function x1′

on space for which the surface in question is a level surface of this function x1′ = x1′
0 , and let

x2′ , x3′ be any two other independent differentiable functions such that the Jacobian matrix
∂xi

′
/∂xj has a nonzero derivative everywhere on the surface. {xi′} can then be taken as a new

system of coordinates which are adapted to this surface, in which any vector field which has a
vanishing first component on the surface is a surface vector there. Obviously the Lie bracket
of any two such vector fields is also a surface vector on the surface. Basically such vector fields
on the whole space extend vector fields defined only on the surface so that when their values
on the surface are considered, directions off the surface are irrelevant.

Note that
K[(X,X) = −X · ∇Xn = n · ∇XX = −S[(X,X) .

Suppose we let X = T̂ (t) be the unit tangent to a curve c(t) in the surface which is the cross-
section of the surface by a plane through the normal line to the surface at c(t0). This is by
definition a plane curve whose unit normal vector N̂(t) (the direction of T̂ ′(t0)) therefore lies in
the same plane, and lies on the side of the tangent line in that plane on which the curve itself lies
(as long as the curvature is nonzero). Call such a curve at this point a normal cross-sectional
curve there.

Then modulo the sign, by construction the unit normal to this normal cross-sectional curve
is the normal to the surface at the given point: N̂(t0) = ±n|c(t0), where the sign here depends on
which side of the surface the choice of surface normal lies in comparison to the curve’s normal
whose direction is determined. Thus the covariant extrinsic curvature component along the
unit tangent

K[(T̂ (t0), T̂ (t0)) = n|c(t0) · ∇T̂ (t0)T̂ (t0) = ±N̂(t0) · ∇T̂ (t0)T̂ (t0) = ±κ(t0)

is just the curvature of the curve modulo the sign since ∇T̂ (t)T̂ (t) = κ(t)N̂(t) equals the
arclength derivative of the unit tangent along the curve. Thus the extrinsic curvature tensor
is a machine which produces the curvature of such normal cross-sectional curves along any
direction within the surface at each point of the surface.

As a symmetric second rank tensor represented by a 2×2 symmetric matrix in an orthonor-
mal frame, the extrinsic curvature can always be diagonalized by an orthogonal transformation
(rotation) by expressing it in an orthogonal frame of eigenvectors, which are called the prin-
cipal directions of the extrinsic curvature, while the eigenvalues (reversed in sign) are called
the principal curvatures k1 and k2. Since the overall sign of these eigenvalues is reversed by
changing the sign of the normal vector field, only their relative sign has any significance. Let
ri = 1/|ki| define corresponding radii of curvature. However, for the sphere of radius r0 where
we want curvature to be positive for an outward normal (see Fig. 10.2 a), corresponding to a
bending away of the nearby normals, it is the sign-reversed extrinsic curvature which has the
repeated eigenvalue k1 = k2 = 1/r0, so it makes sense to call the eigenvalues of the sign-reversed
extrinsic curvature the principal curvatures. The eigenvectors (tangent vectors in the tangent
plane to the surface) are called the principal directions of curvature and are always orthogonal.
Each has an osculating circle associated with the normal plane cross-section of the surface (the
intersection with the surface of a plane through the normal line) in that direction which are
the circles of best fit to the surface in these two orthogonal directions.
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Figure 10.2: To compare the normal at a nearby new point (approximately at the tip of X in
the tangent plane) with the normal at that starting point, one must parallel transport the new
normal back to the original point and then take the difference. This difference then approaches
the covariant derivative of the normal in the limit of small displacement. In figure a) where n
is antiparallel to N̂ , as one moves along a principal direction of curvature, when the principal
curvature along that direction is positive (but a negative eigenvalue of the extrinsic curvature)
the normal rotates towards the direction of motion, i.e., away from itself. In figure b) where
n is parallel to N̂ , when that principal curvature is negative (but a positive eigenvalue of the
extrinsic curvature), the normal vector rotates backwards, i.e., towards itself. On the other
hand when the extrinsic curvature is positive as in case b), the normal lines converge, useful in
describing the paths of self-gravitating particles in spacetime which tend to attract each other.
Interestingly enough for a spacelike surface in 3-dimensional Minkowski spacetime, the normals
in figures (a) and (b) behave oppositely (for the concave up case as you move from the vertical
normal at the center the normals tilt farther away from that vertical normal rather than back
towards it.)

Points for which the two eigenvalues are equal are called umbilic points, and all directions
at such points are principal directions. Points may be classified by the relative signs of the two
eigenvalues. If they are both the same (opposite) sign, a point is called elliptic (hyperbolic),
while if one is zero but the other is not, the point is called parabolic. For elliptic points
the centers of curvature of the two osculating circles for cross-sectional curves along the two
principal directions are on the same side of the surface (like for a sphere or ellipsoid), but on
the opposite side for hyperbolic points (like a saddle). For a cylinder which bends only along
one direction (perpendicular to its axis of symmetry), all points are parabolic.

At nonumbilic points, lines of curvature are defined as curves whose tangent is a principal
directions of curvature, i.e., an eigenvector of the extrinsic curvature at each point along the
curve. For a surface with isolated umbilic points, no special care is required to implement this
concept, but on a surface like a sphere where all directions are principal directions, one loses
these special curves. It might be interesting as an example to see what happens in the case
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of a family say of triaxial ellipsoids (unequal principal axes) whose limit is a sphere. These
complications do not seem to be discussed in the introductory discussions one finds available
electronically.

The trace and determinant of the component matrix K of the extrinsic curvature tensor
K are invariants, since under a change of frame the matrix transforms according to K ′ =
AK A−1, and TrK = TrK ′ and detK = detK ′. One can therefore evaluate them in a frame
of eigenvectors in terms of the eigenvalues. The trace of the extrinsic curvature tensor reversed
in sign −TrK = −Ki

i = k1 + k2 is the sum of the principal curvatures, called the mean
curvature, while its determinant detK = k1k2 is their product (independent of the arbitrary
overall sign of the extrinsic curvature), called the Gaussian curvature. We will see later that this
is very closely related to the Riemannian curvature. When the Gaussian curvature is positive
(elliptic points), the surface is said to be positively curved and the surface locally lies on one
side of its tangent plane. When the Gaussian curvature is negative (hyperbolic points), the
surface is said to be negatively curved, and the tangent plane must cut the surface (like in the
case of a saddle) since some normals to normal cross-sectional curves lie on one side of the plane
and others lie on the opposite side. When the Gaussian curvature is zero (parabolic points),
the surface is just said to be flat. Of course here we are assuming Euclidean geometry. In the
geometry of 3-dimensional Minkowsi spacetime, these statements change.

The sign of the principal curvatures indicates whether the surface is bending up or down with
respect to the normal direction. A positive principal curvature means that the normal is rotating
away from the current normal direction as one moves along the associated principal direction
(bending down) while a negative one means that it is rotating towards the current normal
direction (bending up). Figure 10.2 shows the two cases. A zero value of a principal curvature
means that the normal is not rotating along that direction. Another way of understanding the
sign of the principal curvatures is to imagine following the normal lines to the surface in the
direction of the normal vector. Positive curvature means that these normal lines are spreading
apart from each other, while negative curvature means that they are converging towards each
other. The extrinsic curvatures, terminology used in the application of differential geometry
to general relativity, the relativistic theory of gravity, have the opposite sign compared to the
principal curvatures so that positive values correspond to convergence of the normal lines, which
is useful in applications to gravitational theory where the presence of mass leads to convergence
of the geodesic paths of test particles because of the attractive nature of gravity.

One way of comparing all the normals to a surface in space is simply to parallel transport
them all to the same point in space (say the origin of R3), with their initial points at the origin of
the tangent space, so that their tips all lie on the unit sphere in that tangent space. This enables
one to interpret the normal vector field as a map from the surface to the unit sphere, which is
called the Gauss map. For a sphere of any radius about the origin, for example, this Gauss map
just projects a point on that sphere to the corresponding point on the unit sphere obtained by
just dividing the position vector by its length. For a vertical cylinder whose symmetry axis is
the z-axis, and whose normals are therefore all horizontal pointing in all possible horizontal
directions, the Gauss map sends all the normals to the equator of the unit sphere, tracing out
the entire equator. For a more irregular surface like the saddle of figure 10.1, the Gauss map is
more complicated. Figure 10.3 shows the image of the Gauss map for the three curves shown
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Figure 10.3: If one plots the normals with their tails all at the origin, one visualizes the Gauss
map from the surface to the unit sphere. Here the images of the three curves from figure 10.1
are shown in the part of the unit sphere 0 ≤ θ ≤ π/2, π/2 ≤ φ ≤ 3π/4 above the first half of
the second quadrant of the horizontal plane.

in figure 10.1.
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10.2 Spheres, cylinders and cones: some useful concrete

examples

Rather than launching into an abstract discussion leading to a formula for the components of
the extrinsic curvature in a coordinate system adapted to a general surface, let’s get explicit.
Spheres and cylinders in R3 are good examples of surfaces which respectively have nontrivial
intrinsic and extrinsic curvature (spheres) or are extrinsically curved but intrinsically flat (cylin-
ders). Because these surfaces reside within a flat 3-space, the intrinsic and extrinsic curvatures
are locked together in a way that can be quantified with a simple calculation.

In both cylindrical coordinates {ρ, φ, z} and spherical coordinates {r, θ, φ}, the first coordi-
nate is adapted to these surfaces: cylinders of radius ρ with the z-axis as a symmetry axis and
spheres of radius r centered at the origin. Holding these fixed, the remaining two coordinates
serve to describe the corresponding surface.

The orthonormal frame {er̂, eθ̂, eφ̂} is adapted to the family of concentric spheres of radius
r, for which n = er̂ is the unit normal vector field, which happens to be covariant constant in
its own direction. {eθ̂, eφ̂} provide an orthonormal frame for the vector fields which are tangent
to each sphere in the sense that they belong to the subspace of the tangent space containing
the angular directions along the sphere. From the definition of the extrinsic curvature tensor,
we can re-interpret the covariant derivative relations

∇eθ̂er̂ = Γθ̂ θ̂r̂︸︷︷︸
−K θ̂

θ̂ = r−1

eθ̂ + Γφ̂θ̂r̂︸︷︷︸
−K φ̂

θ̂ = 0

eφ̂ ,

∇eφ̂er̂ = Γθ̂ φ̂r̂︸︷︷︸
−K θ̂

φ̂ = 0

eθ̂ + Γφ̂φ̂r̂︸︷︷︸
−K φ̂

φ̂ = r−1

eφ̂ .

reading off the values of the connection components found in section 7.3. The extrinsic curvature
tensor is therefore proportional to the identity tensor on the subspace

−K = r−1Id(2) ↔ −K î
ĵ = r−1δij , i, j = 2, 3 ,

which means that the covariant form of the extrinsic curvature tensor is proportional to the
metric of the sphere

−K[ = r−1(ωθ̂ ⊗ ωθ̂ + ωφ̂ ⊗ ωφ̂) .

This means that the spherical orthonormal frame vectors tangent to the sphere are eigenvectors
of the extrinsic curvature tensor with eigenvalues both equal to the sign-reversed reciprocal
radius of the sphere. The principal curvatures are therefore both equal to r−1 = k1 = k2 and
the sphere is an umbilic surface consisting entirely of umbilic points. Since the single indpendent
eigenvalue is degenerate, all directions in the subspace of the tangent space along the sphere
are equivalent: the extrinsic curvature is invariant under rotations of the tangent space about
the radial direction. The Gaussian curvature k1k2 = r−2 is positive and constant.
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Notice that the integral of the Gaussian curvature over the sphere is just this constant 1/r2

times the surface area A = 4πr2 of the sphere, namely just 4π. This is not a coincidence but
reflects something much deeper (associated with the Gauss-Bonnet Theorem).

The connection 1-form matrix can be then written

ω̂ = −K θ̂
θ̂ω

θ̂

0 −1 0
1 0 0
0 0 0

−K φ̂
φ̂ω

φ̂

0 0 −1
0 0 0
1 0 0

+ ωθ̂ φ̂

0 0 0
0 0 −1
0 1 0


= dθ

0 −1 0
1 0 0
0 0 0

+ sin θ dφ

0 0 −1
0 0 0
1 0 0

+ cos θ dφ

0 0 0
0 0 −1
0 1 0

 ,

showing its decomposition into the θ-φ block describing the intrinsic covariant derivative on the
spheres and the remaining extrinsic part describing the rotation of the normal as one moves
along the sphere. The two rotations of the adapted orthonormal frame rotate surface vectors as
the surface tilts to keep them in the surface, while the intrinsic rotation simply rotates about
the normal direction within the surface. This is indeed the case for more general situations
of a p-surface within an n-dimensional space in which adapted coordinates pick out this p-
surface and an orthonormal frame is adapted to the corresponding orthogonal decomposition
of its tangent spaces. The connection 1-form matrix generates rotations/pseudorotations of
the adapted orthonormal frame consisting of one part with leaves those elements of the frame
orthogonal to the surface fixed (intrinsic rotations) and those which rotate those extrinsic
frame vectors, which describe a generalized extrinsic curvature with an extra index to take into
account the multiple normal directions.

If we repeat this for the cylinders of cylindrical coordinates, then eρ̂ is the unit normal
vector field (also covariant constant along its own direction) which only rotates if one moves
horizontally around the cylinders, but remains constant along the vertical direction

∇eφ̂eρ̂ = Γφ̂φ̂ρ̂︸︷︷︸
−K φ̂

φ̂ = ρ−1

eφ̂ + Γφ̂φ̂ρ̂︸︷︷︸
−K ẑ

φ̂ = 0

eẑ ,

∇eẑeρ̂ = Γφ̂ẑρ̂︸︷︷︸
−K φ̂

ẑ = 0

eφ̂ + Γẑ ẑρ̂︸︷︷︸
−K ẑ

ẑ = 0

eẑ ,

so

S = −K = ρ−1eφ̂ ⊗ ωφ̂ .

The two frame vectors eφ̂, eẑ spanning the cylinder directions are eigenvectors of the extrinsic

curvature tensor but with distinct eigenvalues −ρ−1 and 0, corresponding to the bending of the
surface only in the angular direction, with the radius of curvature equal to the radius of the
circular cross-section. The Gaussian curvature is zero, which is a consequence of the fact that
its intrinsic geometry is flat, as we will see later.
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The connection 1-form matrix here consists only of the single extrinsic curvature term since
the intrinsic cylindrical geometry is flat

ω̂ = −K φ̂
φ̂ω

φ̂︸ ︷︷ ︸
dφ

0 −1 0
1 0 0
0 0 0

 .

The two frame vectors eφ̂, eẑ are principal directions, and their coordinate lines are (orthogonal)
lines of curvature. Notice that they are also geodesics.

Cones: a useful cautionary example

Most of what we do is local, but global issues are important. The coordinate surfaces of the
polar angle θ in spherical coordinates measured down from the positive z-axis are half cones,
which are intrinsically flat but not differentiable at the vertex. This single problem point leads
to very interesting global curvature effects. Like unwrapping a cylinder by cutting it along a
coordinate line of z and flattening it out into a strip of a plane, a cone can be cut along a ray of
the azimuthal φ coordinate line and flattening it out into a plane with a wedge missing. This
missing wedge leads to a nontrivial rotation of any vector parallel transported around a loop
that contains the vertex, even though on every loop that does not contain the vertex if one
parallel transports a vector around it, the vector returns to its original position.
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Figure 10.4: Parallel transport around a circle centered on the vertex of a cone of the polar
angle θ in spherical coordinates, which has an angular “defect” ∆ = 2π(1− sin θ).

Figure 10.4 nicely illustrates this feature of the conical geometry. The circumference of a φ-
coordinate line is C = 2πρ = 2πr sin θ, but when the cone is cut along the φ = 0 coordinate line
and flattened out to a plane, the resulting circle has larger circumference 2πr. The difference
defines the defect angle

2πr − 2πr sin θ = r∆→ ∆ = 2π(1− sin θ) .

An angle θ = π/6 leads to ∆ = π, for example, while an angle θ ≈ 48.6 degrees leads to
∆ = π/2 and an angle θ ≈ 66.4 degrees leads to ∆ = π/6.
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When the radial unit vector r̂ is parallel transported from the cut around the φ coordinate
circle in the clockwise direction, remaining horizontal in the flattened cone, it will have rotated
forward by the defect angle when it returns to the cut. Any circle in the flattened out cone
which does not contain the vertex will have no such rotation associated with it. Thus although
the cone is locally flat, it has a global property of curvature due to the single bad point at its
vertex. Such global issues can have important physical consequences.

This feature of parallel transport was investigated in Exercise 8.4.2 for the tangent cone to a
surface of revolution, but holds also for the cone geometry itself. This is ironic, it is locally flat
yet exhibits global curvature because of this topological defect revealed by the “singularity” at
the vertex where the surface is no longer differentiable. In general curvature holonomy discusses
the effect of curvature on parallel transport around closed curves which results in a rotation
of the initial vector at the start to the final vector at the finish at the same point. Since the
local geometry of the cone is flat, as long as our closed loop curve does not encircle the vertex
singularity, there is no rotation, but if the loop does go around the vertex, there is a rotation
by a fixed angle that was calculated in that exercise, independent of the radius.



592 Chapter 10. Extrinsic curvature

10.3 Extrinsic curvature as a quadratic approximation

The covariant extrinsic curvature or shape tensor is often introduced concretely using a quadratic
approximation to the surface in the same way that the curvature of a curve is related to a
quadratic approximation to the curve relative to its tangent line, which is realized explicitly
through the osculating circle. This is relatively easy to describe in the language of multivariable
calculus in which all the tangent vectors in space are dealt with using their Cartesian compo-
nent vectors. Covariant differentiation of these tangent vectors along another tangent vector
then reduces to the ordinary directional derivative along those tangent vectors using partial
differentiation.

When the surface is a single surface parametrized by two parameters as described in Ap-
pendix D as a parametrized surface, the manipulations are simpler and we will describe them
now. This includes the previous cases in which the surface occurs as part of a larger coordinate
system on the space, where two of the three coordinates parametrize the coordinate surfaces of
the third coordinate. We will handle implicitly defined surfaces in a subsequent section.

So we begin with the parametrization

~r(u1, u2) = 〈x1(u1, u2), x2(u1, u2), x3(u1, u2)〉 ,

and the first partial derivatives give us the Cartesian component vectors of the coordinate frame
on the surface, and of the right handed normal to the surface and its unit normal direction

~r1(u1, u2) ≡ ∂~x

∂u1
(u1, u2) ∼ ∂

∂u1
,

~r2(u1, u2) ≡ ∂~x

∂u2
(u1, u2) ∼ ∂

∂u2
,

~n(u1, u2) ≡ ~r1(u1, u2)× ~r2(u1, u2) ,

n̂(u1, u2) ≡ ~n(u1, u2)

|~n(u1, u2)| .

These determine the linear approximation to the surface at a given point ~r0 = ~r(u1
0, u

2
0), whose

graph is the tangent plane

~r(u2, u2) = ~r(u1
0, u

2
0) + ~r1(u1, u2)∆u1 + ~r2(u1, u2)∆u1 ,

which for sufficiently small increments in the parameters we can identify with a surface in the
tangent space, namely as the zero-value surface of a covector, just by replacing the increments
by the corresponding differentials

~r1(u1
0, u

2
0)du1 + ~r2(u1

0, u
2
0)du1 = 0 .

In fact we can drop the 0 subscripts to apply this to any point on the surface, which is just the
differential of the vector-valued function ~r

d~r(u1, u2) = ~r1(u1, u2)du1 + ~r2(u1, u2)du1 = ~ra(u
1, u2)dua ,
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where a, b = 1, 2 allows us to use index summation formulas. The self-inner product of this
vector differential is the metric line element or squared differential of arclength

ds2 = d~r(u1, u2) · d~r(u1, u2) = gab du
a dub , gab = ~ra · ~rb .

In the old terminology of the subject this is called the first fundamental form of the surface.
Next we introduce the second derivatives which correspond to the covariant derivatives of

the coordinate frame vector fields along those same vector fields

~r11(u1, u2) ≡ ∂2~x

∂(u1)2
(u1, u2) ∼ ∇ ∂

∂u1

∂

∂u1
,

~r22(u1, u2) ≡ ∂2~x

∂(u2)2
(u1, u2) ∼ ∇ ∂

∂u2

∂

∂u2
,

~r12(u1, u2) ≡ ∂2~x

∂u2∂u1
(u1, u2) ∼ ∇ ∂

∂u2

∂

∂u1
,

~r21(u1, u2) ≡ ~r12(u1, u2) .

yielding a symmetric matrix of such component vectors (using the obvious abbreviation ∇1 =
∇∂1 , etc.) (

~r11 ~r12

~r12 ~r22

)
n̂·−→

(
n̂ · ~r11 n̂ · ~r12

n̂ · ~r12 n̂ · ~r22

)
∼
(
n̂ · ∇1∂1 n̂ · ∇2∂1

n̂ · ∇1∂2 n̂ · ∇2∂2

)
where the order of partial derivatives does not matter (for differentiable fields as we assume).
When the unit normal is dotted into this matrix of vectors, we get by definition the sign-reversed
shape tensor or the extrinsic curvature since n̂ · ∇XY = S[(X, Y ), so(

n̂ · ~r11 n̂ · ~r12

n̂ · ~r12 n̂ · ~r22

)
= −

(
S11 S12

S12 S22

)
=

(
K11 K12

K12 K22

)
.

This implies that the original vectors are related by

∇∂a∂b =
Sab

(n̂ · n̂)
n̂+ (2)Γcab∂c

so that the inner product with the normal removes the self-inner product sign, and the rest
must be a surface vector, which in fact introduces the connection components of the metric
connection of the surface itself

(2)Γcab∂c = (2)∇∂a∂b .
In other words the surface covariant derivative is simply the orthogonal projection into its
tangent plane of the full space covariant derivative.

Now if we consider the quadratic Taylor polynomial approximation to the surface

~r(u2, u2) = ~r(u1
0, u

2
0) + ~r1(u1, u2)∆u1 + ~r2(u1, u2)∆u1

+
1

2

(
~r11(u1, u2)(∆u1)2 + 2~r21(u1, u2)∆u1∆u1 + ~r22(u1, u2)(∆u2)2

)
,



594 Chapter 10. Extrinsic curvature

then the quadratic terms in the normal component of the difference vector with the fixed point
at the origin of the tangent plane, with the notational change ∆ua → dua, leads to a second
quadratic form

n̂ ·
(
~r(u2, u2)− ~r(u1

0, u
2
0)
)

= −1

2
Sab(u

1
0, u

2
0) dua dub =

1

2
Kab(u

1
0, u

2
0) dua dub ,

Removing the factor of two and the zero subscript from the right hand side of this equation, this
defines what is called the second fundamental form of the surface in the old terminology, with
a plus sign or a minus sign depending on your whim—both signs are found in the literature.

Exercise 10.3.1.
Taylor approximation to the sphere

Suppose we consider a sphere of radius a with its South Pole at the origin, solving for the
lower hemisphere function:

x2 + y2 + (z − a)2 = a2 → z = a±
√
a2 − x2 − y2 ≡ f±(x, y)

a) Use a computer algebra system to evaluate the Taylor quadratic polynomial approxima-
tion at the origin of the function f− whose graph is the lower hemisphere, where the tangent
space is the z = 0 plane, the unit normal is 〈0, 0, 1〉 and the quadratic approximation gives
directly z versus (x, y). Identify the covariant shape tensor from the quadratic coefficients.

b) Repeat for the upper hemisphere at the North pole and look at the Taylor quadratic
polynomial approximation for f+ − 2a.

�

Exercise 10.3.2.
monkeysaddle degeneracy

a) The monkey saddle surface z = xy2− x3 is the graph of a third degree polynomial which
is its own Taylor polynomial at the origin with only third degree terms, so the shape tensor at
the origin vanishes. Plot this surface together with its tangent plane to see that it has three
ridges which peek up above the horizontal tangent plane z = 0 at the origin, no matter how
small the plotting window, as long as the surface can be distinguished from its tangent plane.

b) Use a computer algebra system to evaluate the matrix of components of the shape tensor
using the normal projected second derivatives of the parametrized position vector ~r(u1, u2) =
〈u1, u2, u1(u2)2− (u1)3. Show that its eigenvalues are always of opposite signs everywhere away
from the origin where its principal curvatures are nonzero and principal curvature directions
are well-defined. The origin is a degenerate point of the surface where the shape tensor vanishes
so its limiting intersection of the surface with its tangent plane there does not have to be a
single point or 1 line or 2 crossed lines through the origin. At all other points, this intersection
is described by a pair of crossed lines, since the principal curvatures are of opposite signs and
the zero values of the covariant shape tensor in the surface tangent space result is such a pair.

c) Evaluate and plot the Gaussian curvature, which is always negative except at the origin.
From your plot you can see 4 critical points of this function which are local minima. Find them
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and locate them on the surface by plotting a small sphere at those points. See how you can
color your surface using the Gaussian curvature and plot the surface this way.

�

Exercise 10.3.3.
Gaussian curvature of a surface of revolution

a) Consider a surface of revolution with cylindrical coordinates ρ = R(u) and z = Z(u)
describing the profile curve

~r(u, v) = 〈R(u) cos v,R(u) sin v, Z(u)〉 .

We evaluated the line element for the surface in Exercise 8.4.1

ds2 = (R′(u)2 + Z ′(u)2)︸ ︷︷ ︸
grr(u)

du⊗ du+R(u)2dv ⊗ dv

Use a computer algebra system to evaluate the shape tensor and show that the Gaussian
curvature is given by

Kgauss =
g′rr(u)R′(u)− 2grr(u)R′′(u)

2grr(u)R(u)

=
Z ′(u)/R(u)

(R′(u)2 + Z ′(u)2)2

∣∣∣∣R′(u) Z ′(u)
R′′(u) Z ′′(u)

∣∣∣∣ .
b) When grr(u) = 1 this simplifies to −R′′(u)/R(u). The same thing is true at a parallel

which is an extremum of the azimuthal radius: R′(u0) = 0. Then

Kgauss(u0) = −R′′(u0)/R(u0) .

c) Can we generalize this easily to a screw-rotation symmetry surface starting from a similar
profile curve at φ = 0?

�

Exercise 10.3.4.
Gaussian curvature of a helicoid

Evaluate the shape tensor and its eigenvector structure and the Gaussian curvature and for
the helicoid

~r(u, v) = 〈u cos(v), u sin(v), cv〉 , c 6= 0

and play with its properties. Consider its geodesics if it moves you.
�



596 Chapter 10. Extrinsic curvature

10.4 Total curvature: intrinsic plus extrinsic curvature

To see how intrinsic and extrinsic curvature are locked together in a flat enveloping space, we
will do a simple calculation that is appropriate to the cylinders or spheres of our corresponding
coordinate systems. In both cases the coordinates are an example of what are called Gaussian
normal coordinates, where the first coordinate measures the arclength along its coordinate lines
which are orthogonal to its coordinate surfaces. Such a metric has the form

g = gijdx
idxj = ε dx1 ⊗ dx1 + gabdx

a ⊗ dxb ,

g−1 = ε
∂

∂x1
⊗ ∂

∂x1
+ gab

∂

∂xa
⊗ ∂

∂xb
,

det g = det (2)g ,

where the index range a, b, c = 2, 3 will be understood in this section and the 2-metric on the
coordinate surfaces x1 = x1

0 is

(2)g = gabdx
a ⊗ dxb , (2)g−1 = gab

∂

∂xa
⊗ ∂

∂xb
,

while ε = ±1 allows us to extend this to the Lorentz case.
In fact the first coordinate (a radial coordinate in both cases) is an arclength coordinate

whose coordinate lines are straight lines, namely geodesics, while the remaining two coordi-
nates describe a family of nested surfaces orthogonal to those coordinate lines which are the
coordinate surfaces for the first coordinate. These surfaces are said to be geodesically parallel
since they are separated by the same arclength along each such coordinate line. The same
construction is important in 3-dimensional toy cosmological models where the first coordinate
is a timelike one, and its coordinate surfaces are spacelike slices of the spacetime, as well as
in flat Minkowski spacetime in pseudospherical or pseudocylindrical coordinates. Instead of
a coordinate singularity at the zero value of the radial coordinate (the origin in spherical co-
ordinates, the z-axis in cylindrical coordinates) where the coordinate surface shrinks to lesser
dimension (a point and a line respectively), one has a “big bang” singularity in a cosmological
model where the universe begins. In the spacetime context, such a coordinate system is called
a synchronous reference system since it relies on a global synchronization of time, which elapses
uniformly along the time coordinate lines.

Define the extrinsic curvature component matrix by

Kab = −1

2
gab,1 , Ka

b = gacKcb .

Then evaluating the component formula for the coordinate components of the connection

Γijk =
1

2
(gij,k − gjk,i + gki,j) , Γijk = gi`Γ`jk

under the coordinate conditions g11 = ε = ±1, g1a = 0 leads to some simplification. Since
g11,i = 0 = g1a,0 there are no lowered connection components Γijk which are nonzero with
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more than one index 1, and since g1a = 0, that remains true of the connection commponents
themselves.

Γ1ab = −1

2
gab,1 = Kab , Γa1b = Γab1 = −Kab , Γabc = (2)Γabc ≡

1

2
(gab,c − gbc,a + gca,b) ,

where (2)Γabc indicates the same formula in terms of (2)gab (the intrinsic connection components).
Raising the index leads to the following nonzero components of the connection, which vanish
if the index 1 is repeated

Γ1
ab = − ε

2
gab,1 ≡ εKab , Γa1b = Γab1 = −Ka

b ,

Γabc = (2)Γabc ≡
1

2
gad(gdb,c − gbc,d + gcd,b) .

The unit normal vector field n = ∂/∂x1 has components ni = δi1 so that nini = gijn
inj =

g11 = ε. Along the surface directions, its covariant derivative is

∇an
i = ni,a + Γiajn

j = Γiajδ
j
1 = Γia1 = δibΓ

b
a1 = −δibKb

a

and dotting this with a surface vector field

eb · ∇ean = −Kba .

This confirms our identification of the extrinsic curvature tensor above.

Exercise 10.4.1.
extrinsic curvature as a connection component

Show that the above formulas imply the other extrinsic curvature relation

n · ∇eaeb = Kab .

�

Next consider the formula for the coordinate components of the vanishing Riemann curva-
ture tensor Ri

jkl = 0 on the flat 3-space. These can only have zero, one, or two index values
equal to 1 since those with three indices all the same are easily seen to be 0 because of the
coordinate conditions. Those with one or two index values equal to 1 will involve the extrinsic
curvature. Those with none correspond to the intrinsic components of the Riemann curvature
tensor plus extrinsic curvature terms from the contracted index sum in the product terms,
namely those curvature components along the x1 coordinate surface.

Exercise 10.4.2.
decomposition of curvature on a family of surfaces

a) Verify the above relations for the decomposition of the components of the connection.



598 Chapter 10. Extrinsic curvature

b) Derive the formula

Ra
bcd = (2)Ra

bcd − εKa
cKbd + εKa

dKbc

or equivalently

Rab
cd = (2)Rab

cd − εKa
cK

b
d + εKa

dK
b
c

starting from the formula

Ra
bcd = Γadb,c − Γacb,d + ΓaciΓ

i
db − ΓadiΓ

i
cb .

Note the sum over i = 1, 2, 3 which must be separated into its i = 1 term and the sum over
e = 2, 3.

c) Verify the formula

R1
a1b = −ε (Kab,1 +KacK

c
b) .

d) Verify the formula

R1
bcd = −2ε∇[cKd]b

e) Show that

G1
a = R1

a = Ri1
ia = −Rib

ba = −R1
bcag

bc = −∇b(K
b
a −Kc

cδ
b
a) .

f) Show that

G1
1 = R1

1 −
1

2
(R1

1 +Rb
b) =

1

2
(R1

1 −Rb
b) =

1

2

(
R1b

1b − (R1b
1b +Rba

ba)
)

= −1

2

(
(2)R + ε(Kb

aK
a
b −Ka

aK
b
b)
)
.

These formulas hold for 4-dimensional spacetime as well where a, b, c = 2, 3, 4.
�

Now since the total curvature is zero in the case of both Euclidean R3 and 3-dimensional
Minkowski spacetime, we have the relation

(2)Ra
bcd = ε(Ka

cKbd −Ka
dKbc) .

This has only one independent component

(2)R23
23 = ε(K2

2K
3

3 −K2
3K

3
2) = ε detK = ε k1k2 ,

which is the Gaussian curvature, where k1, k2 are the two principal curvatures (eigenvalues of
the sign reversed extrinsic curvature). The surface Riemann tensor is therefore representable as
Rab

cd = ε k1k2 δ
ab
cd, i.e., is proportional to the generalized Kronecker delta on the surface with

two indices.
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Exercise 10.4.3.
spaces of constant curvature

A space of constant curvature has the simplest possible curvature tensor

Rab
cd = R0δ

ab
cd ,

where R0 is a constant. The simplest extrinsic curvature is completely isotropic

Ka
b =

µ

a2
δab , µ = ±1 .

Show that the vanishing of the total curvature tensor then implies

R0 =
εµ

a2
.

�

Exercise 10.4.4.
spherical coordinates with a signature change

In Section 10.2 the connection 1-form matrix in the orthonormalized spherical coordinate
frame was split into its extrinsic and intrinsic curvature parts. Suppose we change the signa-
ture of the spherical coordinate metric on R3 by making the radial coordinate r timelike and
renaming it to the time coordinate t

ds2 = −dt2 + t2(dθ2 + sin2 θdφ2) .

a) Trace how the sign change of g11 = gtt affects the orthonormal frame connection 1-form
matrix compared to the original metric.

b) If we let g(2) = gabdx
a ⊗ dxb for a, b = 2, 3 be the “spatial metric” on the space slices of

this spacetime which represent constant time surfaces, then show that the nonzero components
of the extrinsic curvature tensor can be expressed as

Kab = −1

2

∂gab
∂t

= −1

t
gab .

This negative multiple of the space metric describes the expansion of the spheres with time, i.e.,
the intrinsic distance between points fixed in the sphere grows with time. A positive extrinsic
curvature of this type would describe a contraction of the spheres with time, or a collapsing
cosmology. This could be accomplished simply by changing the sign of the time coordinate
t→ −t so that the big bang singularity is to the future of all negative times, representing a big
crunch.

c) Use a computer algebra system to evaluate the Einstein tensor for this no longer flat
geometry and show that it takes the form

Gij = t−2ninj , ni = δti ,
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where n = ∂t is the “outward” unit normal to the spheres of constant time t. This may be
interpreted as the energy-momentum tensor for a so called dust matter with density propor-
tional to t−2 and spacetime velocity n. Notice that this “cosmological model” has a “big bang”
“curvature singularity” at t = 0 where the components of the curvature tensor and the dust
matter density go infinite.

d) How does this discussion change if we replace t2 in the metric by sin2 t? This represents
a cyclic cosmology which expands from a big bang singularity to a maximum radius and then
recollapses to a big crunch singularity.

�

Exercise 10.4.5.
extrinsic curvature of pseudospheres

Consider timelike pseudo-spherical coordinates (τ, χ, φ) defined by replacing the polar angle
of spherical coordinates on R3 down from the vertical axis by the hyperbolic angle down from
the time axis (t, r) = (τ coshχ, τ sinhχ) in 3-dimensional Minkowski spacetime with metric

ds2 = −dt2 + dx2 + dy2 = −dt2 + dr2 + r2dφ2 = −dτ 2 + τ 2(dχ2 + sinh2 χdφ2) .

a) Derive the last equality in this expression for the Evaluate the mixed extrinsic curvature
tensor of the pseudo-spherical coordinate surfaces of the timelike pseudo-radial coordinate τ ,
namely the hyperbolas of revolution τ 2 = t2 − x2 − y2.

b) Use the above relationship to show that these are surfaces of constant negative curvature
Rχθ

χφ = −1/τ 2.
Notice that in the Lorentzian geometry of 3-dimensional Minkowski spacetime, for a future

timelike pseudo-sphere the diagram 10.2 has the reverse behavior—namely, moving the position
vector from the origin away from the vertical along the concave up surface, the unit normal
tilts further away too (since it is aligned with the position vector) ...

c) Repeat for spacelike pseudo-spherical coordinates (t, r) = `(sinhχ, coshχ).
(in progress)

�

Exercise 10.4.6.
curvature of hyperbolic paraboloid

Consider the saddle surface z = x2−y2 in R3 pictured in Fig. 10.1, a hyperbolic paraboloid.
This surface may be parametrized by the Cartesian coordinates in the plane z = 0 as

~r(u, v) = 〈u, v, u2 − v2〉 ,

namely
x = u , y = v , z = u2 − v2 .

This surface may also also be described in cylindrical coordinates by the condition

z = r2(cos2 φ− sin2 φ) = r2 cos 2φ ,
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and by the alternative parametrization

~R(t, θ) = ~r(t cos θ, t sin θ) = 〈t cos θ, t sin θ, t2 cos(2θ)〉

by polar coordinates in the plane z = 0, which is equivalent to

r = t , φ = θ , z = t2 cos 2θ .

Let’s suppress the explicit dependence on θ by writing R(t) to reinterpret this as a 1-parameter
family of curves where t parametrizes each curve in the family and θ parametrizes the family
of curves. These are all normal cross-sectional curves of the surface at the origin, so are useful
for relating the curve curvature to the surface curvature at that point.

a) Evaluate the tangent ~R′(t) and its derivative ~R′′(t), the unit tangent T̂ (t) = ~R′(t)/|~R′(t)|,
the unit normal N̂(t) = T̂ ′(t)/|T̂ ′(t)|, and the curvature κ(t) = |~R′(t) × ~R′′(t)|/|~R′(t)|3 of this
family of parametrized curves, each of which is a plane curve parabola except for the degenerate
cases at θ = ±π/4,±3π/4 which are horizontal straight lines in the x-y plane. Note that it is
most efficient to use the vector quotient rule(

~F (t)

g(t)

)′
=
g(t)~F ′(t)− ~F (t)g′(t)

g(t)2

to evaluate T̂ ′(t), combining fractions and keeping common factors of the components of the
resulting vector factored out. This factoring makes it simple to normalize T̂ ′(t).

Evaluate the unit binormal B̂(t) = ~R′(t)× ~R′′(t)/|~R′(t)× ~R′′(t)|. It should be horizontal and
independent of t since these are plane curves lying in vertical planes. Note that it is easier to
evaluate N̂(t) = B̂(t)× T̂ (t) than by differentiation of t̂′(t) if you are quotient rule challenged.

Confirm that N̂(0) = 〈0, 0, 1〉. Evaluate κ(0) as a function of θ. What are its values for
θ = 0, π/4, arctan(2), π/2? Figure 10.1 shows the last three of these curves.

b) Calculate the two tangent vectors with respect to u and v, namely the partial derivatives
of the position vector

~r1(u, v) =
∂~r

∂u
(u, v) , ~r2(u, v) =

∂~r

∂v
(u, v) .

Evaluate the matrix g of their inner products gij = ~ri · ~rj and use it to express the metric of
the surface

(2)g = g11du⊗ du+ g12du⊗ dv + g21dv ⊗ du+ g22dv ⊗ dv .
Show that g12 = 0 so that these two vectors are orthogonal only when uv = 0, which is where
the surface intersects the (vertical) x-z or y-z planes. Evaluate the inverse matrix g−1 and det g.
Note that one could also evaluate the metric just by re-expressing dx⊗ dx+ dy⊗ dy+ dz⊗ dz
in terms of (u, v) and simplifying.

c) Evaluate the surface normal vector ~N(u, v) = ~r1(u, v) × ~r2(u, v) = | ~N(u, v)|n̂(u, v) and

its length | ~N(u, v)| and direction n̂(u, v). The length should just be (det g)1/2, which is the

single independent component of the unit area 2-form (2)η = ηuvdu ∧ dv. Evaluate numerically
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the double integral of the length for the parameter range 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. Later we will
see that this is the surface area of this surface over the unit rectangle in the first quadrant.

d) Evaluate the (u, v) coordinate components of the covariant extrinsic curvature tensor

−Kij = ~ri · ∂jn̂ , i, j = 1, 2 ,

and then raise its first index to get the mixed extrinsic curvature tensor

Ki
j = gikKkj , K = g−1(Kij) .

Show that this mixed tensor is diagonal only when uv = 0. Evaluate it at the origin where
it is diagonal and evaluate it on the unit tangents T̂ · K(T̂ ) = KijT

iT j to the four vertical
cross-sectional curves of part a). Confirm that you get the curvatures of those curves computed
in part a), plus a sign indicating whether the center of curvature of the curve is on the same
side or opposite side of the tangent line.

e) Although formulas are easily written down for the eigenvalues and eigenvectors of the
mixed extrinsic curvature matrix K = (gikKkj), i, j = 1, 2 using the quadratic formula or a
computer algebra system, they are not very much fun. Consider the point (u, v) = (1, 1) and
evaluate this matrix and find its eigenvalues and eigenvectors. The principal curvatures are the
sign-reversed eigenvalues.

The 2-component eigenvectors U = 〈U1, U2〉 of this 2 × 2 matrix K are components with
respect to the basis ~r1, ~r2 of the tangent plane to this surface, so to visualize them in space, one
must reform those linear combinations of the basis vectors to get the corresponding 3-vectors
U1~r1 + U2~r2. The two independent eigenvectors should be orthogonal. Divide them by their
lengths to get orthonormal vectors. Check that their dot product is zero.

Then plot the two normalized eigenvectors in a 3d plot with the surface with equal units
displayed on the axes. Rotate the plot until you convince yourself that the picture looks right,
i.e., the normal plane cross-sections through those two directions are orthogonal, and the two
vectors lie in the tangent plane to the surface. What are the two radii of curvature along
these directions? Do their eigenvalue signs look right, i.e., is the negative curvature (positive
eigenvalue of K) cross-section concave down with respect to the normal, and the positive
curvature one (negative eigenvalue of K) concave up?

f) Use a computer algebra system to evaluate the single independent component of the
Riemann curvature tensor for the surface (2)Ruv

uv. Show that it equals the Gaussian curvature.

�

Exercise 10.4.7.
curvature of surfaces of revolution

For surfaces of revolution for which the metric takes the form (allowing for a Lorentzian
signature)

g = ε dr ⊗ dr +R(r)2dθ ⊗ dθ , ε = ±1 ,
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i.e., with the nonzero metric components grr = ε, gθθ = R(r)2, we showed that the only nonva-
nishing components of the connection are

Γrθθ = −εR′(r)R(r) , Γθrθ = Γθθr =
R′(r)

R(r)
.

a) By direct evaluation of the formula for the curvature tensor (summing over k = 1, 2)

Rr
θrθ = Γrθθ,r − Γrrθ,θ + ΓrrkΓ

k
θθ − ΓrθkΓ

k
rθ = Γrθθ,r − ΓrθθΓ

θ
rθ

= (−εR′(r)R(r))′ − (−εR(r)′R(r))(R′(r)/R(r)) = −εR′′(r)R(r) ,

show that its single independent component can be expressed in the form

Rrθ
rθ = Rr

θrθg
θθ = −εR

′′(r)

R(r)
.

In other words, check these steps.
b) For the flat plane with R(r) = r, confirm the vanishing of the curvature tensor.
c) For a sphere of radius r0 in Euclidean space (ε = 1) with (r, θ) = (r0θ, φ) to fit into this

naming scheme, one has R(r) = r0 sin(r/r0). Verify that Rrθ
rθ = 1/r2

0.
d) For the torus, translating the variable names appropriately, evaluate this curvature com-

ponent to find

Rrφ
rφ =

cosχ

b(a+ b cosχ)
.

Notice that for the special case a = 0 of a sphere of radius b, this reduces to 1/b2 as it should.
Notice that cos ξ > 0 describes the outer half of the torus, which has positive curvature, while
cos ξ < 0 describes the inner half of the torus, which has negative curvature.

e) For a general surface of revolution in Euclidean space ε = 1, use Exercise 8.5.3 to evaluate
the connection 1-form matrix for the associated orthonormal frame er̂, eθ̂ starting from the
coordinate connection 1-form matrix and rescaling transformation

ω =

 0 −R′(r)R(r) dθ
R′(r)

R(r)
dθ

R′(r)

R(r)
dθ

 , A =

1 0

0
1

R(r)

 .

The result should be

ω̂ =

(
0 −1
1 0

)
R′(r) dθ .

Show that this agrees with the result for polar coordinates in the plane, and the results for the
torus and 2-sphere obtained previously.

f) For a timelike pseudo-sphere of radius τ0 in 3-dimensional Minkowski spacetime (ε = −1)
with r = τ0χ to fit into this naming scheme, one has R(r) = τ0 sinh(r/τ0). Verify that Rχθ

χθ =
−1/τ 2

0 , confirming the result of a previous exercise.
�
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Exercise 10.4.8.
torus extrinsic curvature

Now that we have evaluated the intrinsic curvature for the torus, let’s attack the extrinsic
curvature in the same approach taken with the hyperbolic paraboloid saddle surface.

a) Let (u, v) = (χ, φ) = (u1, u2) rename our variables so that the parametrized torus becomes

~r(u, v) = 〈(a+ b cosu) cos v, (a+ b cosu) cos v, b sinu〉 .
Evaluate the two tangents to the grid ~ra(u, v) = ∂~r(u, v)/∂ua for a, b = 1, 2 and the the outward

normal ~N(u, v) = ~r1(u, v)×~r2(u, v) and its magnitude | ~N(u, v)|, which should equal the square

root of the metric matrix determinant. Let n̂(u, v) = ~N(u, v)/| ~N(u, v)| be the outward unit
normal.

b) Use a computer algebra system to evaluate and simplify first the sign-reversed covariant
extrinsic curvature tensor −Kab = n̂ · ∂~rb/∂ua following the saddle surface example, which will
be rotationally symmetric and hence not depend on the azimuthal angle v, and then matrix
multiply this matrix (−Kab) on the left by the inverse metric matrix to obtain the sign-reversed
mixed extrinsic curvature matrix

(−Ka
b) = (−gacKcb) .

c) Evaluate its determinant, the Gaussian curvature, confirming that it equals the single
independent Rχφ

ξφ of the intrinsic curvature tensor evaluated above, modulo the variable re-
naming. Find its eigenvectors and confirm that one is tangent to the meridians and the other
is orthogonal to those meridians along the parallels. Thus the parameter grid is formed from
the two families of lines of curvature.

�

Exercise 10.4.9.
extrinsic curvature of the cavatappo 2.0 surface

Repeat the previous problem for the orthogonally tilted cavatappo surface, where the unit
normal one obtains is the outward normal. Show that the sign-reversed extrinsic coordinate
matrix is

(−Ki
j) =

cos(η) cos(v)

N
0

− c

bN

1

b


where

N =
a2 + c2 + ab cos(v)√

a2 + c2
= | det(g)|1/2/b

and its eigenvalues are

k1 =
1

b
, k2 =

cos(η) cos(v)

N
along the respective eigenvectors with components 〈0, 1〉 and 〈1, sin(η)〉, namely along the
circular meridians and their orthogonal trajectories. Thus the orthogonal grid is formed from
the lines of curvature of this surface.
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�

Exercise 10.4.10.
Lorentz cavatappo surface

Repeat the previous problem for the orthogonally tilted Lorentz cavatappo surface, but
reverse the sign of the unit normal from this recipe in order to get an outward normal. Show
that the coordinate matrix (−Ki

j) is

(−Ki
j) =

sinh(β) cos(v)

N
0

− c

bN

1

b


where

N =
c2 − a2 − ab cos(v)√

c2 − a2
= | det(g)|1/2/b

and its eigenvalues are

k1 = −1

b
, k2 =

sinh(β) cos(v)

N

along the respective eigenvectors with components 〈0, 1〉 and 〈1,− sinh(β)〉, namely along the
circular meridians and their orthogonal trajectories. Thus the orthogonal grid is formed from
the lines of curvature of this surface.

�
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10.5 Tube/tubular surfaces

The torus and helical tube surfaces we have studied above turn out to fall into a mathematical
category called swept surfaces (as I learned only after having studied their geodesics and having
evaluated their extrinsic curvatures). One takes a profile curve and uses it to sweep it along
a trajectory curve to generate a surface, allowing the profile curve to be rotated and rescaled
as one sweeps it along the trajectory curve. The helical tube surface used to model cavatappo
pasta takes a circle in the normal plane to a helix and rotates it about the normal line to the
vertical plane to obtain the profile curve which is then swept along the helix, always remaining
vertical. The general family of such helical surfaces allows the circular profile curve to be
rotated by any angle about the normal line, but leaving the circular profile in the normal plane
itself results in the orthogonally tilted cavatappo surface, an example of what is called a tube
surface or tubular surface. This is exactly how one thinks of tubes in everyday life—having a
fixed circular cross-section orthogonal to the direction of the tube at each point. The torus is a
special case of these helical tube surfaces in which the helical trajectory degenerates to a circle.
The circular profile curves of a tubular surface are called meridians, as in the case of surfaces
of revolution.

By choosing a circle about the origin of fixed radius in the normal plane to any trajectory
curve, one gets a general tubular surface. As long as the radius of the circle is small compared
to the radius of curvature of the trajectory curve, one has a surface which appears to just be a
“thickening” of the original trajectory curve, like a ring torus with a small transverse radius.
When the radius of the profile circle is comparable to the radius of curvature of the trajectory
curve, the resulting surface can start to have self-intersections and have more complicated
structure (like the horn and spindle tori), due to the intersections of the normal lines along the
evolute of the trajectory curve, which is at a distance equal to the radius of curvature of the
trajectory curve along its normal line.

The extrinsic curvature of a tubular surface is a fascinating example to study since one
can understand the geometry of the principal curvatures based on the individual curvatures of
the trajectory curve and the meridians. One principal curvature is equal to the reciprocal of
the fixed radius of those meridians (its obvious curvature as a circle!) and the other principle
curvature is along the family of orthogonal curves, a new family of parallels, and this curvature
interpolating between the reciprocals of the radius of two concentric circles in the osculating
plane at the two ends of the diameter along the normal line of the profile circle. Amazingly this
interpolation can be seen geometrically, including the location of the center of the corresponding
osculating circle associated with the second principle curvature.

Suppose we have a parametrized space curve ~r(t), with first and second derivatives ~r ′(t) and
~r ′′(t), from which we can calculate the curvature κ(t) and radius of curvature R(t) = 1/κ(t),
and the unit tangent T̂ (t), unit normal N̂(t) and unit binormal B̂(t). The line through ~r(t)
along the unit normal is the normal line, while the plane spanned by the two normal vectors
is the normal plane. The plane of ~r ′(t) and ~r ′′(t) or equivalently by T̂ (t) and N̂(t) is the
osculating plane, or velocity-acceleration plane in the physics language. The osculating circle
has its center ~C(t) a distance equal to R(t) along N̂(t) on the normal line within the osculating
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plane
~C(t) = ~r(t) +R(t) N̂(t) .

It only makes sense to use a computer algebra system to evaluate these more complicated
combination formulas!

Now take a circle of fixed radius b about the origin of the normal plane (namely ~r(t)), where
the angle Θ is the usual polar angle in the plane of the ordered pair of vectors {N̂(t), T̂ (t)}

~r(t,Θ) = ~r(t) + b
(

cos Θ ~N(t) + sin Θ ~T (t)
)
.

This tubular surface has a natural grid associated with the (t,Θ) parametrization/coordinatization.
The Θ circles are the meridians, while the t lines are a natural family of parallels, as in the
surface of revolution terminology, but not orthogonal to the meridians in general.

For any given t, the strip from t− δt to t+ δt for small increment δt is approximately like a
strip from a torus with central radius R and cross-sectional radius b (assumed to be less than
R for all t), with inner radius R(t) − b and outer radius R(t) + r. See Fig. 10.5. Indeed the
osculating circles for Θ = 0, π where the normal line intersects the surface lie in the osculating
plane at ~r(t), and are concentric circles about the same center ~C(t) of those same radii, circles
which coincide with the inner and outer equators for the corresponding approximating torus
strip. Because these circles are orthogonal to the cross-sectional circles, they must be lines of
curvature so the principal curvatures are just the reciprocals of their radii, namely |k1| = 1/b
and |k2| = 1/(R(t)−b) at Θ = 0 and |k1| = 1/b and |k2| = 1/(R(t)+b) at Θ = 0. If we agree to
determine the sign of the principal curvature as + if its osculating circle is on the same side as
that normal and − if on the opposite side, since the circles are on opposite sides of the tangent
plane for Θ = 0, we must assign k2 = −1/(R(t)− b) at Θ = 0 but k2 = 1/(R(t) + b) at Θ = π,
with k1 = 1/b. For other values of Θ, we need to interpolate the curvature from its minimum
negative value through zero to its maximum positive value.

So let’s start calculating. Define the two tangents

~r1(t,Θ) =
∂~r

∂t
(t,Θ) = |~r ′(t)|

[
(1− b κ(t) cos Θ)T̂ (t) + b τ(t)Ê2(t,Θ)

]
,

~r2(t,Θ) =
∂~r

∂Θ
(t,Θ) = ~E2(t,Θ) = bÊ2(t,Θ) = b

(
cos Θ B̂(t)− sin Θ N̂(t)

)
.

Notice that

~E1(t,Θ) = |~r ′(t)|(1− b κ(t) cos Θ)T̂ (t) =
∂~r

∂t
(t,Θ)− τ(t) ~E2(t,Θ)

is orthogonal to ~E2(t,Θ), so that { ~E1(t,Θ), ~E2(t,Θ)} is a natural orthogonal frame with asso-
ciated orthonormal frame {Ê1(t,Θ), Ê2(t,Θ)}.

Interpreting (t,Θ) as coordinates on the surface we have

∂t ↔ ~r1(t,Θ) , ∂Θ ↔ ~r2(t,Θ) ,

and the combination
|~r ′(t)|−1∂t − τ(t)∂Θ ↔ ~E1(t,Θ)
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Figure 10.5: Left: The osculating plane of a circle of radius R (shown in red) with its
unit tangent and unit normal vectors at a given point: the osculating circle coincides with
the original circle. Shown also is the normal line to the center C with the osculating circles
of the two parallels of a tubeplot of meridian radius b centered on that circle for Θ = 0, π,
with respective radii R − b and R + b. This is exactly the situation for a point on a general
tube plot for the concentric osculating circles in the osculating plane of the central trajectory
curve for the two parallels which intersect that osculating plane. Right: The corresponding
normal plane to a point on the central trajectory curve of a tubular surface of radius b, slightly
magnified compared to the left view. The center C(Θ) of the osculating circle to a point P on
a meridian for −π/2 < Θ < π/2 lie along the line through the center C of the osculating circle
of the central trajectory which is parallel to the binormal. The distance R− b cos Θ of P from
this axis is then stretched by division by cos Θ as the corresponding line segment rotates from
the horizontal up to the angle Θ keeping its endpoint on that axis. These osculating circles
are on the opposite side of the tangent plane at P from the meridian circle, making k1 < 0.
For π/2 < Θ < π the diagram moves below the normal line, and the osculating circle is on the
same side of the tangent plane, making k1 > 0. For angles near the poles Θ = ±π, the centers
C(Θ) move out to infinity.
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so that
(1− b κ(t) cos Θ)−1

(
|~r ′(t)|−1∂t − τ(t)∂Θ

)
↔ Ê1(t,Θ) = T̂ (t) ,

while
b−1∂Θ ↔ Ê2(t,Θ) .

Next the matrix of inner products of these frame vectors, which determines the metric line
element, letting dS = |~r ′(t)|dt be the differential of arclength along the trajectory curve

ds2 =
[
(1− b κ(t) cos Θ)2 + b2τ(t,Θ)2

]
dS2 + 2b2τ(t)2dS dΘ + b2dΘ2

= (1− b κ(t) cos Θ)2dS2 + b2 (dΘ + τ(t)dS)2 .

The orthogonal representation corresponds to the above-mentioned orthogonal frame, whose
orthonormal dual frame is therefore

Ŵ 1(t,Θ) = (1− b κ(t) cos Θ) dS , Ŵ 2(t,Θ) = b (dΘ + τ(t)dS) .

An outward normal vector to the tubular surface is

~N(t,Θ) = ~r1(t,Θ)× ~r2(t,Θ) = b(1− b κ(t) cos Θ)N̂(t,Θ)

where the unit outward normal is

N̂(t,Θ) =
(

cos ΘN̂(t) + sin ΘB̂(t)
)
,

assuming that b/R < 1.
Next we calculate the derivatives of the unit normal using this correspondence and the

Frenet-Serret relations of Appendix C

|~r ′(t)|−1∂t ~N(t,Θ) = |~r ′(t)|−1
(

cos Θ N̂ ′(t) + sin Θ B̂ ′(t)
)

= cos Θ
(
−κ(t)T̂ (t) + τ(t)B̂(t)

)
+ sin Θ

(
−τ(t)N̂(t)

)
= −κ(t) cos Θ T̂ (t) + τ(t)Ê2(t,Θ)

and
∂Θ

~N(t,Θ) = − sin Θ ~N(t) + cos Θ B̂(t) = Ê2(t,Θ) .

Thus we have

∇
T̂ (t)

~N(t,Θ) = (1− bκ(t) cos Θ)−1(|~r ′(t)|−1∂t − τ(t)∂Θ) ~N(t,Θ)

=
−κ(t) cos Θ

1− bκ(t) cos Θ
T̂ (t) = k1(t,Θ) T̂ (t) ,

and

∇
Ê2(t,Θ)

~N(t,Θ) =
1

b
∂Θ

~N(t,Θ) =
1

b
Ê2(t,Θ) = k2(t,Θ) Ê2(t,Θ) .



610 Chapter 10. Extrinsic curvature

This last principal curvature is no surprise since it is just the curvature of the meridian
circle of radius b = R2 = 1/k2. The first principal curvature can be rewritten in terms of the
corresponding radius of curvature of the new parallel curves along T̂ in the surface

R1(t,Θ) = |1/k1(t,Θ)| = R− b cos Θ

| cos Θ| ,

which has a nice geometrical interpretation illustrated in Fig. 10.5. As one increases Θ from
0 to π, the curvature smoothly interpolates between k1(t, 0) < 0 and k1(t, π) > 0 through the
value 0 at the binormal line.

Exercise 10.5.1.
tilted cavatappo surface curvature

a) Show that the result in Exercise 10.4.9 for the curvature k2 of the orthogonal parallels
follows from the tubular surface formula using the values of the curvature and torsion of the
Euclidean helix given in Appendix C.

b) Repeat for the result of Exercise 10.4.10 applied to the Lorentz orthogonally tilted timelike
cavatappo surface using the values for the curvature and torsion of the Lorentz timelike helix
to see how the signs in the formula change in the Lorentz case.

�
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10.6 Surface geodesics studied from the outside

Our approach to geodesics in surfaces embedded in flat spaces or spacetimes with a globally
flat connection has been to simply calculate the surface metric through a parametrization of
that surface which provides us with local coordinates on that surface in terms of which we can
then work entirely intrinsically, leaving behind the larger space in which it lives. By adapting
coordinates on the whole space to a family of surfaces which contain the surface of interest,
we have paved the way to see how that surface fits into the larger space directly in terms of
the components of the connection of the adapted coordinates, separating them into extrinsic
curvature terms and intrinsic connection terms. Geodesics arise from the geodesic equations on
the whole space by ignoring the derivatives along the normal direction which are necessary to
keep the curve in the surface, while keeping the remaining derivative terms which ensure that
the tangent to the surface geodesic does not further change direction within the surface. In the
adapted coordinates the extra coordinates held fixed then give us the path in the coordinate
system of the larger space which allows the geodesics to be visualized as paths in the larger
space. Even with the surface parametrization approach, at the end we map the surface geodesics
in terms of the surface coordinates back into the Cartesian coordinates of the enveloping flat
space so we can visualize then in the context of the surface embedding in that larger space.

However, suppose we do not have either an adapted set of coordinates to describe the surface
or even a parametrization of the surface which enables us to work in an intrinsic coordinate
system. We can still handle the surface geodesics as constrained motion within the larger space
using only the original Cartesian coordinates. The motion in space is accelerated since that
normal component of the covariant derivative remains nonzero to constrain the motion to the
surface. As long as one can compute the normal to the surface, one can evaluate that normal
component of the acceleration and study the equations of motion that correspond to it. One
only needs to describe the surface as the level surface of a function on the space to get its
normal via the gradient and then we are in business. This opens up the geodesic game to a
much wider class of surfaces than we are able to handle explicitly through a parametrization.

The ideas are relatively simple. Suppose we have an implicit surface f(x1, x2, x3) = 0
in R3, with its dot product geometry. We can extend this to the Lorentz case later. Then
the gradient vector ~n = ∇f provides us with a normal to the surface. Suppose we have an
affinely parametrized geodesic c(λ) of the surface geometry, given by ci = xi(c(λ)) which we
can sloppily denote by xi(λ) in common practice, or as ~r(λ) in vector form. Then we can also
write compactly f(~r(λ)) = 0, so that by the chain rule, the tangent to the curve is orthogonal
to the gradient

~r ′(t) · ~n(~r(λ)) = 0 .

The condition that this curve be a geodesic of the surface is that its “acceleration vector”

~a(λ) ≡ ~r ′′(λ) = ∇~r ′(λ)~r
′(λ) =

D2~r(λ)

dλ2

be orthogonal to the surface so that its tangent vector does not rotate left or right within the
surface with respect to its forward direction, but only rotates in the plane of ~n and itself in
order to remain within the surface. This means that the surface normal is aligned with the unit
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normal to the curve, but we don’t know in advance whether they are parallel or antiparallel,
so we can simply choose the surface unit normal as the curve’s normal direction and allow the
curve’s curvature to have either sign instead of determinining the direction of the unit normal
to be in the direction of T̂ ′(λ) where T̂ (λ) = ~r ′(λ)/|~r ′(λ)| is the unit tangent. For a surface
geodesic the length of this tangent is a constant, interpreted as the speed if we view tracing
out the geodesic as motion along a path in space where λ is identified with the time

v(λ)2 ≡ ~T (λ) · ~T (λ) = ~r ′(λ) · ~r ′(λ) =

(
ds(λ)

dλ

)2

.

We can then easily generate a right handed but unnormalized orthogonal frame for any
curve in the surface aligned with both the surface normal and the curve’s tangent by defining

~T (λ) = ~r ′(λ) ,

~B(λ) = ~T (λ)× ~n(~r(λ)) = ~n(~r(λ))× ~r ′(λ) ,

~N (λ) = ~B(λ)× ~T (λ) = −~T (λ)×
(
~T (λ)× ~n(~r(λ))

)
=
(
~T (λ) · ~T (λ)

)
~n(~r(λ)) ,

where the final equality follows from the double cross product identity and the orthogonality
of ~T and ~n. The second two vectors in this frame have self-dot products

~B(λ) · ~B(λ) = ~B(λ) · ~B(λ) ~T (λ) · ~T (λ) ,

~N (λ) · ~N (λ) = ~n(~r(λ)) · ~n(~r(λ)) ~T (λ) · ~T (λ) ,

using the quadruple scalar product identity in the first case. Using these we can easily normalize
the orthogonal frame when needed to obtain (T̂ , N̂ , B̂). In general the curve’s own Frenet-Serret
frame will be related to this one by an additional rotation in the curve’s normal plane

(
T̂ N̂ B̂

)
=
(
T̂ N̂ B̂

) 1 0 0
0 cosχ − sinχ
0 sinχ cosχ

 =
(
T̂ N̂ B̂

)
eχL1 .

This frame is defined for any curve in the surface but of course it is aligned with the
Frenet-Serret frame only for surface geodesics. The vector ~B places the role of the curve’s
normal within the surface modulo the sign of its direction. The tangential component of the
acceleration within the surface is simply its component along ~B, which defines the surface
curvature when the arclength derivative is used. Using the chain rule to convert the lambda
derivatives to arclength derivatives we have

κs(λ) ≡ aB̂(λ) = B̂(λ) · D
2~r

ds2
(λ) = B̂(λ) · ~r ′′(λ)

~r ′(λ) · ~r ′(λ)
.

This must be zero for a surface geodesic along which B̂ is parallel transported in the intrinsic
surface geometry to join T̂ in forming the adapted orthonormal 2-frame which satisfies the
Frenet-Serret degenerate frame relations (both the unit tangent and this unit normal are parallel
transported along the curve).
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The extrinsic curvature of the surface reversed in sign is the shape operator, which is the
projection of the following tensor on the surface into the tangent plane

Sij = ∇in̂j .

Since we are only going to evaluate this along the surface, we do not need to distinguish the
this tensor from its projection. When evaluated on surface tangent vectors the normalization
factor (inverse length) of ~n passes through the derivative

S (~r ′(λ), ~r ′(λ)) =

(
~r ′(λ) · (∇~n)(~r(λ))

|~n(~r(λ)|

)
· ~r ′(λ)

Its value on the unit tangent produces the component of the acceleration normal to the surface

−an̂ = S(~r ′, ~r ′) = −n̂ ·
(
∇~T

~T
)
.

Thus the acceleration vector is

~T ′ = ~r ′′ = an̂ n̂+ aB̂ B̂ = −S(~r ′, ~r ′) n̂+ κs (~r ′ · ~r ′) B̂

= −(∇~n)(~r ′, ~r ′) ~N
~B · ~B

+ κs (~r ′ · ~r ′) B̂

≡ κ (~r ′ · ~r ′) N̂ ,

where the ~B self-dot product factor normalizes both for arclength and the unit surface normal
and the last line defines the space curvature and unit normal of the curve. The tip of the tangent
vector (whose length is constant) can only rotate, and the extrinsic curvature determines its
rotation rate in its osculating plane, while the surface curvature determines is rotation rate in
its normal plane. Comparing the previous relation with the angle χ between the actual unit
normal and the surface normal already introduced above

N̂ = cosχ N̂ + sinχ B̂ ,

then the previous equations show that

tanχ = − κs

S(T̂ , T̂ )
=

κs

K(T̂ , T̂ )
,

which vanishes for a surface geodesic where the two normals are aligned. For a general surface
curve, the relative rotation of the surface normal relative to the curve normal is determined by
the ratio of the intrinsic curvature of the curve to its extrinsic curvature −S(T̂ , T̂ ) = K(T̂ , T̂ ).

This partially quantifies the remarks at the beginning of this chapter regarding the two
contributions to the rotation of the surface normal along a curve within the surface: the normal
rotates around the unit tangent direction due to the tilting of the surface underneath the curve
while rotating in the plane of the normal and unit tangent in order to stay orthogonal to the
surface as the unit tangent itself rotates in that plane. The horizontal straight line in Fig. 10.1
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a) is also a surface geodesic since it does not have to even bend to stay in the saddle surface, so
the surface normal only rotates about its fixed direction as the surface tilts sideways underneath
the line as one moves along it. The parabola in Fig. 10.1 c) on the contrary is a geodesic by
reflection symmetry about the vertical cross-sectional plane in which it lies, and along it the
surface normal only rotates to stay orthogonal to the surface while the surface tangent line in
the curve’s normal plane remains horizontal.

The affinely parametrized surface geodesics have zero intrinsic curvature, so they are deter-
mined by the equations

~r ′′ = −(∇~n)(~r ′, ~r ′) ~N
~B · ~B

,

for which the “energy”
1

2
~r ′ · ~r ′ = 1

2

(
ds

dλ

)2

= E

is constant, and equals 1/2 for an arclength parametrization. One can easily numerically
integrate this second order system of differential equations directly to describe the geodesics as
paths in space, even for a parametrized surface. One can specify the initial data for the tangent
or velocity vector in terms of a single angle with respect to a suitably chosen initial direction
in the surface at the initial location, and one is guaranteed a unique solution.

Exercise 10.6.1.
shape operator insensitive to length of normal

a) Evaluate ∇in̂j in terms of ~n = |~n| n̂.

b) Show that for ~X, ~Y orthogonal to ~n, S( ~X, ~Y ) = ∇~n( ~X, ~Y )/|~n|.
�

Exercise 10.6.2.
geodesics on the sphere and ellipsoid

a) Whenever one does numerical solution of differential equations, it is important to have
a test case where the analytic solution is known to check its accuracy. Apply this approach to
the unit sphere x2 + y2 + z2 = 1 and examine the solutions of the initial value problem at the
point (1, 0, 0) along the positive x-axis on the equator using arclength parametrization initial
data (unit velocity at an angle β with respect to the vertical). The geodesics should return to
the initial point at λ = 2π.

b) Extend this to an ellipsoid
x2

9
+
y2

4
+
z2

1
= 1

already studied in Exercise 8.7.12 using an obvious parametrization. Test it for initial data
at one of the intersection points with the coordinate axes with initial tangent lying in a coor-
dinate plane, since by reflection symmetry about the coordinate planes, the coordinate plane
intersection curves (ellipses) are geodesics. Then try a geodesic at 45 degrees to the coordinate
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axes at such initial data points. Remember that the final value of λ (starting at λ = 0 is the
actual arclength of the geodesic.

�

Exercise 10.6.3.
geodesics on the approximate gyroid

For a real challenge consider one cube of the triply periodic approximate gyroid surface

f(x, y, z) = cos(x) sin(y) + cos(y) sin(z) + cos(z) sin(x) = 0 .

− π ≤ x, y, z ≤ π .

This is not only invariant under translations of each of the coordinates by multiples of 2π but
also under permutations of the coordinates.

a) Plot this with a computer algebra system and rotate around to see its profile in the y-z
plane. It appears to have an approximate reflection symmetry about the line z = y−π/2, which
is a plane clearly intersecting one of the tubes in this lattice in a loop. Find a parametrization
of this loop and find the lowest point P on this loop to use as an initial data point for geodesics
that initially move along this loop.

b) Use implicit differentiation to determine the tangent plane at the origin, through which
the surface passes. Because of the permutation symmetry the direction of its normal there is not
surprising. Repeat for the point P where the tangent plane is parallel to the x-axis, and given
this, its normal direction is also not surprising. Find a right handed orthonormal frame ~EOi at
the origin and ~EP i at P containing the upward unit normal as the third vector and a horizontal
unit vector as the first vector, which fixes both frames uniquely. Plot each frame on the surface
with a square piece of the tangent plane, for example: {t1 ~EO1 + t2 ~EO2| − 1 ≤ t1, t2 ≤ 1}.
Express unit tangent vectors in each of these tangent planes in terms of a polar angle β measured
from the first frame vector. This provides two useful locations for initial data for arclength
parametrized geodesic equations.

c) Notice that the origin seems to be a monkey saddle, that is with three equally spaced
ridges which rise above the tangent plane, and 3 equally spaced valleys that fall below the
tangent plane. Evaluate the extrinsic curvature at the origin and diagonalize it to find the
principal curvature directions and plot unit vectors along them in your previous plot. What is
the angle between your original axes and these new orthogonal directions?

d) The tube point P appears to be an ordinary simple saddle point with pair of aligned
ridges rising up above the tangent plane. Repeat c) for this case.

e) Explore the geodesic spray from each of these two initial data points. Try to find a
geodesic that leaves the second initial data point and loops around back into the general vicinity
of its point of departure by trial and error starting from initial data along the horizontal tangent
vector to the loop.

f) Use a computer algebra system to study the geodesics on this surface using these two
initial data points. Play. See if you can find anything interesting.

�
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Exercise 10.6.4.
rotation of the surface normal compared to the Frenet-Serret frame

a) Use a computer algebra system to reproduce Fig. 10.1 for the surface z = x2 − y2 and
the image of the three curves on that surface: a) y = x, b) x = 0 and c) y = 2x.

b) Include the Frenet-Serret frame for each curve in the plot, and animate it and the surface
normal along the curve for each of the 3 curves to show the relative rotation of the surface
normal in the normal plane to the curve.

�

Exercise 10.6.5.
relative rotation of Frenet-Serret frame and surface adapted frame

Recall from Appendix C the Frenet-Serret relations in Cartesian coordinates, adjusted for
the lambda derivative d/dλ = (ds/dλ) d/ds = (~r ′ · ~r ′)1/2 d/ds, where the speed factor v =

(~r ′ · ~r ′)1/2 is constant for an affinely parametrized curve

(
T̂ ′ N̂ ′ B̂ ′

)
= (~r ′ · ~r ′)1/2 (

T̂ N̂ B̂
) 0 −κ 0

κ 0 −τ
0 τ 0

 .

a) Show that the corresponding relations for the surface adapted frame along the curve are

(
T̂ ′ N̂ ′ B̂ ′

)
= (~r ′ · ~r ′)1/2 (

T̂ N̂ B̂
)  0 −K(T̂ , T̂ ) −κs

K(T̂ , T̂ ) 0 −τs
κs τs 0


= (~r ′ · ~r ′)1/2 (

T̂ N̂ B̂
)
eχL1

0 −κ 0
κ 0 dχ/ds− τ
0 τ − dχ/ds 0

 e−χL1 .

For a surface geodesic where χ = 0 these reduce to the Frenet-Serret relations provided that
the curve and surface unit normals are taken to have the same direction rather than opposite
directions, in which case τs reduces to the torsion of the curve.

b) The upper line in the previous equation must have this form by antisymmetry and the
existing definitions, leaving only the additional angular velocity τs to be determined. The lower
line is simply the derivative of the rotational relationship between the two frames involving
the relative angle χ, utilizing the Frenet-Serret relations for the derivatives of the Frenet-Serret
vectors and the product rule. Can one find a formula for dχ/ds which is not too ugly? Or
instead for τs? The relationship between them is implied by the equality of the two right hand
sides of this last multiple equation.

�

Exercise 10.6.6.
Gaussian curvature of implicitly defined surface
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Suppose our surface is defined implicitly by f(x, y, z) = 0. If we want to color the surface
using the value of the Gaussian curvature in order to visualize how this curvature varies on the
surface, we need a formula for it. There are two ways one can proceed.

a) We can assume we are at a point where the normal direction is not horizontal, which
would imply a vertical tangent plane. For interesting surfaces this would only occur at isolated
points in any case, which we can handle with limits from “regular points” where the normal
direction is not horizontal. One can then use (x, y) as implicit coordinates on the surface
understanding z to be some unknown function z(x, y) of (x, y) locally around some regular
point of the surface and then evaluate all the necessary derivatives of ~r(u, v) = 〈u, v, z(u, v)〉
using the chain rule

∂f(u, v, z(u, v))

∂u
=
∂f

∂x
(u, v, z(u, v)) +

∂f

∂z
(u, v, z(u, v))

∂z

∂u
(u, v)

but since f(u, v, z(u, v)) = 0 we get

∂z

∂u
(u, v) = −(∂f/∂x)(u, v, z(u, v))

(∂f/∂z)(u, v, z(u, v))
.

Thus we get a basis of the tangent plane to the surface

Ea(~r(u
1, u2)) =

∂~r(u1, u2)

∂ua
,

and then a right-handed normal

~n(u, v) = E1(~r(u1, u2))× E2(~r(u1, u2)) .

Next we can calculate its derivatives as in the case of a parametrized surface and continue
until we can evaluate the shape tensor and its eigenvector structure.

b) We can use projection to get a 3 matrix which has one zero eigenvalue. Given the unit
normal n̂i we can raise the index to get the vector (so we need to insert the inverse metric
matrix in a Minkowski spacetime), and then project the two indices with the projection tensor

P (n̂)ij = δij −
n̂in̂j
n̂ · n̂ ,

which kills normal vectors
P (n̂)ijn

j = 0 ,

so that in matrix form we get the components of the mixed shape tensor

S = P S P .
Its eigenvalues and eigenvectors will include the 0 value corresponding to the unit normal
eigenvector, and then the two principal curvatures and the corresponding principal curvature
directions. Since this is a 3 × 3 matrix, we can get exact formulas for these quantities, from
which we can get the Gaussian curvature from the product of the two remaining eigenvalues.

c) Try these approaches with a computer algebra system applied to the approximate gyroid
surface. Plot the surface in its fundamental cube using color by Gaussian curvature.

�
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Chapter 11

Differential forms: integration and
differentiation

Any multivariable calculus course at the very minimum treats line integrals of scalars and vector
fields, and at least deals with Green’s theorem in the plane which allows an interpretation as
either Gauss’s law or Stoke’s theorem, at least one of which might have been encountered in
elementary physics. Surface integrals don’t make it into our current syllabus at my university,
but the idea of the flux of field lines through a surface seems to be implanted along the way
again in some exposure to physics for many students. Here we will see that line, flux and volume
integrals in ordinary space over curves, surfaces and solid regions bounded by surfaces generalize
nicely to the process of integration over p-surfaces in Rn of all possible dimensions between 1
and n: curves, surfaces, . . ., hypersurfaces, and open regions enclosed by hypersurfaces. All of
these activities generalize the natural pairing of covectors and vectors to produce a scalar, and
hence do not require any metric to define or evaluate. However, the physical interpretation of
the results so obtained depends crucially on reinterpreting the process in terms of a metric.

The integral theorems of multivariable calculus are directly related to differential properties
of scalar and vector fields through the differential, gradient, curl and divergence, all of which
are unified into the single concept of the exterior derivative of differential forms and their metric
relatives. Quite apart from its role in integration theory, this differential operator turns out
to be very efficient in representing the various geometric conditions satisfied by the connection
and curvature of a metric. This will be free bonus from our development of the mathematics
of integration theory for differential forms.

619
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11.1 Changing the variable in a single variable integral

u

x

K1

1

Figure 11.1: The transformation u = −x2, x = (−u)1/2 maps increasing u to decreasing x and
vice versa.

In changing the variable of a definite integral of a function of a single variable, the process
works by simple substitution, replacing the upper and lower limits by the corresponding values
of the new variable. For example, suppose x = g(u) is a monotonic change of variable with
g′(u) nowhere vanishing on the interval [x1, x2] with x1 < x2 and let u1 = g(x1), u2 = g(x2).
Then either u1 < u2 or u1 > u2, but if one wants the new integral to have ordered limits
of integration, we need only replace the relative rate of change of the two variables in the
transformed integrand by its absolute value∫ x2

x1

f(x) dx =

∫ u2

u1

f(g(u))
dx

du
du =

∫ umax

umin

f(g(u))

∣∣∣∣dxdu
∣∣∣∣ du ,

where umin = min(u1, u2) and umax = max(u1, u2) are the maximum and minimum values
of this pair. Thus the interval of integration [x1, x2] on the x-axis corresponds to the interval
[umin, umax] on the u-axis without having to worry which way the former interval is traced out as
the new variable is increased from left to right on the latter interval. The role of the derivative
factor is to guarantee that the function is integrated against the differential of arclength along
the x-axis, which is what dx represents.

Of course when we apply the “u-substitution method” for single variable integrals we first
identify some function of x as the new variable u but then invert the relationship to replace x
everywhere in the integral by its expression in terms of u. For example, the change of variable
u = −x2 inverts to x = (−u)1/2 on the interval 0 ≤ x ≤ 1, and leads to a reversal of the
direction of the increasing independent variable, tracing out the interval −1 ≤ u ≤ 0. Here is
an explicit example∫ 1

0

e−x
2

x dx =

∫ −1

0

eu
(
−1

2

)
du =

∫ 0

−1

eu
(

1

2

)
du =

1

2
(1− e−1) > 0 .
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This has to be positive since we are integrating a positive integrand with ordered limits of
integration.
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11.2 Changing variables in multivariable integrals

These same change of variable ideas for a single variable integral extend to multivariable in-
tegrals except that the absolute value |dx/du| for a single variable change is replaced by the
absolute value of the Jacobian determinant | det(dxi/duj)| of the change of the set of indepen-
dent variables in terms of which the integrand function is expressed. This guarantees that the
integrand function is integrated against the differential of volume in the space of the orthogonal
coordinates xi. For parametrized p-surfaces within Rn (curves, surfaces, . . ., hypersurfaces), we
can define appropriate integrals simply in terms of multiple integrals on Rp, thus associating
differential measures with these sets (arclength, surface area, . . ., hypersurface area).

Figure 11.2: A n-dimensional parametrized region in Rn. Ψ maps from the parameter or
coordinate space to the physical space.

As pictured suggestively in Fig. 11.2, we generalize the map g : R → R associated with
the change of variable x = g(u) for the definite integral substitution to an invertible map
Ψ : Rn → Rn from a closed region U onto its image Ψ(U), i.e., xi = Ψi(u). More preciesly,
let {ui} be the standard Cartesian coordinates on the domain Rn (the coordinate space) and
denote the standard Cartesian coordinates on the image space by xi (the physical space), so that
Ψi = xi ◦Ψ are the component functions of this map, expressing the coordinates xi in terms of
the parameters ui, or in more appropriate language, expressing the old Cartesian coordinates in
terms of the new coordinates. The cylindrical and spherical coordinate parametrization maps
from the coordinate space into R3 are good examples of this. For example, for the former
coordinates one has

x = ρ cosφ Ψ1(u) = u1 cosu2

y = ρ sinφ ←→ Ψ2(u) = u1 sinu2

z = z Ψ3(u) = u3 .

Then the integral of some real valued function f on the image Ψ(U) “in real space” can be
expressed as an integral over U (in the parameter or coordinate space) by∫

· · ·
∫

Ψ(U)

f dx1dx2 · · · dxn︸ ︷︷ ︸
dVx

=

∫
· · ·
∫
U

f ◦Ψ

∣∣∣∣det

(
∂Ψi

∂uj

)∣∣∣∣︸ ︷︷ ︸
correction factor

du1du2 · · · dun︸ ︷︷ ︸
dVu

.



11.2. Changing variables in multivariable integrals 623

Besides re-expressing the function f in terms of the new variables to obtain f ◦Ψ, a correction
factor takes into account the change in the volume element against which the function is being
integrated. This correction factor is the absolute value of the determinant of the Jacobian
matrix ∂xi/∂uj of partial derivatives of the image space coordinates with respect to the domain
space coordinates and gives the differential volume of an n-parallelepiped whose sides are the
n vectors (∂xi/∂uj)duj in the tangent space of physical space. The integral of the function f
with respect to the differential of volume dVx in physical space is thus faithfully re-expressed
in terms of the new variables.

Figure 11.3: Integrating over a parametrized cylinder in R3, corresponding to a rectangular
box in the parameter space.

Changing to cylindrical coordinates to evaluate an integral over a cylindrical region is a
familiar example of this. For example, consider an integral over the solid cylinder of radius a
and height h parametrized by the variable ranges in cylindrical coordinates U : 0 ≤ ρ ≤ a , 0 ≤
φ ≤ 2π , 0 ≤ z ≤ h illustrated in Fig. 11.3∫ ∫ ∫

Ψ(U)

[x2 − y2]︸ ︷︷ ︸
f

dxdydz =

∫ ∫ ∫
U

[ρ2 cos 2φ]︸ ︷︷ ︸
f ◦Ψ

ρ︸︷︷︸︷ ︸︸ ︷∣∣∣∣det

(
∂Ψi

∂uj

)∣∣∣∣
dρdφdz

=

∫ 2π

0

∫ a

0

∫ h

0

ρ3 cos 2φ dzdρdφ .

For the present example, the correction factor can be evaluated by appealing to a geometric
argument about how to compute the differential volume in cylindrical coordinates without ever
mentioning the Jacobian determinant, so this may often be skipped in multivariable calculus.

The absolute value sign in the correction factor guarantees that the integral of a positive
function of Ψ(U) results in integrating a positive function on U . This correction factor is
essentially all we need to know to describe integration of a p-form field on a parametrized
p-surface in an n-dimensional space.
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Example 11.2.1. Use double integrals to determine the obvious centroid (−5
2
, 5) of the region

R enclosed by the parallelogram in the x-y plane shown in Fig. 1.1 whose sides are formed by
the lines

y = x , y = x+ 15 , y = −1

2
x , y = −1

2
x+

15

2
.

To accomplish this we introduce the linear change of variables

x = x′ − 2y′ , y = x′ + y′ ,

with the absolute value Jacobian determinant | det(∂xi/∂xj
′
)| = 3, in terms of which the

parallelogram has edge lines described by

x′ = 0 , x′ = 5 , y′ = 0 , y′ = 5 .

Thus for any function f(x, y) in the plane∫
R

f(x, y)dA =

∫ 5

0

∫ 5

0

f(x′ − 2y′, x′ + y′)3dy′dx′ .

Thus

Ax =

∫ 5

0

∫ 5

0

(x′ − 2y′)3dy′dx′ , Ay =

∫ 5

0

∫ 5

0

(x′ + y′)3dy′dx′ , A =

∫ 5

0

∫ 5

0

(1)3dy′dx′ ,

and

〈x̄, ȳ〉 =
1

A
〈Ax, Ay〉 = 〈−5

2
, 5〉 .

�

0 1 2 3 4
0

1

2

3

x

y

Figure 11.4: A parallelogram in the plane.

Exercise 11.2.1.
integration in the plane over a parallelogram

Repeat this Exercise with the parallelogram in the plane formed by the vectors 〈1, 2〉, 〈3, 1〉
of Exercise 1.6.3????, where the obvious centroid position vector is the average of these two
vectors: 〈2, 3

2
〉.
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a

a

r

z

Figure 11.5: A snow cone region of space with vertex at the origin, shown with its r-z half
plane cross-section.

�

Exercise 11.2.2.
snow cone centroid integration

Calculate the familiar volume correction factors for cylindrical and spherical coordinates
by evaluating the absolute value of the determinant of the Jacobian matrix (∂xi/∂x̄j) given in
Sections 5.7 and 5.8 for these coordinate systems.

Use either coordinate system to evaluate the z coordinate of the centroid of the snow cone
topped by a sphere of radius a centered at the origin, with a conical base with vertex at
the origin and opening angle α measured from the upwards vertical direction. Since we are
integrating z, which is one of the cylindrical coordinates, it suggests using those coordinates,
but the bounding surfaces do not correspond to constant values of that coordinate, which
nevertheless are described by simple conditions on z as a function of r. On the other hand the
two snow cone boundary surfaces each do correspond to constant values of one of the spherical
coordinates, but the integrand must be re-expressed as a function of those coordinates (albeit,
a simple one). Thus it is not obvious which choice is simplest before iterating and evaluating
the integral. Either one is not so difficult to evaluate.

�
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11.3 Parametrized p-surfaces and pushing forward the

coordinate grid and tangent vectors

Figure 11.6: A parametrized p-surface in Rn or some n-dimensional space is a function Ψ :
Rp → Rn. The coordinate grid on the parameter space transfers to a grid on the image space.

Suppose we have a 1-1 map Ψ from a closed region U of the “parameter space” Rp into Rn

or some n-dimensional space with local coordinates {xi}. Let Ψi = xi ◦Ψ be those coordinates
expressed as functions of the “parameters” (u1, · · · , up). Let α, β, · · · = 1, 2, · · · , p denote the
indices for the parameters.

For example, the above parameter map Ψ for cylindrical coordinates represents R3 as a
parametrized 3-surface or “3-space.” On the other hand fixing the radial coordinate

x = a cosφ Ψ1(u) = a cosu1

y = a sinφ ←→ Ψ2(u) = a sinu1

z = z Ψ3(u) = u2

leads to a parametrized 2-surface representing an infinite cylinder of radius a, or fixing z as
well leads to a parametrized 1-surface or curve

x = a cosφ Ψ1(u) = a cosu1

y = a sinφ ←→ Ψ2(u) = a sinu1

z = h Ψ3(u) = h .

In general, fixing any n − p coordinates in the parametrization map associated with local
coordinates on Rn leads to a parametrized p-surface in which the p parameters correspond
to p of these coordinates. The two angular coordinates {θ, φ} of spherical coordinates in R3

parametrize the radial coordinate spheres, for example.
For a given parametrized p-surface, fixing all the parameters but one, say uα, yields a

parametrized curve which is the image of the uα coordinate line on Rp under the parametrization
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map Ψ. Varying the other parameters moves this curve around. One can do this for each of
the parameters in turn. This corresponds to mapping to coordinate grid of Rp onto the image
surface in the n-dimensional space (see figure 11.6). The tangent vector at a point Ψ(u) on this
p-surface

Eα(u) =
∂Ψi(u)

∂uα
∂

∂xi

∣∣∣∣
Ψ(u)

= “
∂

∂uα
”

is the tangent vector to the parametrized curve corresponding to the uα coordinate line in Rp.
See figure 11.7. In this way both the coordinate grid and their tangents ∂/∂ui are “pushed
forward” by the parametrization map Ψ from the parameter space to the image p-surface. The
quotation marks around ∂/∂uα are meant in the sense that when we differentiate functions on
Rn by these tangent vectors, once we re-express the function in terms of the coordinates uα on
the p-surface, we just take the ordinary partial derivatives by those coordinates.

Figure 11.7: A parametrized 2-surface in Rn is oriented by the parametrization. Both the
coordinate grid and their tangents ∂/∂ui are pushed forward by the parametrization map Ψ
from the parameter space to the image surface.

The tangent p-plane to the parametrized p-surface is spanned by the p-vectors {Eα(u)},
assuming that they are linearly independent so that its dimension is actually p. This is a
condition we must place on the parametrized p-surface. If {Eα(u)} are linearly independent,
then the p-vector

E1(u) ∧ · · · ∧ Ep(u) with components [E1(u) ∧ · · · ∧ Ep(u)]i1···ip

= p ! E1(u)[i1 · · ·Ep(u)ip]

must be nonzero everywhere. This determines the orientation of the tangent p-plane. For p = 1
this condition reduces to the requirement that the tangent vector to a parametrized curve not
vanish anywhere, which should ring a bell from defining line integrals in multivariable calculus.
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Since the map Ψ is 1-1, for each image point on the surface, there is only one point in U
that is mapped onto it by Ψ. Thus if X(u) = X(u)α∂/∂uα is a vector field on the parameter
space, it pushes forward to a surface vector field on the p-surface in a natural way

X(u) = X(u)α
∂

∂uα
→ X(u)αEα(u) .

The distinction between ∂/∂uα and Eα is that one must first re-express a function on Rn in
terms of the parametrization before differentiating by the former vector field, while the second
one is free to operate on the function directly. The results are the same for a given function.

We can clearly extend this to tensor products of such vector fields, and to general con-
travariant tensor fields. In fact for any parametrized curve c(t) in U , composition with the map
Ψ pushes it forward (towards the image of the map) to a curve Ψ ◦ c(t) on the p-surface. By
construction, this pushes forward its tangent as a curve in U to the tangent to the image curve
in Ψ(U).

Exercise 11.3.1.
differential of surface area

a) Evaluate E1 ∧ E2 for the parametrized cylinders ρ = ρ0 in cylindrical coordinates.
b) Repeat for the parametrized spheres r = r0 in spherical coordinates.
c) Repeat for the parametrized elliptical paraboloids of Exercise 1.6.12.

�
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11.4 Pulling back functions, covariant tensors and dif-

ferential forms

Suppose one has any function F on Rn, which can be thought of as a 0-form. Then its com-
position Ψ∗F = F ◦ Ψ with the parametrization map Ψ naturally defines a function on the
parameter space Rp called the pull back of this function since it pulls the function in the op-
posite direction of the map itself, which goes instead from Rp to Rn. The expression for this
function is obtained just by substituting into F the expressions for the coordinates xi(u) as
functions of the parameters. This same operation can be applied to any covariant tensor. For
example, the coordinate differentials dxi pull back to 1-forms Ψ∗dxi on the parameter space by
the chain rule

dxi(u) =
∂x1(u)

∂uα
duα ,

while any 1-form pulls back similarly

f = fidx
i → Ψ∗f = fi ◦Ψ Ψ∗dxi = fi ◦Ψ

∂xi

∂uα
duα .

If one has a metric tensor on Rn, it too pulls back to a metric on the parameter space with
describes the “induced metric” on the p-surface

g = gijdx
i ⊗ dxj → Ψ∗g = gij ◦Ψ

∂xi

∂uα

∂xj

∂uβ
duα ⊗ duβ = gαβdu

α ⊗ duβ .

Its components can be thought of as the inner products of the image vectors

gαβ = Ψ∗g

(
∂

∂uα
,
∂

∂uβ

)
= g(Eα, Eβ) .

This same “pull back” operation works also for p = n, when instead this is interpreted as
a change of coordinates. For example, the parameter map associated with cylindrical (or
spherical) coordinates on R3 pulls back the Euclidean metric on R3 to the coordinate expression
for the metric on the coordinate space. By interpreting those parameters as coordinate functions
on the original physical space, we interpret this as just a way of re-expressing the same tensor
on physical space.

Suppose

T =
1

p!
Ti1···ipdx

i1···ip = Ti1···ipdx
|i1···ip|

is a p-form field on our n-dimensional space, usually called a “differential p-form” or if the
“degree” p is not made explicit, a “differential form.” Simply expressing this differential form
in terms of the parameters on the parametrized p-surface by substituting the parametrized
expressions Ψi(u) = xi ◦Ψ for the Cartesian coordinates xi into it leads to a differential p-form
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on the parameter space called the pull back of the p-form T

Ψ∗T ≡ 1

p!
Ti1···ip ◦Ψ︸ ︷︷ ︸

express components in terms of parameters

d(xi1 ◦Ψ) ∧ · · · ∧ d(xip ◦Ψ)

=
1

p!
Ti1···ip︸ ︷︷ ︸
antisym

◦Ψ ∂Ψ[i1

∂uα1
· · · ∂Ψip]

∂uαp︸ ︷︷ ︸
only antisym part contributes

duα1 ∧ · · · ∧ duαp

=
1

p!
Ti1···ip ◦Ψ

∂Ψ[i1

∂uα1
· · · ∂Ψip]

∂uαp
εα1···αp du1···p

=
1

p!
Ti1···ip ◦Ψ

∂Ψ[i1

∂u1
· · · ∂Ψip]

∂up
p! du1···p

=
1

p!
Ti1···ip ◦Ψ [E1(u) ∧ · · · ∧ Ep(u)]i1···ip du1···p .

The single independent component of this p-form on Rp, function is the natural contraction of
the p-covector T on the p-vector E1(u)∧· · ·∧Ep(u) at each point of the parametrized p-surface.
It is a function on Rp.

Suppose we first define the integral of a p-form fu1···p on an open region U ⊂ Rp to be the
ordinary multivariable iterated integral of its single independent component function∫

U
f du1···p =

∫
U
f du1 ∧ · · · ∧ dup ≡

∫
· · ·
∫
U
f du1du2 · · · dup ,

where the right hand side is symbolic for any particular choice of the successive partial in-
tegrations of some interation of the integral ordered in any way in terms of the p variables
uα.

We can then define the integral of a p-form on a parametrized p-surface as just the integral
on Rp of the pulled back p-form∫

Ψ(U)

T ≡
∫
U

Ψ∗T =

∫
· · ·
∫
U
T|i1···ip| ◦Ψ(u)[E1(u) ∧ · · · ∧ Ep(u)]i1···ipdu1du2 · · · dup .

To summarize, we substitute the parametrization into T , expand it out to get a coefficient
function times du1···p and we just integrate that coefficient function on U in the ordinary sense.
The coefficient function is the natural contraction of the p-form T with the p-vector E1(u) ∧
· · · ∧ Ep(u) of the parametrization, divided by p! to avoid over counting.

In the case p = n, we can let Ψ be the identity map so that ui = xi and [E1(u) ∧ · · · ∧
En(u)]i1···in = δi1···in1...n , and this reduces to∫

Ψ(U)

T =

∫
· · ·
∫
U
T1...n(u) du1du2 · · · dun .
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Figure 11.8: A parametrized half cylinder.

Example 11.4.1. Suppose we consider our old friend

∗X[ =∗ (ydx+ xdy) = ydy ∧ dz + xdz ∧ dx = (ydy − xdx) ∧ dz ≡ T

and integrate it over the parametrized half cylinder surface

x = a cosu1 , y = a sinu1 , z = u2 .

∫
Ψ(U)

T =

∫
u

[(a sinu1)d(a sinu1)− (a cosu1)d(a cosu1)] ∧ du2

=

∫
u

[a2 sinu1 cosu1 + a2 sinu1 cosu1]du1 ∧ du2

=

∫ ∫
u

a2 sin 2u1du1du2 =

∫ h

0

∫ π

0

a2 sin 2u1du1du2

= a2

∫ h

0

du2︸ ︷︷ ︸
h

∫ π

0

sin 2u1du1︸ ︷︷ ︸
−1

2
cos 2u1|π0

= −a
2h

2
[cos 2π − cos 0] = 0 .

In this context the 2-form
Ψ∗T = a2 sin 2u1du1 ∧ du2

is equivalent to re-expressing T in cylindrical coordinates

T = (ydy − xdx) ∧ dz = [ρ sinφ d(ρ sinφ)− ρ cosφ d(ρ cosφ)] ∧ dz
= [2ρ2 sinφ cosφ dφ+ ρ(sin2 φ− cos2 φ)dρ] ∧ dz
= ρ2 sin 2φ dφ ∧ dz − ρ cos 2φ dρ ∧ dz

and setting ρ to a and dρ to 0

Tρ=a,dρ=0 = a2 sin 2φ dφ ∧ dz︸ ︷︷ ︸
“restriction of T to surface ρ = a”

←→ Ψ∗T = a2 sin 2u1du1 ∧ du2 .
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�

Exercise 11.4.1.
surface integral on a sphere

Repeat the above discussion for T = (ydy − xdx) ∧ dz on the part of a sphere r = a in the
first octant using the spherical coordinates {θ, φ} as the parameters {u1, u2}.

x = a sinu1 cosu2 , y = a sinu1 sinu2 , z = a cosu1 .

Figure 11.9: A parametrized sector of a sphere. [add axis labels, Ψ(u), etc]

First evaluate
∫
φ(u)

T . Then evaluate T in spherical coordinates and restrict it to the sphere

by setting r = a, dr = 0. Compare with your result for Ψ∗T .
�

Exercise 11.4.2.
contraction of 2-form with 2-vector

In the cylindrical problem, the tangent vectors to the parameter grid are

(Ei
1(u)) = 〈−a sinu1, a cosu1, 0〉 , (Ei

2(u)) = 〈0, 0, 1〉 ,

E1(u) = −a sinu1 ∂

∂x

∣∣∣∣
Ψ(u)

+ a cosu1 ∂

∂y

∣∣∣∣
Ψ(u)

, E2(u) =
∂

∂z

∣∣∣∣
Ψ(u)

.

so

E1(u) ∧ E2(u) = a sinu1 ∂

∂z
∧ ∂

∂x

∣∣∣∣
Ψ(u)

+ a cosu1 ∂

∂y
∧ ∂

∂z

∣∣∣∣
Ψ(u)

.
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The natural contraction with T is then

1
2
Tij ◦Ψ [E1(u) ∧ E2(u)]ij

= T23 ◦Ψ︸ ︷︷ ︸
a sinu1

[E1(u) ∧ E2(u)]23︸ ︷︷ ︸
a cosu1

+ T31 ◦Ψ︸ ︷︷ ︸
a cosu1

[E1(u) ∧ E2(u)]31︸ ︷︷ ︸
a sinu1

+T12 ◦Ψ︸ ︷︷ ︸
0

[E1(u) ∧ E2(u)]12︸ ︷︷ ︸
0

= 2a2 sinu1 cosu1 = a2 sin 2u1 .

Calculate E1(u) ∧ E2(u) for the previous Exercise and its contraction with T in exactly this
same way.

�

Exercise 11.4.3.
integration over a triangular surface in space

Figure 11.10: A parametrized triangle in R3. [Correct the limit of integration in new
figure]

Repeat both Exercises of the preceding page for the simpler plane surface shown in Fig. 11.10.
�
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11.5 Changing the parametrization

Figure 11.11: Two different parametrizations of the same p-surface. [change (Φ, scriptf) to
(Ψ,Φ) in new figure]

Suppose we have two different such parametrizations Ψ and Ψ̄ of the same p-surface. What
do we need in order that the integral of a p-form T on it not depend on the parametrization?
Well, Φ = Ψ−1 ◦ Ψ̄ is a map from Rp to Rp which corresponds to the relationship between the
parameters which specify the same points on our p-surface.

The values for each parametrized surface as defined above are∫
Ψ(u)

T =

∫
· · ·
∫
U

1

p!
Ti1···ip ◦Ψ(u)[E1(u) ∧ · · · ∧ Ep(u)]i1···ip du1du2 · · · dup∫

Ψ̄(ū)

T =

∫
· · ·
∫
Ū

1

p!
Ti1···ip ◦ Ψ̄(ū)[Ē1(ū) ∧ · · · ∧ Ēp(ū)]i1···ip dū1dū2 · · · dūp︸ ︷︷ ︸

dummy variables so can use any symbol

But the function Φ : Rp −→ Rp just represents a change of variable in this ordinary integral
uα = Φα(ū). But by definition Ψ̄ = Ψ ◦ Φ, i.e., in components Ψ̄i(ū) = Ψi(Φ(ū)) so

Ēi
α(ū) =

∂Ψ̄i(ū)

∂ūα
=
∂Ψi(ū)

∂uβ
∂Φβ

∂ūα
= Ei

β(u(ū))
∂Φβ(ū)

∂ūα

and hence

Ē1(ū) ∧ · · · Ēp(ū) =

[
Eα1(u(ū))

∂Φα1(ū)

∂ū1

]
∧ · · · ∧

[
Eαp(u(ū))

∂Φαp(ū)

∂ūp

]
= Eα1(u(ū)) ∧ · · · ∧ Eαp(u(ū))︸ ︷︷ ︸
εα1···αpE1(u(ū)) ∧ · · · ∧ Ep(u(ū))

∂Φα1(ū)

∂ū1
· · · ∂Φαp(ū)

∂ūp

= det

(
∂Φα(ū)

∂ūβ

)
E1(u(ū)) ∧ · · · ∧ Ep(u(ū))
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since

εα1···αp
∂Φα1(ū)

∂ū1
· · · ∂Φαp(ū)

∂ūp
= det

(
∂Φα(ū)

∂ūβ

)
so∫
φ̄(u)

T =

∫
ū

· · ·
∫

1

p!
Ti1···ip ◦Ψ ◦ Φ [E1(u) ∧ · · · ∧ Ep(u)]i1···ip ◦ Φ det

(
∂Φα(ū)

∂ūβ

)
dū1dū2 · · · dūp

But this is exactly the re-expression of the ordinary multivariable integral
∫
φ(u)

T under a change

of variable except that the necessary correction factor discussed in Section 11.2∣∣∣∣det

(
∂Φα

∂ūβ

)∣∣∣∣
is missing the absolute value sign here and hence will have the correct sign only if

det

(
∂Φα

∂ūβ

)
> 0 .

In other words, once we wish to define an integral of a p-form on a p-surface independent of the
parametrization, we have to give it the additional mathematical structure of an “orientation,”
which takes into account that this sign can change under a change of variable.

The p-vectors E1(u) ∧ · · · ∧ Ep(u) for all parametrizations are proportional and nonzero
since they determine the same tangent p-plane at each point of the p-surface. However, the
nonzero proportionality factor can be positive or negative. Each parametrization determines
its own orientation for the p-plane—namely any other basis of the tangent p-plane has the same
(opposite) orientation if the proportionality factor relating the new basis p-vector to the given
p-vector E1(u) ∧ · · · ∧Ep(u) of the parametrization is positive (negative). Then the integral of
a p-form on an oriented p-surface is well-defined independent of the choice of parametrization.
For a parametrization with the opposite orientation, one simply changes the sign of the integral
to get the correct value of the oriented p-surface integral.

In order for this choice of sign to be globally consistent on the p-surface, the p-surface must
allow a continuous choice of a nonzero p-vector in every tangent subspace tangent to it, in
which case it is said to be orientable. The Mobius strip is a relatively famous example of a
nonorientable surface where this game cannot be played globally.

For the case p = 1 of a curve, this just corresponds to a choice of direction for the tangent
vector E1 of any parametrization, and hence for the direction along which we move in the
“positive direction” along the curve as we increase the parameter in an oriented parametrization.
This can be done consistently as long as the parametrization map is 1-1 everywhere, which does
not allow the tangent to vanish at any point, where the parametrized curve might retrace its
own path.

For the case p = 2 of an ordinary surface, this is a choice of a “screw sense” for a loop in
the surface. This tells us the direction one must rotate the first basis vector E1 to go towards
the second basis vector E2 if they are to have the chosen orientation, at each tangent plane to
the 2-surface. Within a 3-dimensional space, there is only one extra direction which points on
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Figure 11.12: Orientation of a 2-surface.

one side or the other of the surface, so one can equivalently specify this orientation by linking
it to a choice of this direction. Curling fingers of the right hand from E1 to E2 then requires
the third direction in any frame for the whole space to lie on the side of the plane of E1 and
E2 determined by the thumb if the basis is to be right handed, called the right hand rule. In
the usual dot product geometry on R3, this leads to the right hand rule choice of unit normal
direction from the two possible choices. We will discuss this in detail in general later.

Figure 11.13: Orientation of a 3-surface determined by the right hand rule in R3.

For p = 3, this is a choice of a left or right handed basis of each tangent space to the
3-surface. Curling fingers of the right hand from E1 to E2 then requires E3 to lie on the side of
the plane of E1 and E2 determined by the thumb if the basis is to be right handed. Otherwise
it is left handed. Of course this has to be able to be done consistently on the p-surface: the
surface must be “orientable.” This is not always possible.

Figure 11.14: A 2-surface can be orientable or not, like the Mobius strip.

Suppose we take a cylindrical strip and cut it as shown in Fig. 11.14 and twist it once so
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that A and B exchange places and then re-attach the two ends smoothly. Now as we move
our orientation-indicating circle around the strip it comes out reversed after one loop. It is not
possible to continuously assign an orientation to this “Möbius strip.” It is not orientable, so
one cannot define the integral of a 2-form on it.
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11.6 Integration and a metric

One does not need a metric to define the integral of a p-form on a p-surface in an n-dimensional
space, whose end result is to produce a real number. However, when a metric is present, one
can rewrite the integration process by re-expressing it in terms of the metric, which allows us
to interpret the integral using the metric geometry and hence assign a “meaning” to that real
number value of the integral. It is easier to illustrate this with a pair of concrete examples
before describing the general situation.

Curves in a 3-dimensional flat space

Suppose we are in an (n = 3)-dimensional space with a (p = 1)-dimensional surface, the familiar
case of curves in R3 but with any flat metric g of any signature, like 3-dimensional Minkowski
spacetimeM3. Let’s work in orthonormal Cartesian coordinates xi for this metric and a curve
c such that xi = ci(λ) = xi(c(λ)) = “xi(λ)” and U is the interval λ ∈ [a, b]. Then with tangent
and unit tangent coordinate components

c′i(λ) =
dxi

dλ
(λ) =

∣∣∣∣dxdλ(λ)

∣∣∣∣ T̂ i(λ) ,

∣∣∣∣dxdλ
∣∣∣∣ =

∣∣∣∣gij dxidλ

dxj

dλ

∣∣∣∣1/2 , T̂ iT̂i = ε ,

we have ∫
c

F =

∫
c

Fi dx
i =

∫
U

c∗(F ) =

∫ b

a

Fi ◦ c(λ)
dxi

dλ
(λ) dλ

=

∫ b

a

Fi ◦ c(λ)T̂ i(λ)︸ ︷︷ ︸
εF ||(λ)

∣∣∣∣dxidλ
(λ)

∣∣∣∣ dλ︸ ︷︷ ︸
ds(λ)

=

∫ b

a

Fi ◦ c(λ) T̂ i(λ) ds(λ)︸ ︷︷ ︸
dsi(λ)

= “

∫
c

~F · d~s ” .

This integral is interpreted as the integral of the tangential component (modulo the sign ε) of
the corresponding vector field against the differential of arclength along the curve. The quotes
indicate the sloppy notation in which we ignore the dependence on λ. This is the familiar
situation of a line integral of a vector field in multivariable calculus when we are working in
Euclidean 3-space, but in fact nothing of the above depended on the dimension n = 3 or having
a flat metric, so this is the general situation for the integral of a 1-form on a directed curve for
any n and any metric.

Surfaces in a 3-dimensional flat space

Suppose again we are in an (n = 3)-dimensional space but with a (p = 2)-dimensional surface,
the familiar situation of ordinary surfaces in R3 but with any flat metric g of any signature,
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like 3-dimensional Minkowski spacetimeM3. Let’s work in orthonormal Cartesian coordinates
xi for this metric.

Let n̂ be any unit normal to this surface with nonzero length: n̂in̂
i = ε = ±1 (so that this

discussion excludes null surfaces where this self-inner product vanishes, a case which requires
special handling). Any 2-form on the space can be represented as the dual of a 1-form, which
in turn up to sign is just the dual of the 2-form but that sign is really annoying to keep track
of. It is convenient to raise its index to a vector field index so that unit oriented 3-form η
associated with the metric and the orientation of the whole space is totally covariant

F =
1

2
Fij dx

i ∧ dxj =
1

2
(∗B)ij dx

i ∧ dxj =
1

2
Bkηkij dx

i ∧ dxj

=
1

2
Bmδkmηkij dx

i ∧ dxj .

For example, in Euclidean space in Cartesian coordinates we can write this as

F = B1 dx2 ∧ dx3 −B2 dx1 ∧ dx3 +B3 dx1 ∧ dx2

= B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2 .

The alternating sign ordered index pair expression generalizes to other values of n, but the
cyclic sum is more convenient for n = 3. That inserted Kronecker delta is important but first
we need a detour to explain why.

We can orthogonally decompose any tangent vector at a point of the surface to a vector
component along the unit normal to the surface and a vector component in the tangent plane
to the surface. Define the projection tensor

P (n̂)ij ≡ −
n̂in̂j
n̂pn̂p

+ δij = ε n̂in̂j + δij ↔ δij = ε n̂in̂j − P (n̂)ij

which subtracts away the normal component X⊥ = εXjn̂j

P (n̂)ijX
j = −ε n̂in̂jXj + δijX

j = X i −
(
ε n̂jX

j
)
n̂i ≡ X i −X⊥ n̂i

so that we can represent X as a piece along the unit normal and a piece in the tangent plane
to surface which is orthogonal to the unit normal

X i = X⊥ n̂i + P (n̂)ijX
j , n̂iP (n̂)ijX

j = 0 .

Indeed the surface projection tesnor when contracted on either index with the unit normal gives
zero. This surface projection removes the components of all tensors along the normal direction
to yield a tensor which only lives over the tangent space to the surface. The metric for example
projects to 2-tensor on the whole space which evaluates to zero if any vector along the normal
direction is inserted into one of its vector slots

(2)gij = gmnP (n̂)miP (n̂)nj ,
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while the unit 3-form projects to a 3-form which also gives 0 upon evaluation on any vector
along the unit normal

(2)ηijk = ηmnpP (n̂)miP (n̂)njP (n̂)pk .

Next we are interested in pulling back this 2-form to the surface with a parametrization
map Ψ so that we can integrate the resulting 2-form on the parameter space, so if we insert
into our previous expression for Ψ∗(F ) the representation

δkm = ε n̂kn̂m + P (n̂)km

of the unit tensor in terms of the projection along and orthogonal to the unit normal, when we
pull back P k(n̂)mηkij to the surface we will have a 3-form that only accepts a vector tangent to
the surface in its first slot to be nonzero, but the other two slots will be filled by such vectors
as well when pulled back to the 2-dimensional parameter space where every 3-form vanishes.
Thus only the normal projection term survives which evaluates the first slot along the normal
direction, thus allowing the two other slots to be filled by vectors tangent to the surface.

The 2-form (2)ηij = nkεkij is evaluated on the unit normal in the first slot and therefore
evaluates to the area of the parallelogram formed by two vectors X and Y tangent to the
surface (such that η(n̂, X, Y ) > 0), since the height of the parallelopiped formed by the 3
vectors is 1, so in fact this 2-form corresponds to the unit volume 2-form on the surface, more
commonly called the differential of surface area. Thus the pullback will be

Ψ∗(F ) =
1

2
Ψ∗
(
εBmn̂kn̂mηkij dx

i ∧ dxj
)

=
1

2
Ψ∗
(
B⊥ (2)ηij dx

i ∧ dxj
)

= Ψ∗
(
B⊥ (2)η

)
= “B⊥ dS ” = “ε ~B · n̂ dS ” = “ε ~B · d~S ” .

The last two expressions are in quotes because this is what we usually call the normal component
of the vector field ~B = B] and the differential dS of surface area on the surface, with a vector
differential denoted by

dSi = n̂i dS = n̂i (2)η .

The Cartesian components of this vector-valued 2-form in a Cartesian coordinate frame in the
Euclidean case are

d~S = 〈dy ∧ dx, dz ∧ dx, dx ∧ dy〉 ,
and the pullback of F will be

Ψ∗(F ) = Ψ∗(B1 dy ∧ dx+B2 dz ∧ dx+B3 dx ∧ dy〉) .

The payoff of these manipulations is that we can interpret the integral of this 2-form on the
surface as the integral of the normal component of the vector field against the differential of
surface area, which in the physical application is called the flux of the vector field through that
region of the surface over which the integration takes place. For a vector field in Euclidean R3

representing a stationary velocity field of a fluid, whose flow lines are the paths of the fluid, this
would quantify the flow rate of the fluid through the surface. Area times velocity has units of
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volume per time so this would give the amount of fluid which passes through this surface region
per unit time. For the electric or magnetic fields, this gives the flux of those fields through
a region of a surface, important in the interpretation of how these fields act on charges and
currents.

Example 11.6.1. integration of a 2-form on a sphere ...
�

Exercise 11.6.1.
integration of a 2-form on a torus ...

�

Exercise 11.6.2.
integration of a 2-form in 3-spacetime

a) Consider the above discussion in 3-dimensional Minkowski spacetime M3 in oriented
coordinates (x0, x1, x2) = (t, x, y), with unit volume 3-form η012 = ε012 = 1 and metric

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy ,

and a spacelike surface Σ : t = t0 with future-pointing unit timelike normal n̂ = ∂t on that
surface with components 〈1, 0, 0〉, for which ε = −1. We can use the parametrization map

(t, x, y) = Ψ(u1, u2) = (t0, u
1, u2) ,

and integrate over some region U of the parameter space such that Σ = Ψ(U). Consider a
2-form

F = B0 dx ∧ dy +B1 dy ∧ dt+B2 dt ∧ dx .

Show that∫
Σ

F =

∫
U

Ψ∗(B0) du1 du2 = “

∫
Σ

B0 dx dy” = “

∫
Σ

−Bin̂i dx dy” = “

∫
Σ

−Bi dSi” ,

where the quotes mean we are using sloppy notation where we don’t distinguish between the
coordinates and parameters (x, y) = (u1, u2).

b) What happens to the signs in this calculation if we repeat it for a timelike surface x = x0

with a unit normal n̂ = ∂x?

�
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Integrating over a p-surface in an n-dimensional space

The remaining case p = 3 for n = 3 is straightforward. The integral of a 3-form over a region of
the space translates into the integral of its dual (modulo that annoying sign), a scalar function,
with respect to the unit volume 3-form of the metric, i.e., the differential of volume on the
space.

The case p = n− 1 of a hypersurface oriented by a chosen unit normal behaves very much
like surfaces in three dimensions. The dual of an (n−1)-form is a 1-form, and the hypersurface
integral is again interpreted as the integral of the normal component of the corresponding
vector field with respect to the differential of hypersurface area. The way that a unit normal to
a hypersurface corresponds to an orientation of the hypersurface requires a lengthy discussion
of its own to handle the general case, which we postpone till a later section.

For the cases n/2 < p < n− 1, then n− p < p so that by taking the dual of the p-form, we
reduce the number of indices as in the case p = n − 1 and can interpret the integral in terms
of the normal components of the dual (more economical) or the tangential components of the
p-form itself (less economical) against the differential of p-surface volume. When p = n/2 for
an even dimension, the dual also has p indices so they are equally index laden in interpretation.
For n = 4 we get the first case of this type: the dual of a 2-form is a 2-form.

In progress . . . but out of time now. We will discuss these in the context of Stokes’ theorem
later, and eventually I will flush this out in more detail.
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11.7 The exterior derivative d

Suppose we work in a coordinate frame on Rn or some n-dimensional space of interest. Then
for each p satisfying 0≤ p ≤ n, we have p-forms or “differential forms of degree p” which may
be expressed in terms of the coordinate differentials as

T =
1

p!
Ti1...ipdx

i1...ip =
1

p!
Ti1...ipdx

i1 ∧ . . . ∧ dxip

= Ti1...ipdx
|i1...ip| (if we don’t want to overcount)

= Ti1...ipdx
i1 ⊗ . . .⊗ dxip , (if we want to just think of it

as a (0
p)-tensor field)

where of course Ti1...ip = T[i1...ip] holds.
A function f is a 0-form and its differential df = f,idx

i = (∂f/∂xi)dxi is a 1-form. Thus
the differential d maps 0-forms to 1-forms, the extra covariant index being the derivative index.
If we start instead with a p-form, adding a derivative index to its component symbol will not
yield an object which is antisymmetric in all of its indices unless we also take the antisymmetric
part of this new object. We will then get a (p+ 1)-form. Apart from a normalization constant,
this is how the exterior derivative d is defined as an extension of the operator d which takes
the differential of a function.

The actual definition is simple for 1 ≤ p ≤ n

p-form
d−→ (p+ 1)-form

(1) T =
1

p!
Ti1...ipdx

i1...ip d−→ dT ≡ 1

p!
dTi1...ip ∧ dxi1...ip .

In words, take the differential of its component functions and wedge that into the coordinate
frame basis p-form to obtain a (p+ 1)-form. This is all we need in practice to evaluate dT for
any p-form T , but we can develop shortcut formulas.

Its components are easily calculated by expanding the differential using the definitions
df = f,idx

i and dxj ∧ dxi1...ip = dxji1...ip

dT =
1

p!
dTi1...ip ∧ dxi1...ip =

1

p!
Ti1...ip,jdx

j ∧ dxi1...ip

=
1

p!
T[i1...ip,j]dx

ji1...ip (only the antisymmetric part contributes)

≡ 1

(p+ 1)!
[dT ]i1...ipdx

ji1...ip , (definition of components of (p+ 1)-form)

Comparing the last two equalities we get

[dT ]ji1...ip =
(p+ 1)!

p!
T[i1...ip,j] = (p+ 1)T[i1...ip,j] .
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So the exterior derivative of a p-form has its coordinate components equal to (p+ 1) times
the antisymmetric part of their derivatives, except the extra index is added at the beginning
instead of at the end as in the covariant derivative. The notation ∂if ≡ f,i is better suited to
this

[dT ]ji1...ip = (p+ 1)∂[jTi1...ip] .

The factor of (p + 1) is necessary to eliminate overcounting. Suppose we expand this
expression using the definition of the antisymmetric part

∂[jTi1...ip] =
1

(p+ 1)!
δ
mn1···np
ji1···ip ∂mTn1...np

so that we get

[dT ]ji1...ip =
(p+ 1)

(p+ 1)!
δ
mn1···np
ji1···ip ∂mTn1...np = δ

mn1···np
ji1···ip ∂mT|n1...np| .

The factorial factor disappears once we avoid overcounting in the sum over the p antisymmetric
indices. Relabeling the indices we can also write this as

(2) [dT ]i1...ip+1 = (p+ 1)∂[i1Ti2...ip+1] = δ
j1j2···jp+1

i1i2···ip+1
∂j1T|j2···jp+1| .

But we can do better. In this antisymmetrization over p+ 1 indices, p of them are already
antisymmetric, so the complete antisymmetrization collapses to something much simpler.

Recall that the generalized Knonecker delta may be defined as the determinant of a matrix
of ordinary Knonecker deltas, which we can then expand along the first row using a cofactor
expansion, the minors of which are by definition Knonecker deltas of one less order

δ
j1j2···jp+1

i1i2···ip+1
=

∣∣∣∣∣∣∣∣∣
δj1i1 δj1i2 · · · δj1ip+1

δj2i1 δj2i2 · · · δj2ip+1

...

δ
jp+1

i1
δ
jp+1

i2
· · · δ

jp+1

ip+1

∣∣∣∣∣∣∣∣∣
= δj1i1δ

j2···jp+1

i2···ip+1
− δj1i2δ

j2···jp+1

i1i3···ip+1
+ δj1i3δ

j2···jp+1

i1i2i4···ip+1
− · · ·+ (−1)pδj1ip+1

δ
j2···jp+1

i1···ip

=

p+1∑
k=1

(−1)k−1δj1ikδ
j2···jp+1

i1···ik−1ik+1···ip+1

≡
p+1∑
k=1

(−1)k−1δj1ikδ
j2······jp+1

i1···̂ik···ip+1
,

where îk means this index is omitted from the index set (a convenient abbreviation).



11.7. The exterior derivative d 645

Using this formula for the exterior derivative gives what might be called the “alternating
formula”

[dT ]i1...ip+1 = δ
j1j2···jp+1

i1i2···ip+1
∂j1T|j2···jp+1| =

p+1∑
k=1

(−1)k−1δj1ikδ
j2······jp+1

i1···̂ik···ip+1
∂j1T|j2···jp+1|

=

p+1∑
k=1

(−1)k−1∂ikTi1···̂ik···ip+1

(3) = ∂i1Ti2······ip+1 − ∂i2Ti1 î2i3···ip+1
+ ∂i3Ti1i2 î3i4···ip+1

+ · · ·+ (−1)p∂ipTi1······ip−1 .

So we have three different looking formulas (1), (2), and (3) that we can use to compute the
components of the exterior derivative d of a p-form, in addition to the definition which works
with the p-form itself.

Explicit formulas are simple

This has to be made more explicit to sink in, so we examine the first few cases using the first
definition of the exterior derivative (not one of these three component formulas).

The case p = 1: T = Tidx
i.

dT = dTi ∧ dxi = ∂jTidx
j ∧ dxi = ∂jTidx

ji

= ∂[jTi]dx
ji =

1

2

(
2∂[jTi]

)
dxji ≡ 1

2
[dT ]jidx

ji

so
[dT ]ji = 2∂[jTi]︸ ︷︷ ︸

formula (2) with p+ 1 = 2

= ∂jTi − ∂iTj︸ ︷︷ ︸
formula (3)

.

The case p = 2: T = 1
2
Tijdx

ij.

dT =
1

2
dTij ∧ dxij =

1

2
∂kTijdx

k ∧ dxij =
1

2
∂[kTij]dx

kij

=
1

3!

(
3∂[kTij]

)
dxkij ≡ 1

3!
[dT ]kijdx

kij

so

[dT ]kij = 3∂[kTij]︸ ︷︷ ︸
formula (2) with p+ 1 = 3

= 3 · 1

3!

(
∂kTij + ∂iTjk + ∂kTki
−∂kTji − ∂iTkj − ∂kTik

)

= ∂kTij + ∂iTjk + ∂jTki︸ ︷︷ ︸
cyclic sum easier to remember

= ∂kTij − ∂iTkj + ∂jTki︸ ︷︷ ︸
formula (3)

,

where we used the antisymmetric property Tjk = −Tkj a number of times. In this case the
cyclic sum ∂kTij + ∂iTjk + ∂jTki is easier to remember than the alternating sign formula (3).
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This is why we use the index pairs 23, 31, 12 instead of the ordered pairs 23, 13, 12; however,
there is more reason to do this as we will see below.

The case p = n− 1:

T =
1

(n− 1)!
Ti1···in−1dx

i1···in−1 = Ti1···in−1dx
|i1···in−1| .

Note that there are only n terms in this sum since in each wedge product exactly one coordinate
differential is missing: T =

∑n
j=1 T1···̂j···ndx

1···̂j···n. Then using the fact that dxk∧dx1···̂j···n equals

zero if k 6= j (since two factors of dxk will lead to zero) and equals (−1)j−1dx1···j···n if k = j
since the dxj factor must jump over j − 1 indices to get to its natural ordered position, one
finds

dT =
n∑
j=1

dT1···̂j···ndx
1···̂j···n =

n∑
j=1

∂kT1···̂j···ndx
k ∧ dx1···̂j···n

=
n∑
j=1

∂jT1···̂j···n(−1)j−1dx1···n ,

so

[dT ]1···n =
n∑
j=1

(−1)j−1∂jT1···̂j···n ,

which is formula (3).

The case p = n: T = T1···ndx
1···n.

dT = dT1···n ∧ dx1···n = ∂kT1···ndx
k ∧ dx1···n = 0 ,

since p-forms are identically zero if p > n since one necessarily has repeated indices.
Okay, so we’ve done as much as we can with formulas. How does this work in practice?

Example 11.7.1. • Recall our friend X[ = ydx + xdy = df , where f = xy. Then by
antisymmetry

dX[ = dy ∧ dx+ dx ∧ dy = (−dx ∧ dy) + dx ∧ dy = 0 ,

which shows that d2f ≡ d(df) = 0.

• Consider the 2-form T = (x2 + y2)dx+ (x2 − y2)dy. Then

dT = (2xdx+ 2ydy)∧dx+ (2xdx− 2ydy)∧dy = 2ydy∧dx+ 2xdx∧dy = 2(x− y)dx∧dy

and
d2T ≡ d(dT ) = 2(dx− dy) ∧ dx ∧ dy = 0 .

Again d2T = 0.
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• Now a 3-form T = xyz dy ∧ dz + (x+ y)dz ∧ dx+ sin(x+ z)dx ∧ dy. Then

dT = yz dx∧dy∧dz+dy∧dz∧dx+cos(x+z)dz∧dx∧dy = [yz+1+cos(x+z)] dx∧dy∧dz

and d2T = d(dT ) = 0 since there is no independent coordinate differential left to be
wedged into dx ∧ dy ∧ dz in three dimensions.

�

Exercise 11.7.1.
exterior derivatives in cylindrical coordinates

We can also evaluate these exterior derivatives in other coordinate systems, like cylindrical
coordinates. For example

X[ = ρ sin 2φ dρ+ ρ2 cos 2φ dφ

dX[ = 2ρ cos 2φ dφ ∧ dρ+ 2ρ cos 2φ dρ ∧ dφ = (2ρ cosφ− 2ρ cosφ)dρ ∧ dφ = 0 .

a) Transform T and dT of the previous page to cylindrical coordinates to obtain

T = (x2 + y2)dx+ (x2 − y2)dy = · · ·
= ρ2[cosφ+ cos 2φ sinφ]dρ+ ρ3[− sinφ+ cos 2φ cosφ]dφ ,

dT = 2(x− y)dx ∧ dy = · · · = 2ρ2(cosφ− sinφ)dρ ∧ dφ .

b) Now doing the exterior derivative in cylindrical coordinates, show that this result for dT
is what you actually get (using trig identities!).

�

Two facts seem to be coming to light.

1. d2T ≡ d(dT ) = 0 for any p-form T .

2. Our definition of dT in a particular coordinate system is actually independent of the
coordinate system.

To show the first just do the exterior derivative twice

dT =
1

p!
dTi1···ip ∧ dxi1···ip =

1

p!
Ti1···ip,jdx

j ∧ dxi1···ip

d2T =
1

p!
d(Ti1···ip,j) ∧ dxj ∧ dxi1···ip =

1

p!
Ti1···ip,jkdx

k ∧ dxj ∧ dxi1···ip

=
1

p!
T[i1···ip,jk]dx

kji1···ip .

But partial derivatives commute so antisymmetrizing over the index set containing the sym-
metric pair jk symbolizing the second partial derivatives whose order doesn’t matter gives zero:
d2T = 0.
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Inessential mathematical games detour

Not so fast you say. I should have antisymmetrized after taking the first derivative and then
again after taking the second derivative. How do I know that this is equivalent to just antisym-
metrizing after taking the second derivative which is what I did? Well, our powerful notation
automatically incorporates all the properties necessary to make things work out. At each step
only the antisymmetric part contributes since the lower indices are summed against an anti-
symmetric upper set of indices, so it is not necessary to make explicit the antisymmetrization
over the lower indices.

However, just for fun let’s use the component formulas to confirm this fact. Then

[dT ]i1...ip+1 =
1

p!
δ
j1···jp+1

i1···ip+1
∂j1Tj2···jp+1 ,

[d(dT )]i1...ip+2 =
1

(p+ 1)!
δ
j1j2···jp+2

i1i2···ip+2
∂j1 [dT ]j2···jp+2

=
1

(p+ 1)!
δ
j1j2···jp+2

i1i2···ip+2
∂j1

(
1

p!
δ
k2···kp+2

j2···jp+2
∂k2Tk3···kp+2

)
=

1

(p+ 1)!

(
1

p!
δ
k2···kp+2

j2···jp+2
δ
j1j2···jp+2

i1i2···ip+2

)
∂j1∂k2Tk3···kp+2

=
1

(p+ 1)!

(
δ
j1k2···kp+2

i1i2···ip+2

)
∂j1∂k2Tk3···kp+2

= 0 ,

since ∂[i∂j] = 0 (the order of partial derivatives does not matter), using the fact that the
antisymmetrizer on the p indices j2 · · · jp+2 on the second delta factor in the parentheses has
no effect since it is already antisymmetric.

Now why is d independent of the coordinate system? An ugly way to show this is to simply
transform its components and show that they obey the correct transformation law. We made a
big deal out of the fact that the partial derivatives of tensor components do not transform “as a
tensor” which led to the covariant derivative, but antisymmetrization kills the second derivative
terms which arise from the derivatives of Aij = ∂xi/∂xj, restoring the correct transformation
rule.

Another inessential detour

So here we go with components. First we do a preliminary calculation involving the second
derivatives

Aij =
∂xi

∂xj
→ dAij =

∂xi

∂x`∂xj
dx` = Aij,`dx

`

and hence

dAij ∧ dxj = Aij,`dx
` ∧ dxj = Ai[j,`]dx

` ∧ dxj = 0 ,
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which is zero since f[j,`] = 1
2
[∂2f/∂xj∂x` − ∂2f/∂x`∂xj] = 0 for any function.

Next we need another preliminary calculation which flips the derivative from the matrix
inverse back to the matrix in their product

A−1k
iA

i
j = δkj → (dA−1k

i)A
i
j + A−1k

idA
i
j = 0→ (dA−1k

i)A
i
j = −A−1k

idA
i
j .

Then we need the transformation of the components and of the differentials

T i1···ip = A−1k1
i1 · · ·A−1kp

ipTk1···kp , dxi1···ip = Ai1j1 · · ·Aipjpdxj1···jp .

Finally we are ready to attack the differential expressed in the new coordinates in the
following calculation which starts out just with a simple substitution, followed by the product
rule, followed by simplifying the first term in which the matrix products reduce to the identity,
followed by substitution of the derivative formula for the inverse matrix in the next-to-last line:

d T =
1

p!
d T i1···ip ∧ dxi1···ip

=
1

p!
d [A−1k1

i1 · · ·A−1kp
ipTk1···kp ] ∧ [Ai1j1 · · ·Aipjpdxj1···jp ]

=
1

p!
[A−1k1

i1 · · ·A−1kp
ip ][A

i1
j1 · · ·Aipjp ]dTk1···kp ∧ dxj1···jp

+
1

p!
[dA−1k1

i1 · · ·A−1kp
ip + · · ·+ A−1k1

i1 · · · dA−1kp
ip ]A

i1
j1 · · ·Aipjp ∧ Tk1···kpdxj1···jp

=
1

p!
dTj1···jp ∧ dxj1···jp︸ ︷︷ ︸

= dT

+
1

p!
[dA−1k1

i1A
i1
j1δ

k2
j2 · · · δkpjp + · · ·+ δk1j1 · · · δkp−1

jp−1dA
−1kp

ipA
ip
jp ] ∧ Tk1···kpdxj1···jp︸ ︷︷ ︸

=
1

p!
[A−1k1

i1dA
i1
j1Tk1j2···jp + · · ·+ A−1kp

ipdA
ip
jpTk1···kp ] ∧ dxj1 ∧ · · · ∧ dxjp

= dT ,

since each of these additional terms after the first vanishes because it contains a factor like
dAij ∧ dxj = 0. Thus dT = dT .
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Properties of d

What properties does the exterior derivative have? Well, it is a derivative operator so it should
obey sum and product rules

T + S =
1

p!
Ti1···ipdx

i1···ip +
1

p!
Si1···ipdx

i1···ip

=
1

p!
(Ti1···ip + Si1···ip)dx

i1···ip

d(T + S) =
1

p!
d(Ti1···ip + Si1···ip) ∧ dxi1···ip

=
1

p!
(dTi1···ip + dSi1···ip) ∧ dxi1···ip (ordinary differential sum rule)

=
1

p!
[dTi1···ip ∧ dxi1···ip + dSi1···ip ∧ dxi1···ip ]

so
(A) d(T + S) = dT + dS .

Now if

T =
1

p!
Ti1···ipdx

i1···ip , S =
1

q!
Sj1···jqdx

j1···jq ,

Then

T ∧ S =
1

p!q!
Ti1···ipSj1···jpdx

i1···ip ∧ dxj1···jq

d(T ∧ S) =
1

p!q!
[dTi1···ipSj1···jq + Ti1···ipdSj1···jq ] ∧ dxi1···ip ∧ dxj1···jq

=

(
1

p!
dTi1···ip ∧ dxi1···ip

)
∧
(

1

q!
Sj1···jqdx

j1···jq
)

+
1

p!
Ti1···iq

1

q!
dSj1···jq ∧ dxi1···ip︸ ︷︷ ︸

∂kSj1···jq dxk ∧ dxi1···ip︸ ︷︷ ︸
(−1)pdxi1···ip ∧ dxk︸ ︷︷ ︸

(−1)p dxi1···ip ∧ ∂kSj1···jqdxk︸ ︷︷ ︸
dxi1···ip ∧ dSj1···jq

∧dxj1···jq

︸ ︷︷ ︸
(−1)p(

1

p!
Ti1···iqdx

i1···ip) ∧ (
1

q!
dSj1···jq ∧ dxj1···jq)

= dT ∧ S + (−1)pT ∧ dS ,



11.7. The exterior derivative d 651

so
(B) d(T ∧ S) = dT ∧ S + (−1)pT ∧ dS

and finally
(C) d2T ≡ d(dT ) = 0 .

These three properties (A), (B), and (C) uniquely characterize the exterior derivative. A
final property extends the coordinate independence of this operator to any map between two
spaces M and N .

Suppose Φ : M −→ N is a map between two spaces like Rn and Rm and suppose T is a
p-form on the image space N . Then Φ∗T is its pull back to M , also a p-form. It turns out that
we can do the exterior derivative before or after the pull back and still get the same result

d(Φ∗T ) = Φ∗(dT ) ,

where the d on the left is the exterior derivative on M while the d on the right is the exterior
derivative on N . This is best summarized in what is called a “commutative diagram.” Let TM
and TN be p-forms on M and N respectively. While Φ maps forward from M to N , the pull
back operation pulls back the differential forms from N to M

M
Φ−−−→ N

TM
Φ∗←−−− TNyd yd

dTM
Φ∗←−−− dTN

It does not matter if you first pull back TN from N to M and then take its exterior derivative
on M , or first take its exterior derivative on N and then pull back to M , you get the same
result, hence the “commutivity” of the two paths from the top right to the bottom left of the
diagram.

A special case of this are the parameter maps associated with a new non-Cartesian coor-
dinate system on Rn. Expressing a p-form in terms of the new coordinates is equivalent to
pulling it back to the coordinate space. Computing its exterior derivative in the new coordi-
nates yields the same result as first taking the exterior derivative in Cartesian coordinates and
then re-expressing the result in the new coordinates.

Exercise 11.7.2.
exterior derivative in a frame, curvature 2-form

a) A component independent formula for the exterior derivative of a 1-form σ evaluated on
a pair of vector fields X and Y is easily verified by simply expanding both sides of the formula
using the coordinate component definition of the exterior derivative and the product rule

dσ(X, Y ) = Xσ(Y )− Y σ(X)− σ([X, Y ]) ,

(σj,i − σi,j)X iY j = X i(σjY
j),i − Y j(σiX

i),j − σk(X
iY k

,i − Y jXk
,j)︸ ︷︷ ︸

(σjX
iY j

,i − σiY jX i
,j)

.
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Finish this last step of expanding and canceling 4 terms on the right hand side to obtain the
left hand side.

b) Given a frame {ei} with Lie brackets [ei, ej] = Ck
ijek and dual frame {ωi}, the previous

formula together with the duality relations ωk(ei) = δki leads to

(dωk)ij = dωk(ei, ej) = ei(ω
k(ej)− ej(ωk(ei))− ωk([ei, ej]) = −Ck

ij

for the frame components of the 2-form dωk, which means that the 2-form itself is therefore

dωk = −1

2
Ck

ij ω
i ∧ ωj .

Use this relation together with the product rule d(fσ) = df ∧ σ + f dσ to derive the frame
component formula for the exterior derivative of a 1-form σ = σkω

k

(dσ)ij = σj,i − σi,j − σkCk
ij = 2σ[j,i] − σkCk

ij .

Thus additional structure function terms appear in the formula for the exterior derivative of
a p-form compared to the coordinate frame formula. One can easily use the product rule for
differential forms to write down a more general formula for a p-form, but we don’t need it here.

c) For a metric g = gij ω
i ⊗ ωj with connection 1-form matrix ω = (ωij) = (Γikj ω

k), recall
the vanishing torsion (1

2)-tensor expressed the symmetry of the connection

T (X, Y ) = ∇XY −∇Y X − [X, Y ] = 0 ,

T k(ei, ej) = T kij = Γk [ij] − Ck
ij = 0 .

This can be interpreted as a vector-valued 2-form with frame vector components

Θk(X, Y ) = ωk(Θ(X, Y )) = ωk(∇XY )− ωk(∇Y X)− θa([X, Y ]) ,

and compared to
dωk(X, Y ) = Xωk(Y )− Y ωa(X)− θk([X, Y ]) .

Express the difference in terms of the connection 1-forms to show that

Θk(X, Y ) = dωk(X, Y ) + ωkj(X)θk(Y )− ωkj(Y )θj(X)

so that one has the identity (Cartan’s first structural equations)

Θk = dωk + ωkj ∧ ωj = 0 .

d) Introduce the curvature 2-form matrix (components of the tensor-valued 2-form)

Ω = (Ωi
j) =

(
1

2
Ri

jk` ω
k ∧ ω`

)
,

and show that the frame component formula for the curvature tensor components can be rewrit-
ten in the following way (Cartan’s second structural equations)

Ω = dω + ω ∧ ω ,
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where the matrix product is implied in the second term, i.e.,

dΩi
j = dωij + ωik ∧ ωkj .

The curvature 2-form packaging of the curvature tensor emphasizes that it is a linear transformation-
valued 2-form whose 2-form arguments naturally pick out the plane spanned by the two vector
field arguments, i.e., Ωi

j(X, Y )Zj is the limiting linear transformation of a vector Z when par-
allel transported around the shrinking loop parallelogram of X and Y as described in Chapter
9, once the magnitude of the 2-vector X ∧ Y is divided out (and a sign factor is determined in
the case negative self-inner products exist).

e) Take the exterior derivative of Cartan’s first structural formula, using d2 = 0 and replacing
dω using the definition of the curvature 2-form, to obtain Bianchi’s first identity

0 = dΘi + ωijΘ
j = Ωi

j ∧ ωj =
1

2
Ri

jmnω
i ∧ ωm ∧ ωn =

1

2
Ri

[jmn]ω
i ∧ ωm ∧ ωn ,

which in component form translates to

3Rk
[jmn] = Rk

jmn +Rk
mnj +Rk

njm = 0 .

f) Calculate dΩ using the previous formula for Ω together with d2 = 0 and d(ω ∧ ω) =
dω ∧ ω − ω ∧ dω) and re-express dω using the same formula, to obtain the relation

dΩ + ω ∧ Ω− Ω ∧ ω = 0 ,

[dΩm
n]kij + 3!Γm[i|`|R

`
|n|jk] − 3!Rm

`[ijΓ
`
k]n ,

where the vertical bar delimiters exclude the index from the antisymmetrization. Now use
the coordinate frame formula for Rm

nij;k = Rm
nij,k + . . . and evaluate the following expression

which has two more connection coefficient terms compared to the previous one

3Rm
n[ij;k] = 3Rm

n[ij,k] + . . . = [dΩm
n]kij + . . . .

Finally note that because of the antisymmetrization which includes the lower two symmetric
indices Γkij = Γkji in those additional two terms, they vanish, leaving the identity

0 = 3Rm
n[ij;k] = Rm

nij;k +Rm
njk;i +Rm

nki;j ,

called Bianchi’s identity of the second kind.
g) Define the symmetric Einstein tensor by

Gi
j = Ri

j −
1

2
Rδij ,

where the symmetric Ricci tensor and scalar curvature are defined by

Rij = Rk
ikj , R = gijRij = Ri

i = Rij
ij .
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Then fill in the missing steps of the following equations

0 = 3Rmn
[ij;k]δ

i
mδ

j
n = . . .

= −2

(
Rj

k −
1

2
Rδjk

)
;j = −2Gj

k;j

This says the Einstein tensor has zero divergence. This turns out to be a fundamental property
for Einstein’s theory of general relativity.

�

Exercise 11.7.3.
curvature of the 3-sphere

On the 3-sphere viewed as the group manifold of SU(2) explored in terms of the rotation
group SO(4,R) in Exercises 4.5.6 and 6.7.5, where two mutually commuting almost orthonormal
frames corresponding to linear combinations of the natural rotation group generating matrices
were introduced with Lie bracket relations

[Ea, Eb] = Ca
bcEc , [Ea, Ẽb] = 0 , [Ẽa, Ẽb] = −Ca

bcẼc , Cc
ab = εcab .

If we introduce the corresponding dual frames we therefore get the relations

dW c = −1

2
Cc

abW
b ∧W c , dW̃ c =

1

2
Cc

ab W̃
b ∧ W̃ c ,

In Exercise 4.5.7, we showed that the metric on the 3-sphere is

g = gabW
a ⊗W b = gabW̃

a ⊗ W̃ b , gab = −1

8
Cc

abC
d
bc =

1

4
δab .

Show that

Γcab =
1

2
Cc

ab = −Γ̃cab ,

so that the connection 1-form matrices in these two frames are

ωab =
1

2
Ca

cbW
c , ω̃ab = −1

2
Ca

cbW̃
c .

Either use the above formula for the exterior derivative of a 1-form in a frame to evaluate the
curvature 2-form or use the formula for the frame components of the curvature tensor directly
(both of which require using the quadratic Jacobi identity satisfied by the structure constants:
see Exercise 1.7.8) to obtain

R̃a
bcd = Ra

bcd =
1

4
Ca

beC
e
cd → R̃ab

cd = Rab
cd = εabeεecd = δabcd .

This corresponds to constant unit curvature for the 3-sphere just like the 2-sphere has unit
curvature. This is of course invariant under the rotations of that sphere, which is why it is a
bi-invariant metric on the Lie group SU(2), invariant both under left and right translations of
the group into itself. These remarks extend to the the 3-dimensional rotation group SO(3, R)
and its natural left and right frames discussed in Section 6.9 which are necessary to study the
problem of the motion of a rigid body.
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�

Exercise 11.7.4.
SU(2) gauge derivative

Recall the local action of SU(2) on a C2 complex vector valued field Ψ = Ψαeα on Minkowski
spacetime as a local gauge group action discussed in Exercise 6.8.8. The gauge covariant
derivative

∇iΨ = ∂i + AaEa Ψ , ∇ieα = Aci(Ec)
β
α eβ = Γβiα eβ .

with Lie algebra-valued 1-form matrix A = AaEa is invariant under the gauge transformations

Ψ→ U Ψ = eθ
aEa Ψ , A→ U AU−1 + U dU−1 .

We can introduced a corresponding curvature 2-form as a Lie algebra-valued object defined
in a way similar to the case for a metric connection in two ways.

a) Evaluate
[∇i,∇j]Ψ = F ij Ψ .

where
b) Evaluate

F = dA+
1

2
[A,∧A]

where the simultaneous Lie bracket and wedge product are indicated by the “’∧” notation.
in progress...

�
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11.8 The exterior derivative and a metric

star, sharp, flat, d and ∇
When we have a metric tensor field g = gijdx

i⊗ dxj on our space, we can use the lowering and
raising maps [ and ] to convert p-vector fields into p-forms and vice versa. These are inverse
operations. We also have the metric duality map ∗ which converts p-vector fields and p-forms
into (n− p)-vector fields and (n− p)-forms respectively, and then back again, although ∗ is not
its own inverse since ∗∗ = (−1)integer, which means that it differs from the inverse by a sign
factor which depends on p, n and the signature of the metric (the number of minus signs among
the self inner products in an orthonormal frame). All of these operations may be used with the
exterior derivative to make new differential operators.

First let Λp be the space of p-forms on our n-dimensional space and let [Λp]] be the space
of p-vector fields. Then the index shifting and duality maps may be represented as follows

Λn−p
]

�
[

[Λn−p]]

∗ ↓↑ ∗ ∗ ↓↑ ∗

Λp
]

�
[

[Λp]]

These operations commute, i.e., it doesn’t matter if you first shift indices and then take the
dual or first take the dual and then shift indices. For example, if T ∈ Λp then the successive
operations correspond to the following moves in the diagram

∗[T ]]
right then up

= [∗T ]]

up then right

.

This means we can just write ∗T ] without specifying the order in which these operations are
done on T . If you need to be convinced here is the explicit calculation

[T ]]i1···ip = T i1···ip

[∗[T ]]]ip+1···in =
1

p!
T i1···ipηi1···ip

ip+1···in =
1

p!
Ti1···ipη

i1···ipip+1···in

[∗T ]ip+1···in =
1

p!
Ti1···ipη

i1···ip
ip+1···in

[[∗T ]]]ip+1···in =
1

p!
Ti1···ipη

i1···ipip+1···in = [∗[T ]]]ip+1···in ,

so we just write
[∗T ]] = ∗[T ]] = ∗T ] .

This is just to remind ourselves of calculations done in Part I.
Now how can we mix these operations with the exterior derivative? Suppose we just look at

∗ and d alone. We could make a picture like the following, starting with a p-form and applying
a succession of these two operations which change the degree of the differential form
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� Λn−p+1
d

� Λn−p
d

� Λn−p−1�

?
∗ 6∗
- Λp−1

d
- Λp

?
∗ 6∗

d
- Λp+1 -

?
∗ 6∗

��
��

Yuch! (or “Blech!” as the psychiatrist Lucy says when kissed by Snoopy in the Charlie
Brown comic strip). Let’s forget we saw that. If we start in Λp we can do things like

∗d : Λp −→ Λn−p−1

d∗ : Λp −→ Λn−p+1

∗d∗ : Λp −→ Λp−1

,

which are paths in above diagram starting at Λp (in that diagram I told you to forget). The
last operator lowers the degree of the p-form by 1, going in the opposite direction of d:

Λp−1

∗d∗

�
d

Λp .

We can also make second-order operators. d2 ≡ 0 is of no use but

d∗d∗ : Λp −→ Λp and ∗d∗d : Λp −→ Λp

are two interesting second-order linear differential operators which produce p-forms from p-
forms. These turn out to be related to the Laplacian (for 0-forms) and its generalization to
p-forms.

By including index shifting, all of these operators can be extended to p-vector fields. First
lower the indices on a p-vector field to obtain a p-form, then do various combinations of the
duality operation ∗ and exterior derivative d to obtain a q-form (corresponding to moving around
following the arrows in the forgotten diagram), and at the end raise the indices to go back to
a q-vector field. With a little patience, we could get explicit component formulas for any of
these, just by composing the component formulas for the individual operations.

One useful formula, however, re-expresses the exterior derivative of a p-form in terms of its
covariant derivative. In a coordinate frame the covariant derivative is

∇i1Ti2···ip+1 = ∂i1Ti2···ip+1 − Γj i1i2Tji3···ip+1 − · · · − Γj i1ip+1Ti1···ipj .

Recall that the components of the covariant derivative are symmetric Γk [ij] = 0 so the correction
terms in the covariant derivative of a p-form go to zero under antisymmetrization

∇[i1Ti2···ip+1] = ∂[i1Ti2···ip+1] − Γj [i1i2T|j|i3···ip+1] − · · · − Γj [i1ip+1Ti1···ip]j = ∂[i1Ti2···ip+1] ,
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recalling that the notation Γj [i1i2T|j|i3···ip+1] means that the index j is excluded from antisym-
metrization in each term. This result tells us that in the coordinate component formula for the
exterior derivative, the ordinary derivative can be replaced by the covariant derivative

[dT ]i1···ip+1 = (p+ 1)∂[i1Ti2···ip+1] = (p+ 1)∇[i1Ti2···ip+1] ,

but since dT and ∇T are frame-independent objects, this is true in any frame, i.e.,

[dT ]i1···ip+1 = (p+ 1)∇[i1Ti2···ip+1] .

In a coordinate frame this can be rewritten as

[dT ]i1···ip+1 = (p+ 1)T[i2···ip+1,i1] = (p+ 1)T[i2···ip+1;i1] ,

which is a “comma to semicolon rule” valid for the exterior derivative and the metric connection
in a coordinate frame.

Exercise 11.8.1.
tensor-valued differential forms

a) For a symmetric connection in a coordinate frame the exterior derivative of a p-form
has components which are the antisymmetrized partial derivative of the components, or equiv-
alently the antisymmetrized covariant derivative ot those components due to the symmetry
of the covariant index pair of the connection coefficients. If we have a tensor with a subset
of antisymmetric indices, we can think of that tensor as a tensor-valued differential form and
extend the exterior derivative to it by defining the covariant exterior derivative as the antisym-
metrized covariant derivative on the antisymmetric set of indices, which produces the ordinary
antisymmetrized derivative on the antisymmetric set plus all the connection coefficient terms,
but those associated with the antisymmetric set of indices cancel out leaving only the extra
gamma terms associated with the extra indices. Take the following example

(DΩi
j)mnp = (p+ 1)∇[pR

i
|j|mn] = (p+ 1)Ri

j[mn;p]

= (p+ 1)
(
∂[pR

i
|j|mn] + Γi[p|kR

k
j|mn] − Γk [p|jR

i
k|mn] + . . .

)
= (dΩi

j)pmn + (ωik ∧ Ωk
j)pmn − (ωkj ∧ Ωi

k)pmn .

Check that the omitted terms “. . .” cancel out. Since Ω is a 2-form, we can change the order
of the wedge factors and obtain the matrix relation

DΩ = dΩ + ω ∧ Ω− Ω ∧ ω = 0 ,

which is zero because of the Bianchi identity of the second kind.
b) Thinking of the identity tensor as a vector-valued 1-form Id = ei ⊗ ωi with vector

component ωi, show that Cartan’s first structural equation takes the simple form

Θi = Dωi = 0 ,

while Bianchi’s first identity becomes

DΘi = Ωi
j ∧ ωj = 0 .

�
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grad, div and curl

Returning to the previous discussion, recall that for a function f we already introduced the
gradient as

grad f = (df)] ≡ ~∇f ,
[grad f ]i = gij∂jf = gij∇jf ≡ ∇if .

Suppose we start with a vector field X. Then the result of the following sequence of operations

∗d ∗ X[︸︷︷︸
1-form︸ ︷︷ ︸

(n− 1)-form︸ ︷︷ ︸
n-form︸ ︷︷ ︸

function

is a function. What is its component formula? The dual of a 1-form is an (n− 1)-form

[∗X[]i2···in = Xiη
i
i2···in = X iηii2···in

and its exterior derivative is an n-form

[d∗X[]i1i2···in = n∇[i1(η|i|i2···in]X
i) = n(∇[i1X

i)η|i|i2···in] ,

where η can be factored out of the derivative since it is covariant constant, and the dual of this
expression is a function

∗d∗X[ =
1

n!
[n(∇[i1X

i)η|i|i2···in]]η
i1···in

=
1

(n− 1)!
ηii2···inη

i1i2···in︸ ︷︷ ︸
(−1)Mδi1 i

∇i1X
i = (−1)M ∇iX

i︸ ︷︷ ︸
divX

,

where M is the number of negative signs among the diagonal components of the metric in an
orthonormal frame: (−1)M = sgn det(gij). Thus we get the divergence of the vector field, apart
from a possible sign when the metric has negative self-inner product values. For Rn with the
Euclidean metric, the sign is +1, so one gets exactly the divergence.

Remark.

We can get rid of the sign (−1)M by using the inverse dual map at the end instead of
the dual map. Consider the following short derivation. For a p-form S with p = n, one has
∗−1
S = (−1)M+n(p−1)∗S = (−1)M ∗S, so

∗−1

d∗X[ = (−1)M ∗d∗X[ = divX ≡ −δX[

defines the divergence of a vector field, or equivalently the codifferential δX[ of a 1-form X[.
This generalizes naturally to any p-form as we will see shortly.
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N

Suppose n = 3. Consider the operator

[∗dX[]]

for a vector field X. The result of these three operations is a vector field whose components
are easily calculated

[dX[]ij = ∂iXj − ∂jXi

[∗dX[]k = 1
2
(∂iXj − ∂jXi)η

ij
k

[∗dX[]k = 1
2
(∂iXj − ∂jXi)η

ijk = ∂[iXj]η
ijk = ∂iXjη

ijk = ηkij∂iXj .

In Cartesian coordinates on R3, this has the expression

[∗dX[]k = εkij
∂Xj

∂xi

which is the expression for the curl of the vector field X. Since [∗dX[]] is a vector field inde-
pendent of the choice of coordinates, this is true independent of the coordinates

[∗dX[]] = curlX .

In calculus we learned that certain second order derivative combinations of grad, curl and div
on R3 vanish identically. These are just consequences of the fact that d2T ≡ 0 for p-forms T
with 0 ≤ p ≤ 3. For example

(p = 0) curl grad f = [∗d (grad f)[︸ ︷︷ ︸
df

]] = [∗d2f ]] = 0 ,

(p = 1) div curlX = ∗d∗ [curlX][︸ ︷︷ ︸
∗dX[

= ∗d∗∗dX[ = ∗d2X[ = 0 ,

since ∗∗T = T for any p-form T for the Euclidean metric on R3.
We can also consider repeating ∗d or d∗ twice

curl curlX = [∗d (curlX)[︸ ︷︷ ︸
∗dX[

]] = [∗d∗dX[]] ,

grad divX = [d(divX)]] = [d∗d∗X[]] ,

div grad f = ∗d∗[grad f ][ = ∗d∗df .

The remaining combination d∗d∗f = 0 is identically zero since ∗f is a 3-form and its exterior
derivative is identically zero.
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While we’re at it, what about the “del” notation ~∇f , ~∇ · ~X,~∇ × ~X? Well, on R3 we can
define the cross product of two vector fields by

X × Y = ∗(X ∧ Y ) .

The component formula is

[X × Y ]i = 1
2
[X ∧ Y ]jkηjk

i definition of ×
= 1

2
(2X[iYj])ηjk

i definition of wedge

= ηijkX
[jY k] shifting indices

= ηijkXjYk drop brackets ,

where in the final line the explicit antisymmetrization is redundant since η is antisymmetric,
so only the antisymmetric part contributes anyway. In the Cartesian coordinate frame this is
just the usual formula

[X × Y ]i = εijkX
jY k .

We’ve already defined ~∇ as the covariant derivative operator with the derivative index raised,
so grad f = ~∇f and

[curlX]i = ηijk∂jXk = ηijk∇jXk = [∇×X]i

while

divX = ∇iX
i = gij∇iXj = ~∇ ·X

so

div curlX = ~∇ · (~∇×X) ,

etc. These may be easily evaluated in any coordinate system now.

What about the various product rules for grad, curl, div? Most of them are disguised
versions of the product rule for d

d(T ∧ S) = dT ∧ S + (−1)pT ∧ dS 0 ≤ p, q ≤ n.

where T is a p-form and S is a q-form.

Because of the antisymmetry condition T ∧ S = (−1)pqS ∧ T , it is enough to look at the
cases p ≤ q, but also p + q < 3 since the exterior derivative of a 3-form is identically zero and
(p+ q)-forms are zero for p+ q > 3. This leaves

(p, q) ∈ {(0, 0), (0, 1), (0, 2), (1, 1)}

Exercise 11.8.2.
grad curl div
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Using the definitions of grad, curl, div in terms of d, re-express the left hand sides of the
following identities and use the above product rule for d with the given values of (p, q) to rewrite
them in terms of grad, div, curl (recall f ∧ T = f T for zero-form f):

(0, 0) : grad(fh) = h grad f + f gradh ,

(0, 1) : curl(fX) = (grad f)×X + f curlX ,

(0, 2) : div(fX) = (grad f) ·X + f divX ,

(1, 1) : div(X × Y ) = Y · (curlX)−X · (curlY ) .

�

Example 11.8.1. The first two derivations of the previous Exercise are completely straight
forward but the last two are a bit challenging since they need the unfamiliar identity ∗(T ∧∗S) =
〈T, S〉 for two p-forms, which follows from T ∧ ∗S = 〈T, S〉 η and ∗η = 1. Thus

div fX = ∗d∗(fX[) = ∗d(f ∗X[) = ∗[df ∧ ∗X[ + (−1)0fd∗X[]

= ∗[df ∧ ∗X[]︸ ︷︷ ︸
〈df,X∗〉

+f ∗d∗X[ = (grad f) ·X + f divX ,

and finally

div(X × Y ) = ∗d∗[∗(X ∧ Y )][ = ∗d∗[∗(X[ ∧ Y [)]

= ∗d(X[ ∧ Y [) = ∗[dX[ ∧ Y [ −X[ ∧ dY []

= ∗[Y [ ∧ dX[]− ∗[X[ ∧ dY []

= ∗[Y [ ∧ ∗(∗dX[)]− ∗[X[ ∧ ∗(∗dY [)]

= 〈Y [, (curlX)[〉 − 〈Y [, (curlX)[〉
= Y · (curlX)−X · (curlY ) .

�

Notice that these “vector analysis” identities which are usually provided by Cartesian co-
ordinate component calculations like

div(X × Y ) = ∂i(ε
ijkXjYk) = εijk[(∂iXj)Yk +Xj∂iYk]

= (εijk∂iXj)Yk − (εijk∂iYk)Xj = (curlX) · Y − (curlY ) ·X

have just been proven for any positive-definition metric on a 3-dimensional space in any coor-
dinate system (since they are independent of the coordinates). Thus we can extend all of this
R3 vector analysis immediately to the 3-sphere, for example.

This is the power of real mathematics as opposed to “just getting by” techniques that are
usually used in applied sciences. Not impressed? Maxwell’s equations for the electromagnetic
field brings you cable and satellite TV, your cell phone calls, wireless internet, computers, your
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favorite radio station and all the rest of our modern life. They involve the electric and magnetic
vector fields E and B and the charge density function ρ and current density vector field J

div B = 0 , div E = 4πρ ,

curl E +
∂B

∂t
= 0 , curl B − ∂E

∂t
= 4πJ ,

and can be written in the simple form

dF = 0 , ∗d∗F = 4πJ

by defining the electromagnetic 2-form F and 4-current density 1-form J on spacetime

F = (Exdx+ Eydy + Ezdz) ∧ dt+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy ,
J = −ρdt+ Jxdx+ Jydy + Jzdz .

Many of the somewhat complicated manipulations done in physics courses become very simple
in this language. We don’t have time to go into too much of that here, but I wanted you to get
a glimpse of this idea.

Exercise 11.8.3.
Maxwell’s equations in differential form

Evaluate the differential form version of Maxwell’s equations and show that they are equiv-
alent to the vector form.

�

Exercise 11.8.4.
vector potential for electromagnetic field

The Maxwell equation dF = 0 for the 2-form F means that at least locally it admits a
“vector potential”, more precisely, a 1-form potential A such that F = dA so that dF = d2A = 0
automatically satisfies half of Maxwell’s equations. Let A = −φ dx0 + Ai dx

i be the potential
1-form so that the corresponding vector field is A] = φ ∂0+ ~A, defining the usual scalar potential
φ and vector potential ~A.

a) Evaluate F = dA and compare to the electric and magnetic fields in the previous Exercise
to obtain the classic relations using index notation

Ei = −∂iφ+ ∂0A
i = [− gradφ+ ∂0

~A]i , Bi = [curl ~A]i .

b) Adding the differential of any function to the vector potential (1-form!), i.e., adding the
spacetime gradient of any function to the vector potential vector field, leads to the same F since
d(A+dΛ) = dA+d2Λ = dA = F . This is called a gauge transformation of the vector potential,
under which the electric and magnetic fields do not change. Thus any physical quantities should
be invariant under such a gauge transformation. Show how the pair (φ, ~A) change under such
a gauge transformation.

�
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the codifferential δ

Apart from an annoying sign, the operation T → ∗d∗T which takes a p-form T to a (p−1)-form
defines the “codifferential” δT . The codifferential is defined as the adjoint operator with respect
to the inner product of p-forms, itself defined in terms of the duality operation

〈S, T 〉 η = S ∧ ∗T = T ∧ ∗S .
Thoroughly discussed in Section 4.3, this is just the natural inner product for any tensors of a
given rank scaled down by a factorial factor to avoid overcounting

〈S, T 〉 =
1

p!
Si1...ipTi1...ip .

For a real vector space V with an inner product and a linear transformation L of the space
into itself, the adjoint linear transformation L† is defined by 〈X,LY 〉 = 〈L†X, Y 〉. This was
explored in Exercise 4.5.13. For differential forms this will be true modulo a differential which
under the integral sign can be made to vanish with appropriate boundary conditions on the
region of integration, corresponding to “integration by parts” in common language.

Let S be a p-form, T a p-form, then S ∧ ∗T is an n-form and their inner product is defined
by

S ∧ ∗T = 〈S, T 〉η = T ∧ ∗S ,
or if R is an (n− p)-form then letting T = ∗−1

R so that ∗T = R, one has

S ∧R = 〈S, ∗−1

R〉η .
Since ∗∗ applied to any p-form S is the identity plus a possible sign change, the inverse dual ∗

−1

is just ∗ multiplied by a sign factor; recall from Exercise 4.3.11 that ∗
−1
S = (−1)M+p(n−p)∗S.

Next let α be a (p−1)-form, β a p-form, then dα and β are both p-forms and by the previous
definition of their inner product one has

dα ∧ ∗β = 〈dα, β〉η = β ∧ ∗dα .
On the other hand the wedge product α ∧ ∗β is an (n − 1)-form, so its exterior derivative

is an n-form. Using the product rule for the exterior derivative, and then rewriting each of the
two terms in terms of the inner product leads to

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1 α ∧ d ∗β (product rule for d)

= 〈 dα, β 〉 η + 〈α, (−1)p−1∗−1

d ∗β︸ ︷︷ ︸
≡ −δβ

〉η (convert to inner product notation)

leads to the definition of a (p− 1)-form δβ satisfying the identity

〈 dα, β 〉 η = d(α ∧ ∗β) + 〈α, δβ 〉η .
δ is called the codifferential

δβ = (−1)p ∗
−1

d ∗β . (β a p-form)
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Exercise 11.8.5.
codifferential versus divergence sign

a) Note that δf = 0 for a 0-form in the same way that dβ = 0 for an n-form. Show that
δ2 = 0 in the same way that d2 = 0.

b) Determine the annoying sign in the first definition of the codifferential when expressed
only in terms of the dual and not its inverse by using the sign formula for ∗

−1

δβ = (−1)M+n(p−1)+1 ∗d∗β (β a p-form) .

Note that for a 1-form X[ with p = 1 this becomes δX[ = −(−1)M ∗d∗X[.
b) The metric divergence of a p-vector field X is defined by

divX ≡ (divX[)] =
1

(p− 1)!
g−1/2(∂i1(g

1/2X i1···ip))
∂

∂xi2
∧ · · · ∧ ∂

∂xip

=
1

(p− 1)!
X i1···ip

;i1

∂

∂xi2
∧ · · · ∧ ∂

∂xip
.

Use the coordinate formulas for the duality operations from Section 4.3 to show that this
definition is related by a sign change to the codifferential

δX = − divX .

c) The metric Laplacian may be defined for any tensor by ∇2T = ∇i∇iT . For a p-form the
deRham Laplacian is defined by ∆deRT = (dδ + δd)T . Show that for a scalar field or function
f (a 0-form) one has

∆deRf = δdf = −∇2f .

d) For a tensor field, the deRham Laplacian has additional curvature terms compared to the
“ordinary Laplacian” ∇2. For example, consider a vector field A] like the index-raised vector
potential (1-form really) for the electromagnetic field tensor. The definition of the curvature
tensor evaluated on coordinate frame vector fields whose commutator vanishes is(

∇∂i∇∂j −∇∂i∇∂j −∇[∂i, ∂j]

)
Ai = Ri

jmnA
m

which if we simplify becomes

Ak ;ji − Ak ;ij = Rk
mijA

m .

Contract this with δik to obtain the so-called Ricci identity

Ai;ji − Ai;ij = RjmA
m .

Then consider the Maxwell equation with dA = F , i.e., Fji = Ai;j − Aj;i if we use the
covariant derivative formula for the exterior derivative

4πJj = Fj
i
;i = Ai;ji − Aj i;i ,
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and replace the first term using the Ricci identity to obtain

4πJj = Ai;ij +RjmA
m − Aj ;i

;i = −∇2Aj + AiR
i
j︸ ︷︷ ︸

∆deRA

+ (Ai;i);j︸ ︷︷ ︸
−dδA

.

It turns out that the first two terms are the deRham Laplacian, but in flat spacetime this agrees
with the ordinary Laplacian, and the second term is the gradient of the divergence of the vector
potential. Often this divergence is chosen to be zero to fix the freedom in the choice of vector
potential while simplifying this to a normal wave equation for that field.

On the other hand sticking with the powerful index-free notation, we have by definition

4πJ = δdA = −dδA+ ∆deRA ,

so comparing with the previous equation confirms that its first two terms are the deRham
Laplacian.

�

Exercise 11.8.6.
Maxwell’s equations and the codifferential

a) Now that we have a name for this combination operation, show that half of Maxwell’s
equations are

−δF = 4πJ [ ,

which implies δJ [ = 0. Write out this “conservation law” for charge density ρ and current
density J in terms of the decomposition of the spacetime 1-form J [ = ρ dt+Ja dx

a for a = 1, 2, 3.
b) Since d2 = 0, if we apply the exterior derivative to this Maxwell equation and re-express

in terms of the deRham Laplacian ∆deR = dδ + δd, we obtain the wave equation for the
electromagnetic field tensor

−∆deRF = −dδF = 4πdJ [ ,

so that in vacuum (J [ = 0), we get the source-free wave equation in Minkowski spacetime(
− ∂

2

∂t2
+

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
Fij = 0 .

c) If instead we insert F = dA into the previous Maxwell equation and re-express it in terms
of the deRham Laplacian, show that we get the vector potential wave equation

−∆deRA+ dδA = 4πdJ [ .

Check signs??
d) If we impose the “gauge condition” δA = 0 that the vector potential have zero divergence

(called the Lorentz gauge), we get a wave equation for the vector potential 1-form whose source
is the spacetime current density. This can be accomplished starting from any initial vector
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potential A by doing a gauge transformation to a new vector potential A + dΛ which should
satisfy this condition

0 = δ(A+ dΛ) = δA+ ∆deRΛ = δA+∇2Λ ,

which amounts to solving the Laplace equation for Λ.
�

Commutative diagrams?

Perhaps we were too quick to dismiss that “commutative diagram” earlier in this chapter
illustrating the affect of combinations of the exterior derivative d and duality operation ∗ on
differential forms. Consider the case n = 3 of R3 with the Euclidean metric. We only need
functions and vector fields as our fundamental fields since the remaining nonzero p-forms and
p-vector fields for p = 2, 3 can be represented in terms of these by combinations of index raising
and duality operations. Thus our entry points into the diagram are 0-forms (the space Λ0 of
functions) and 1-vectors (the space Λ1] of vector fields), shown circled in Fig. 11.15.

Say we start at Λ0 or Λ1] on the lower left of the diagram. Starting with f ∈ Λ0 and
moving one step right, then down, we get grad f = (df)]. Moving two steps right, we get
d2f = 0. Starting with X ∈ Λ1] and moving up to Λ1, then moving two steps to the right
we get d2X[ = 0. Moving one step to the right, then two steps up, we get the vector field
curlX = (∗dX[)]. Instead moving one step up from Λ1, one step left, then one step down, we
get the function divX = ∗d∗X[. For second order operators, we need to keep on going further.
Starting with f ∈ Λ0, move over one, up one, left one, down one to get div grad f = ∗d∗df ,
just a counterclockwise loop. Similarly starting with X ∈ Λ1], doing one counterclockwise loop
from Λ1 and then back down to a vector field yields curl curlX = ∗d∗dX[. Thus while totally
unnecessary for using differential forms and its interaction with a metric through duality and
index shifting, it is kind of pretty in providing an underlying scheme into which the operations of
grad, div and curl all fit nicely with well-defined rules for how they work together in succession.

Furthermore, we can consider the image and null space of the exterior derivative operator
as a linear operator among these infinite-dimensional spaces of p-forms. A p-form in the image
of d is representable as the exterior derivative of a (p− 1)-form is called exact, while a p-form
in the null space of d has vanishing exterior derivative and is called closed. An exact form is
closed, but the reverse statement depends on the topology of the region over which the question
is considered. The image space of d : Λ0 → Λ1 consists of 1-forms whose corresponding vector
fields (conservative vector fields) are representable as the gradient of a potential function, while
the image of d : Λ1 → Λ2 consists of the dual of 1-forms whose associated vector fields can be
represented as the curl of another vector field, called the vector potential. The null space of
d : Λ0 → Λ1 consists of functions f for which df = 0, i.e., constant functions. The null space of
d : Λ1 → Λ2 consists of the dual of 1-forms )called “closed”) whose associated vector fields have
zero curl. Having zero curl is a necessary condition for admitting a scalar potential, but it is not
sufficient. If the latter null space is larger than the image space of the previous operator, which
that null space necessarily contains because of the identity d2f = 0, or curl grad f = 0, then it
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Figure 11.15: The d and ∗ operations on 0-forms (functions) and 1-forms (index-lowered vector
fields) illustrated as a sequence of linear maps. Two successive d operations lead to zero, so
one must insert a ∗ in between them to get a second order operator which is nonzero. The
codifferential δ ∼ ∗d∗ corresponds to a trip around a square path in the opposite direction from
d. Their compositions dδ and δd return to the initial starting point, going around a square in
the opposite directions. The deRham Laplacian is defined by ∆ = dδ + δd and maps p-forms
to p-forms.

is not true that every curlfree vector field is a conservative vector field. This leads to topological
questions about the space on which we are working, and requires global considerations that
are a bit more sophisticated than the local calculations we are doing departing from the flat
Rn spaces. This area of mathematics falls under the keywords “de Rham cohomology.” One
calls a differential form exact if it is the exterior derivative of another form, and closed if its
own exterior derivative is zero. The identity d2 = 0 means that every exact form is closed, but
closed forms do not have to be exact. The determining factor turns out to be the topology
of the space we are working on. For example, planes, spheres, torii, etc. are examples of
topologically distinct 2-dimensional spaces with metrics, and their topological properties as
sets of points are those properties which do not depend on their actual shape but are the same
for any deformation of the space as long as points remain distinct, roughly speaking. While
interesting, we are not in a position to travel in that direction from where we are now.

Exercise 11.8.7.
spacetime deRham cohomology

If we are interested in repeating this diagram stuff for Minkowski spacetime, namely R4



11.8. The exterior derivative and a metric 669

with the Lorentzian metric on it, we need only need p = 0, 1, 2 since the remaining p = 3, 4 can
be represented as the duals of 1-forms and 2-forms. We would thus need three entry points,
for functions f , vector fields X and 2-vector fields F , or we could make life simpler by just
considering p-forms and not p-vectors in the diagram, limiting it to two rows by eliminating the
index shifting. Repeat the above diagram for these two rows, adding on one more dimension
as appropriate for R4.

�
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11.9 Induced orientation on a boundary

In multivariable calculus we see Green’s theorem in the plane, which can be written either in
terms of the integral of the third component of a curl or a divergence of a vector field in the
plane, and its generalizations to Stokes’ theorem and Gauss’s law in space involving integrals of
vector fields and scalars over curves, surfaces and open regions of space. All of these integrals
require an orientation for the subspace over which we perform the integration: a consistent
direction for the curve in a line integral and a choice of normal direction for a surface and
finally the default right hand rule orientation for any parametrization of an open region of
space. We need to quantify this idea of orientation in order to see how all of these activities fit
into the single concept of integrating p-forms over p-surfaces and a single generalized theorem
involving the exterior derivative (called Stokes’ theorem) that describes all the vector theorems
at once.

First coordinate adapted to boundary

Figure 11.16: A parametrized surface with boundary and the induced orientation of the
boundary.

Suppose we have a parametrized p-surface Σ in Rn with a boundary

xi = xi(u1, . . . , up) , Ei
A(u) ≡ ∂xi

∂uA
(u) , (A,B, . . . = 1, . . . , p) ,

part of which corresponds to constant values of the first parameter u1 so that a ≤ u1 ≤ b holds
on Σ itself, as illustrated in Fig. 11.16. Other parts of the boundary might correspond to a
parallel discussion for other coordinates, but we choose u1 for this derivation here for the sake
of concreteness and because its tangent vector has to be first in the following wedge product to
make signs come out right later. We are doing the preparation work for generalizing Green’s
theorem in the plane to Stokes’ theorem in higher dimensional scenarios.

The p-vector E1(u) ∧ · · · ∧ Ep(u) determines the inner orientation of Σ at each point, said
to be positively oriented. At the boundary, to be denoted by ∂Σ, half of the tangent p-plane
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to Σ will hang off the p-surface — in fact the tangent (p − 1)-plane to ∂Σ at these boundary
points will cut the tangent p-plane to Σ into two halves. Half of the nonzero vectors will point
inward towards interior points of Σ, while half will point outward, except for those vectors in
the tangent (p− 1) plane subspace which are tangent to ∂Σ.

Suppose u1 ≤ b describes those points of Σ near the boundary ∂Σ located at u1 = b,
so that E1(u) points outward at u1 = b, then the remaining parameters {u2, · · · , up} give a
parametrization of ∂Σ whose associated orientation, namely that of E2(u)∧· · ·∧Ep(u), is called
the induced orientation of ∂Σ, determined by the orientation of Σ (namely E1(u)∧· · ·∧Ep(u)).
If instead a ≤ u1 describes points near the boundary at u1 = a, so that E1(u) points inward
at u1 = a, then {u2, · · · , up} give an orientation for ∂Σ (namely E2(u) ∧ · · · ∧ Ep(u)) which is
opposite to the induced orientation.

Another way of stating this is that if {Eα}α=1,··· ,p is any set of vector fields which provide a
positively oriented basis for the tangent p-planes to Σ such that on ∂Σ, E1 points outward while
E2 ∧ · · · ∧ Ep describes the (p − 1)-dimensional subspace of the tangent space tangent to ∂Σ,
then E2∧· · ·∧Ep is positively oriented with respect to the induced orientation of ∂Σ. Revisiting
the previous paragraph in this light, in the above parametrization definition, −E1(u) points
outward when a ≤ u1 describes the boundary, so −E2(u) ∧ · · · ∧ Ep(u) orients the boundary

[−E1(u)]︸ ︷︷ ︸
outer

∧ [−E2(u) ∧ · · · ∧ Ep(u)]︸ ︷︷ ︸
induced orientation for ∂Σ

= E1(u) ∧ · · · ∧ Ep(u)︸ ︷︷ ︸
orientation for Σ

.

On the other hand, when u1 ≤ b describes the boundary, then E2(u) ∧ · · · ∧ Ep(u) orients the
boundary

[E1(u)]︸ ︷︷ ︸
outer

∧ [E2(u) ∧ · · · ∧ Ep(u)]︸ ︷︷ ︸
induced orientation for ∂Σ

= E1(u) ∧ · · · ∧ Ep(u)︸ ︷︷ ︸
orientation for Σ

.

As illustrated in Fig. 11.17, we can even extend this to the case p = 1 of a curve segment
Σ with its two 0-dimensional endpoints ∂Σ on which a 0-vector (function) orientation can be
induced

∂Σ+ : [E1(u)] ∧ [+1] = E1(u) ,

∂Σ− : [−E1(u)] ∧ [−1] = E1(u) .

This assigns a plus sign to the terminal point and a minus sign to the initial point of the directed
curve segment. Note that in the other extreme when p = n, corresponding to an open set of
our space Rn, one can always use the orientation of the whole space on Σ for its orientation.

Figure 11.18 illustrates the situation for p-surfaces in R2 and R3. Note that for the case p = 2
in R2, for a region with a hole in it, the outer orientation of the boundary is counterclockwise,
but the inner orientation is clockwise, which should be familiar from Green’s theorem in the
plane. Indeed the induced orientation can be represented by a directed loop symbolizing the
rotation from the first to the second vector of an oriented frame, and the orientation is the
direction in which such a loop flows if you bring it in contact with the boundary. The usual
counterclockwise orientation of the plane for Cartesian coordinates (x1, x2) = (x, y) is needed
for Green’s theorem.

Note that for the cases n = 3 in R3, and p = 2 or p = 3, we can also describe the inner
orientation of a surface or bounding surface respectively by a choice of any vector pointing
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Figure 11.17: A parametrized curve with boundary points and their induced orientation.

out of the surface (i.e., not belonging to the subspace of the tangent space that is tangent to
the surface) picking out one side or the other of the tangent plane to the surface and linking
it to the inner orientation by the right hand rule. This is called an outer orientation for the
surface, and is the way we were introduced to the orientation of ordinary surfaces in space
in multivariable calculus needed for Stokes’ theorem and Gauss’s law, both generalizations of
Green’s theorem to three dimensions. For a closed surface, an outward normal picks out the
inner orientation needed for the latter law. We will see how all these fit together in the general
context soon.

Consider the region Σ in R3 between two spherical coordinate spheres: r1 ≤ r ≤ r2, as
illustrated in Fig. 11.19, letting u1 = r. For the outer boundary

x = r2 sin θ cosφ 0 ≤ θ ≤ π ,

y = r2 sin θ sinφ 0 ≤ φ ≤ 2π ,

z = r2 cos θ (u2, u3) = (θ, φ) ,

the radial coordinate vector field E1(u) = er points out of Σ, while the ordered pair (θ, φ) orient
the outer spherical boundary (equivalent to the choice of outer normal by the right hand rule).
Instead for the inner boundary

x = r1 sin θ cosφ 0 ≤ θ ≤ π ,

y = r1 sin θ sinφ 0 ≤ φ ≤ 2π ,

z = r1 cos θ (u2, u3) = (φ, θ) ,

the same vector field E1(u) points into Σ, and instead the ordered pair (φ, θ) orient the inner
spherical boundary (equivalent to the choice of inner normal by the right hand rule).

�
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Figure 11.18: Examples of parametrized regions with boundary and the induced orientation
of the boundary in R2 and R3.

Example 11.9.2. Let Σ be a ball of radius R in R4

(x1)2 + (x2)2 + (x3)2 + (x4)2 ≤ R2 .

At the North Pole (0, 0, 0, 1), the last Cartesian coordinate frame vector field ∂/∂x4 points
out of Σ. The tangent plane x4 = R is tangent to ∂Σ and because it takes3 transpositions
to restore the outward normal ∂

∂x4
to its rightful place at the end for the usual orientation

∂
∂x1
∧ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
of the whole space, we must choose the inner orientation as follows

∂

∂x4
∧
(
− ∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3

)
︸ ︷︷ ︸

inner orientation of ∂Σ

= +
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4︸ ︷︷ ︸
orientation of R4 taken as orientation for Σ

.

The induced orientation of the boundary ∂Σ = S3 at the North Pole is the opposite of the
subspace R3 ⊂ R4 (x4 = 0) with its natural orientation ∂/∂x1 ∧ ∂/∂x2 ∧ ∂/∂x3. We will return
to this case in detail later.

�

Induced orientation for any coordinate ordering

The key property of the induced orientation on ∂Σ is that if the coordinate xk (for some fixed
value of k) whose interval a ≤ uk ≤ b delimits Σ such that it has a boundary at uk = b and/or
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Example 11.9.1.

Figure 11.19: The region between two concentric spheres at the origin in R3 and its boundary.

at uk = a, then the wedge of Ek(u) from the left onto the induced orientation (p − 1)-vector
should result in the p-vector Ei(u) ∧ . . . ∧ Ep(u) orienting Σ for the part of the boundary at
uk = b, and the opposite sign at uk = a. This is accomplished by the following signs, noting
that it requires k − 1 transpositions to get Ek(u) to its ordered location (note that the vector
Ek(u) is missing in the (p− 1)-vector on the right in each case)

at uk = b:

Ek(u) ∧ [(−1)k−1E1(u) ∧ . . . ∧ Ek−1(u) ∧ Ek+1(u) ∧ . . . ∧ Ep(u)] = E1(u) ∧ . . . ∧ Ep(u) ,

at uk = a:

− Ek(u) ∧ [−(−1)k−1E1(u) ∧ . . . ∧ Ek−1(u) ∧ Ek+1(u) ∧ . . . ∧ Ep(u)] = E1(u) ∧ . . . ∧ Ep(u) .

Thus the (p − 1)-vector in square brackets provides the induced orientation on these parts of
the boundary.

Exercise 11.9.1.
snow cone surface integral

Suppose we consider the snow cone region 0 ≤ θ ≤ α < π/2, 0 ≤ r ≤ a, 0 ≤ φ ≤ 2π in
spherical coordinates, oriented with the usual orientation by the ordered coordinates (r, θ, φ)
consistent with the ordered Cartesian coordinates (x, y, z). On the top surface ∂Σtop : r = a,
then (θ, φ) are oriented (∂/∂θ × ∂/∂φ ∼ ∂/∂r is along the outer normal), but on the lateral
side surface ∂Σside : θ = α, then (φ, r) are oriented (∂/∂φ × ∂/∂r ∼ ∂/∂θ is along the outer
normal).

Show that for α = π/6, the surface integral of the vector field ~F = 〈0, 0, x2〉 over ∂Σtop

is π
64

, while the its integral over ∂Σside has the opposite sign. The result is that the surface
integral over ∂Σ is zero. Note that we evaluate this surface integral by integrating the 2-form
∗F [ = x2 dx ∧ dy.

�
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Figure 11.20: Examining the induced orientation in the tangent plane at the North pole of a
sphere in R4.

Figure 11.21: A snow cone region Σ of R3 with a boundary ∂Σ consisting of a lateral side
which is part of a cone θ = α < π/2, and a top with is part of a sphere r = a > 0. The induced
orientation on the boundary corresponding by the right hand rule to the outward normal is
respectively (θ, φ) and (φ, r).
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11.10 Stokes’ theorem

Let T be a (p− 1)-form on Rn and let B be an oriented p-surface with boundary ∂B with the
induced orientation. Then the integral of T on the boundary of B equals the integral of the
differential of T on B itself ∫

∂B

T =

∫
B

dT .

The proof of this is basically a generalization of the simple proof of Green’s theorem in the
plane found in most multivariable calculus textbooks. This theorem does not require a metric
to evaluate either side of the equality. However, if one has a metric around to use, one can
rewrite this theorem using the metric so that one can have a better mental picture of what
it represents geometrically. This rewriting task expresses the (p − 1)-form as the dual of an
index-lowered (n − p + 1)-vector field and expresses linear combinations of components and
basis (p−1)-forms as metric dot products. However, to understand why we went to the trouble
of fixing an induced orientation on the boundary with a certain sign choice, it is instructive to
look at a piece of the proof in which this sign pops up. First let’s appreciate how this theorem
captures both Stokes’ theorem and Gauss’s law in multivariable calculus.

Figure 11.22: The upward normal oriented upper hemisphere and its bounding circle with the
induced counterclockwise (seen from above) orientation, linked to the upward unit normal by
the right hand rule.

The case p = 2 in R3

Let X[ = Xidx
i = gijX

jdxi be our 1-form. Then using the fact that the double dual ∗∗ = 1 is
the identity operation on R3 for every p-form, the p = 1 version of Stokes’ theorem states∫

∂B

X[ =

∫
B

dX[ .

Then we can convert this into a form in which we introduce the usual Euclidean metric by
rewriting everything explicitly for the vector field X instead of the 1-form X[. First the left
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hand side becomes ∫
∂B

X[ =

∫
∂B

Xi dx
i =

∫
∂B

X igij dx
j =

∫
∂B

X · d~s ,

where we define the vector differential of arclength and its index-lowered form by

dsi = dxi , dsi = gijdx
j .

Then the right hand side becomes∫
B

dX[ =

∫
B

∗(∗dX[︸︷︷︸
[curlX][

) =

∫
B

(curlX) · d~S ,

using the fact that the dual of the curl is

∗(∗dX[) = ∗[(curlX)[] = (curlX)i ηijkdx
jk/2︸ ︷︷ ︸

dSi

= (curlX) · d~S ,

and dSi = gijdSj is the vector differential of surface area on B. Finally putting both sides
together again leads to the metric version of the p = 1 Stokes’ theorem∫

∂B

X · d~s =

∫
B

curlX · d~S ,

which is the usual Stokes’ theorem in R3, equating the line integral of the vector field around
the closed boundary curve to the surface integral of its curl over the surface bounded by that
curve. This latter integral which is the integral of the normal component of the curl of the
vector field with respect to surface area over that surface, while the line integral is interpreted
as the total circulation of the vector field around the loop. Thus the normal component of the
curl of the vector field is interpreted as a local circulation surface density of the vector field
within the surface whose surface integral is the total circulation.

This can be further deconstructed in terms of length and direction information by intro-
ducing the unit tangent T̂ to the boundary curve pointing in the direction of the induced
orientation and defining the scalar differential of arclength

d~s = T̂ ds , or dxi = T i ds ,

and introducing similarly the surface unit normal n̂ picked out by the right hand rule from the
inner orientation of the surface

d~S = n̂ dS , or dSi = ni dS .

With these definitions, Stokes’ theorem becomes∫
∂B

X · T̂ d~s =

∫
B

(curlX) · n̂ d~S ,

interpreting the line integral of the vector field as the integral of its tangential component with
respect to the scalar differential of arclength on the directed curve, and interpreting the surface
integral of the curl vector field as the integral of its normal component with respect to the
scalar differential of surface area on the oriented surface.
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The case p = 3 in R3

Figure 11.23: The induced orientation on the boundary of a closed surface in R3, whose inner
counterclockwise orientation as seen from outside is linked to the outer normal by the right
hand rule.

Let ∗X[ = 1
2
X iηijk dx

jk be our 2-form on R3. Then again using ∗∗ = 1 on R3, the p = 2
version of Stokes’ theorem states ∫

∂B

∗X[ =

∫
B

d∗X[ .

Rewriting the left hand side yields∫
∂B

∗X[ =

∫
∂B

1

2
X iηijk dx

jk =

∫
∂B

X i dSi =

∫
∂B

X · d~S .

Rewriting the right hand side using the divergence identity ∗d∗X[ = divX yields∫
B

d∗X[ =

∫
B

∗ (∗d∗X[)︸ ︷︷ ︸
divX

=

∫
B

∗(divX)︸ ︷︷ ︸
(divX) η

,

so using the more suggestion notation dV = η for the oriented unit volume 3-form, Stokes’
theorem becomes ∫

∂B

X · d~S =

∫
B

(divX) dV ,

or ∫
∂B

X · n̂ dS =

∫
B

(divX) dV .

This is Gauss’s law. Its physical interpretation is that the integral of the divergence of a vector
field over a region equals the flux of the vector field through the bounding surface of that region
(its normal component integrated with respect to the differential of surface area). Thus the
divergence is treated like a local volume flux density whose integral yields the total flux out of
the region.
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Idea of the proof of Stokes’ Theorem

The technical proof of Stokes’ Theorem involves complications similar to defining manifolds
through a system of overlapping coordinate systems (Google: integration on chains stokes’
theorem), but for a first exposure to this topic, this is all overkill. I myself never had the patience
to fully absorb that stuff and in practice: surprise, one never uses it anyway. Mathematicians
like to know that the foundation is solid, though, and we must thank them for doing this tedious
job for us. Believe me, tedious is an understatement.

The key idea of the proof is relatively simple and explains the induced orientation sign
convention. Imagine a parametrized p-surface Σ in Rn (parametrization map Ψ : U ⊂ Rp → Rn)
with bounding (p− 1)-surface ∂Σ that can be described as the image of the region a ≤ uk ≤ b
in the parameter space for a particular parameter uk, where 1 ≤ k ≤ p. Let ∂Σ− correspond to
uk = a and ∂Σ+ correspond to uk = b. Furthermore assume the coordinates xi are adapted to
Σ in the sense that the first p coordinates parametrize Σ, which is described by constant values
of the remaining coordinates

Ψ : x1 = u1 , . . . , xp = up , xp+1 = xp+1
0 , . . . , xn = xn0 .

In practice any p coordinates can serve as the parameters, not just the first p coordinates. Some
good examples to keep in mind are in R3 in spherical coordinates: for p = 2 the ring-like band
region on a sphere r = r0, α ≤ θ ≤ β, or for p = 3 the region r1 ≤ r ≤ r2 between two spheres,
or in cylindrical coordinates: for p = 2 a part of the cylinderical surface ρ = ρ0, a ≤ z ≤ b, or
for p = 3 the cylindrical solid 0 ≤ ρ ≤ ρ0, a ≤ z ≤ b, which has two such separate boundaries.

We need some simplifying notation for this exercise for a single omitted basis vector or
covector, using angle brackets for the omitted index since these delimiters have not yet been
used with indices

E〈k〉(u) = E1(u) ∧ . . . ∧ Ek−1(u) ∧ Ek+1(u) ∧ . . . ∧ Ep(u) ,

du〈k〉 = du1 ∧ . . . ∧ duk−1 ∧ duk+1 ∧ . . . ∧ dup ,

which satisfy

Ek(u) ∧ [(−1)k−1E〈k〉(u)] = E1(u) ∧ . . . ∧ Ep(u) ,

duk ∧ [(−1)k−1du〈k〉] = du1 ∧ . . . ∧ dup = du1...p .

The sign comes from the k−1 transpositions needed to get the missing factor back to its proper
ordered place. Comparing this with the induced orientation, if E1(u)∧. . .∧Ep(u) orients Σ, then
(−1)k−1E〈k〉(u) determines the induced orientation of ∂Σ+ and −(−1)k−1E〈k〉(u) determines
the induced orientation of ∂Σ−. Alternatively, the integral of the (p − 1)-form (−1)k−1du〈k〉

converts to an ordinary iterated integral (−1)k−1du1 · · · duk−1duk+1 · · · dup in the first case, and
the negative of this in the second case.

Now suppose we have a simple (p − 1)-form ω = fdx〈k〉 such that its pullback to the
parameter space takes the simple form Ψ∗ω = fdu〈k〉, ignoring the dependence on x or u.
In fact if we start with any (p − 1)-form, then pulling it back to the p-surface will cause all
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other components to vanish since they will contain factors of the differentials of the coordinates
which are held fixed on the surface and hence are zero (if more than one of the p coordinate
differentials dxi, 1 ≤ i ≤ p is missing from the p-form, such an unwanted differential dxi,
p < i ≤ n will be present in its place). Integrating the p-form dω over the p-surface simply
means setting xi = xi0 and dxi = 0 for p < i ≤ n and replacing xi by ui for 0 ≤ i ≤ p, and then
converting the differential form du1...p to a simple p-fold iterated integral, as follows

Ψ∗dω = d(Ψ∗ω) = (∂f/∂uk)duk ∧ du〈k〉 = (∂f/∂uk)(−1)k−1du1...p ,∫
Σ

dω =

∫
U
d(Ψ∗ω) =

∫
U

(∂f/∂uk)(−1)k−1du1...p

=

∫
· · ·
∫

︸ ︷︷ ︸
p−1

∫ b

a

(∂f/∂uk)(−1)k−1dukdu1 · · · duk−1duk+1dup

=

∫
· · ·
∫

︸ ︷︷ ︸
p−1

[f |uk=b − f |uk=a](−1)k−1du1 · · · duk−1duk+1dup

=

∫
· · ·
∫

︸ ︷︷ ︸
p−1

f |uk=b(−1)k−1du1 · · · duk−1duk+1dup

−
∫
· · ·
∫

︸ ︷︷ ︸
p−1

f |uk=a(−1)k−1du1 · · · duk−1duk+1dup

=

∫
∂Ψ+

ω +

∫
∂Ψ−

ω =

∫
∂Ψ

ω .

Here the underbrace notation is a suggestive way of symbolically representing some explicit
(p− 1)-fold interated integral over the allowed ranges of the remaining coordinates/parameters
explicitly describing the p-surface, implicitly described by constant values of the remaining
n − p coordinates. The only role played by the induced orientation on the boundary is to
assign the appropriate sign coefficient (−1)k−1 in front of each such iterated integral. The sign
(−1)k−1 arises simply from the exterior derivative permutation to order the differentials to get
the orientation of the surface. By doing the uk integral first, one undoes the corresponding
partial derivative leading to a difference of values at the two endpoints describing the allowed
range of that coordinate/parameter for the p-surface. The two separate remaining (p− 1)-fold
iterated integrals then correspond to the integral of the original p-form ω over the two parts of
the boundary ∂Σ+ and ∂Σ− with the appropriate sign which defines the induced orientation.

Remark.

For a (p− 1)-form α and a p-form β we defined the codifferential by the identity

〈 dα, β 〉 η = d(α ∧ ∗β) + 〈α, δβ 〉η .
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If we promote the point-wise inner product 〈, 〉 to an inner product on the space of differential
forms of each degree by integrating it over our space with respect to the unit volume n-form

〈〈S, T 〉〉 =

∫
Σ

〈S, T 〉 η ,

then integrating the previous identity and using Stokes’ theorem leads to

〈〈 dα, β 〉〉 = 〈〈α, δβ 〉〉+

∫
Σ

d(α ∧ ∗β)

= 〈〈α, δβ 〉〉+

∫
∂Σ

α ∧ ∗β .

When the final term vanishes, this states that the codifferential is the adjoint of the exterior
derivative with respect to this global inner product for p-forms. On a sphere or a torus, for
example, their is no boundary (“the boundary vanishes”), so this term is not present. On all
of Σ = R3 which we can imagine as having its boundary ∂Σ the limiting sphere at infinity,
we need to consider p-forms for which the inner products converge as integrals, so we have to
restrict ourselves to those p-forms for which the self-inner product is finite (square-integrable).
By suitably restricting the asymptotic dependence on the distance from the origin, this term
can be made zero as well. This term arises in the variation of the action integral of Lagrangian
function as a “total divergence” which can be integrated away to the boundary where the
variation is fixed and hence not contribute to the calculation of the Lagrange equations.

When p = 1 so that α is a 0-form or function, the above identity becomes∫
Σ

〈dα, β〉 η =

∫
∂Σ

α(∗β) +

∫
Σ

αδβ η .

in progress...
N
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11.11 Worked examples of Stokes’ theorem and Gauss’s

law for R3

It is important to work through some examples and compare them with the approach of ordinary
multivariable calculus, where the general Stokes’ theorem becomes the ordinary Stokes’ theorem
for a closed surface integral and its boundary but Gauss’s law for a closed region of space and
its closed surface boundary.

The ordinary Stokes’ theorem in R3

Figure 11.24: The upward normal oriented upper hemisphere and its bounding circle with the
induced counterclockwise (seen from above) orientation.

We start with a closed surface and its boundary illustrated in figure 11.24: the upper
hemisphere of radius a at the origin bounded by the counterclockwise directed circle (as seen
from above) of radius a in the x-y plane. Stokes theorem for the integral of a 1-form X[ on the
boundary is ∫

∂Σ

X[ =

∫
Σ

dX[ ,

which will require parametrizations for both the surface and bounding curve with the correct
orientations

Σ : x2 + y2 + z2 = a2 , z ≥ 0 , oriented by upper normal

∂Σ : x2 + y2 = a2 , z = 0 . induced orientation: counterclockwise from above

To get these compatible parametrizations, we describe Σ by setting r = a in the spherical
coordinate parametrization map Ψ. Call this parametrization map ΨΣ:

x = a sin θ cosφ , 0 ≤ θ ≤ π/2 ,

y = a sin θ sinφ , 0 ≤ φ ≤ 2π ,

z = a cos θ ,
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Figure 11.25: Left: Linking the inner orientation to the outward normal of the upper hemi-
sphere by the right hand rule. Right: The right hand rule curling from eθ to eφ on the boundary
of the upper hemisphere picks out the outward (upward above the x-y plane) normal.

and by additionally setting θ = π/2 in the parametrization map to parametrize the bounding
circle ∂Σ. Call this parametrization map Ψ∂Σ:

x = a cosφ , 0 ≤ φ ≤ 2π ,

y = a sinφ ,

z = 0 .

Then the ordered pair (θ, φ) orient Σ with the correct orientation related to the upward
normal by the right hand rule and with the correct counterclockwise orientation of the bounding
circle (equator of sphere) as seen from above given by φ

eθ ∧ [eφ] = eθ ∧ eφ .

Now we are ready to perform an integral with a specific 1-form.

Example 11.11.1. line integral: example 1
We need a 1-form to use to verify this version of Stokes’ theorem. Let’s take our old friend

which is an exact differential

X[ = ydx+ xdy = d(xy) ,

dX[ = dy ∧ dx+ dx ∧ dy = 0 = d2(xy) ,

so that the right hand side of Stokes’ Theorem is identically zero. The left hand side is

Φ∂Σ
∗(X[) = (a sinφ) d(a cosφ) + (a cosφ) d(a sinφ)

= −a2 sin2 φ dφ+ a2 cos2 φ dφ = a2 cos 2φ dφ ,∫
∂Σ

X[ =

∫ 2π

0

a2 cos 2φ dφ = −1
2
a2 sin 2φ|2π0 = 0 .



684 Chapter 11. Differential forms: integration and differentiation

�

Example 11.11.2. line integral: example 2
Okay, since our first trial vector field led to a zero result, let’s try something more interesting

by switching a sign in the first component to get a nonzero result. Take instead

X[ = −ydx+ xdy ,

dX[ = −dy ∧ dx+ dx ∧ dy = 2dx ∧ dy .

Then the left hand side of Stokes’ theorem is the line integral

Φ∂Σ
∗(X[) = −(a sinφ) d(a cosφ) + (a cosφ) d(a sinφ) = a2dφ ,∫

∂Σ

X[︸ ︷︷ ︸∮
∂Σ

X · −→ds

=

∫ 2π

0

a2dφ = 2πa2 .

The right hand side of Stokes’ theorem is the surface integral

Φ∂Σ
∗(dX[) = 2d(a sin θ cosφ) ∧ d(a sin θ sinφ)

= 2a2(cos θ cosφ dθ − sin θ sinφ dφ) ∧ (cos θ sinφ dθ + sin θ cosφ dφ)

= 2a2(sin θ cos θ cos2 φ dθ ∧ dφ− sin θ cos θ sin2 φ dφ ∧ dθ)
= 2a2 sin θ cos θ dθ ∧ dφ = a2 sin 2θ dθ ∧ dφ ,∫

Σ

dX[︸ ︷︷ ︸∫
(curlX) · n̂ dS

=

∫ 2π

0

∫ π/2

0

a2 sin 2θdθdφ = 2πa2(−1
2

cos 2θ)|π/20 = 2πa2 .

�

Example 11.11.3. the multivariable calculus approach to the previous problem
The multivariable calculus approach evaluates everything in terms of vector fields∫

Σ

curlX · n̂ dS =

∫
∂Σ

X · T̂ −→ds

The previous vector field and its curl in that component notation are

X = 〈−y, x, 0〉 ,

curlX = 〈 ∂
∂y

(0)− ∂

∂z
(x),

∂

∂z
(−y)− ∂

∂x
(0),

∂

∂x
(x)− ∂

∂y
(−y)〉 = 〈0, 0, 2〉 .
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The unit outward normal to the hemisphere is obtained by normalizing the gradient of the
radial function r2

r2 = x2 + y2 + z2 = a2 −→ n =
1

2
~∇(x2 + y2 + z2) = 〈x, y, z〉 , n̂ =

1

r
〈x, y, z〉 ,

curlX · n̂ =
2z

r
= 2 cos θ .

Recall that the surface area differential for the sphere derived using limiting orthogonal ar-

clength arguments is dS = a2 sin θdθdφ so the vector differential is
−→
dS = n̂ dS and the surface

integral is ∫
Σ

curlX · n̂ dS =

∫ 2π

0

∫ π/2

0

(2 cos θ)(a2 sin θ) dθdφ = 2πa2 ,

as before.

The line integral requires parametrizing the circle which is easily done using the spherical
coordinates setting r = a, θ = π/2, φ = t so that

~r(t) = 〈x(t), y(t), z(t)〉 = 〈a cos t, a sin t, 0〉 ,
~r′(t) = 〈x′(t), y′(t), z′(t)〉 = 〈−a sin t, a cos t, 0〉 = 〈−y(t), x(t), 0〉 = X(~r(t)) ,

T̂ (t) =
〈−y(t), x(t), 0〉

(x(t)2 + y(t)2)1/2

ds = a dt .

Thus

X(~r(t)) · T̂ (t) =
y(t)2 + x(t)2

(x(t)2 + y(t)2)1/2
= (x(t)2 + y(t)2)1/2 = a ,

so that ∫
∂Σ

X · T̂ −→ds =

∫ 2π

0

a(a dt) = 2πa2 ,

or just plugging into the parametrization

=

∫
X(~r(t)) · ~r ′(t) dt =

∫ 2π

0

[(−a sin t)(−a sin t) + (a cos t)(a cos t)] dt

=

∫ 2π

0

a2 dt = 2πa2 .

The nonmetric version is clearly simpler, but the metric version gives us a physical picture of
what we are integrating.

�
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Figure 11.26: The upper hemisphere of radius a joined to the circular disk in the x-y plane
that it cuts off, forming a closed surface ∂Σ which is the boundary of the upper half ball of
radius a.

A Gauss’s law problem

Let Σ be the interior of the upper hemisphere of radius a at the origin, with the usual R3

orientation dx∧ dy ∧ dz ∼ dr ∧ dθ ∧ dφ. Its boundary ∂Σ has two parts: the upper hemisphere
with the upward (outer) orientation and the disk of radius a in the xy plane with the downward
(outer) orientation.

In each case we can use a spherical coordinate parametrization

Σ : x = r sin θ cosφ , 0 ≤ r ≤ a ,

(r, θ, φ) oriented y = r sin θ sinφ , 0 ≤ θ ≤ π/2 ,

z = r cos θ , 0 ≤ φ ≤ 2π ,

∂Σ+ : x = r sin θ cosφ , 0 ≤ θ ≤ π/2 ,

(θ, φ) oriented y = r sin θ sinφ , 0 ≤ φ ≤ 2π ,

z = r cos θ ,

∂Σ− : x = r cosφ , 0 ≤ r ≤ a ,

(φ, r) oriented y = r sinφ , 0 ≤ φ ≤ 2π ,

z = 0 .

where the latter induced orientation follows from the boundary condition θ ≤ π/2

eθ ∧ [eφ ∧ er] = er ∧ eφ ∧ eθ .
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We need a 2-form to integrate on ∂Σ. Take ∗X[, where

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
= r

∂

∂r
,

∗X[ = ∗(xdx+ ydy + zdz) = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy ,
d∗X[ = d(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy) = 3 dx ∧ dy ∧ dz ,

or in spherical coordinates

∗X[ = ∗(rdr) = r ∗dr = r ∗ωr̂ = r ωθ̂φ̂ = r(r dθ) ∧ (r sin θ dφ) = r3 sin θ dθ ∧ dφ ,

d∗X[ = 3r2 sin θ dr ∧ dθ ∧ dφ .

Then Stokes theorem is ∫
∂Σ

∗X[ =

∫
Σ

d(∗X[) .

The right hand side (volume integral) is∫
Σ

3 dx ∧ dy ∧ dz = 3

∫ 2π

0

∫ π/2

0

∫ a

0

r2 sin θ drdθdφ = 3(2πa3/3) = 2πa3 ,

while the left hand side (surface integral) is∫
∂Σ

r3 sin θ dθ ∧ dφ =

∫
∂Σ+

r3 sin θ dθ ∧ dφ+

∫
∂Σ−

r3 sin θ dθ ∧ dφ

=

∫ 2π

0

∫ π/2

0

a3 sin θ dθdφ+ 0 = 2πa3 ,

where the second integral is zero since on the base of the hemisphere, θ = π/2, so dθ is zero on
that flat disc.

Exercise 11.11.1.
paraboloidal solid integration

Because of the axial symmetry, polar and cylindrical coordinates are appropriate to express
the integrals once their integrands have been evaluated in Cartesian coordinates.

a) Evaluate both sides of Gauss’s law for the vector field 〈yz, xz, xy〉 and the solid region
between the bounding surfaces z = 4− x2 − y2 and z = 0.

b) For each of these two bounding surfaces, this time both with the upward normal, evaluate
both sides of Stoke’s theorem for this vector field.

�

Exercise 11.11.2.
wedge of cylinder integration

Evaluate both sides of Gauss’s law for the vector field 〈x, y, z + z2〉 and the solid region
between the bounding surfaces z = x+ 1 and z = 0 enclosed by the unit cylinder x2 + y2 = 1.
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�

Exercise 11.11.3.
unit ball integration

Evaluate both sides of Gauss’s law for the vector field 〈0, 0, z〉 and the solid region enclosed
by the unit sphere.

�
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11.12 Examples in R4 and M4

So far the examples we have discussed are right out of any good multivariable calculus course.
Unless we consider spaces with dimension larger than 3, we can’t really appreciate the generality
of this approach. 4-dimensional spaces are the obvious next step for exploration, and find
interesting applications to stretch our 3-dimensional intuition to higher dimensions, as well
as consider integration in spacetime. As in 3-dimensions, the spheres and cylinders and the
pseudospheres and cylinders are a good place to start in Euclidean and Minkowski geometries.

3-spheres, 3-cylinders and 2-cylinders in R4

The 3-spheres, 3-cylinders and 2-cylinders centered at the origin in R4 are a good test case.
Spherical coordinates can be introduced in any Rn space by the same iterative process that leads
from polar coordinates in the plane to spherical coordinates in R3. It is enough to illustrate
this for n = 4.

Let R = ((x1)2 + (x2)2 + (x3)2 + (x4)2)1/2 be the radial distance function, and let (x, y, z) =
(x1, x2, x3), (ρ, φ, z) and (r, θ, φ) be the usual Cartesian, cylindrical and spherical coordinates
in the subspace x4 = 0, so that R2 = r2 + (x4)2. Analogous to the discussion of spherical coor-
dinates using the ρ-z plane in which the additional polar coordinate decomposition leads from
polar to spherical coordinates, we can introduce polar coordinates in the r-x4 plane measuring
the angle down from the positive x4-axis

x4 = R cosχ , r = R sinχ ,

R = (δijx
ixj)1/2 , χ = arccos(x4/R) .

This leads to one more iteration of what we have already done in R3

x1 = R sinχ sin θ cosφ = r sin θ cosφ = ρ cosφ ,

x2 = R sinχ sin θ sinφ = r sin θ sinφ = ρ sinφ ,

x3 = R sinχ cos θ = r cos θ = z ,

x4 = R cosχ = x4 = x4 .

The only thing which breaks this pattern of succession of polar coordinates is the fact that in
the plane R2, we measure the angle from the positive first axis instead of from the second as in
all of the additional angles that are introduced (which only range from 0 to π instead of from
0 to 2π for the first angle), and we adopt the physics convention by switching to the notation
(ρ, φ) from (r, θ) at the first step.

The Euclidean metric and unit volume 4-form are easily evaluated from the differentials of
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the Cartesian coordinates

g = δijdx
i ⊗ dxj = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4

= dR⊗ dR +R2(dχ⊗ dχ+ sin2 χ (dθ ⊗ dθ + sin2 θ dφ⊗ dφ))

= dx4 ⊗ dx4 + dr ⊗ dr + r2 dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ ,
= dx4 ⊗ dx4 + dz ⊗ dz + dρ⊗ dρ+ ρ2 dφ⊗ dφ ,

(det g)1/2 = R3 sin2 χ sin θ = r2 sin θ = ρ dφ ,

η = dx1 ∧ dx2 ∧ dx3 ∧ dx4

= R3 sin2 χ sin θ dχ ∧ dφ ∧ dθ ∧ dR
= r2 sin θ dr ∧ dθ ∧ dφ ∧ dx4

= ρ dρ ∧ dφ ∧ dz ∧ dx4 .

The Cartesian coordinates with the ordering (x1, x2, x3, x4) establish an orientation for
R4 (call it “positive”) which leads to the orderings (χ, θ, φ,R) of the spherical coordinates,
(r, θ, φ, x4) of the 3-cylindrical coordinates, and (ρ, φ, z, x4) of the 2-cylindrical coordinates
being associated with that positive orientation. Notice that (since ε1234 = −ε4123)

dx1 ∧ dx2 ∧ dx3 ∧ dx4 = dx4 ∧ (−dx1 ∧ dx2 ∧ dx3) ,

so if one considers the closed surface of the unit cube 0 ≤ xi ≤ 1 at the top face x4 = 1,
the induced orientation has the opposite sign usual ordering (x1, x2, x3) associated with the
orientation of R3. At the North Pole (x1, x2, x3, x4) = (0, 0, 0, 1) of the unit 3-sphere R = 1,
(χ, θ, φ) behave like a right handed triad in the tangent plane x4 = 1 with respect to the
Cartesian coordinates (x1, x2, x3) or (r, θ, φ), but this is opposite to the induced orientation on
the closed surface R = 1, which is instead associated with the ordering (χ, φ, θ).

Consider the position vector field (with magnitude and direction unit vector)

X = xi
∂

∂xi
= R

∂

∂R
, |X| = R , n = X̂ =

xi

R

∂

∂xi
=

∂

∂R

and its associated index-lowered 1-form and corresponding unit 1-form

X[ = x1 dx1 + x2 dx2 + x3 dx3 + x4 dx4 = R
∂

∂R
,

n[ =
1

R
(x1 dx1 + x2 dx2 + x3 dx3 + x4 dx4) = dR

and its dual 3-form

ω = ∗X[ = xiηi|jk`|dx
jk` =

∑
i

xi(−1)i−1dx〈i〉

= x1dx234 + x2dx314 + x3dx124 − x4dx123 = R4 sin2 χ sin θ dχ ∧ dφ ∧ dθ
= Rn̂iηi|jk`| dx

jk` ,
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with exterior derivative

dω = d ∗X[ = dxi ηi|jk`|dx
jk` = 4 dx1234 = 4R3 sin2 χ sin θ dR ∧ dχ ∧ dφ ∧ dθ = 4 η .

Since R is an arclength coordinate, ∂/∂R = n is a unit vector field and it is the field of
outward unit normals to the coordinate 3-spheres. By evaluating the first argument of the
volume 4-form on this unit vector, we obtain a 3-form which evaluates the 3-volume of the
parallelepiped formed by 3 tangent vectors in subspace of the tangent space tangent to the
3-sphere, i.e., it acts as the unit volume 3-form on the coordinate 3-spheres, which is the
differential of hypersurface area d3S on those 3-spheres

d3S = niηi|jk`|dx
jk` = R3 sin2 χ sin θ dχ ∧ dφ ∧ dθ .

Suppose we integrate ω over a spherical coordinate sphere ∂Σ of radius R, which is the
boundary of the coordinate ball Σ of radius R = a. Then Stokes’ theorem for this configuration
is ∫

∂Σ

∗X[ =

∫
Σ

d(∗X[) =

∫
σ

4 η

= 4

∫ a

0

∫ π

0

∫ π

0

∫ 2π

0

R3 sin2 χ sin θ dR ∧ dχ ∧ dθ ∧ dφ = 4Va ,

where

Va =

(
a4

4

)(π
2

)
(2)(2π) =

π2a4

2

is the volume of a 3-sphere of radius a. The left hand side (3-surface integral on the 3-sphere
R = a) is ∫

∂Σ

∗X[ =

∫
∂Σ

a4 sin2 χ sin θ dχ ∧ dθ ∧ dφ

=

∫ π

0

∫ π

0

∫ 2π

0

a4 sin2 χ sin θ dχdθdφ

= a4
(π

2

)
(2)(2π) = 2π2a4 = aSa ,

where Sa is the surface area of a 3-sphere of radius a.
For any vector field X, the hypersurface integral of the associated 3-form ∗X[ on a coordinate

sphere ∂Σ can be represented as the integral of the outward normal component n ·X of X with
respect to the scalar differential of hypersurface area∫

∂Σ

∗X[ =

∫
∂Σ

X iηi|jk`| dx
jk` =

∫
∂Σ

X i d3Si =

∫
∂Σ

X ini d
3S ,

where
d3Si = ni d3S , d3S = niηi|jk`| dx

jk`
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are the vector and scalar differentials of hypersurface area. Since ∗∗ = (−1)p(4−p) = (−1)p, for
the p = 4-form d∗X[, the right hand side of Stokes’ theorem can be rewritten∫

Σ

d∗X[ =

∫
Σ

∗∗d∗X[ =

∫
Σ

∗(divX) =

∫
Σ

divX η

leading to the more suggestive form∫
∂Σ

X · d3~S =

∫
∂Σ

X · n d3S =

∫
Σ

divX d4V .

This holds for any closed hypersurface in R4, where n is the outward unit normal.
Suppose we consider the 2-form

ω = x1 dx2 ∧ dx3 ,

= R2 sin2 χ sin θ cosφ (sinχ sinφ dθ ∧ dR + sinχ sin θ cos θ cosφ dφ ∧ dR
+R cosχ cosφ dφ ∧ dχ+R cosχ sin θ cos θ cosφ dφ ∧ dχ
+R sinχ sin θ cosφ dθ ∧ dφ) .

whose differential is

dω = dx1 ∧ dx2 ∧ dx3

= R3 sin2 χ cosχ sin θ cosφ dχ ∧ dθ ∧ dφ+ terms with factors of dR .

Exercise 11.12.1.
3-sphere exterior derivatives

Use a computer algebra system to evaluate ω and dω to verify the above results and fill in
the remaining terms not explicitly given.

�

For the p = 3 Stokes’ theorem we need a 3-surface with boundary so take the ring strip
on a coordinate 3-sphere Σ : R = a, 0 < χ1 ≤ χ ≤ χ2 < π. This can be parametrized by the
ordered triplet (χ, φ, θ), which has the induced orientation on the 3-sphere from the standard
orientation on its interior, and the boundary piece ∂Σ+ : χ = χ2 has the induced orientation
(φ, θ), while ∂Σ− : χ = χ1 has the induced orientation (θ, φ). Then∫

∂Σ

ω =

∫
∂Σ

a3 sin3 χ sin2 θ cos2 φ dθ ∧ dφ

=

∫
∂Σ+

−a3 sin3 χ1 sin2 θ cos2 φ dφ ∧ dθ +

∫
∂Σ−

a3 sin3 χ2 sin2 θ cos2 φ dφ ∧ dθ

=

∫ 2π

0

∫ π

0

a3(− sin3 χ1 + sin3 χ2) sin2 θ cos2 φ dθdφ =
4πa3

3
(− sin3 χ2 + sin3 χ1) .
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On the other hand∫
Σ

dω = −
∫

Σ

a3 sin2 χ cosχ sin θ cosφ dχ ∧ dφ ∧ dθ

= −
∫ χ2

χ1

∫ 2π

0

∫ π

0

a3 sin2 χ cosχ sin θ cosφ dχdθdφ = −4πa3

3
(sin3 χ2 − sin3 χ1) .

Of course there was nothing to prevent us from using the opposite orientation for Σ associ-
ated with the ordered triplet (χ, θ, φ), which is a right handed frame within the 3-sphere just
like (r, θ, φ) corresponds to a right handed frame in R3, in which case the induced orientation
would correspond to the more usual inner orientation (θ, φ) on the “outer” 2-sphere χ = χ2

(corresponding to the outward normal within the 3-sphere) and the opposite sign on the “inner
sphere” χ = χ1 (corresponding to the inward normal within the 3-sphere), just like in the case
between outer and inner spheres r = r2 and r = r1 in R3.

x
4

R

c
1

c
2

r
1

r
2

a

Figure 11.27: The integral of the 3-form dx1 ∧ dx2 ∧ dx3 between two 2-spheres on a 3-sphere
turns out to be the same as the volume between two 2-spheres of the same radii in R3, but the
radial separation of the 2-spheres is longer within the 3-sphere, and the pull back of this 3-form
to the 3-sphere is smaller: cosχ cosφ d3S, and the two factors apparently compensate exactly
to give the equivalent results.

Exercise 11.12.2.
integration between 2-spheres

Consider the corresponding problem in spherical coordinates on R3 where Σ is the region
between two coordinate spheres: r1 = a sinχ1 < r2 = a sinχ2, r1 ≤ r ≤ r2, with the usual
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orientation in which dx1 ∧ dx2 ∧ dx3 = r2 sin θdr ∧ dθ ∧ dφ has positive orientation. Show
that the Stokes’ theorem statement for ω = x1dx2 ∧ dx3 = ∗(x1∂/∂x1)[ with differential dω =
dx1 ∧ dx2 ∧ dx3 on this configuration has the same numerical values of the left and right hand
side as the previous problem. The surface integral is the surface integral of the vector field
X = x1∂/∂x1, with unit divergence divX = 1, so the volume integral is simply the volume
between the two 2-spheres.

However, the distance between the two 2-spheres within the 3-sphere is just LS3 = a(χ2−χ1)
while the corresponding distance in R3 is LR3 = r2 − r1 = a(sinχ2 − sinχ1) < LS3 .

�

3-cylinders in R4

The 3-cylinder in R4 of constant radius r has horizontal cross-sections (x4 = x4
0) which are

spheres of radius r, so coordinates adapted to it are just spherical coordinates in those subspaces

x1 = r sin θ cosφ ,

x2 = r sin θ sinφ ,

x3 = r sin θ ,

x4 = x4 .

2-cylinders in R4

The 2-cylinder in R4 of constant r has 2-plane cross-sections (x3 = x3
0, x

4 = x4
0) which are circles

of radius ρ, so coordinates adapted to it are just cylindrical coordinates in those subspaces

pseudospheres in M4

cylinders in M4

constant inertial time hypersurface
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12.1 Final remarks

1991

Okay, time for parting words.
One semester is so short a time. There are still many basic notions remaining, among

the most important: group of transformations and their associated derivative operator—the
Lie derivative. This is also important for the metric geometry we have explored—to describe
symmetries of the geometry.

The language I have partially introduced you to is basic to the description of finite-dimensional
continuous physical systems (and some infinite-dimensional ones too). It is interesting in its
own right as pure mathematics, and a very powerful tool for describing many aspects of how
our world works. I hope you have enjoyed seeing some of this structure a fraction as much as
I have enjoyed the opportunity to rethink some of these ideas.

2013

Looks like finally bob found some time to incorporate groups into the main text, and some
relativity and other junk. What next?
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Paraboloidal coordinates on R3

These result from a change of coordinates in the ρ-z plane of cylindrical coordinates from polar
coordinates to coordinates based on two mutually orthogonal families of parabolas.

x = ρ cosφ = µν cosφ

y = ρ sinφ = µν sinφ

z = z︸ ︷︷ ︸
cylindrical

= 1
2
(µ2 − ν2)︸ ︷︷ ︸

paraboloidal

ρ-z plane transformation:

ρ = µν z = 1
2
(µ2 − ν2)

Figure 12.1: The coordinate lines for µ and ν are two mutually orthogonal families of parabolas.

Revolving this figure around the z-axis gives the 3-dimensional picture. The µ-ν coordinate
surfaces are parabolas of revolution. Compared to the original cylindrical coordinates from
which these are derived, the φ coordinate surfaces are still the ρ-z half planes. The µ and ν
coordinate lines are parabolas, while the φ coordinate lines are still circles about the z-axis.
From the figure one can see that

{eµ, eν , eφ} ≡
{
∂

∂µ
,
∂

∂ν
,
∂

∂φ

}
≡
{
∂

∂x̄i

}
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Figure 12.2: The coordinate lines and frame vectors for paraboloidal coordinates.

is a righthanded frame (eµ × eν is along eφ). The coordinate ranges are

µ ≥ 0 , ν ≥ 0 , 0 ≤ φ < 2π or − π < φ ≤ π .

1) Show that the transformation between ρ and z and µ and ν may be inverted to obtain

µ =

√
z +

√
z2 + ρ2 , ν =

√
−z +

√
z2 + ρ2

so the coordinate map is

µ =

√
z +

√
x2 + y2 + z2 ,

ν =

√
−z +

√
x2 + y2 + z2 ,

φ = tan−1 y

x
+


0 quads: I, IV

π quad: II

− π quad: IV

2) Compute the transformation matrix

A−1(x̄)ij =
∂xi

∂x̄j

by evaluating the differentials
dxi = A−1(x̄)ijdx̄

j .

3) Since
∂

∂x̄i
= A−1(x̄)j i

∂

∂xj
,
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the columns of A−1(x̄) represent the Cartesian coordinate components of the new coordinate
frame vectors. Their dot products, considered as vectors in R3 give the dot products ḡij = ēi · ēj
of the new coordinate frame vectors {ēi} = {∂µ, ∂ν , ∂φ}. Show that they are orthogonal and
evaluate their lengths, namely

(ḡij) = [A−1(x̄)]TA−1(x̄) .

Using these results, express the metric

g = ḡijdx̄
i ⊗ dx̄j

in this orthogonal coordinate system.
4) Evaluate the oriented unit volume 3-form

η = dx ∧ dy ∧ dz = [detA−1(x̄)] dx1 ∧ dx2 ∧ dx3︸ ︷︷ ︸
dµ ∧ dν ∧ dφ

Since [detA−1(x̄)] is positive, these are oriented coordinates and [det ḡ]1/2 = [detA−1(x̄)].
5) Introduce the associated orthonormal frame and its dual frame

(where (ω̄i) ≡ (dx̄i) = (dµ, dν, dφ) is the orthogonal coordinate dual frame)

{ēı̂} = {eµ̂, eν̂ , eφ̂} , ēı̂ = (ḡij)
−1/2ēi ,

{ω̄ ı̂} = {ωµ̂, ων̂ , ωφ̂} , ω̄ ı̂ = (ḡij)
1/2ω̄i .

Let A(x̄) be the transformation matrix between the old and new orthonormal frames:

ēı̂ = A(x̄)−1j
i
∂

∂xj
, ω̄ı̂ = A(x̄)ijdx

j .

Then this orthogonal matrix is

A(x̄)−1i
j = (ḡjj)A(x̄)−1i

j . (normalize columns of A(x̄)−1)

Evaluate it explicitly.
Take its transpose to obtain A(x̄).
Get A(x̄) by dividing the rows of A(x̄) by the same normalizing factors used to multiply the
columns of A(x̄)−1

A(x̄)ij = A(x̄)ij(ḡii)
−1/2 =

∂x̄i

∂xj
(x) .

6) By differentiating the coordinate map of part 1) and re-expressing its matrix of entries
in terms of the new coordinates, verify that A(x̄) is the value obtained in 5). [Check also that
A(x̄)A−1(x̄) = I.]

7) Compute the independent structure functions of the orthonormal frame

{C̄ ı̂
̂k̂}j<k
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defined by
[ē̂, ēk̂] = C̄ ı̂

̂k̂ēı̂ .

8) Compute the components of the covariant derivative in the coordinate and associated
orthonormal frame using the formulas

A dA−1 = ω̄ = (Γ̄ikjdx̄
k)

A dA−1 = ˆ̄ω = (Γ̄ı̂k̂̂ ω̄
k̂)

The entries of these matrices are called the connection 1-forms.
9) Verify these results using the formulas involving the derivatives of the metric and the

structure functions.
10) Now for something new, well not new, but a putting together of things we already know.

Consider the coordinate frame formula

Ri
jmn = ∂mΓinj − ∂mΓimj + Γim`Γ

`
nj − Γin`Γ

`
mj

= 2∂[mΓin]j + 2Γi[m|`|Γ
`
n]j = Ri

j[mn] ,

where |`| means to not include this index in the antisymmetrization, and define

Ωi
j ≡ 1

2
Ri

jmndx
mn = 1

2
[2∂[mΓin]jdx

mn︸ ︷︷ ︸
[dωij]mn

+2Γi[m`Γ
`
n]jdx

mn]

= dωij + ωi` ∧ ω`j .

By introducing a curvature 2-form matrix Ω = (Ωi
j) one can more efficiently compute the

curvature tensor components using matrices

Ω = dω + ω ∧ ω .

where the combined wedge and matrix product means multiply the matrices keeping the factor
ordering of the 1-form entries, and wedge them in the product matrix entries. From the matrix
Ω, one can read off the curvature tensor components: the matrix indices give the left pair of
tensor indices, while the coefficients of dxmn give the second pair.

If we use this in the new coordinate frame then

Ω̄ = dω̄ + ω̄ ∧ ω̄ = d(A dA−1)︸ ︷︷ ︸
dA ∧ dA−1

+A dA−1 ∧ A dA−1 .

But

A A−1 = I → [dA A−1 + AdA−1 = 0]A ,

→ dA+ AdA−1A = 0 → dA = −AdA−1A ,

so
dA ∧ dA−1 = −AdA−1A ∧ dA−1 = −AdA−1 ∧ AdA−1
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where the wedge can be anywhere between the differentials since the scalar matrix factors don’t
interfere with it. Thus Ω̄ = 0. Of course we knew the curvature tensor to be zero, but this
matrix method most efficiently achieves this result.

Note: if ω∧ω bothers you, here is an example of wedge multiplying 2×2 matrices of 1-forms(
α β
γ δ

)
∧
(
A B
C D

)
=

(
α ∧ A+ β ∧ C α ∧B + β ∧D
γ ∧ A+ δ ∧ C γ ∧B + δ ∧D

)
,

where all the entries are assumed to be 1-forms (or even p-forms).
11) You only had to follow 10), not do anything. Now, from your results for Γ̄ijk you can

read off the components of the covariant derivative for the ν coordinate surfaces (upturned
parabolas of revolution) with the metric

(2)g = g|ν=ν0,dν=0

on which µ, φ are local coordinates. [These components can only defined by the 2-dimensional
formula in terms of the metric derivatives. ]

Figure 12.3: The ν coordinate surfaces are upturned parabolas of revolution.

Evaluate the 2-dimensional matrix

(2)ω = ((2)ωαβ) = ((2)Γαγβdx̄
γ) ,

where the indices α, β, · · · = µ, φ corespond numerically to 1,3 in terms of the original 3 coor-
dinates.

Next compute the corresponding 2-form matrix

(2)Ω = d(2)ω +(2) ω ∧(2) ω = (1
2

(2)
Rα

βγδdx̄
γ ∧ dx̄δ) .

Read off the two nonzero components

(2)Rµ
φµφ ,

(2)Rφ
µµφ .

Does
(2)Rµφµφ = −(2)Rφµφµ?
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Figure 12.4: The µ coordinate lines are upturned half parabolas.

12) Evaluate (2)Rµ̂
φ̂µ̂φ̂ = (ḡφφ)−1 (2)Rµ

φµφ.
What is its value at µ = 0, the vertex of the parabola of revolution?

The parabola (µ coordinate line) which is revolved around the z axis, when expressed in
terms of the cylindrical coordinates ρ, z, is

ρ = µν0 or µ = ρ/ν0 ,

z = 1
2
(µ2 − ν2

0) = 1
2
(ρ2/ν2

0 − ν2
0) .

Since these are Cartesian coordinates in the ρ-z plane, we can use the multivariable calculus
plane curve curvature formula to evaluate the curvature of this parabola at any point

K =
|d2z/dρ2|

[1 + (dz/dρ)2]3/2
.

Evaluate K(ρ = 0) and compare it to the value of the single independent orthonormal compo-
nent (2)Rµ̂

φ̂µ̂φ̂ of the 2-dimensional curvature tensor. Do you notice any relationship?
13) Show that the µ coordinate lines are geodesics on these parabolas of revolution, but

that the φ coordinate lines are not.
14) What is the single independent structure function C φ̂

µ̂φ̂ for the 2-dim orthonormal
frame?

Use it to compute the components of the covariant derivative in the orthonormal frame

(2)Γαβγ .

Use them to show that eµ̂ and eφ̂ are parallel transported along the µ coordinate lines.
15) All of these computations (with the exception of the curvature 2-form notation) have

been done with either cylindrical or spherical coordinates in the notes, so you should have no
problem if you understand them.

16) Let  X = −y ∂
∂x

+ x
∂

∂y
+ (x2 + y2 + z2)

∂

∂z

X[ = −ydx+ xdy + (x2 + y2 + z2)dz
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Evaluate X[ in paraboloidal coordinates. Find X in these coordinates.
Evaluate ∇eµX.
17) Let Σ be the 2-surface {

ν = ν0

0 ≤ ν ≤ ν0

parametrized by {ν, φ}.

Figure 12.5: The ν coordinate surfaces ν = ν0 are upturned parabolas of revolution: this
surface Σ with boundary circle µ = ν0 corresponds to 0 ≤ µ ≤ ν0.

What choice of normal does this inner orientation imply by the right hand rule, the in-
ward/upward normal or the outward/downward normal?

Looking down from above, what is the induced orientation of ∂Σ: clockwise or counter-
clockwise?

Following the example in the Stokes’ theorem section, verify Stokes’ theorem for this surface
with boundary ∫

∂Σ

X[ =

∫
Σ

dX[

for the 1-form X[ of part 16).
18) That’s all folks. Have fun. Stop by if you have any difficulty. I need your work by 5pm

Friday May 3, 1991 to make up grades for Monday.



Part III

Appendices

704



Background Materials

705



706



Appendix A

From trigonometry to hyperbolic
functions and hyperbolic geometry

x
K1 0 1

K2

K1

1

2

3

4

cosh x

sinh x

eKx ex

1
2

 eKx

1
2

 ex

K
1
2

 eKx

Figure A.1: The basic hyperbolic functions cosh and sinh are even and odd combinations of the
basic increasing and decreasing exponentials, here shown together with their three asymptotic
exponentials as well.

The hyperbolic cosine and sine are respectively even and odd functions, like their trigono-
metric counterparts

cosh(−x) = cosh x , sinh(−x) = − sinhx ,

and represent the even and odd combinations of the basic growing and decaying exponential

707
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functions ex and e−x

coshx =
1

2
(ex + e−x) , sinhx =

1

2
(ex − e−x) .

This implies that their power series representation must also consist of only even and odd terms
respectively, and when one combines term by term the power series for the two exponential
function terms, indeed one finds that the odd and even powers respectively simply cancel out
while the even and odd terms respectively are retained from the power series representation of
the exponential function itself

ex =
∞∑
n=0

xn

n!
=
∞∑
n=0

x2n

(2n)!
+
∞∑
n=0

x2n+1

(2n+ 1)!
= coshx+ sinhx ,

e−x =
∞∑
n=0

(−1)n
xn

n!
=
∞∑
n=0

x2n

(2n)!
−
∞∑
n=0

x2n+1

(2n+ 1)!
= coshx− sinhx ,

coshx =
∞∑
n=0

x2n

(2n)!
, sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
.

Like their trigonometric counterparts their derivatives interchange them but without a sign
change in one of the formulas, even simpler, as easily follows from inspection differentiating
their definitions

d

dx
coshx = sinhx ,

d

dx
sinhx = coshx .

The basic hyperbolic identity, which differs only by a sign from the corresponding trigonometric
identity, is a trivial consequence of the laws of exponents

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

= . . . = 1

Exercise A.0.1.
Fill in the dots in the previous calculation and confirm the derivative formulas for the hyperbolic
cosine and sine.

�

Every formula and identity in trigonometry is mirrored exactly with a crucial change in sign
by those of hyperbolic geometry. The remaining hyperbolic functions are defined by the same
ratios as in the trigonometric case

tanhx =
sinhx

coshx
, cothx =

coshx

sinhx
=

1

tanhx
,

cschx =
1

coshx
, cschx =

1

sinhx
.
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Figure A.2: The hyperbolic tangent is an odd function which interpolates between its asymp-
totic values of −1 and 1.

The inverse hyperbolic functions can be re-expressed in terms of the inverse of the exponential
function, namely the natural logarithm ln. The derivatives of all of these functions are easily
derived and appear in most calculus textbooks, although this section is often skipped in practice.
The hyperbolic tangent is an odd function which interpolates between its asymptotic values of
−1 and 1, which it approaches pretty quickly.

Exercise A.0.2.
All the hyperbolic trigonometric functions can be inverted by solving a quadratic relationship
in (ex)2 and then using the inverse of the exponential function: the natural logarithm ln. For
example, choosing x > 0 to get a 1-1 relationship and then the positive sign in the quadratic
formula, one finds

0 =

(
ex + e−x

2
− y
)

2ex = (ex)2 − (2y)ex + 1→ ex = y +
√
y2 − 1

→ x = ln
(
y +

√
y2 − 1

)
= cosh−1 y .

From the definition of the hyperbolic tangent, clearing fractions and again multiplying by ex

yields a quadratic equation in ex which can be solved similarly to show that for |x| < 1

tanh−1 x =
1

2
ln

1 + x

1− x .

Show this.
�
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Figure A.3: Trigonometry flows from the geometry of the unit circle. The reference triangle
sitting on the horizontal axis can be in one of four quadrants.

The basic geometry of trigonometry comes from the unit circle x2 + y2 = 1 in the plane
(see figure A.3), and with a simple sign change, one gets hyperbolic geometry from the two
analogous unit hyperbolas x2 − y2 = ±1 which have their symmetry axis either horizontal (+)
or vertical (−). This geometry illustrated in figure A.4 covers four disjoint regions into which
the plane is separated by the degenerate hyperbolas x2 − y2 = 0, the latter of which play a
special role in the global hyperbolic geometry of the whole plane. Just as the trigonometric
angle θ parametrizes the additive group of rotations of the unit circle, the hyperbolic angle
α parametrizes the additive group of hyperbolic rotations (pseudorotations) of the two unit
hyperbolas.

In the same way that polar coordinates in the plane are adapted to the trigonometric
geometry of the Euclidean plane (see figure A.5), pseudo-polar coordinates can be introduced
in an analogous way to adapt to the hyperbolic geometry but we need four separate coordinate
patches to cover the four sectors into which the plane is separated by that geometry, two
of which are illustrated in figure A.6. By using a signed pseudo-radial coordinate, only two
patches are necessary: inside and outside the “cone” formed by the two oblique asymptotes to
the hyperbola. The hyperbolic tangent is the ratio of the vertical to the horizontal leg of the
reference triange of a point, and hence approaches 1 in absolute value as a point approaches
these asymptotes.

Exercise A.0.3.
pseudo-spherical coordinates
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Figure A.4: Hyperbolic geometry flows from the geometry of the two unit hyperbolas. The
horizontal hyperbola geometry (left) has four different sectors for the reference triangle sitting
on the horizontal axis. The vertical hyperbola geometry (right) has four different sectors for
the reference triangle sitting on the vertical axis.

Consider the two unit hyperbolas in the x-y plane shown in Fig. A.4.

a) By substituting the differentials of x = r cos θ, y = r sin θ into the squared differential
of arclength ds2 = dx2 + dy2, the result simplifies to ds2 = dr2 + r2dθ2 using the fundamental
trigonometric identity. Show this.

b) Now repeat for x = ` coshα, y = ` sinhα and ds2 = dx2 − dy2 = d`2 − `2dα2 using the
fundamental hyperbolic identity.

c) Then repeat for x = τ sinhα, y = τ coshα and ds2 = dx2 − dy2 = −dτ 2 + τ 2dα2 using
the fundamental hyperbolic identity.

�

The rotations of the plane are easily expressed using the addition formulas for the sine and
cosine. If we start with a point (x0, y0) = (r0 cos θ0, r0 sin θ0) in the plane and rotate it by an
angle θ, we simply add θ to its polar angle θ0

(x0, y0) = (r0 cos θ0, r0 sin θ0)→
(x, y) = (r0 cos(θ0 + θ), r0 sin(θ0 + θ))

= (r0(cos θ0 cos θ − sin θ0 sin θ), r0(sin θ0 cos θ + cos θ0 sin θ))

= ((r0 cos θ0) cos θ − (r0 sin θ0) sin θ, (r0 sin θ0) cos θ + (r0 cos θ0) sin θ)

= (x0 cos θ − y0 sin θ, x0 sin θ + y0 cos θ) ,
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Figure A.5: Polar coordinates in the plane are adapted to its Euclidean geometry.

or in matrix form (
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x0

y0

)

Exercise A.0.4.
Verify that the set of rotation matrices for all values of the angle of rotation form a group by
showing that their matrix products amount to addition of the angles (closure under matrix mul-
tiplication), hence the inverse rotation corresponds to the sign-reversed angle and associativity
is guaranteed by associativity of addition of real numbers(

cos θ3 − sin θ3

sin θ3 cos θ3

)
=

(
cos θ1 − sin θ1

sin θ1 cos θ1

)(
cos θ2 − sin θ2

sin θ2 cos θ2

)
, where θ3 = θ1 + θ2 .

This group is called the special orthogonal group in 2 real dimensions, symbolized by SO(3, R).
�

Exercise A.0.5.
a) Verify the addition formulas for the hyperbolic cosine and sine by simply re-expressing the
left and right hand sides in exponential notation and expanding the right hand side out using
rules of exponents

cosh(α1 + α2) = cosh(α1) cosh(α2) + sinh(α1) sinh(α2) ,

sinh(α1 + α2) = sinh(α1) cosh(α2) + cosh(α1) sinh(α2) .
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Figure A.6: Pseudopolar coordinates in the plane are adapted to its hyperbolic geometry.
Four different coordinate systems are required for the four sectors of the hyperbolic plane, two
of which are shown here. The same formulas with a minus sign multiplying the cosh term
works in the other two disjoint sectors obtained by reflection through the origin, while allowing
negative values of the hyperbolic angle α to handle the sinh term.

b) Now take the quotient of the left right hand sides (second over first) to obtain the
hyperbolic tangent on the left and then divide all four terms in the right hand side quotient by
cosh(α1) cosh(α2) to then re-express each of them in terms of the hyperbolic tangent to get its
addition formula

tanh(α1 + α2) =
tanhα1 + tanhα2

1 + tanhα1 tanhα2

.

If we let vi = tanh(αi), this becomes the formula for the relativistic addition of velocities

v3 =
v1 + v2

1 + v1v2

.

This is relevant to the vertical hyperbola geometry of Fig. A.4, as will be explained later.
c) For a point in the right horizontal sector of the plane for which an initial point can be
represented as (x0, y0) = (`0 coshα0, `0 sinhα0), a hyperbolic rotation applied to the point
consists of simply adding a hyperbolic angle α to its pseudoangle α0. Repeat the calculation
done above for an ordinary rotation for this new situation. Show that the final result is(

x
y

)
=

(
coshα sinhα
sinhα coshα

)(
x0

y0

)
.

Confirm that these matrices also form a group under matrix multiplication law with the same
additive law for the hyperbolic angle. Notice that the determinant of such matrices is identically
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1 by the fundamental hyperbolic identity. This group turns out to be a subgroup of the special
linear group in 2 real dimensions, denoted by SL(2, R), consisting of all matrices with unit
determinant.
d) Repeat c) for a point in the top sector of the plane where an initial point can be represented
as (x0, y0) = (τ0 sinhα0, τ0 coshα0), and show what happens when α0 is changed to α0 + α.

If we rename y → t, coshα → γ, sinhα → γv so that tanhα → v as above, and inter-
change the order of the two coordinates, show that the previous matrix takes the form of a so
called Lorentz transformation in the 2-dimensional spacetime with time coordinate t and space
coordinate x relevant for 1-dimensional motion.(

t
x

)
=

(
γ γv
γv γ

)(
t0
x0

)
=

(
γ(t0 + vx0)
γ(vt0 + x0)

)
.

�

Under a rotation of the plane by a fixed angle, as described by the matrix multiplication
above, each point of a circle centered at the origin moves around that circle by that same
angle as illustrated in figure A.7, where a reference triangle with a given angle with respect
to each of the four axes is shown before and after a rotation. Similarly, a hyperbolic rotation
(or just “pseudo-rotation”) of the entire plane by a fixed hyperbolic angle is defined by the
matrix transformation of this previous exercise derived for the right horizontal sector and
the top vertical sector. Under matrix multiplication, all points along the pair of hyperbolas
x2 = y2 = C for a fixed value of C are moved along as shown in figure A.8 from the 8 standard
positions located at a given hyperbolic angle from each of the four axes. For example on the
upper branch of the vertical hyperbola, points move to the right, and on the lower branch to
the left. Similarly on the horizontal hyperbola, points on the right branch move up, and on
the left branch move down. Points on the asymptotes move along those asymptotes in the
directions indicated.
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y

x

Figure A.7: A rotation of the plane by an angle θ moves each point of a circle centered at the
origin along that circle by that angle.
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y

x

Figure A.8: A pesudo-rotation of the plane by a hyperbolic angle α moves each point of a
given branch of the pair of hyperbolas x2 − y2 = ±C along that hyperbola as shown for the 8
different standard reference triangle positions, while stretching or shrinking respectively points
located on the common asymptotes y = ±x.
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Figure A.9: The area of a sector of the unit circle of angle α equals half the angle. Similarly
the area of an analogous hyperbolic sector of a unit hyperbola of hyperbolic angle α equals half
that angle.

Exercise A.0.6.
Consider the geometry of the unit circle and a unit hyperbola in the x-y plane as shown in
Fig. A.9.

a) As an exercise in double integration with a computer algebra system, you can set up
an integral for the area of the sector of the unit circle and the corresponding sector of a

unit hyperbola as a single iterated integral in Cartesian coordinates
∫ b
a

∫ g(y)

f(y
1 dx dy (the x

integration is trivial), first integrating with respect to x from the bounding ray of the sector to
the circle/hyperbola, then integrating over y from y = 0 to y = sinα or y = sinhα respectively.
Note that the bounding ray has the equation x = y cotα or x = y cothα respectively, while the
conic section has the equation x =

√
1± y2. Confirm these statements.

Maple won’t simplify its result in the trigonometric case unless you substitute cosα for
the absolute value | cosα|, which is true for a positive acute angle: subs(| cos(α)| = cos(α)),
although you can simplify this by eye to α/2 easily.

Maple won’t evaluate the outer integral in the hyperbolic case unless you separate it into a
difference of two integrals (the two terms that result from the trivial inner integral), and then
use “simplify(%,symbolic)” to get the desired result α/2.

b) In polar coordinates x = r cos θ, y = r sin θ we can use the determinant of the Jacobian
of the coordinate transformation to get this result more easily:

dA =

∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣ dr dθ = r dr dθ .

Setting up the iterated integral in polar coordinates leads easily to the familiar result (check
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it!)

A =

∫ α

0

∫ 1

0

r dr dθ =
1

2
α .

Now repeat for the hyperbolic case with the coordinates x = ` cosh β, y = ` sinh β in terms of
which 0 ≤ ` ≤ 1, 0 ≤ β ≤ α describes the hyperbolic sector of hyperbolic angle α. Show that
by evaluating the new Jacobian determinant we get the result dA = `d` dβ, and its double
integral easily gives the result α/2.

The result is simple because like polar coordinates, these are orthogonal coordinates even
though there is a minus sign in the arc length formula, as shown in Fig. A.6, and as evaluated
in Exercise A.0.3. The differential of area dA = d` (` dβ) is just the product of the differentials
of arclength d` in the ` direction and ` dα in the α direction (pseudo-radius of the arc times the
differential of the hyperbolic angle), directly analogous to the Euclidean case: dA = dr (r dθ).
The area of a unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 in either the Euclidean geometry ds2 = dx2+dy2

or the Lorentzian geometry ds2 = dx2 − dy2 is 1, the product of the lengths of the orthogonal
unit length sides of the square. This means that the area of a region of the plane does not
depend on this sign change.

�



Appendix B

Hyperbolic geometry and special
relativity

So what does the hyperbolic geometry of the plane have to do with special relativity? Consider
1-dimensional motion along an x axis as studied first in high school physics. We can make
a diagram of position along the axis versus the time t, but instead of having the time as the
horizontal axis as usual, we agree that the time axis will always be the vertical axis to track
the passage of time as we move up in our diagrams. This “Lorentz plane” represents the set of
all events, namely all points on the spatial axis at all times.

The path of a point moving along the x-axis is then represented by a curve in the t-x plane
diagram which is called its world line. World lines for motion at constant velocity are straight
lines in this diagram, with constant velocity dx/dt = v, which is the reciprocal of the slope of
the line in the spacetime diagram. Motion of real bodies must have speed less than the speed
c of light, so if we introduce the new time variable T = ct (which has the dimensions of length,
“speed times time = distance”) then∣∣∣∣dxdt

∣∣∣∣ = |v| ≤ c or

∣∣∣∣ dxdT
∣∣∣∣ =

∣∣∣∣1c dxdt
∣∣∣∣ =

∣∣∣v
c

∣∣∣ ≤ 1

Using the new time variable T just corresponds to using length units for time so that space
and time have the same units, and with this time, velocity becomes a dimensionless quantity
and motion at the speed of light means unit speed in these units

|v| = c→
∣∣∣∣ dxdT

∣∣∣∣ = 1 ,

while motion of any real bodies must have a proper fractional speed |dx/dT | ≤ 1, with strict
inequality holding for the world lines of inertial observers: imagined observers traveling at
constant velocity. Rather than having to use a new symbol T for this new time coordinate in
terms of which the speed of light is 1, we can just continue using the symbol t but assume that
it is measured in length units by using the speed of light as a conversion factor. This is not
unusual. When we animate an arclength parametrized curve in a computer algebra system,
we equate the mathematical arclength to time in seconds. If we plot a curve of total length

719
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Figure B.1: Left: the t-x plane spacetime diagram for motion in 1 spatial dimension. The light
cone −t2 + x2 = 0 divides the plane of 1 time plus 1 space dimension into regions representing
events which are separated from the origin by timelike, lightlike and spacelike separations
according to −t2 + x2 > 0,= 0, < 0. Right: the light cone in 1 time plus 2 space dimensions,
a true cone, which generalizes to the 3-cone in 4-dimensional spacetime: an ordinary 2-sphere
expanding at the speed of light from the event at the origin. World lines of inertial observers
passing through the origin are confined to the interior of the light cone.
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10, selecting 10 frames per second, and choosing the number of frames to be 100, then the
animation which traces out the curve in space will last 10 seconds. Thus we have converted
length into time with a conversion factor of 1 in time units of seconds. Converting time into
length goes in the opposite direction, but the large value of the speed of light in centimeters
per second compresses the time axis incredibly compared to ordinary time scales.

If we consider only inertial observers whose world lines pass through the origin of our
coordinates, then their straight world lines through the origin are confined to the “interior”
|x| < |t| of the light cone: x = ±t, namely the white region in Fig. B.1. For any point or
“event” in the future interior of the light cone, the straight line connecting it to the origin is
the world line of an inertial observer for whom the event occurs at the same spatial location as
the observer in the observer’s own reference frame but at a later time compared to the event
at the origin. This can be encoded into the “dot product” we use on the plane for 2-vectors
〈t, x〉 representing the position of events relative to the chosen origin by introducing a minus
sign relative to the usual Euclidean dot product

〈t1, x1〉 • 〈t2, x2〉 = −t1t2 + x1x2 ,

so that instead of the distance formula s2 = x2 + y2 for a displacement from the origin we get
the “spacetime interval”

s2 = 〈t, x〉 • 〈t, x〉 = −t2 + x2 =


< 0 timelike separation ,

= 0 lightlike or null separation ,

> 0 spacelike separation .

This Lorentz inner product governs the geometry of special relativity.
Consider the coordinate grid associated with the inertial coordinates (t, x) shown as dashed

lines in Fig. B.2 The vertical lines of constant x (time coordinate lines) represent the world
lines of points at rest with respect to the inertial observer of the coordinate system (t, x), while
the horizontal lines of constant t (the x coordinate lines) represent a moment of time in the
reference frame of this inertial observer, or a simultaneity slice of the plane, consisting of all
events which appear to be simultaneous to that inertial observer: “space” at a moment of time.
The only way the speed of light can be 1 in both reference frames is if the new simultaneity
slices are orthogonal (with respect to the Lorentz dot product) to the new time lines in the
inertial coordinates associated with the moving observer. The new coordinate grid is simply
related by a hyperbolic rotation with boost parameter v = tanhα, taken to be 1/2 in this
spacetime diagram, called a Lorentz transformation. The new simultaneity slices have this
slope. The fact that the Lorentz dot product and the spacetime separation are left invariant
by a hyperbolic rotation means that

−t2 + x2 = −(t′)2 + (x′)2 = 0↔ dx

dt
= ±1 =

dx′

dt′
,

i.e., the speed of light remains the same in all such inertial coordinate systems. This is the
heart of special relativity and the big difference with Newtonian nonrelativistic theory: in the
latter the simultaneity slices never change, always remaining horizontal. Only the world lines of
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Figure B.2: The old dashed line (t, x) and new solid line (t′, x′) inertial coordinate grids on
the Lorentz plane. The primed observer grid is moving at speed 1/2 in the forward x direction
(slope 2 in the spacetime diagram) with respect to the unprimed observer.
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the points at constant relative velocity change: time was absolute in the old theory. In special
relativity the notion of simultaneity depends on the observer.

The relation between the old and new coordinates is(
t′

x′

)
=

(
coshα − sinhα
− sinhα coshα

)(
t
x

)
=

(
γ −γv
−γv γ

)(
t
x

)
,

where
[coshα, sinhα, tanhα] = [γ, γv, v]

and

γ =
1√

1− v2
= coshα ≥ 1

is the associated gamma factor. This hyperbolic rotation of the grids explains length contraction
and time dilation. It also gives meaning to the spacetime interval. For any point (t, x) in the
future light cone of the origin at a timelike separation from the origin, there exists an inertial
observer moving at relative velocity v = x/t. This inertial observer sees the event as occurring
at the same location as the origin O, but at a time τ =

√
t2 − x2. For any point outside the

light cone at a spacelike separation from the origin, there exists and inertial observer with speed
v = t/x such that the two events occur simultaneously but at a distance ` =

√
x2 − t2. In other

words

s2 = −t2 + x2 =


−τ 2 timelike separation ,

0 lightlike or null separation ,

`2 spacelike separation .

The time separation τ > 0 is called the proper time between the events along the straight
line segment between them, while the spatial distance separation ` > 0 is called the proper
distance between the events along the straight line segment between them. Events separated
by 0 spacetime interval can be connected by a light signal.

Consider first length contraction. Fig. B.3 shows the world line of the two ends of a unit
length 1-dimensional ruler at the tickmarks x′ = 0, 1 of the primed coordinate grid (so that
∆x′ = 1) moving with velocity v = 0.5 with respect to the unprimed frame, and gamma factor
of γ = 1.155, γ−1 = 0.866. In its rest frame it is a L′ = ∆x′ = 1 length ruler (spacetime interval
between event O and event C) but in the laboratory frame, measuring its two ends at the same
time t = 0, for example, it appears to be

L = ∆x = γ−1L′ = 0.866

in length (spacetime interval between event O and event B), exhibiting “Lorentz length con-
traction.”

The primed observer sees the unprimed observer at x = 0 cross from the right end of the
ruler at t = −2 (event A) to the left end of the ruler at t = 0 (event O, see the right figure, it
takes 2 time units to move 1 length unit at speed 1/2), while the unprimed observer sees the
right end of the ruler pass at t = −2/γ = −1.732 and the left end pass at t = 0 (it takes less
time for the contracted ruler to pass traveling at speed 1/2).
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Figure B.3: World sheet of a unit length 1-dimensional ruler moving at constant velocity 0.5
with respect to the inertial frame (length of the line segment OC), with gamma factor 1.155
contracting its length to 0.866. Left: Passage of ruler as seen by the unprimed inertial observer
at x = 0. Right: Passage of unprimed observer from the right end of the ruler (A) to the left
end (O) as seen by the primed observer in its reference frame.

Fig. B.4 illustrates time dilation. The events O and A occur at position of the moving
inertial observer a unit time interval apart: ∆t′ = 1. However, the stationary inertial observer
sees these events occurring at different locations at a time interval corresponding to the events
O and B, which is longer than the primed time interval

∆t = γ∆t′ = 1.155∆t′ > ∆t = 1 .

The arc of a hyperbola between A and C is the set of points a unit distance from the origin. All
these events are a unit time interval in the future along the world line of some inertial observer
passing through the origin.

This 2-dimensional spacetime geometry is the the only new aspect of special relativity, since
the dimensions orthogonal to the direction of relative motion are unchanged under Lorentz
transformations between inertial frames in relative motion. For 4-dimensional “Lorentz” space-
time of 1 time and 3 space dimensions, we let x0 = t be the first coordinate with index 0 (the
zero index helps remind us that time is very different from space) so we can let the indices 1,2,3
label the space coordinates as usual (and don’t have to relabel the time index if it is instead
last in the cases of 1, 2 or 3 space dimensions). Then one has the Lorentz dot product

〈x0, x1, x2, x3〉 • 〈y0, y1, y2, y3〉 = −x0y0 + x1y1 + x2y2 + x3y3 = −x0y0 + ~x · ~y .
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Figure B.4: World line of a point fixed in the primed coordinate grid moving at speed v = 0.5
with events O and A seen to occur at the same location but separated by a unit time interval
in the moving frame. (All points on the hyperbola are the same spacetime interval from the
origin, interpreted as a unit time interval by both observers.) The two events occur at different
locations in the unprimed frame, and the time interval is seen to be longer by the gamma factor
(time dilation).

As a quadratic form this is

(
x0 x1 x2 x3

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



y0

y1

y2

y3

 = xµηµνy
ν ,

where µ, ν = 0, 1, 2, 3. For the self dot product of two vectors, we get the spacetime separation
formula, and analogous to the Euclidean case, we get the corresponding quadratic form in the
coordinate differentials

ds2 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2 = ηµνdx
µdxν

that defines the metric on 4-dimensional spacetime (called Minkowski spacetime) in inertial
coordinates (xµ) = (x0, x1, x2, x3), with x0 = t.

Returning to the Lorentz plane with this Lorentz metric in 2-dimensions, it is natural to
consider pseudo-polar coordinates directly analogous to polar coordinates in the Euclidean
plane, called Rindler coordinates. One needs 4 disjoint coordinate patches separated by the
two crossed light cone lines −t2 + x2 = 0(

t
x

)
=

(
ρ coshχ
ρ sinhχ

)
if − t2 + x2 < 0 (timelike)(

t
x

)
=

(
ρ sinhχ
ρ coshχ

)
if − t2 + x2 > 0 (spacelike)
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Figure B.5: The Rindler coordinate grid for two disjoint spacelike regions of the light cone.

where

−∞ < ρ, χ <∞ .

The two disjoint coordinate grids in the spacelike region of the light cone of the origin
are called Rindler wedges. The Rindler coordinate grid consists of concentric hyperbolas of
constant spacetime interval from the origin (the time lines) and rays from the origin (the
constant time curves), the world lines of the Rindler observers. Each such world line is of
constant curvature κ = 1/|ρ| whose radius of curvature is equal to the constant radius |ρ| of each
such hyperbola. The 4-acceleration equals this curvature, which goes infinite approaching the
origin. The coordinates have a “horizon” at the light cone where the coordinates break down,
analogous to the origin for ordinary polar coordinates where the polar angle is undetermined.
Each Rindler observer thus has a constant but distinct 4-acceleration.

Particle motion: Euclidean versus Lorentzian

The whole idea of curvature starts with circles in the plane. For a circle of radius r, the
curvature is defined to be the reciprocal κ = 1/r. This is then extended to more general curves
using the idea of the osculating circle in the plane of the unit tangent and unit normal, which
are the arclength first and second derivatives of the position vector along the curve. A parallel
development can be done for a timelike curve in the Lorentz plane representing the motion of a
point in spacetime, with hyperbolas taking the place of circles in the constant curvature curve
starting point (pesudo-circles) and in the osculating pseudo-circle generalization. Furthermore,
if one is interested in the geometry near a particular curve, one can introduce an orthogonal
coordinate system adapted to this curve, called a Fermi coordinate system.

First consider the Euclidean plane and focus on a particular circle r = r0 in polar coordi-
nates, with curvature k0 = 1/r0, introducing the arclength coordinate S = r0θ along this curve,
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and the arclength difference coordinate in the orthogonal radial direction R = r − r0(
x
y

)
=

(
r cos θ
r sin θ

)
=

(
(r0 +R) cos(S/r0)
(r0 +R) sin(S/r0)

)
,

for which one has the differential relations dS = r0dθ, dR = dr. Re-expressing the metric leads
easily to

ds2 = dR2 + (r0 +R)2dS2/r2
0 = dR2 + (1 + κ0R)2dS2

where the arclength correction factor

N = 1 + κ0R = 1 + (κ0r̂) · (Rr̂) = 1 + ~a0 · ~R

describes the “arclength acceleration” correction factor of nearby azimuthal coordinate lines in
this new orthogonal coordinate system relative to the original circle. The circle from which this
coordinate system has been constructed has arclength velocity and acceleration

~x0 = 〈r0 cos(S/r0), r0 sin(S/r0)〉

~v0 =
d~x0

ds
= 〈− sin(S/r0), cos(S/r0)〉 = T̂0

~a0 =
d2~x0

ds2
= −(1/r0)〈cos(S/r0), sin(S/r0)〉 = κ0N̂0 ,

where T̂0 and N̂0 = −~x/r0 = −r̂ are the unit tangent and unit normal to that curve.
The curvature of the circle is the magnitude of the arclength acceleration

κ0 =
√
~a0 · ~a0 ,

while the curvature is defined to be its reciprocal ρ0 = 1/κ0. The osculating circle is defined to
be a circle of radius ρ0 with center position vector which is equal to the radius of curvature r0

times the unit normal added to the position vector

~C = ~x + ρ0N̂0 ,

and the evolute of the original curve is the set of all such centers

~E(S) = ~x(S) + ρ0N̂0(S) .

For the circle this evolute consists of a single point where all the normal lines intersect, and
which gives a coordinate singularity where the new coordinates break down. For a noncircular
curve, the evolute is another curve, which marks the limiting interval of R for each S for which
the new coordinates are valid.

Now consider the same analysis for a timelike pseudo-circle ` = `0 about the origin in the
Lorentz plane, introducing the arclength coordinate τ = `0χ along this curve, and the arclength
difference coordinate in the orthogonal “radial” direction X = `− `0(

t
x

)
=

(
` sinhχ
` coshχ

)
=

(
(`0 +X) sinh(τ/`0)
(`0 +X) cosh(τ/`0)

)
,
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for which one has the differential relations dτ = `0dχ, dX = d`. Re-expressing the metric leads
easily to

ds2 = dX2 − (`0 +X)2dτ 2/`2
0 = dX2 − (1 + κ0X)2dτ 2

where the arclength correction factor

N = 1 + κ0X = 1 +
(
κ0

ˆ̀
)
·
(
X ˆ̀
)

= 1 + ~a0 · ~X

describes the “arclength acceleration” correction factor of nearby time coordinate lines in this
new orthogonal coordinate system relative to the original pseudo-circle. The pseudo-circle from
which this coordinate system has been constructed has arclength velocity and acceleration

~x0 = 〈`0 sinh(τ/`0), `0 cosh(τ/`0)〉

~u0 =
d~x0

dτ
= 〈cosh(τ/`0), sinh(τ/`0)〉 = T̂0

~a0 =
d2~x0

dτ 2
= (1/`0)〈sinh(τ/`0), cosh(τ/`0)〉 = κ0N̂0 ,

where T̂0 and N̂0 = ~x/`0 = −r̂ are the unit tangent and unit normal to that curve. However,
now T̂0 · T̂0 = −1 since this is a timelike curve, while its normal is spacelike: N̂0 · N̂0 = 1.

For a timelike curve one instead has an osculating pseudo-circle (hyperbola) whose center
is defined exactly as in the Euclidean case, except for a change in sign since the center of the
hyperbola is on the opposite side from its normal vector

~C = ~x− r0N̂0 ,

For a pseudo-circle itself, the evolute is a single point (the origin in this case) but for a general
timelike curve (world line), the evolute marks the interval in X away from the original world
line where this new coordinate system breaks down due to the crossing of its spatial coordinate
lines.

These new orthogonal coordinates are called Fermi coordinates and are orthonormal along
the curve used to construct them. They are easily generalized to 4-dimensional spacetime.
They were first introduced by a college student, Enrico Fermi, only a few years after the
birth of general relativity, Einstein’s theory of gravity. He was motivated by the problem of
electromagnetic mass. Fig. B.6 shows an osculating hyperbola on the spacetime helix in 3-
dimensional Minkowski spacetime corresponding to the above circular motion, as derived in
the following exercise and next section.

Exercise B.0.1.
Consider a circular orbit of a small mass around a large central mass, which is a helix in
spacetime. We only need 3-dimensional spacetime to describe this problem since the orbit is
confined to a plane in space. The circular orbit, when moving along the time direction, becomes
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Figure B.6: The Lorentzian helix with its osculating hyperbola and evolute, including a paral-
lelogram from the local rest space (right). The left figure more clearly shows the Serret-Frenet
orthonormal frame and the osculating circle, with the line segment along the normal direction
extending to the center of the osculating hyperbola. The evolute is also a helix, contained
in a cylinder about the time axis which limits the validity of the Fermi coordinates based on
the original helix, representing a point particle in a circular orbit about the spatial origin of
coordinates.
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a helix about the time axis at which the central mass is located. The proper time parametrized
world line is

~x = R̂(τ) = 〈t, x, y〉 = 〈γτ, a sin(ω0τ), a cos(ω0τ)〉 = 〈t, a sin(ωt), a cos(ωt)〉 ,

~u =
d~x

dτ
= R̂′(τ) = T̂ ,

~a =
d~u

dτ
=
d2~x0

dτ 2
= R̂′′(τ) = κN̂ .

This is spatially periodic with proper time period P0 = 2π/ω0 and longer coordinate time period
P = 2π/ω = γP0 (time dilation), returning to the point with the same spatial coordinates after
one period.

a) Determine the gamma factor γ > 0 such that the 4-velocity is a unit timelike vector:
~u · ~u = −1.

b) Express the coordinate time frequency ω in terms of the proper time frequency ω0 and
vice versa. Express the gamma factor in terms of ω. Express the speed v = |d~x/dt| in terms of
the coordinate frequency and the proper time frequency.

c) Evaluate the constant curvature κ of this helix in spacetime, the reciprocal radius of
curvature ρ, and the unit normal.

d) Evaluate the parametrized osculating pseudo-circle, parametrized by the hyperbolic angle
α

~x = ~C + ρ
(

coshα N̂ + sinhα û
)
.

e) What is the parametrized equation for the evolute? Note that it too is a helix, contained
in a cylinder about the time axis of radius re. Evaluate re and then re-express it in terms of
the radius a of the circular orbit and the radius of curvature ρ. Plot one revolution of the helix
τ = 0..P0 together with its Lorentzian evolute for the parameter values (a, v, γ, ω0 = γv) =
(1/2, 2/

√
3, 1/
√

3). Add in the osculating hyperbola at the halfway point τ = P0/2 (say for
α = −1..1, why is this a good choice considering the dimensions of the boxed plot for one
period of the helix?) together with the horizontal line segment from the point of tangency to
osculating hyperbola center.

f) Repeat this for the Euclidean case, letting (t, τ, γ)→ (z, s,Γ) to determine Γ > 0 so that
the tangent is a unit vector (moving z to the last position in the position vector) and then
evaluate c.

~x = 〈x, y, z〉 = 〈a sin(ω0s), a cos(ω0s), γs〉 = 〈a sin(φ), a cos(φ), cφ〉 ,

~v =
d~x

ds
= T̂ ,

~a =
d~v

ds
=
d2~x0

ds2
= κN̂ .

The Euclidean inclination angle of the helix is tanχ = c/a but to compare with the Lorentzian
case, consider the Euclidean angle of inclination away from the vertical axis tan ξ = a/c =
tanh β, where the “rapidity” β is the hyperbolic angle defined by the inclination of the unit
tangent away from the time axis in the Lorentzian geometry. Express β in terms of ξ. What
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is the parametrized equation for the evolute in this case? What is the value of this inclination
angle for the parameter values of part e)?

g) Evaluate the binormal B̂ = T̂× N̂ for the Euclidean helix. As we will learn in Chapter
1, the cross-product in the Lorentzian case is a “covector” whose value on either T̂ or N̂ is
zero, so it can be “index-raised” to a vector by changing the sign of its time component to
obtain a spacelike Lorentzian binormal vector orthogonal to the plane of the 4-velocity and
4-acceleration vectors, but may require normalization, i.e., division by its length to make it a
normal vector B̂ in the Lorentzian geometry. Evaluate this vector. Add the three orthonormal
Lorentzian Serret-Frenet vectors to your previous plot, and include the parallelogram spanned
by the two unit normals and their negatives:

R̂(P/2) + t1N̂(P/2) + t2B̂(P/2), t1 = −1..1, t2 = −1..1

This lies in the “local rest space” orthogonal to the 4-velocity. Although it is a square in the
Lorentz geometry, it is not square in the Euclidean geometry in which we view the plot since
it is tilted with respect to the horizontal.

h) In each local rest space, we can introduce local orthonormal coordinates based on the
orthonormal vectors (N̂, B̂) and complete them to spacetime coordinates (X, Y, τ) using the
proper time along the helix. These are Fermi coordinates, valid within the cylinder of radius
re. Can you express the original coordinates in terms of the new coordinates? Just simplify:

x̂ = R̂(τ) +XN̂(τ) + Y B̂(τ) .

Can you invert this to obtain the new coordinates as functions of the old ones? If one plots
one local rest space for the above parameter values, letting X and Y range from −3 to 3, since
3 = re − a is the horizontal distance from the helix to its evolute, then plotting a second one
slightly later shows these two planes intersecting at the evolute. Try to create such a plot.

�
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Appendix C

Curves in 3-space

The Euclidean helix

Curves play a fundamental role in differential geometry, so it is important to recall their basics
from multivariable calculus. Let’s use an explicit example to see how things work in a best
case scenario, that of a helix. Using Cartesian coordinates (x, y, z) = (ρ cos(φ), ρ sin(φ), z) or
cylindrical coordinates (ρ, φ, z), a helix around the z-axis can be parametrized in the following
natural way, using the azimuthal angle φ as the parameter t, with fixed radial variable ρ = a

x = a cos(t) , y = a sin(t) , z = ct↔ ~r = 〈x, y, z〉 = 〈a cos(t), a sin(t), ct〉 ,

where the position vector notation ~r is useful so we can use the approach of vector calculus.
We can let ~r(t) stand for the actual parametrized vector

~r(t) = 〈a cos(t), a sin(t), ct〉 .

Note that c > 0, c < 0 means that this is a right-handed/left-handed helix, rising/descending
as one moves in the the counterclockwise (positive azimuthal direction) around the axis of
symmetry, with an inclination angle η = arctan(c/a) with respect to the horizontal, and is
contained in the cylinder ρ = a ≥ 0 around the vertical z-axis. When c = 0 we get the special
case of a circle in the plane z = 0 of radius a.

The tangent is then the first derivative (the velocity ~v(t) if we interpret t as the time and
~r(t) as the position vector of a moving point)

~r ′(t) =
d

dt
~r(t) = 〈−a sin(t), a cos(t), c〉 ,

while the second derivative (the acceleration ~a(t) in the particle motion language) is

~r ′′(t) =
d2

dt2
~r(t) = 〈−a cos(t),−a sin(t), 0〉 .

The plane of the first and second derivatives (the velocity-acceleration plane, also called the
osculating plane for the Greek root which means “kiss”, since the osculating circle just kisses the

733



734 Appendix C. Curves in 3-space

curve at the point of tangency) is where the turning of the curve is taking plane instantaneously.
Its unit normal is called the binormal

B̂(t) =
~r ′(t)× ~r ′′(t)
|~r ′(t)× ~r ′′(t)| =

1√
a2 + c2

〈c sin(t),−c cos(t), a〉 ,

where the overhat reminds us that it is a unit vector. The Euclidean geometry enters the
picture with the cross-product and when we evaluate lengths with the self-dot product, while
dividing out the length leads to a unit vector

[ ~X × ~Y ]i = εijkX
jY k , ε123 = ε231 = ε312 = 1 = −ε132 = −ε213 = −ε321 , (C.1)

| ~X| =
√
~X · ~X , X̂ =

~X

| ~X|
→ X̂ · X̂ = δijX̂

iX̂j = 1 . (C.2)

For the tangent vector this leads to its length (the speed v = |~v|) and the unit tangent
(direction of motion)

|~r′(t)| =
√
~r′(t) · ~r′(t) =

√
a2 + c2 , T̂ (t) =

~r′(t)

|~r′(t)| =
1√

a2 + c2
〈−a sin(t), a cos(t), c〉 .

To get the unit normal N̂(t), which is the direction in which the unit tangent is rotating within
the velocity-acceleration plane, we just differentiate the unit tangent and divide the result by
its length

N̂(t) =
T̂ ′(t)

|T̂ ′(t)|
= 〈− cos(t),− sin(t), 0〉 .

Although we jumped the gun on defining the binormal directly from the first and second
derivatives, we could have waited and defined it by

B̂(t) = T̂ (t)× N̂(t) ,

since those two derivatives span the same subspace as the unit tangent and unit normal. On
the other hand, it is often easier to first calculate B̂(t) directly as the normalized cross-product
of ~r ′(t) and ~r ′′(t), and then calculate N̂(t) = B̂(t)× T̂ (t).

By construction this ordered set of three vectors {Ê1(t), Ê2(t), Ê3(t)} = {T̂ (t), N̂(t), B̂(t)}
forms a right handed triad of mutually orthogonal unit vectors called the Frenet-Serret frame,
defined at each point along the curve that we do not encounter a zero length tangent (mo-
mentarily at rest, zero speed, no direction of motion). By right-handed we mean that the
cross-product of any two of these vectors in cyclic order is the third: Ê3 × Ê1 = Ê2, etc. Even
when we are only doing geometry, tracing out the curve means an animation, which means that
the physics picture of a moving point particle is relevant. This is very useful for understanding
the geometry of curves. The Frenet-Serret frame may be thought of as moving along the curve,
and is often called a “moving frame.”

One thing is still missing, a measure of the curvature of the curve. For this we need the
arclength derivatives. The differential of arclength along the curve is

ds2 = dx2 + dy2 + dy2 → ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= |~r ′(t)| ,
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and in the few cases where this differential equation can be explicitly integrated exactly

s =

∫ t

t0

|~r ′(u)|du

and also inverted to express t = t(s), then we can substitute this relationship into the parametrized
curve to reparametrize it in terms of the arclength from some arbitrary reference point ~r(t0).
For the helix this is easy since the arclength is linear in the original parameter, and choosing
their zeros to coincide gives

s =
√
a2 + c2 t↔ t = s/

√
a2 + c2 ,

so that

~r(s) =

〈
a cos

(
s√

a2 + c2

)
, a sin

(
s√

a2 + c2

)
,

cs√
a2 + c2

〉
,

where we abuse the functional notation by using the same symbol for the composed vector
function ~r(t(s))→ ~r(s). This is equivalent to tracing out the curve at unit speed, since the first
derivative comes out automatically to be a unit vector by the way the differential of arclength
has been defined.

Now we can recompute the first and second derivatives.

d

ds
~r (s) = T̂ (s) =

1√
a2 + c2

〈
−a sin

(
s√

a2 + c2

)
, a cos

(
s√

a2 + c2

)
, c

〉
d

ds
T̂ (s) ≡ κ(s)N̂(s) =

a

a2 + c2︸ ︷︷ ︸
κ(s)

〈
− cos

(
s√

a2 + c2

)
,− sin

(
s√

a2 + c2

)
, 0

〉
︸ ︷︷ ︸

N̂(s)

.

The magnitude of the second arclength derivative is defined to be the curvature κ ≥ 0, and
dividing it out gives the direction of the rate of change of the unit tangent, which is the unit
normal N̂ . The helix has constant curvature, like its special case c = 0 where it degenerates
to a circle and the curvature reduces to the reciprocal of the radius a of the circle, the starting
point for defining curvature for all curves. In analogy, we define the reciprocal of curvature
here to be the radius of curvature

ρ(s) =
1

κ(s)
=
a2 + c2

a
= a

(
1 +

( c
a

)2
)
≥ a .

For the helix, stretching the circle of radius a vertically to make a helix makes the curve less
curved, so the radius of curvature is larger than a for the helix.

If we define the osculating circle at each point of the parametrized curve to be the circle
which radius equal to the radius of curvature and center located a distance equal to that radius
along the unit normal from the tip of the position vector, namely

~C(s) = ~r(s) + ρ(s)N̂(s) .
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If we zoom into the point of tangency of this circle with the original curve at ~r(s), then the
curve and circle merge in a quadratic approximation to the curve before we zoom too far so
that both straighten out to the tangent line to the curve.

It is easy to parametrize this osculating circle, recalling how we parametrize a circle about
the origin in the x-y plane

〈x, y〉 = 〈a cos θ, a sin θ〉 = a(cos θ e1 + sin θ e2) .

Replacing the unit vectors (e1, e2) along the coordinate axes here by the unit vectors (−N̂(s), T̂ (s)),
we get a parametrization of a circle about the tip of the position vector starting at the point
of tangency when θ = 0 and moving from N̂(s) towards T̂ (s). All that remains is to add this
to the tip of the position vector

~r(t, θ) = ~C(s) + ρ(s)(− cos θ N̂(s) + sin θ T̂ (s)) .

Thus at θ = 0, we get

~r(t, 0) = ~C(s) + ρ(s)(− N̂(s)) = (~r(t) + ρ(t) ~N(t))− ρ(s)N̂(s) = ~r(t) .

Exercise C.0.1.
the helix torsion

By explicitly differentiating

B̂(s) =
1√

a2 + c2

〈
c sin

(
s√

a2 + c2

)
,−c cos

(
s√

a2 + c2

)
, a

〉
,

identify the torsion defined by the relation dB̂/ds = −τN̂ explained below to find the formula

τ(s) =
c

a2 + c2
.

The torsion somehow describes the rotation of the orientation of the normal to the velocity-
acceleration plane along the curve and vanishes for plane curves, namely those curves which lie
in some plane, so that the binormal is always equal to unit normal to that fixed plane containing
the curve.

�

Exercise C.0.2.
the helix osculating circle

Evaluate first the osculating circle center ~C(s) for the helix, then the osculating circle ~r(s, θ)
itself.
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�

Any unit vector function can only rotate, like the unit tangent and the two unit normals,
so its derivative has to be in the plane perpendicular to the vector itself. The unit normal and
unit binormal are locked to the unit tangent, so as the unit tangent rotates, they must react to
stay orthogonal, so their rates of change are all interlocked as well, and must be orthogonal to
themselves. One can easily compute the derivatives of the unit normal and binormal for general
space curves, which is something that is usually not done in a typical multivariable calculus
class, but is not any more difficult that the calculations we have already done. The derivative
of the unit normal must be a linear combination of the unit tangent and the unit binormal,
and the derivative of the unit binormal likewise

dN̂

ds
= αT̂ + βB̂ ,

dB̂

ds
= γT̂ + δN̂ .

The orthogonality relations then force

0 =
d

ds

(
T̂ · N̂

)
=
dT̂

ds
· N̂ + T̂ · dN̂

ds
= κ+ α→ α = −κ

and

0 =
d

ds

(
B̂ · N̂

)
=
dB̂

ds
· N̂ + B̂ · dN̂

ds
= δ + β

and

0 =
d

ds

(
T̂ · B̂

)
=
dT̂

ds
· B̂ + T̂ · dB̂

ds
= 0 + γ .

Summarizing we get the Frenet-Serret relations for Euclidean 3-space (define τ = β)

dT̂

ds
= κN̂ ,

dN̂

ds
= −κT̂ + τB̂ ,

dB̂

ds
= − τN̂ .

or in matrix form (
dT̂

ds

dN̂

ds

dB̂

ds

)
=
(
T̂ N̂ B̂

)0 −κ 0
κ 0 −τ
0 τ 0

 .

The second Frenet-Serret scalar τ is called the torsion. Notice that the coefficient matrix here
is antisymmetric, as it must be if it is the derivative of a rotation matrix. We first explained
this in Section 1.7.

In the motion language, the curvature is the instantaneous arclength rate of change of the
angle of rotation of the pair of vectors T̂ and N̂ in their plane, or the angular velocity of those
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vectors about the binormal. Similarly the torsion is the instantaneous arclength rate of change
of the angle of rotation of the vectors N̂ and B̂ in their plane, called the normal plane, or the
angular velocity of the normal plane about the unit tangent. In fact this matrix defines an
angular velocity vector

~ω = τ T̂ + κB̂ ≡ ω1Ê1 + ω3Ê3

with magnitude
|~ω| =

√
κ2 + τ 2

such that if we express a vector along the curve in terms of its components with respect to the
the frame vectors

~X = X1T̂ +X2N̂ +X3B̂ = X1Ê1 +X2Ê2 +X3Ê3

then in matrix form

d

ds

X1

X2

X3

 =

0 −κ 0
κ 0 −τ
0 τ 0

X1

X2

X3


or in vector form

d

ds
〈X1, X2, X3〉 = ~ω × 〈X1, X2, X3〉 ,

which should ring a bell from elementary physics discussions of angular velocity. The cross
product of the angular velocity with the position vector gives the velocity vector of a moving
point. The relation between the antisymmetric matrix and the angular velocity is exactly that
was first explored in Exercise 1.2.4.

Note that the curvature is the angular velocity about the binormal in the velocity-acceleration
plane, always nonnegative since the tangent rotates towards the unit normal by definition (the
unit normal is on the side of the tangent line in which the curve is concave way from that tan-
gent line, while the torsion is the angular velocity in the normal plane about the unit tangent,
which can be either positive or negative depending on whether the normal rotates towards the
binormal or away from it.

Exercise C.0.3.
Verify the above cross product relation.

�

Remark.

Several times it has been claimed that the curvature may be interpreted as the arclength rate
of change of the angle of rotation of the unit tangent in the osculating plane. How can we back
up this claim? Consider a curve in the x-y plane with a unit tangent T̂ (s) = 〈cos θ(s), sin θ(s)〉
which can be easily parametrized by its angle with respect to the positive horizontal direction.
Then

dT̂ (s)

ds
= 〈− sin θ(s), cos θ(s)〉 dθ(s)

ds
= κ(s)N̂(s) ,
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where κ(s) ≥ 0 so that one can identify∣∣∣∣dθ(s)ds

∣∣∣∣ = κ(s) = N̂(s) · dT̂ (s)

ds
.

The right hand side equality is the definition of curvature in the case of a general space curve,
which can be used to define an equivalent rate of change of an angle (up to sign) of rotation of
the unit tangent in the osculating plane there.

In a completely parallel way, the relation τ(s) = −N̂(s) · dB̂(s)/ds describes the angular
rate of change of the binormal as it rotates around the unit tangent direction away from the
tip of of N̂(s).

N

In the arclength parametrization of a curve, the geometry is easy to evaluate. However, for
most curves one cannot reparametrize the curve by an arclength function, so we instead have
to evaluate these arclength derivative definitions using the chain rule

df

ds
=
df/dt

ds/dt
=
df/dt

|~r ′| .

Thus the curvature and torsion are

κ(t) = |T̂ ′(t)|/|~r ′(t)| ≥ 0 , τ(t) = ~B(t) · ~N ′(t)/|~r ′(t)| .

The torsion vanishes identically only when the binormal is a constant vector, i.e., when the
orientation of the velocity-acceleration plane does not change, which is only possible for a
curve confined to a single plane, called a plane curve. If the curvature is identically zero, then
the unit tangent is constant, which is only possible for a straight line.

Exercise C.0.4.
a) Using the chain rule and the facts that T̂ = ~r ′/|~r ′| and |T̂ × N̂ | = | − B̂| = 1, as well as
κ = |dT̂ /ds| ≥ 0, confirm the steps in the following calculation

κ = |T̂ × (κN̂)| =
∣∣∣∣∣T̂ × dT̂

ds

∣∣∣∣∣ =

∣∣∣∣ ~r ′|~r ′| × 1

|~r ′|

(
~r ′

|~r ′|

)′∣∣∣∣
=
|~r ′ × ~r ′′|
|~r ′|3 ,

which yields a simple direct formula for the curvature in any parametrization found in all
multivariable calculus textbooks.

b) Confirm the formula found above for the curvature of a helix using this new method of
evaluation.

c) For the twisted cubic curve segment

~r(t) = 〈t, t2, t3〉 , −1 ≤ t ≤ 1 ,
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evaluate the speed v(t), the Frenet-Serret frame vectors (in the order T̂ , B̂, then N̂ , and the

curvature. Evaluate the parametrized curve ~C(t) = ~r(t) + ρ(t)N̂(t) representing the center of
the osculating circles (called the evolute of the original curve). Plot the osculating circle along
the curve using technology. Superimpose the evolute curve segment.

�

Returning to our helix, the derivative of the unit binormal is

dB̂(t)

ds
= − c

a2 + c2︸ ︷︷ ︸
τ

〈− cos(t),− sin(t), 0〉︸ ︷︷ ︸
N̂

,

so
τ =

c

a2 + c2
.

The osculating plane at the point ~r(t) of the curve is the velocity-acceleration plane spanned
either by ~r ′ and ~r ′′ or by T̂ and N̂ . The osculating circle is defined to be the circle in this
osculating plane of radius ρ(t) whose center is a distance ρ(t) along the unit normal from the
tip of the position vector as derived in Exercise C.0.2

~C(t) = ~r(t) + ρ(t) ~N(t) =
c

a
〈−c cos(t),−c sin(t), at〉 ,

which for the helix traces out another helix, called the evolute of the original helix, with
inclination angle − arctan(a/c), which corresponds to the direction orthogonal to the direction
of the original helix. (For an actual circle with c = 0, this reduces to the center of the circle at
the origin.) We can parametrize the osculating circle itself by the usual parametrization of a
circle at the origin of the x-y plane, choosing the angle so that we are at the point of contact
at θ = 0 and begin to move in the unit tangent direction as we increase that angle. The result
of Exercise C.0.2 is

~rC(θ, t) = ~C(t) + ρ(t)
(
− cos(θ)N̂(t) + sin(θ)T̂ (t)

)
=

1

a
〈cos(t)(−c2 + (a2 + c2) cos(θ))− a

√
a2 + c2 sin(t) sin(θ),

sin(t)(−c2 + (a2 + c2) cos(θ)) + a
√
a2 + c2 cos(t) cos(θ),

cat+ c
√
a2 + c2 sin(θ)〉 .

For any parametrized curve the center of the osculating circle is where nearby normal lines
(lines through the curve along the unit normal direction) intersect as one moves along the
curve. The evolute curve consisting of these centers connects up these intersection points.

Exercise C.0.5.
helix osculating circle graphics

Verify these last two results for ~C(t) and ~rC(θ, t) with a computer algebra system, and plot
the osculating circle together with the helix at t = 0 and with c = a = 1.
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�

Exercise C.0.6.
twisted cubic osculating circle graphics

A simple rescaling of the twisted cubic example found in most multivariable calculus text-
books results in a perfect square for the self dot product of the tangent vector

~r(t) = 〈2t, t2, t2/3〉 .
This makes the calculations of all the geometric quantities along the curve a little bit easier.
Evaluate the equation for the osculating circle of this parametrized curve and plot it at t = 1
using a computer algebra system.

�

Circles to pseudo-circles: hyperbolas

The circles x2 +y2 = r2 of the Euclidean plane become the pseudo-circular hyperbolas x2− t2 =
±s2 of the Lorentz plane, with the pseudo-radius of the hyperbola being the distance s (called
the spacetime interval) from its center to any point on the curve in the Lorentzian geometry.
The radius of an approximating osculating circle is used to define the radius of curvature of a
general Euclidean curve, and in the Lorentz plane, the pseudocircular hyperbolas are the curves
of constant curvature which can be used to define the osculating hyperbola to a curve in that
plane in order to use the Lorentz geometry consistently in the description of the local behavior
of the curve. In practice one could use any quadratic curve to approximate another curve at a
point, as long as that approximating curve has the same curvature. Thus for the same curve in
the plane, we can use either a tangent circle or tangent hyperbola to approximate the curvature
of the same curve, depending on which geometry we wish to use, for interpretational purposes.

If we contemplate using hyperbolas to approximate more general curves, we should first ex-
amine carefully the curvature of a hyperbola itself, revisited using Lorentz instead of Euclidean
geometry. If (x, t) are respectively the horizontal and vertical coordinates in the Lorentz plane,
then the hyperbola of all points a distance ` > 0 from the origin opening up about the positive
x axis is x2 − t2 = `2, x > 0 and can be parametrized by the hyperbolic angle as

~r = 〈x, t〉 = 〈` coshα, ` sinhα〉 ,
with tangent vector

d~r

dα
=

〈
dx

dα
,
dt

dα

〉
= 〈` sinhα, ` coshα〉 .

This is illustrated in Fig. C.1. In the Lorentz inner product, the tangent vector has the self-dot
product

d~r

dα
· d~r
dα

=

(
dx

dα

)2

−
(
dt

dα

)2

= `2(sinh2 α− cosh2 α) = −`2 = −
(
dτ

dα

)2

,
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Figure C.1: Left: The unit tangent and unit normal for one half of a timelike pseudocircular
hyperbola centered at the origin, of pseudoradius ` and curvature κ = 1/`. The center is a
distance ` along the normal line on the opposite side of the curve from the direction along
which the unit normal N̂ is pointing. Right: the unit tangent spacetime velocity u = T̂ has
components parametrized by the hyperbolic angle from the time axis, called the rapidity β.
The space velocity v = dx/dt = tanh β is just the reciprocal slope of the tangent line.

which means that it is a timelike curve and we can reparametrize it by the proper time, choosing
τ = `α, which is analogous to the Euclidean relationship that arc length of a circle is the radius
times the angle—in this case the proper spacetime distance along an arc of a pseudo-circle (a
proper time interval in this case because it is a timelike curve) is just the radius of the hyperbola
times the hyperbolic angle. If we reparametrize the curve by the proper time, its tangent will
be a unit vector just as in the Euclidean case, and its second derivative will be the nonnegative
curvature times the unit normal

~r(τ) = 〈x(τ), t(τ)〉 = 〈` cosh(τ/`), ` sinh(τ/`)〉 ,

T̂ (τ) =
d~r(τ)

dτ
= 〈sinh(τ/`), cosh(τ/`)〉 ≡ û(τ) ,

d2~r(τ)

dτ 2
=

1

`︸︷︷︸
κ

〈cosh(τ/`), sinh(τ/`)〉︸ ︷︷ ︸
N̂

≡ ~a(τ) .

The timelike unit tangent T̂ = û is called the spacetime velocity of the world line, and its
derivative the spacetime acceleration ~a = dû/dτ . The spacelike unit normal is the direction of
the acceleration and is along the spacelike pseudo-radial direction pointing away from the center
of the hyperbola at the origin (it is obvious that N̂ · N̂ = 1), on the opposite side of the curve
from the direction in which the normal is pointing, in contrast with the circular case where the
center is on the same side as the direction in which the normal is pointing. The curvature κ
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(magnitude of the spacetime acceleration) is just the reciprocal of the pseudo-radius ` of the
hyperbola.

However, the proper time derivative of the position is a timelike unit vector interpreted
as the spacetime velocity û = T̂ and its derivative in turn is the spacetime acceleration ~a =
dû/dτ = d2~r/dτ 2. The constant curvature κ = 1/` is then interpreted as the magnitude |~a|
of the spacetime acceleration. The pseudo-radius of curvature is then the reciprocal of that
scalar acceleration, equal to the pseudoradius of the hyperbola. The 1-dimensional motion of
a charged particle along the direction of a constant uniform electric field is characterized by
constant spacetime acceleration, and its path in the Lorentz plane is such a hyperbola.

Note the space velocity of the world line is just the coordinate time derivative of the position,
namely

v =
dx

dt
=
dx/dτ

dt/dτ
= tanh(τ/`) ≡ tanh β ,

which defines the hyperbolic angle parametrizing this timelike unit vector, called the rapidity β.
Note that the relation τ = `β is the Lorentz analog of the arclength relation to the trigonometric
angle and arc radius s = a θ.

Remark.
From the successive hyperbolic identities cosh2 β − sinh2 β = 1, 1 − tanh2 β = 1/ cosh2 β,
cosh β = 1/(1 − tanh2 β)1/2, one has the relation cosh β = (1 − v2)−1/2 ≡ γ. Then sinh β =
tanh β cosh β = γv. Thus we can rewrite the three hyperbolic functions in terms of the space
velocity as

(γ, γv, v) = (cosh β, sinh β, tanh β) .

For 1-dimensional motion in time like this example, both v and β can be negative, but these
same formulas can be extended to the speed v ≥ 0 for spatial motion in more dimensions,
letting β ≥ 0.

N

Exercise C.0.7.
Twin paradox family of hyperbolas

Suppose we want to find the family of pseudo-circular timelike hyperbolas centered on the
x-axis which connect the two points (x, t) = (0,−1), (0, 1) separated by a proper time of 2
units along the time axis as illustrated in Fig. C.2. These represent uniformly accelerated
(decelerated) world lines which start out at the earlier time at the origin of spatial coordinates
and then move away and then return to the same spatial origin at a later time. We would like
to evaluate the elapsed proper time along each of these possible world lines connecting the two
events. This will show that the maximum time interval is the unaccelerated straight line path
along the time axis itself, the point at rest in this reference frame.

a) These hyperbolas are of the form: (x − a)2 − t2 = b2. The two parameters may be
determined as a function of the intercept c on the x-axis by requiring that the points (c, 0) and
0,±1) satisfy the equation. Show that the following is a solution

a =
1 + c2

2c
, b =

1− c2

2c
, −1 < c < 1 .
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Figure C.2: The family of pseudocircular hyperbolas passing through two points on the time
axis with centers at x = a on the x-axis, parametrized by their intercepts x = c with that axis,
with −1 ≤ c ≤ 1. The difference b = a − c is either > 0 (for c > 0) or < 0 (for c < 0). Its
absolute value |b| is the pseudoradius of the hyperbola. The path c = 0 along the time axis has
the longest length in the Lorentzian geometry.

Note that b has the same sign as c, and a − c = b is the signed distance of the center of the
hyperbola from the vertex along the x-axis, as shown in Fig. C.2.

b) By setting x−a = −b coshλ = a− b cosh(τ/b) and t = |b| coshλ = |b| cosh(τ/b), we get a
proper time parametrization of these hyperbolas for which t increases with τ . We have already
shown that the τ derivative of the position vector leads to the unit tangent (future-pointing
spacetime velocity in this case) and the second such derivative to the acceleration which has
magnitude κ = 1/|b|. By symmetry the initial and final proper times corresponding to the
initial and final events t = ±1 on the time axis are τ± = ±b arcsinh(1/b), with a total elapsed
proper time of ∆τ = τ+ − τ− = 2b arcsinh(1/b) = 2κ−1 arcsinhκ. Show that as c → 0, then
κ→ 0 and δτ → 2− and that as c→ ±1 and κ→∞ and ∆τ → 0.

c) Plot this proper time interval as a function of c for −1 < c < 1. This can be interpreted
as the amount by which a twin ages in a rocket which speeds away from his or her twin at
x = 0 and returns 2 time units later in the clock time of the twin left behind. The traveling
twin returns younger than the stationary twin. By increasing this constant acceleration, one
can make aging of the moving twin as small as desired.

�
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The Lorentz helix

So let’s return to our Euclidean helix in R3, and re-examine the same curve in a Lorentzian
geometry. Since we already used the physics motion language in discussing the Euclidean helix,
suppose we consider circular motion in the x-y plane but now reimagine the z-axis as the
classical time t-axis so we can show the position in the plane at different times using the extra
dimension. The helix becomes a timelike curve in 3-dimensional Minkowski spacetime.

In order to handle the angular velocity of this motion (now that t is the name for what used
to be z), we cannot continue to use t for our parameter, so let’s call it λ. Then

~r = 〈x, y, t〉 = 〈a cos(λ), a sin(λ), cλ〉

=

〈
a cos

(
t

c

)
, a sin

(
t

c

)
, t

〉
≡ 〈a cos(Ωt), a sin(Ωt), t〉

shows that the angular velocity of the circular motion about the vertical axis in 3-space (the
dimension we have suppressed) is therefore Ω = 1/c. The tangent is

~r ′(t) = 〈−aΩ sin(Ωt), aΩ cos(Ωt), 1〉 ,
and the first two components are the velocity in space of the circular motion in the x-y plane,
showing that v = |aΩ| = |a/c| is the speed, which can have any value in nonrelativistic physics.

This spacetime-diagram for the circular motion has horizontal time planes and although we
might consider a transformation to a moving observer in relative motion at constant velocity
by defining 〈x̄, ȳ〉 = 〈x, y〉 + ~V t, the time does not change in Newtonian physics. Newtonian
time is universal, the same for all unaccelerated (read “inertial”) observers in constant relative
motion.

Not so in relativistic physics, as we saw in the previous sections of appendix A. In the
3-dimensional Minkowski spacetime of special relativity with one spatial dimension suppressed,
like for motion in a plane as occurs in orbits around central forces, we also have the same helical
motion in the 3-spacetime but assuming we use geometrical units for time, the speed for any
massive particle is limited by the speed of light, which is 1 in those units: v = |aΩ| < 1. This
is a timelike curve in the spacetime. Of course we can also consider spacelike curves which
have other interpretations, not as the motion of a particle. Indeed for spacelike curves, the
Frenet-Serret relations are very similar to what we have already done in the Euclidean case
including an osculating circle similarly defined, so let’s study the timelike case where instead
we have an osculating pseudo-circle, namely a hyperbola.

The only thing we need to change is the places where the Euclidean dot product entered
our calculations and replace it by the Lorentzian dot product, and also reinterpret the cross-
product to generate a Lorentzian orthogonal vector. Let’s replace the index 3 by 0 but leave it
at the end for comparison with the Euclidean calculations we have already done

~X · ~Y = 〈X1, X2, X0〉 · 〈Y 1, Y 2, Y 0〉 = X1Y 1 +X2Y 2 −X0Y 0 ≡ ηijX
iY j ,

where

(ηij) =

1 0 0
0 1 0
0 0 −1

 = (ηij)
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is the matrix of components of the flat Lorentz metric on R3, replacing the unit matrix for
the Euclidean metric, and we are using the Einstein summation convention in which repeated
indices, one up and one down in a formula, are summed over their allowed range, as discussed
in Chapter 0.

The cross-product is also easily handled through the triple scalar product, which for X and
Y fixed is just a linear function of the third vector Z, and hence is be definition a covector. This
triple scalar product is just the determinant of the matrix whose columns are the components
of the 3 vectors, using Maple notation for this matrix

( ~X × ~Y ) · ~Z = det〈 ~X|~Y |~Z〉 = εijkX
iY jZk = [ ~X × ~Y ]kZ

k ≡ [ ~X × ~Y ]] · ~Z .

The vector [ ~X× ~Y ]] obtained from this covector is such that its dot product with ~Z is the value

on ~Z of the linear function represented by the cross product. This requires only reversing the
sign of the last component of the cross-product vector associated with the minus sign in the
dot product, so that when we use the new dot product with the last component multiplied by a
minus sign, we get the same result as in the Euclidean case. As we will learn in Chapter 1, this
corresponds to raising the lowered “covariant” index on the cross-product to produce a vector
with an upper “contravariant” index which is automatically orthogonal to either of them

[ ~X × ~Y ]kZ
k ≡ ηik[ ~X × ~Y ]] iZk ,

[ ~X × ~Y ]] i ≡ [ ~X × ~Y ]] i = ηik[ ~X × ~Y ]k = ηikεkmnX
mY n .

Since repeating any vector in a triple cross product gives zero, this new vector with its last
component sign-reversed will be orthogonal to both ~X and ~Y in the Lorentzian geometry and
hence to the plane they span. However, if one wishes to have a future-pointing vector that
still obeys the right hand rule, one must reverse the sign of the whole vector to achieve this
correspondence.

The helix parametrized by the third coordinate t is then

~r(t) = 〈a cos (t/c) , a sin (t/c) , t〉 = 〈a cos (Ωt) , a sin (Ωt) , t〉 .
so its first two derivatives are

~r ′(t) =

〈
−a
c

sin

(
t

c

)
,
a

c
cos

(
t

c

)
, 1

〉
= 〈−Ωa sin (Ωt) ,Ωa cos (Ωt) , 1〉 ,

~r ′′(t) =
a

c2

〈
− cos

(
t

c

)
,− sin

(
t

c

)
, 0

〉
= Ω2a 〈− cos (Ωt)),− sin (Ωt)), 0〉 ,

and the self-dot product of the tangent vector is

~r ′(t) · ~r ′(t) =
a2

c2
− 1 =

a2 − c2

c2
= Ω2a2 − 1

which must be negative to interpret as the tangent to a timelike world line, and the square root
of its absolute value is then the length

ds

dt
= |~r ′(t)| =

√∣∣∣∣a2 − c2

c2

∣∣∣∣ =

√
1− a2

c2
≡ γ−1 < 1 ,
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which defines the differential of spacetime arclength along the curve. It is useful to introduce
the spatial speed v = a/c = Ωa and spatial velocity ~v = 〈v cos(t/c), v sin(t/c), 0〉, in terms of
which the Lorentz gamma factor is

γ =
1√

1− v2
=

1√
1− (a/c)2

=
|c|√
c2 − a2

.

The unit tangent is then

T̂ (t) =

〈
−γ a

c
sin

(
t

c

)
, γ
a

c
cos

(
t

c

)
, 1

〉
= 〈−γΩa sin (Ωt) ,Ωa cos (Ωt) , 1〉 .

We can also reparametrize the curve using the arclength interpreted as the proper time along
the curve as described in the previous appendices

τ = γ−1t =

√
c2 − a2

|c| t , t = γτ ,

so

~r(τ) = 〈a cos(γτ/c), a sin(γτ/c), 1τ〉 = 〈a cos(γΩτ), a sin(γΩτ), γτ〉 ,
which defines the proper time angular velocity Ωo ≡ γΩ. Similarly the period T = 2π/Ω and
proper period of the motion To = 2π/Ωo = γT are defined in the obvious way. Then

~r ′(τ) = γ
〈
−a
c

sin
(γτ
c

)
,
a

c
cos
(γτ
c

)
, 1
〉

= γ 〈−Ωa sin (γΩτ) ,Ωa cos (γΩτ) , 1〉 = T̂ (τ) ≡ Û(τ) ,

~r ′′(τ) = γ2 a

c2

〈
− cos

(γτ
c

)
,− sin

(γτ
c

)
, 0
〉

= γ2Ω2a︸ ︷︷ ︸
κ

〈− cos (γΩτ)),− sin (γΩτ)), 0〉︸ ︷︷ ︸
N̂(τ)

≡ ~A(τ) ,

so we can identify the magnitude of the spacelike spacetime acceleration as the curvature

κ(τ) =
a

c2 − a2
= γ2Ω2a = γ2v2/a

and radius of curvature

ρ(τ) = 1/κ(τ) =
c2 − a2

a
= γ−2Ω−2a−1 = aγ−2v−2 .

This agrees with the Euclidean result with the substitution −a2 → a2.

As before we can get a binormal from the cross-product of the first two derivatives, provided
we reverse the sign of the timelike component to get a spacelike spacetime vector which will be
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orthogonal in the new dot product (which multiplies that component by another sign to give
the same result as in the Euclidean case for the same helical curve),

B̂ =
~r ′(t)×] ~r ′′(t)
|~r ′(t)×] ~r ′′(t)|

=
1√

c2 − a2
〈c sin(γΩτ),−c cos(γΩτ),−a〉

= γsgn(c)〈sin(γΩτ),− cos(γΩτ),−v〉 .

Its proper time derivative is

dB̂

dτ
=

γΩc√
c2 − a2

〈cos(γΩτ), sin(γΩτ), 0〉

= (γ2/c)︸ ︷︷ ︸
ωfw

〈cos(γΩτ), sin(γΩτ), 0〉︸ ︷︷ ︸
−N̂(τ)

,

allowing us to identify the spacetime torsion,

ωfw =
c

c2 − a2
,

which agrees with the Euclidean result with the substitution −a2 → a2. We use the symbol ωfw

instead of τ since the later symbol is already being used for the proper time along the curve,
and because this is called the Fermi-Walker angular velocity as will be explained below. The
remaining proper time derivative is

dN̂

dτ
= κT̂ + ωfwB̂ ,

where the two coefficients follow from the orthogonality relations exactly as in the Euclidean
case.

Thus we have the Lorentz version of the Frenet-Serret relations for a timelike curve in
3-dimensional Minkowski spacetime

dT̂

dτ
= κN̂ ,

dN̂

dτ
= κT̂ + ωfwB̂ ,

dB̂

dτ
= − ωfwN̂ .

or in matrix form (
dT̂

ds

dN̂

ds

dB̂

ds

)
=
(
T̂ N̂ B̂

)0 κ 0
κ 0 −ωfw

0 ωfw 0

 .
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such that if we express a vector along the curve in terms of its components with respect to the
the frame vectors

~X = X1T̂ +X2N̂ +X3B̂

then in matrix form

d

ds

X1

X2

X3

 =

0 κ 0
κ 0 −ωfw

0 ωfw 0

X1

X2

X3


The curvature/acceleration scalar boosts the unit tangent vector (called the 4-velocity in the
4-dimensional setting) to remain tangent to the curve with respect to a constant (parallel
transported) vector along the curve, while the Fermi-Walker angular velocity is the instaneneous
rotation in the normal plane (called the local rest space of the observer following the world line)
compared to axes which are momentarily constant.

Notice that the upper left 2 × 2 block of the coefficient matrix in this vector differential
equation is symmetric, generating a hyperbolic rotation. In fact if we lower the first index of the
components of this linear transformation matrix, so both indices are covariant, the entire matrix
becomes antisymmetric, true for all pseudo-orthogonal matrix derivatives in this context.

For a timelike curve we can introduce an osculating pseudocircle (hyperbola) in the plane of
the unit tangent and unit normal, the velocity-acceleration plane, in the same way except for
the fact that the center of a hyperbola is on the opposite side of the vertex along the normal
line compared to the Euclidean case

~C(τ) = ~r(τ)− ρ(τ) ~N(τ) =
c

a
〈c cos(Ωt), c sin(Ωt), at〉 =

〈 a
v2

cos(γΩτ),
a

v2
sin(γΩτ), γvτ

〉
,

Again the tangent hyperbola which starts at α = 0 at the point of tangency and moves along
T̂ (τ) as α increases is

~rC(α, τ) = ~C(τ) + ρ(τ)
(

cosh(α)N̂(τ) + sinh(α)~T (τ)
)

=
1

a
〈cos(Ωt)(c2 − (c2 − a2) cosh(α)) + a

√
c2 − a2 sin(Ωt) sinh(α),

sin(Ωt)(c2 − (c2 − a2) cosh(α)) + a
√
c2 − a2 cos(Ωt) cosh(α),

cat+ c
√
c2 − a2 sinh(α)〉

=
1

a
〈cos(γΩτ)(c2 − (c2 − a2) cosh(α)) + a

√
c2 − a2 sin(γΩτ) sinh(α),

sin(γΩτ)(c2 − (c2 − a2) cosh(α)) + a
√
c2 − a2 cos(γΩτ) cosh(α),

γcaτ + c
√
c2 − a2 sinh(α)〉 .

Fig. C.3 shows this at the half period point on one cycle of the helix. The osculating plane
is identical to the Euclidean case, since the plane of the first and second derivatives of the
parametrized helix is independent of the geometry.
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Figure C.3: The Lorentzian helix (red) with its osculating hyperbola (black), including a paral-
lelogram from the velocity-acceleration plane (osculating plane) which contains that hyperbola.

Exercise C.0.8.
magnetic helix

This problem requires first reading Appendix A.3 which reviews how a unit tangent and
unit normal behave along an arclength parametrized curve or in any parametrization of a curve
in ordinary space, extending those notions to the Minkowski spacetime case.

In a uniform constant magnetic field, a charged particle moves in a helix, spiraling around
an axis parallel to the magnetic field lines. Suppose the magnetic field is aligned with the
z-axis 〈B1, B2, B3〉 = 〈0, 0, B〉, and the particle of charge q has constant transverse speed v⊥
and constant velocity v3 along the z-axis, for a total speed of v = (v2

⊥ + v2
3)

1/2
. Define the

gyration radius R = mv⊥/(qB) and Lorentz gamma factor γ = (1− v2
⊥− v2

3)−1/2 ≡ dt/dτ . The
unit 4-velocity is just

u =
dx

dτ
, u0 =

dt

dτ
= γ .

By appropriate choice of the initial conditions

〈x0(0), x1(0), x2(0), x3(0)〉 = 〈0, R, 0, 0〉 , 〈u0(0), u1(0), u2(0), u3(0)〉 = γ〈0, 0, v⊥, v3〉 ,

the particle trajectory is the following world line in Minkowski spacetime specified by giving
the inertial coordinates as the following functions of the inertial time t

x = 〈x0, x1, x2, x3〉 = 〈t, R cos

(
v⊥t

R

)
, R sin

(
v⊥t

R

)
, v3t〉 .
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The azimuthal angle is φ = v⊥t/R = γv⊥τ/R so the inertial time angular velocity is dφ/dt =
ω = v⊥/R = qB/m (called the Larmour frequency), while the proper time angular velocity is
dφ/dτ = ωo = γω. Since ω is independent of the velocity, for a uniform magnetic field, charged
particles at different radii from the axis aligned with that magnetic field all spiral around the
field lines at this same frequency.

a) This is both a helix around the time axis as well as around the z axis—in fact it is an
ordinary helix around the new time axis in which the new z coordinate moves with the same
velocity v3 as the particle

motion along z-axis: 〈x0, x1, x2, x3〉 = 〈t, 0, 0, v3t〉 ,

which has unit tangent U = 〈1, 0, 0, v3〉/ (1− v2
3)

1/2
. In fact the helical particle trajectory lies

in the hyperplane nix
i = −v3t + z = 0, which has a normal 〈ni〉 = 〈v3, 0, 0, 1〉 which can be

normalized to a unit normal E3 = 〈v3, 0, 0, 1〉/ (1− v2
3)

1/2
. Show that E3 · E3 = 1 and that

E3 · U = 0.
b) Reparametrize this helix by the proper time τ = γt so that the curve is parametrized by

the spacetime arclength.
c) Evaluate the 4-velocity

e0 ≡ u =
dx

dτ

and show that u · u = −1. Verify that u = γ(t̂+ v⊥φ̂+ v3ẑ), where φ̂ = 〈0,− sinφ, cosφ, 0〉 and

φ = v⊥t/R = γv⊥τ/R. Thus confirm that the spatial speed is v = ||v⊥φ̂+ v3ẑ|| = (v2
⊥ + v2

3)
1/2

.
d) Evaluate the 4-acceleration

a =
du

dτ

and its magnitude κ ≡ ||a|| and show that a · u = 0. Evaluate the direction unit vector of the
acceleration e1 = a/κ.

e) Let F be the mixed electromagnetic field tensor associated with zero electric field and
this magnetic field. Show that this world line satisfies the Lorentz force law

m
du

dτ
= qF u .

f) The Serret-Frenet relations for a timeline world line in Minkowski spacetime with unit
tangent u ≡ e0 has a unit normal e1 = a/||a|| and two binormals e2 and e3 which together make
an orthonormal set of vectors which satisfy the relations

d

dτ


e0

e1

e2

e3

 =


0 κ 0 0
κ 0 τ1 0
0 −τ1 0 τ2

0 0 −τ2 0



e0

e1

e2

e3

 ,

where κ ≥ 0 is the curvature and τ1, τ2 are the first and second torsions. This generalizes the
3-dimensional discussion in Appendix C and as a matrix, itself corresponds to a mixed elec-
tromagnetic field component matrix with E1 → κ,B3 → τ1, B1 → τ2 and all other components
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zero. In order for this basis to remain orthonormal along the world line, its rate of change
must be the result of matrix multiplication by a matrix of this form as explained in section
1.7. Similarly for the unit vector u to remain a unit vector along the world line, it can only
undergo a pseudo-rotation (Lorentz transformation) which preserves its length, so its rate of
change along the world line can only allow its tip to pseudo-rotate, which is what this matrix
does.

Use a computer algebra system to evaluate de1/dτ . Use the third Frenet-Serret equation to
define τ1e2, knowing κ. Let τ1 = ||τ1e2|| ≥ 0 and evaluate the corresponding unit vector e2.

g) Evaluate de2/dτ and show that by setting τ2 = 0 we satisfy the third Frenet-Serret
relation. If we set e3 = E3 (a constant vector so that the final relation is satisfied), show
that the we complete these first 3 unit vectors to an orthonormal basis which satisfies the
full set of Frenet-Serret relations, i.e., show that E3 is orthogonal to e0, e1, e2. The last torsion
measures the rotation of the normal to the 3-plane spanned by u, a, da/dτ , but since the motion
is confined to a hyperplane, this is zero.

h) Show that the first torsion equals

τ1 = ωo(1 + γ2v2
⊥)1/2 = ωo

γ

γ3

, γ3 = (1− v2
3)−1/2

by combining both terms inside the square root expression, which multiplies the proper time
angular velocity by the ratio of the gamma factor of the particle rest frame and the rest frame
of the axis of the helix.

�



Appendix D

Surfaces in 3-space

Surfaces play a fundamental role in differential geometry, so it is important to recall their basics
from multivariable calculus. In my university, parametrized surfaces are not even covered, so
it is important to extend what we do teach about graphs of functions of two variables to that
case. The first encounter with multivariable functions after calculus of a single variable is with
functions of two independent variables, which we visualize through their graphs in space, adding
one extra “dependent” variable: z = f(x, y). For each point in the x-y plane, we plot the value
of the function in the z-direction to create a surface which we can think of as “parametrized”
by the coordinates x and y in the same sense that a curve in space is parametrized by a single
variable: 〈x, y, z〉 = 〈x(t), y(t), z(t)〉. This analogy requires us to write the position vector of
points on this graph in the form

〈x, y, z〉 = 〈x, y, f(x, y)〉 ,

but we can more easily understand this as a “parametrization” by naming the parameters with
different variable names than the coordinates with which they agree

〈x, y, z〉 = 〈t1, t2, f(t1, t2)〉 ,

This is also exactly how we can view single variable function graphs as parametrized curves:
y = f(x) becomes 〈x, y〉 = 〈t, f(t)〉 if we simply rename x = t. However, for surfaces it is
more usual to use the letters (u, v) for the parameters, or (u1, u2) if we want to use numbered
variable names, like (x, y, z) = (x1, x2, x3). Let’s adopt this notation to get used to how we will
treat multiple objects in this book. Our function graph then looks like

~r = 〈x1, x2, x3〉 = 〈u1, u2, f(u1, u2)〉 .

Partial derivatives of the function f are then introduced in this context and visualized in
terms of the slopes of the vertical plane cross-sections that result from holding one of the two
Cartesian coordinates fixed. In fact, these are just space curves, which we already discussed in
the previous appendix. Namely we can think of the graph as a 1-parameter family of curves in
two ways, and for each one we can introduce their tangent vectors. Holding u2 fixed, for each
value we get a curve parametrized by u1, and vice versa. Graphing software for 3d plotting of

753



754 Appendix D. Surfaces in 3-space

graphs like this uses equally spaced values of each coordinate to imprint the Cartesian coordinate
grid in the x-y plane onto the graph above it to give it more 3-dimensional perspective.

One then figures out a way to describe the tangent plane to the graph at each point,
obtaining a normal vector to the plane. Let’s try in this new notation. Here are the tangent
vectors to the two families of parameter curves

~r1(u1, u2) ≡ ∂~x

∂u1
(u1, u2) =

〈
1, 0,

∂f

∂u1
(u1, u2)

〉
,

~r2(u1, u2) ≡ ∂~x

∂u2
(u1, u2) =

〈
0, 1,

∂f

∂u2
(u1, u2)

〉
.

Extending these vectors from the point on the graph where we have evaluated them where we
imagine their initial points are located, we get the two tangent lines to those curves. These two
intersecting lines determine the tangent plane, whose normal vector is just the cross-product
of the two tangent vectors, in this order yielding an upward normal since its third component
is positive

~N(u1, u2) = ~r1(u1, u2)× ~r2(u1, u2) =

〈
− ∂f

∂u1
(u1, u2),− ∂f

∂u2
(u1, u2), 1

〉
.

The first two components are just the sign-reversal of the gradient of the function in the x-y
plane,

~∇f(x1, x2) =

〈
∂f

∂x1
(x1, x2),

∂f

∂x2
(x1, x2)

〉
,

pointing in the direction in which the function decreases, exactly right since the upward normal
must tilt backwards to the direction in which the function graph is increasing.

A more direct route to the normal vector bypassing the cross product is by introducing the
function F (x1, x2, x3) = x3 − f(x1, x2) whose level surface F (x1, x2, x3) = 0 is the graph of f ,
and the gradient of this new function is orthogonal to the surface

~N(x1, x2) = ~∇F (x1, x2, x3) =

〈
∂F

∂x1
(x1, x2, x3),

∂F

∂x2
(x1, x2, x3),

∂F

∂x3
(x1, x2, x3)

〉
=

〈
− ∂f

∂x1
(x1, x2),− ∂f

∂x2
(x1, x2), 1

〉
.

In fact the real meaning of the gradient is connected to the chain rule for the derivative of a
function along a curve. If ~r = ~r(t) is a curve through the point (x1, x2, x3) such that ~r(t0) =
〈x1, x2, x3〉, then the derivative of any function F (x1, x2, x3) along this curve there is just

dF

dt
(~r(t))

∣∣∣∣
t=t0

=

(
dF

dx1

dx1

dt
+
dF

dx2

dx2

dt
+
dF

dx3

dx3

dt

)∣∣∣∣
t=t0

= ~∇F (~r(t0)) · ~r ′(t0) ,

where we use the notation F (~r) = G(x1, x2, x3) to reduce the length of our formulas. If
~X = ~r ′(t0) is such a tangent vector, this becomes the directional derivative of G along ~X

~∇F (x1, x2, x3) · ~X ≡
(
∇ ~XF

)
(x1, x2, x3) .



755

Although usually this formula is restricted to a unit vector ~X, there is no reason we cannot
use the same formula for any vector ~X, and this shows that the gradient of G at the point
(x1, x2, x3) is really just a linear function of tangent vectors ~X there, namely the components
of the gradient are just the coefficients of the vector in this directional derivative which defines
a linear function like any set of coefficients

a1X
1 + a2X

2 + a3X
3 .

In Chapter 1 we learn to call this a covector, or covariant vector, to distinguish the linear
function role of the vector in producing a real number from another vector through what we
normally denote as the dot product of the two vectors.

We can jump to a general parametrized surface by simply letting all three coordinates be
functions of two parameters which are no longer associated with the first two coordinates

~r(u1, u2) = 〈x1(u1, u2), x2(u1, u2), x3(u1, u2)〉 .

We still have a 1-parameter family of curves in two senses to form a parameter grid on the
surface, and as long as the relationship between points in the parameter space (the u1-u2

plane) and the image points in the 3-space of the Cartesian coordinates x1, x2, x3) is one-to-
one, we can think of the two parameters as coordinates on the surface. We can in principle
invert the relationship to identify unique values of (u1, u2) with each point in the parametrized
surface, although in practice it may not actually be possible to solve the relationship in closed
form.

Again we can introduce the two tangent vectors to the grid lines

~r1(u1, u2) ≡ ∂~x

∂u1
(u1, u2) ,

~r2(u1, u2) ≡ ∂~x

∂u2
(u1, u2) ,

and the tangent plane is again the span of this set of two vectors, whose normal can be found
by the cross product

~N(u1, u2) = ~r1(u1, u2)× ~r2(u1, u2) .

Recall that the cross product of two vectors ~a and ~b has a magnitude which is the area of
the natural parallelogram formed by the two vectors as the two sides adjacent to one vertex
of a parallelogram, while the direction of their cross product gives a normal to the plane they
form. Thus

dS = | ~N(u1, u2)|du1 du2

is the differential area of the parallelogram formed in the space of vectors at the point R(u1, u2)
by the vectors ~r1(u1, u2)du1 and ~r3(u1, u2)du2 tangent to the surface grid lines. In the limit
of very small differentials of the parameters, the actual grid lines corresponding to these dif-
ferentials form a figure which gets closer and closer to the parallelogram in the tangent space.
Integrating this over a region of the parameter space gives the surface area of the corresponding
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part of the surface. This is very similar to finding the arclength of a parametrized curve by
integrating the length of the tangent vector, where the differential of arclength is

ds = |~r ′(t)| .

Take the sphere of radius a for example, easily parametrized in spherical coordinates

~r(θ, φ) = 〈a sin θ cosφ, a sin θ sinφ, a cos θ〉 ,
~r1(θ, φ) = 〈a cos θ cosφ, a cos θ sinφ,−a sin θ〉 ,
~r2(θ, φ) = 〈−a sin θ sinφ, a sin θ cosφ, 0〉 ,

and
~N(θ, φ) = ~r1(θ, φ)× ~r2(θ, φ) = 〈a sin θ cosφ, a sin θ sinφ, a cos θ〉

with
dS = | ~N(θ, φ)|dθ dφ = a2 sin2 θ dθ dφ .

The integral over the whole sphere gives the area of the sphere∫ 2π

0

∫ π

0

a2 sin2 θ dθ dφ = 4πa2 .

We will study integration in Chapter 11, so no need to worry about this aspect of surfaces
yet. The key thing is that the parametrization of a surface contains the information about the
geometry of the surface through its grid.

From surface area integrals to the integral of the flux of a vector field through a surface is
a small step. We need to pick a direction to measure this flux in, so we have to pick a unit
normal on one side or the other of the surface, which if it can be done consistently makes the
surface an “orientable surface.” The most well known counterexample is a Mobius strip, but we
are only interested in local considerations so we will not worry about this complication. Take
the radially outward pointing vector field ~F = (x2 + y2 + z2)−3/2〈x, y, z〉 = (x2 + y2 + z2)−1r̂

in R3 whose magnitude is ||~F || = 1/r2, where r = (x2 + y2 + z2)−1/2 is the distance from the
origin. The flux of this vector field outward through a sphere of radius a about the origin is
defined to be the product of the area 4πa2 of the surface times the constant outward normal
component of the vector field 1/a on the sphere: Flux = 4πa2/a2 = 4π, which also turns out to
be a constant. For a vector field whose normal component is not constant we simply integrate
that component with respect to the differential of surface area to define the flux, which is called
the surface integral of the vector field over the oriented surface.

Given a parametrized surface with an ordering of the parameters (u1, u2), the normal de-
fined above orients the surface, so we define the surface integral of the vector field over the
parametrized surface by∫ ∫

Σ

~F · d~S =

∫ ∫
Σ

~F (~r(u1, u2)) · N̂(u1, u2) dS︸ ︷︷ ︸
N̂(u1, u2)|| ~N(u1, u2)||du1 du2

=

∫ ∫
Σ

~F (~r(u1, u2)) · ~N(u1, u2) du1 du2 ,
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where the length of the unnormalized normal ~N(u1, u2) naturally combines with its unit di-
rection to produce the dot product with the unnormalized normal that is generated by the
parametrization—easy! The same combination of length and direction occurs if we define the
integral of a vector field along a parametrized curve C (oriented by the increasing parame-
ter t) as the integral of the tangential component with respect to the differential of arclength
ds/dt = ||~r ′(t)|| ∫

C

~F · d~s =

∫
C

~F (~r(t)) · T̂ (t) ds︸ ︷︷ ︸
T̂ (t)||~r ′(t)||dt = ~r ′(t) dt

=

∫
C

~F (~r(t)) · ~r ′(t) dt ,

since T̂ (t) = ~r ′(t)/||~r ′(t)|| is the unit direction of the tangent vector. In each case the actual
definite integrals are taken over the ranges of the parameters involved.

Exercise D.0.1.
surface area, conics of revolution

a) Find the surface area S = 17(
√

17− 1)π/6 of the parabola of revolution z = 4− x2 − y2

above the plane z = 0. It is helpful to parametrize this by polar coordinates in the x-y plane:

~r(u, v) = 〈u cos v, u sin v, 4− u2〉 ,

which orients the surface by the upward normal.
b) Evaluate the surface integral of the vector field 〈0, 0, z〉 over this surface oriented by the

upward normal, showing that its value is 8π.
c) Find the surface area of the upper half of the hyperbola of revolution x2 + y2 − z2 =

−1, z > 0 below the plane z = 2 using the parametrization

~r(u, v) = 〈coshu cos v, coshu sin v, sinhu〉 .

d) Evaluate the surface integral of the vector field 〈0, 0, z〉 over this surface oriented by the
upward normal.

�

Remark.

Why is the normal component of a vector field with respect to a surface interesting? Why
do we have the seasons at our latitude on the Earth? For exactly this reason. Think of the
solar energy per unit area hitting the Earth’s surface as a vector field on the surface of the
Earth with length equal to that energy per unit area and direction away from the sun. The
amount of energy hitting the surface is proportional to the amount of area being hit by the
solar energy, but if we fix a small patch on the surface, then the area of the cross-section of
the impinging solar energy vector field is proportional to the cosine of the angle between that
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vector field and inward normal to the Earth’s surface, zero if the surface is parallel to the rays,
1 if the surface is at right angles. The dot product of the vector field with the unit normal to
the surface is thus the local measure of the surface density of energy deposited per unit time
on Earth’s surface. It is maximized in the summer, minimized in the winter.

N

Exercise D.0.2.
surface integral on a sphere

Consider the sphere x2 + y2 + z2 = a2, a surface of revolution already studied above using
the following spherical coordinate parametrization

~r(u, v) = 〈a sinu cos v, a sinu sin v, a cosu〉 ,

which orients the surface by the outward normal. Note that in calculus books one uses spherical
coordinates designated by (r, φ, θ) so that the “azimuthal” angle θ around the vertical axis is
the familiar polar coordinate in the x-y-plane, but physicists like bob call them instead (r, θ, φ),
so that θ is instead the spatial “polar” angle measuring the angle down from the “North pole”
of a sphere.

Evaluate the surface integral of the vector field 〈x, y, z〉 over this surface oriented by the
outward normal, showing that its value is 4πa3, which is the surface area times the constant
magnitude of this radial vector field on the surface of the sphere.

�

Exercise D.0.3.
surface area of a torus

a) Find the surface area of the torus (
√
x2 + y2−b)2+z2 = a2, equivalently (ρ−b)2+z2 = a2

in cylindrical coordinates, for a ≤ b using the following parametrization

~r(u, v) = 〈(b+ a cosu) cos v, (b+ a cosu) sin v, a sinu〉 ,

which orients the surface by the outward normal. What is the value of N(u, v) du dv and
|N(u, v)|?

b) Evaluate the surface integral of the vector field 〈x, y, z〉 over this surface oriented by the
outward normal, showing that its value is 6π2a2b.

c) With the explicit values a = 1, b = 2, you can plot the torus and this vector field with a
computer algebra system. We will study the geometry of the torus in Chapter 8.

�

Exercise D.0.4.
surface area on unit pseudosphere
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a) Consider the hyperboloid z =
√

1 + x2 + y2 in R3 and use polar coordinates in the plane
to evaluate its surface area below the plane z = 2, or use the parametrization in the previous
Exercise.

b) Now consider the same surface t =
√

1 + x2 + y2 in 3-dimensional Minkowski spacetime
with the same parametrization and evaluate its surface area below the plane t = 2, which was
already done in the previous Exercise in its natural hyperbolic parametrization.

The radial differential of arclength is contracted as the hyperboloid tilts up towards the
null radial direction which has zero length, thus decreasing the surface area of the Minkowski
spacetime surface relative to the Euclidean surface.

�

While we are looking at parametrized surfaces, we cannot ignore the geometry of the grid
that the parametrization imposes on the surface, in terms of the two 1-parameter family of
curves we get on that surface by holding each of the parameters fixed in turn and choosing
equally spaced intervals of that fixed parameter to generate those curves along which the other
parameter varies. Computer software uses this grid to give perspective to the graphs of functions
of two variables in space, and for the more general parametrized surfaces.

The first question we can ask about this grid is whether or not the gridlines are orthogonal
to each other when they meet, i.e., as determined by the angles between their tangent vectors
~r1(u1, u2) and ~r2(u1, u2). We can simply define their matrix of inner products

Gij(u
1, u2) = ~ri(u

1, u2) · ~rj(u1, u2) ,

Orthogonality of the grid requires that this matrix be diagonal everywhere: G12(u1, u2) =
~r1(u1, u2) ·~r2(u1, u2) = 0. Orthogonal grids are very useful on a surface since it helps us view its
geometry in a way that is as close as possible to our rectangular grids in Cartesian coordinates
in the plane.

This matrix of inner products is useful to re-express the differential of arclength for any
curve in the surface

ds2 = dx2 + dy2 + dz2 = d~x · d~x

=
∂~x

∂ui
dui · ∂~x

∂uj
duj = Gijdu

i duj

= G11(du1)2 + 2G12du
1 du2 +G22(du2)2 .

For an orthogonal grid this the middle term is zero.

Exercise D.0.5.
arclength on a parametrized surface

a) Evaluate this differential of arclength for the sphere already discussed above in the text.
b) Repeat for the unit hyperboloid using the hyperbolic function parametrization of Exercise

D.0.1 using both the Euclidean inner product and the Minkowski inner product and compare
the radial arclength from the symmetry axis at z = 1 to the circle at z = 2. Which one is
smaller?

�
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Appendix E

Multivariable Taylor series in 3-space

Taylor series are really helpful in approximating functions of a single variable, often with only
the lowest order terms providing very useful information. The same is true for functions of more
than one independent variable. For the classical theory of surfaces in 3-space, the quadratic
approximation defines the extrinsic curvature or shape tensor of the surface.
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Appendix F

Visualizing vector space duality in the
vector space R3

All of tensor analysis is based on “multilinear” functions of a certain number of vector arguments
(simultaneously linear in each vector argument separately), just like the familiar dot product
for ordinary 3-vectors. It is therefore worthwhile understanding well a simple real-valued linear
function of a single vector argument and its simple geometry that enables it to be visualized
and distinguished from the vector with which it is usually identified in calculus. This is the
foundation from which contravariant and covariant tensors spring forth.

Let us identify a vector in R3 with a column matrix when it appears in formulas involving
matrices, as the computer algebra system Maple does

~X = 〈X1, X2, X3〉 ↔

X1

X2

X3

 . (F.1)

The corresponding transposed row matrix will then be denoted by(
~X
)T
↔
(
X1 X2 X3

)
. (F.2)

The dot product is a bilinear function “dot” of a pair of vectors in R3,

~X · ~Y =
(
~X
)T

~Y =
3∑
i=1

X iY i (F.3)

which happens to be symmetric in the sense that the order of the two vector arguments does
not matter:

dot( ~X, ~Y ) = ~X · ~Y = ~Y · ~X = dot(~Y , ~X) .

If you double one of the vectors, you double the value of their dot product:

dot(2 ~X, ~Y ) = (2 ~X) · ~Y = 2( ~X · ~Y ) = 2dot( ~X, ~Y ) ,
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or if you dot the sum of two vectors into a third vector, the result is the same as the sum of
the individual dot products

dot( ~X + ~Y , Z) = ( ~X + ~Y ) · ~Z = ~X · ~Z + ~Y · ~Z .

These are the basic properties which define any linear function of a vector, and in this case
they apply to each of the two input vectors separately, making this a multilinear function of
two vector arguments, i.e., a bilinear function. The immediate consequence is that the value
on a linear combination is the linear combination of the values

dot(a ~X + b~Y , ~Z) = a dot( ~X, ~Z) + b dot(~Y , ~Z) (F.4)

We should start at the beginning, with a single real-valued linear function A of one vector
on R3

A(~x) = a1x
1 + a2x

2 + a3x
3 = ~a · ~x , ~x = 〈x1, x2, x3〉 ∈ R3 .

The vector variable ~x is the usual variable representing vectors in R3, while the vector of
coefficients of the linear function is identified with a constant vector in R3 so that its linear
combination with the components of the vector variable is realized through the dot product.

Every function on R3 determines a family of “level surfaces,” each of which consists of all
points (vectors in the space) which share the same value of the function. For a linear function
A these surfaces are planes

A(~x) = a1x
1 + a2x

2 + a3x
3 = c .

One can imagine representing this function visually by those level planes associated with the
integer values of the function to get a family of equally spaced parallel planes dividing up the
space, any two of which can be used to reconstruct the entire family. In particular the values 0
and 1 give the plane through the origin (zero vector) and the next plane in this sampled family
with a greater value, and these two planes can be used as a visualization of the linear function
in the same way a vector is visualized by an arrow (directed line segment from the origin to
the point corresponding to a vector). The latter is an extremely useful visualization of a vector
since it permits a geometric interpretation of vector addition as a tip to tail path or as the main
diagonal of the parallelogram formed by two vectors emanating from the origin. For the linear
function one also needs to know of this basic pair of parallel planes, which one corresponds to
0 and 1 in order to know in which direction the function is increasing, so it is a directed pair
of planes that we will take as our visualization of the linear function

A(~x) = a1x
1 + a2x

2 + a3x
3 = 0, 1 .

This plane pair helps us visualize that separation as well as the orientation of the family in
space.

Notice that scaling a linear function by a factor of 2 decreases the separation of the basic
pair of planes representing that function compared to the original function by a factor of 2

2A(~x) = 2a1x
1 + 2a2x

2 + 2a3x
3 = 1→ A(~x) = a1x

1 + a2x
2 + a3x

3 = 1/2 .
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This is exactly right since level surfaces of a function are closer together when it is increasing
more rapidly. Thus the idea of a larger vector being associated with a longer arrow, while a
larger linear function is associated with a smaller spacing of its basic plane pair go in opposite
directions in their corresponding geometrical representations, but if we adjust our point of view,
the bigger linear form has more representative planes per interval oblique to those parallel
planes, which goes in the right direction.

Of course we also have another geometrical representation of the linear function by inter-
preting its ordered triplet of coefficients (a1, a2, a3) as a vector

A 7→ ~a = 〈a1, a2, a3〉 ,

so that
A(~x) = ~a · ~x , (F.5)

but we do this without realizing that it depends on the dot product that we take for granted
on R3, and untangling this association is important for understanding metric geometry. This
vector visualization behaves in the usual way, a larger linear function A leads to a larger vector
~a of coefficients, so why to we need this complementary realization of a linear function as a pair
of planes? The short answer is we don’t and some people prefer to avoid it if they can, but
doing so limits our understanding of the geometry involved and removes the real distinction
which separates the roles played by vectors and linear functions of vectors. The dot product so
far only represents the natural pairing between coefficients and variables of a linear function,
but we then go on to use it to introduce length and angle geometry on R3, and reinterpret linear
relations in terms of this metric geometry. The problem is that to get serious about metric
geometry, we have to give up the dot product for a more general structure, so by keeping the
distinction, it is much easier to handle that structure and its consequences.

For the moment let’s use the dot product geometry, introducing the length of the coefficient
covector (called a “normal vector” to the level planes of the linear function)

|~a| = ((a1)2 + (a2)2 + (a3)2)1/2

and associated unit vector

â =
~a

|~a| .

Then the identity

~a ·
(
~a

|~a|2
)

= 1

shows that it is the vector â/|~a| = ~a/|~a|2 whose tip lies in the representation plane A(~x) = 1.
This is an “orthogonal connecting vector” whose initial point at the origin connects up the
plane A(~x) = 0 to the plane A(~x) = 1, and is at right angles to that plane in the dot product
geometry in which angles are defined by the arccosine of the dot product of unit vectors (i.e.,
â · b̂ = cos θ). Since the length of the connecting vector is the reciprocal of the length of the
original coefficient vector, increasing the linear function by a scale factor decreases the length
of the separation vector by that same amount.
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Figure F.1: Visualizing the relation between a vector X and its corresponding 1-form X[ with
the same components in the standard basis of R2.
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We are now in a position to extend the duality between the vectors and linear functions
realized visually by vectors and planes to the idea of bases of the vector space R3 and corre-
sponding “dual bases” of the space of linear functions on R3: let’s designate this latter space
by (R3)∗.

Let {~e1, ~e2, ~e3} be any ordered set of three linearly independent vectors in R3: a so called
“basis” of the vector space, like the familiar natural basis {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉}. Let

B = (Bi
j) = (eij) = 〈~e1|~e2|~e3〉 (F.6)

be the matrix whose columns are the components of these vectors in the natural basis of R3.
These three vectors visualized as arrows emanating from the vertex at the origin can be extended
to form a parallelopiped with 8 vertices, 12 edges and 6 parallelogram faces. For example the
tip of ~e1 + ~e2 + ~e3 is at the end of the “main diagonal” of this parallelopiped. The vertices and
edges of the parallelopiped define its “skeleton” vector representation, a visual representation
by vectors, the original 3 and their various tip to tail translations that make up the remaining
edges. Filling in this skeleton with the 6 faces makes up the surface of the parallelopiped, while
the solid parallelopiped corresponds to all possible linear combinations of the basic 3 vectors
with coefficients whose values are confined to the closed interval from 0 to 1. The 3 pairs of
parallel face planes define 3 corresponding linear functions whose coefficient vectors are related
to the pair as normal vectors as described above. Let ω3 be the linear function associated with
the faces spanned by the first two vectors ~e1, ~e2, and similarly ω2 associated with ~e2, ~e3 and
finally ω1. By definition ω3(~e1) = 0 = ω3(~e2) since these two vectors lie in the plane ω3(~x) = 0,
while ω3(~e3) = 1 since the tip of ~e3 lies in the plane ω3(~x) = 1. Similar relations hold for
the remaining linear functions, which together as an ordered set are called the dual basis, and
they form a basis of the dual space of linear functions, or “1-forms.” These various evaluation
relations altogether make the following array.

ω1(~e1) = 1 , ω1(~e2) = 0 , ω1(~e3) = 0 , (F.7)

ω2(~e1) = 0 , ω2(~e2) = 1 , ω2(~e3) = 0 ,

ω3(~e1) = 0 , ω3(~e2) = 0 , ω3(~e3) = 1 .

(F.8)

In terms of their components these so called duality relations can be written

ωime
m
j = δij ↔ (ωij)B = I , (F.9)

where I = (δij) is the identity matrix. Comparison of this matrix product relation with the
definition of the inverse matrix B−1B = I shows that the matrix of components of the dual
basis with respect to the natural basis of R3 is just the inverse matrix

(ωij) = B−1 =

(ω1
i)

(ω2
i)

(ω3
i)

 =

(~w1)T

(~w2)T

(~w3)T

 . (F.10)

The rows of this inverse matrix correspond to the components of the dual basis 1-forms. How-
ever, they can also be interpreted directly as the components of vectors with respect to the
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Figure F.2: Visualizing the dual basis of 1-forms and the reciprocal basis vectors. The three
pairs of parallel faces of the (larger) parallelopiped whose edges originating at the origin coincide
with the basis vectors lie in the planes ωi(X) = 0, 1 characterizing each of the dual 1-forms.
The reciprocal basis vectors are respectively orthogonal to these 3 pairs of planes and form a
corresponding (smaller) parallelopiped in this example. Scaling down the original set of basis
vectors by an overall constant scales up the reciprocal basis by that same constant.

natural basis, which is a nontrivial identification that allows some presentations of tensor al-
gebra to avoid the subject of duality, and the abstraction of linear functions. The ordered set
{~w1, ~w2, ~w3} is called the reciprocal basis.

The duality relations state that the dot products of ~w1 with ~e2 and ~e3 vanish, so it is
orthogonal to their plane in the dot product geometry, and so on, while the duality relation
~w1 ·~e1 = 1 then states that these two vectors have lengths which vary inversely: if ~e1 is stretched,
~w1 is compressed. In fact this reciprocal relationship of their lengths is clear from the more
explicit relationship ~w1 · ~e1 = |~w1||~e1| cos θ = 1, where θ is the fixed angle between the two
vectors.

It is obvious that

~w1 =
~e2 × ~e3

~e1 · (~e2 × ~e3)
(F.11)

easily solves the 3 duality conditions on ~w1, with cyclic permutations giving the other two
reciprocal vectors. Thus the three reciprocal vectors are orthogonal to the three faces of the
parallelopiped formed by the original basis {~e1, ~e2, ~e3}, on the same side of these faces as the
corresponding basis vectors but with appropriately altered lengths. Of course this vector for-
mula for the reciprocal basis vectors is just an equivalent expression for the rows of the inverse
matrix B−1, which is the transpose of the matrix of minors of B divided by its determinant
detB = ~e1 · (~e2 × ~e3).

Okay, what is all this good for? One introduces new bases in order to adapt the coordinates
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Figure F.3: Visualizing the dual basis of 1-forms and the reciprocal basis vectors in 2 dimen-
sions is a bit easier then in 3 dimensions. Here we have the bases {〈3, 1〉, 〈1, 2〉} (left) and
{〈1, 1〉, 〈−1, 2〉} (right) shown in black. The reciprocal bases are much smaller, shown in blue.
The corresponding unit parallelograms consisting of the two pairs of sides represent the dual
bases (gray).
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to directions that are special for the linear problem under study.

~x = 〈xi〉 = yj~ej or xi = eijy
j = Bi

jy
i ↔ ~x = B~y , ~y = B−1~x , (F.12)

where in the matrix equations, the symbols ~x and ~y are the corresponding column matrices.
But the new coordinate is just the value of the corresponding dual vector on ~x

yi = B−1i
jx
j = ωijx

j = ωi(~x) = ~wi · ~x . (F.13)

The reciprocal basis allows one to avoid talking about linear functions and the dual space, while
providing a new basis of the space adapted to the normals to the faces of the parallelopiped
formed by the original basis vectors rather than its edges. Here we have used subscripted
reciprocal basis vectors as in the original basis simply to label the ordering of the vectors, but
one must use superscripted variables like the dual 1-forms to play tensor algebra with them.
However, this obscures the simpler mathematics of linearity by the more complicated geometry
of an inner product space. There is much of modern differential geometry that is not related to
inner products or metrics so if one wants to understand the bigger picture, one should clearly
distinguish this structure.
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In Progress: A lot of work still to do here...
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Chapter 0

0.0.1: arclength in the plane
a) Filling in the blanks

ds2 = (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2

= (cos2 θ dr2 − 2r cos θ sin θ dr dθ + r2 sin2 θ dθ2)

+ (sin2 θ dr2 + 2r cos θ sin θ dr dθ + r2 cos2 θ dθ2)

= (cos2 θ + sin2 θ) (dr2 + r2 dθ2)

= dr2 + r2dθ2 .

b) The Jacobian matrix is

J =

(
cos θ −r sin θ
sin θ r cos θ

)
,

so

JT J =

(
cos θ r sin θ
sin θ −r cos θ

)(
cos θ −r sin θ
sin θ r cos θ

)
=

(
cos2 θ + sin2 θ 0

0 r2(sin2 θ + cos2 θ)

)
=

(
1 0
0 r2

)
.

c) Starting from x = uv, y = 1
2
(u2 − v2) we get

dx = v du+ u dv , dy = u du− v dv
or

J =

(
v u
u −v

)
= JT ,

so for example

JT J =

(
v u
u −v

)(
v u
u −v

)
=

(
u2 + v2 0

0 u2 + v2

)
= (u2 + v2)

(
1 0
0 1

)
,

which means
ds2 = (u2 + v2)(du2 + dv2) .

This is an example of what are called isotropic coordinates since the line element is a multiple
of the flat Euclidean line element du2 + dv2.

0.0.2: matrix multiplication and the trace
First, cyclicly permuting the scalar component factors easily does it

Tr
(
A−1BA

)
= A−1i

jB
j
kA

k
i = AkiA

−1i
jB

j
kδ
k
iB

j
k = Bi

i = TrB .

Second, doing the same as before

Tr (AB C) = AijB
j
kC

k
i = Ck

iA
i
jB

j
k = Tr (C AB) .
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Chapter 1

??: 2× 2 matrices as a vector space

See Maple worksheet: gl2R-traceinnerproduct.mw.

1.2.2: 2× 2 complex matrices as a real vector space

See Maple worksheet: gl2R-traceinnerproduct.mw.

1.2.3: up to quadratic functions

Figure F.4: Visualizing two bases for the space of at most quadratic polynomials: ax2 +bx+c =
A(x− 1)2 +B(x− 1) +C. The letters in the figure indicate the old and new coordinate bases.

We just expand the expression and compare with the previous one

A(x− 1)2 +B(x− 1) + C(1) = (Ax2 − 2Ax+ A) + (Bx−B) + (C)

= Ax2 + (B − 2A)x+ (A−B + C) = ax2 + bx+ c ,(F.14)

leading to the identification

c = C −B + A , b = B − 2A , a = A . (F.15)

This is easily inverted, which leads to the Taylor coefficients in the expansion about x = 1

C = c+ b+ a , B = b+ 2a , A = a . (F.16)
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This can be put into matrix formcb
a

 =

1 −1 1
0 1 −2
0 0 1

CB
A

 ,

CB
A

 =

1 1 1
0 1 2
0 0 1

cb
a

 . (F.17)

The columns of the first coefficient matrix are the old components of the new basis vectors,
both sets of which are shown in Fig. F.4.

See also the Maple worksheet: quadratics.mw.

1.2.4: 3× 3 antisymmetric matrices and the cross product
a) Matrix multiplication immediately gives the cross product formula

Ab =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

b1

b2

b3

 =

−a3b2 + a2b3

a3b1 − a1b3

−a2b1 + a1b2

 = ~a×~b . (F.18)

b) Doing the matrix product and difference leads to

AB −BA

=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 0 −b3 b2

b3 0 −b1

−b2 b1 0

−
 0 −a3 a2

a3 0 −a1

−a2 a1 0

 0 −b3 b2

b3 0 −b1

−b2 b1 0


=

−a3b3 − a2b2 a2b1 a3b1

a1b2 −a3b3 − a1b1 a3b2

a1b3 a2b3 −a2b2 − a1b1


−

−a3b3 − a2b2 a2b1 a3b1

a1b2 −a3b3 − a1b1 a3b2

a1b3 a2b3 −a2b2 − a1b1


=

 0 −(a1b2 − a2b1) a3b1 − a1b3

a1b2 − a2b1 0 −(a2b3 − a3b2)
−(a3b1 − a1b3) a2b3 − a3b2 0


from which one can identify the three independent components of this antisymmetric matrix as
those of ~a×~b. Then using associativity of matrix multiplication and the previous correspondence

a× (b× u)− b× (a× u) = A(B u)−B(Au) = (AB −BA)u = (a× b)× u .

See the Maple worksheet: asymmatrices-crossprod.mw.

1.2.5: complex numbers as 2-dimensional real vector space
See the Maple worksheet c2algebra.mw.

1.3.1: dual space closure



778

Figure F.5: Visualizing the new components of a vector using the basis and dual basis. The
vector X = 〈0, 2〉 is the vector sum of −2E1 and 4E2, namely minus 2 tickmarks on the y1 axis
and plus 4 tickmarks on the y2 axis.

One has the following sequence of equalities starting and ending with the definition of a
linear combination of linear functions as a new linear function

(c1f + c2g)(au+ bv) = c1f(au+ bv) + c2g(au+ bv) (definition)

= c1(af(u) + bf(v)) + c2(ag(u) + bg(v)) (linearity of f, g)

= a(c1f(u) + c2g(u)) + b(c1f(u) + c2g(v)) (recombination)

= a(c1f + c2g)(u) + b(c1f + c2g)(v) , (definition in reverse)

showing that a linear combination of linear functions is itself a linear function.

1.3.2: change of basis in the plane
We have the system of 4 equations to solve, amounting to two decoupled systems of 2

equations for 2 unknowns

W 1(E1) = aω1(E1) + bω2(E1) = 2a+ b = δ1
1 = 1

W 1(E2) = aω1(E2) + bω2(E2) = a+ b = δ1
2 = 0

W 2(E1) = cω1(E1) + dω2(E2) = 2c+ d = δ2
1 = 0

W 2(E2) = cω1(E2) + dω2(E2) = c+ d = δ2
2 = 1 .
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Solving these two simple systems gives (a, b) = (1,−1), (c, d) = (−1, 2). Let these define

vectors ~W 1 ≡ 〈1,−1〉 and ~W 2 ≡ 〈−1, 2〉 from the components of these two linear functions.

Then W 1(u) = ~W 1 · u so if W 1(u) = 0, then u is orthogonal to the vector ~W 1 of components

of W 1 with respect to {ei}. Thus ~W 1 is orthogonal to E2 and ~W 2 is orthogonal to E1 while
W 2(〈5,−2〉) = 〈−1, 2〉·〈5,−2〉 = −5−4 = −9 or = −ω1(〈5,−2〉)+2ω2(〈5,−2〉) = −5+2(−2) =
−9. We could have written W i (i-th covector) = W i

jω
j (j-th component with {ei} of W i),

leading to a matrix (W i
j) = (W i(ej)) which “changes the basis.” More later.

Fig. F.5 is a graphical representation of the integer level surfaces of W 1 and W 2 and an
example of decomposing a vector into components with respect to {Ei} using the dual basis.

Note: W 1 = x− y, W 2 = −x+ 2y in Cartesian coordinates {x, y} on R2.

1.4.1: rotations of the plane, pseudorotations of the Lorentz plane
See the maple worksheet matrixexponential2by2.mw. Apart from multiplying 2x2 matrices,

easily done by hand, one only needs the two trig addition formulas:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 ,

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2 ,

and their hyperbolic analogs

cosh(θ1 + θ2) = cosh θ1 cosh θ2 + sinh θ1 sinh θ2 ,

sinh(θ1 + θ2) = sinh θ1 cosh θ2 + cosh θ1 sinh θ2 .

1.4.2: determinants and the cross product
This is almost obvious, once you look at concrete values of the indices.

1.4.3: quadruple scalar product
This is almost obvious, once you look at concrete values of the indices.

1.4.4: transforming a tensor on R2

1.4.4: 2 index tensor in a frame
If we let Aij = A(W i, Ej) be the components of A with respect to {Ei}, then

A = AijEi ⊗W j = E1 ⊗W 1 + 2E1 ⊗W 2 − E2 ⊗W 1 .

But both {Ei} and {W j} are linear combinations of the standard basis and dual basis, so we
can just substitute and expand

A = (2e1 + e2)⊗ (ω1 − ω2)− 2(2e1 + e2)⊗ (−ω1 − 2ω2)− (e1 + e2)⊗ (ω1 − ω2)

= (2e1 + e2)⊗ ((ω1 − ω2) + 2(−ω1 + 2ω2))− (e1 + e2)⊗ (ω1 − ω2)

= −2e1 ⊗ ω1 − e2 ⊗ ω1 + 6e1 ⊗ ω2 + 3e2 ⊗ ω2 − e1 ⊗ ω1 − e2 ⊗ ω1 + e1 ⊗ ω2 + e2 ⊗ ω2

= −3e1 ⊗ ω1 + 7e1 ⊗ ω2 − 2e2 ⊗ ω1 + 4e2 ⊗ ω2 = A(ωi, ej)ei ⊗ ωj ,
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1.5.1: eigenvectors of a matrix of eigenvectors
See the Maple worksheet [Remove this problem??]

1.5.2: change of coordinates in the plane
See the Maple worksheet gridsinplane.mw.

1.5.3: change of coordinates in R3

See the Maple worksheet eigenvectors uppertriangular.mw.

1.6.1: Euclidean inner product on h(2)
See the Maple worksheet su2matrices.mw.

1.6.2: two inner products on gl(2, R)
See the Maple worksheet sl2matrices.mw and gl2R-traceinnerproduct.mw.

1.6.3: pseudo-orthogonality in the Lorentz plane
a) Since A and A−1 are symmetric matrices, the condition is A−1GA−1 = G, easily verified

by explicit multiplication.
b) Note 〈±1,±1〉 · 〈±1,±1〉 = −(±1)2 + (±1)2 = −1 + 1 = 0.

1.6.4: Euclidean and Lorentzian dot products
a) v · v > 0 for all v 6= 0, so sgn(v) = 1.
b) Only the zero vector has zero length with the usual dot product.
c) 〈0, 1,−1, 1〉 · 〈0, 1,−1, 1〉 = −(0)2 + 12 + (−1)2 + 12 = 3 > 0
〈2, 1, 0, 0〉 · 〈2, 1, 0, 0〉 = −22 + 12 + 02 + 02 = −1 < 0
〈1, 0, 0, 1〉 · 〈1, 0, 0, 1〉 = −12 + 02 + 02 + 12 = 0
The first can be normalized by dividing by

√
3. The second is already a unit vector.

d) It only must satisfy −(v0)2 + (v1)2 + (v2)2 + (v3)2 = 0, i.e., must lie on the light cone.

1.6.5: trace inner product for 3×3 antisymmetric matrices
One easily calculates the square which has diagonal entries −(ω2) − (ω3)2, −(ω3) − (ω1)2,

−(ω1)− (ω2)2, so the trace becomes minus twice the self-dot product of this vector.
See the Maple worksheet asymmatrices-crossprod.mw.

1.6.6: electromagnetic field matrices
See the Maple worksheet emfieldmatrix.mw.

1.6.7: visualizing a covector in the plane

1.6.8: transformation of dot products

1.6.9: inner products on spaces of square matrices and symmetry
(i) If A = Amne

n
m then

ωij(A) = ωij(A
m
ne
j
m) = Amn ω

i
j(e

j
m)︸ ︷︷ ︸

δimδ
n
j

= Aij
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(ii)

AB = (Aj i e
i
j)(B

n
m e

m
n) = Aj i B

n
m eije

m
n︸ ︷︷ ︸

eije
m
n = δin e

m
j

= Ajn B
n
m e

m
j

so

[AB]jm = AjnB
n
m .

(iii)–(iv) Using AT = A and BT = −B and the trace transpose and product identities, and
the cyclic permutation trace identity

G(A,B) = TrAB = −TrAT BT = −Tr(BA)T = −Tr(BA) = −Tr(AB) ,

so this must vanish, but

G(A,B) = TrATB = TrAB = G(A,B)

so the antisymmetric and symmetric matrices are orthogonal with respect to both metrics.

(v)

G(eij, e
m
n) = Tr eij e

m
n = Tr δine

m
j = δin Tr emj︸ ︷︷ ︸

δmj (think why)

= δinδ
m
j 6= δimδjn ,

while

G(eij, e
m
n) = Tr(eij)

T emn = Tr ej i e
m
n = δjn Tr emi = δjnδ

m
i = δimδjn =

{
1 if (i, j) = (m,n) ,

0 otherwise,

so the basis is orthonormal with respect to G but not G.

(vi) Because A− AT = 0 or B +BT = 0 are linear conditions on the entries of the matrix,
they are preserved under linear combinations and hence define linear subspaces. The dimension
of the symmetric subspace equals the number of entries in an upper triangular matrix, which
is, working up from the bottom corner by row, equal to 1 + 2 + . . . n = n(n + 1)/2 This must
be reduced by the n diagonal entries for the antisymmetric subspace, namely n(n+ 1)/2−n =
n(n− 1)/2.

(vii) First we must verify the expansion of any matrix in terms of this basis. The diagonal
contributions to the sum are clear, so consider only the offdiagonal contributions to the following
sum

ĂijĔ
j
i + ǍijĚ

j
i =

1

2
[(Aij + Aj i)(e

j
i + eij) + (Aij − Aj i)(ej i − eij)]

=
1

2
[2Aije

j
i + 0Aj ie

j
i + 0Aije

i
j + 2Aj ie

i
j] = 2Aije

j
i ,

which is correct for those offdiagonal contributions if one instead sums only over i < j.
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First we evaluate the upper offdiagonal inner products for the symmetric basis matrices for
which i < j and m < n

G(Ĕi
j, Ĕ

m
n) = Tr Ĕi

j Ĕ
m
n =

1

2
Tr(eij + ej i)(e

m
n + enm)

=
1

2
(Tr eije

m
n + Tr ej ie

m
n + Tr eije

n
m + Tr ej ie

n
m)

=
1

2
(δin Tr emj + δjn Tr emi + δim Tr enj + δjm Tr eni) = δimδjn + δinδ

m
j

= δimδjn ,

since the last term δinδ
m
j is nonzero only if i = n and m = j, but from our inequalities, i < j

then implies n < m, which is a contradiction. For the diagonal case (eii)
2 = eii which has unit

trace so these are orthonormal among themselves, and the trace of a diagonal and offdiagonal
matrix is zero since their product remains offdiagonal, remarks which apply also to the inner
product G. For the antisymmetric upper offdiagonal inner products a similar calculation holds

G(Ěi
j, Ě

m
n) = Tr Ěi

j Ě
m
n =

1

2
Tr(eij − ej i)(emn − enm)

=
1

2
(Tr eije

m
n − Tr ej ie

m
n − Tr eije

n
m + Tr ej ie

n
m)

=
1

2
(δin Tr emj − δjn Tr emi − δim Tr enj + δjm Tr eni) = −δimδjn + δinδ

m
j

= −δimδjn .

Because of the transpose on one factor, the metric G leads to a sign reversal of these self inner
products (it is positive definite). Finally the inner products with either metric of symmetric
with antisymmetric matrices is zero since the trace of such a product is always zero. Thus this
basis is orthonormal with respect to both inner products.

(viii)
f(A) = f ijω

j
i(A) = f ijA

j
i ≡ TrF A

(ix)

Gijmn = G(eij, e
m
n) = Tr eij e

m
n = Tr δine

m
j = δinδ

m
j

Gi
j
m
n = G(eij, e

m
n) = Tr ej ie

m
n = Tr δjne

m
i = δjnδ

m
i = δimδjn

G = δinδ
m
jω

j
i ⊗ ωnm = ωj i ⊗ ωij = Trω ⊗ ω

G = δimδjnω
j
i ⊗ ωnm = ωj i ⊗ ωj i = TrωT ⊗ ω

(x) Note also that the trace is a real valued linear function on V , i.e., a covector

Tr eij = δij −→ Tr = δij ω
j
i = ωii = Trω .

(xi) This is true only in the uninteresting case of p = 1 since it is not linear with more than
1 factor

det((A+B)C) 6= detAC + detB C .
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If you have trouble with indices in any of the above calculations, look at the n = 2 or n = 3
cases. For example, if n = 2 which is all you need to understand what happens in general, then

{e1
1, e

2
1, e

1
2, e

2
2} =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
Then

Tr e1
1 = Tr e2

2 = 1,Tr e2
1 = Tr e1

2 = 0

and

Ĕ
1

2 = 2−1/2

(
0 1
1 0

)
, Ě

1
2 = 2−1/2

(
0 1
−1 0

)
,

so

Tr(Ĕ
1

2)2 =
1

2
Tr

(
0 1
1 0

)(
0 1
1 0

)
=

1

2
Tr

(
1 0
0 1

)
= 1

and

Tr(Ě
1

2)2 =
1

2
Tr

(
0 1
−1 0

)(
0 1
−1 0

)
=

1

2
Tr

(
−1 0
0 −1

)
= −1 ,

etc.

??: Lorentz inner product on gl(2,R)

1.6.10: projections in R3

1.6.11: Gram-Schmidt orthonormalization

1.6.12: second derivative test

1.6.13: visualizing positive-definite inner products for the plane

1.7.1: 2× 2 matrix exponentials
See the Maple worksheet matrixexponential2by2.mw.

1.7.2: differential of a family of matrices preserving an inner product

1.7.3: linear transformations plus translations: the inhomogeneous linear group
See the Maple worksheet GLplusT.mw.

1.7.4: U(1), unit complex numbers
See the Maple worksheet u1.mw.

1.7.5: left and right translations and the adjoint action of a group

1.7.6: commutators of antisymmetric 3× 3 matrices

1.7.7: commutator of small rotations
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1.7.8: matrix Lie algebra commutators
a)

0 = [Ea, [Eb, Ec]] + [Eb, [Ec, Ea]][Ec, [Ea, Eb]]

= Ce
bc[Ea, Ee] + Ce

ca[Eb, Ee] + Ce
ab[Ec, Ee]

= Ce
bcC

d
aeEd + Ce

caC
d
beEd + Ce

abC
d
ceEd

= (Ce
bcC

d
ae + Ce

caC
d
be + Ce

abC
d
ce)Ed .

The coefficient is therefore 0, which is the target identity.
b) We are aiming for

[ka, kb] = Cc
ab kc

starting from
Cd

eaC
e
bc + Cd

ebC
e
ca + Cd

ecC
e
ab = 0 .

Notice that the right hand side of the former is (Cc
ab kc)

d
c, so we need to see the first two terms

as the same components (...)dc, but also we need the a and b indices to be the labels of ka and
kb, so we need to use the antisymmetry on the lower indices to change the order in the first
two terms (one sign change in the first term, two in the second term for no net change in sign)

−Cd
aeC

e
bc + Cd

beC
e
ac + Cd

ecC
e
ab = 0

which are the (...)dc components of

−ka kb + kb ka + Ce
abke = 0

which yields the desired result when the first two terms are moved to the opposite side of the
equation (dummy index e becomes c).

c) Just express in components

ad(X)Y = [XaEa, Y
bEb] = XaY bCe

abEe = (XaCe
ab)Y

bEe = (ad(X))ebY
bEe

so the matrix of this linear transformation is

Y e → (ad(X))ebY
b = (XaCe

ab)Y
b = (Xaka)

e
bY

b

so that
ad(X) = Xaka .
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Chapter 2

2.2.1: counting independent components
A symmetric matrix has the same number of independent components as an upper triangular

matrix since the entries below the main diagonal are equal to those above it. There are n
upper triangular entries in the first row, n − 1 in the second, etc., until there is only 1 upper
diagonal entry in the last row, so the total is the sum of the first n integers or n(n+ 1)/2. An
antisymmetric matrix has n fewer independent entries since the diagonal entries are zero, so it
has n(n+ 1)/2− n = n(n− 1)/2 independent components.

2.2.2: trace inner products and symmetry
Using a computer algebra system makes this painless. The two projections of the matrix

are

S = SYM(A) =

1 3 5
3 5 7
5 7 9

 , A = ALT(A) =

0 −1 −2
1 0 −1
2 1 0

 ,

and their inner products are

Tr(S S) = 273 , Tr(AA) = −12 , Tr(S A) = 0 ,

or
Tr(STS) = 273 , Tr(ATA) = 12 , Tr(STA) = 0 .

Finally
Tr(AA) = 273− 12 Tr(AT A) = 273 + 12 .

2.2.3: counting transpositions
Each time you uncross one pair of strings you do a transposition, so it is just a matter of

looking at a few examples to convince yourself how it works. Be my guest to attempt a proof.
Look at this example to convince yourself how it works. Draw in the 3 connecting lines between
like integers on the first and second rows.(

1 2 3 4
2 4 1 3

)
→
(

1 2 3 4
2 3 4 1

)
→
(

1 2 3 4
2 3 4 1

)
Then T (4, 1) uncrosses one pair and then T (1, 2), T (3, 4) uncross the other two, for a total of
3 transpositions. But that was too simple. Consider instead the case of 6 crossings (make sure
only 2 connecting lines cross at one time)(

1 2 3 4
4 3 2 1

)
→
(

1 2 3 4
2 3 4 1

)
→
(

1 2 3 4
2 3 4 1

)
Then T (4, 1) uncrosses all but one pair, so that T (2, 3) finishes the job, a totla of 2 transposi-
tions, an even number like 6.
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2.3.1: quadruple scalar product
a) This has 3 different symmetries. It is antisymmetric in the first and second pairs indi-

vidually, and symmetric under interchange of the two pairs

T (X, Y, Z,W ) = (X · Z)(Y ·W )− (X ·W )(Y · Z) ,

T (X, Y,W,Z) = (X · Z)(Y · Z)− (X · Z)(Y ·W ) = −T (X, Y, Z,W ) ,

T (Y,X,Z,W ) = (Y · Z)(X ·W )− (Y ·W )(X · Z) = −T (X, Y, Z,W ) ,

T (Z,W,X, Y ) = (Z ·X)(W · Y )− (Z · Y )(W ·X) = T (X, Y, Z,W ) .

b) This is a simple expansion and cancellation of the six terms in three pairs due to the
commutivity of the dot product

T (W,X, Y, Z) + T (W,Y, Z,X) + T (W,Z,X, Y )

= (W · Y )(X · Z)− (W · Z)(X · Y )

+ (W · Z)(Y ·X)− (W ·X)(Y · Z)

+ (W ·X)(Z · Y )− (W · Y )(Z ·X)

= 0 .

c) Indices cannot be repeated in the first pair or in the second pair without making the
component zero.

Tαβδγ = T (eα, eβ, eγ, eδ) ,

T1122 = (e1 · e2)(e1 · e2)− (e1 · e2)(e1 · e2) = 0 ,

T1212 = (e1 · e1)(e2 · e2)− (e1 · e2)(e2 · e1) = 1 ,

T2121 = (e2 · e2)(e1 · e1)− (e2 · e1)(e1 · e2) = 1 .

d) Suppose we start from the simpler vector identities

−→
A × (

−→
B ×−→C ) = (

−→
A · −→C )

−→
B − (

−→
A · −→B )

−→
C , (triple cross product)

(
−→
A ×−→B ) · −→C = (

−→
B ×−→C ) · −→A . (triple scalar product, cyclic symmetry)

Then a simple calculation shows

S(X, Y, Z,W ) = (
−→
X ×−→Y ) · (−→Z ×−→W )

= [
−→
Y × (

−→
Z ×−→W )] · −→X

= [(
−→
Y · −→W )

−→
Z − (

−→
Y · −→Z )

−→
W ] · −→X

= (Y ·W )(Z ·X)− (Y · Z)(W ·X)

= T (X, Y, Z,W )

.

This tensor is just the totally covariant form of the (2
2) generalized Kronecker delta δαβγδ,

namely
Tαβδγ = δαµδβνδ

µν
γδ .
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This same tensor with the first argument left unevaluated (and index raised) is just the triple
cross product

TαβµνX
βY γZδ = εαβγX

βεγµνY
µZν .

There are two kinds of quadruple cross products which involve three cross products and
produce a vector, defining a 5 index tensor constructed from three epsilons and some deltas for
index raising. Identities involving the epsilons then lead to classical vector identities. Google
some of these and analyze them as we have done above.

2.3.2: higher dimension contractions of the p = 2 generalized Kronecker delta

2.3.3: Jacobian matrix

2.3.4: quadruple scalar product again

2.3.5: differential of the determinant

2.3.6: inverse matrix differential

2.3.7: relative differential rotations and boosts

2.3.8: antisymmetry of the electromagnetic field tensor

2.4.1: linear independence of basis p-vectors

2.4.2: p-vectors in R4

For the case n = 4, write out explicitly the following sums

S = Sije|ij| = S14e14 + S24e24 + S34e34 + S23e23 + S13e13 + S12e12 ,

T = T ijke|ijk| = T 234e234 + T 134e134 + T 124e124 + T 123e123 .

2.5.1: multivariable Taylor series example
See Maple worksheet multitaylor.mw.

2.5.2: Quadratic function graph approximation to sphere, ellipsoid at a pole
See Maple worksheet multitaylor.mw.

2.5.3: moments of inertia of hemisphere
See Maple worksheet momentsofinertia.mw.

2.5.4: moment of inertia for snow cone
See Maple worksheet momentsofinertia.mw.
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Chapter 3

3.1.1: covector addition

3.1.2: deWitt inner product for symmetric tensors
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Chapter 4

4.2.1: successive antisymmetrization and the wedge product

4.2.2: wedges in R3

4.2.3: wedges in R4

4.2.4: wedges in R5

4.3.1: double natural dual sign
Replace S by (∗)T in the second line, matching up the n−p dummy indices correctly, leading

to the double Levi-Civita symbol, in which the indices must be reshuffled as explained in the
problelm. Then use the summation identity for the Knonecker delta. Finally the antisymmetric
part is just the original tensor.

[(∗)T ]ip+1···in =
1

p!
T i1···ipεi1···ipip+1···in

[(∗)S]i1···ip =
1

p!
Sj1···jn−pε

j1···jn−pi1···ip

[(∗)(∗)T ]i1···ip =
1

(n− p)!
(∗)Tip+1···inε

ip+1···ini1···ip

=
1

(n− p)!
1

p!
T j1···jpεj1···jpip+1···inε

ip+1···ini1···ip

= (−1)p(n−p)
1

(n− p)!
1

p!
T j1···jpεi1···in−pj1···jpε

i1···in−pi1···ip

= (−1)p(n−p)
1

p!
T j1···jpδ

i1···ip
j1···jp = (−1)p(n−p)T i1···ip ,

For n = 3, one has (−1)p(3−p) = 1 for all p = 0, 1, 2, 3.
For n = 4, one has (p, (−1)p(4−p)) = (0, 1), (1,−1), (2, 1), (3,−1), (4, 1), i.e., the sign alter-

nates with p.

4.3.2: natural dual index approach
Using these two identities

[ei1···ip ]
j1···jp = δ

j1···jp
i1···ip = [ωj1···jp ]i1···ip , ,

first the p-vector case

[(∗)T ]ip+1···in =
1

p!
T j1···jpεj1···jpip+1···in

[(∗)ei1···ip ]ip+1···in =
1

p!
δ
j1···jp
i1···ipεj1···jpip+1···in

= εi1···1pip+1···in ,
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and then repeat for the p-covector case

[(∗)S]ip+1···in =
1

p!
Si1···ipε

i1···ipip+1···in

[(∗)ωj1···jp ]ip+1···in =
1

p!
δ
j1···jp
i1···ipε

i1···ipip+1···in

= εj1···jpip+1···in .

4.3.3: natural duals

4.3.4: dual of decomposable p-vector

4.3.5: self-inner products of p-vectors

4.3.6: quadruple scalar product and area

4.3.7: dual of the unit n-form

4.3.8: duals in R3: self wedge with dual in R3

4.3.9: duals for M3

4.3.10: cross product on R3 and M3

4.3.11: double dual sign
The double dual ∗∗T for a p-covector is just T modulo a sign. To evaluate this sign, consider

two convenient forms of the (n− p)-covector dual a p-covector T

[∗T ]ip+1···in =
1

p!
Ti1···ipη

i1···ip
ip+1···in or [∗T ]j1···jn−p =

1

p!
Ti1···ipη

i1···ip
j1···jn−p

which when iterated give

[∗(∗T )]jn−p+1···jn =
1

(n− p)!(
∗T )j1···jn−pη

j1···jn−p
jn−p+1···jn

=
1

(n− p)!
1

p!
Ti1···ip ηi1···ipj1···jn−pη

j1···jn−p
jn−p+1···jn︸ ︷︷ ︸

ηi1···ipj1···jn−p ηj1···jn−pjn−p+1···jn︸ ︷︷ ︸
(−1)p(n−p)ηjn−p+1···jnj1···jn−p

,

but then using the contraction identity

ηi1···ipj1···jn−pηjn−p+1···jnj1···jn−p = (−1)M (n− p)! δi1···ipjn−p+1···jn ,
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we get

[∗(∗T )]jn−p+1···jn =
1

(n− p)!

(
1

p!
Ti1···ipδ

i1···ip
jn−p+1···jn

)
(−1)M (n− p)! (−1)p(n−p)

= Tjn−p+1···jn (−1)M+p(n−p) .

Thus we have found
∗ ∗T = (−1)M+p(n−p) T .

4.3.12: inverse of dual
Recall that ∗

−1
R = (−1)M+P (n−P )∗R for a P -form. The result of these operations is a

(p− 1)-form
∗−1

(S︸︷︷︸
1

∧ ∗ T )︸︷︷︸
p︸ ︷︷ ︸

n−p︸ ︷︷ ︸
P=n−p+1︸ ︷︷ ︸

n−(n−p+1)=p−1

and the sign exponent P (n− P ) needed for the inverse dual has P = n− p+ 1, so

(n− p+ 1)(n− (n− p+ 1)) = (n− p+ 1)(p− 1) = (n+ 1)(p− 1)− p(p− 1)

but since p(p− 1) is always even, it does not change the sign and may be dropped

(−1)(n+1)(p−1)−p(p−1) = (−1)(n+1)(p−1) .

Thus
∗−1

(S ∧ ∗T ) = (−1)M+(n+1)(p−1)∗(S ∧ ∗T ) .

4.3.13: double dual sign in R4

4.3.14: index shifting

4.3.15: 2-vector duals in R4

4.3.16: inner product of two duals for a general inner product EDIT THIS

4.3.17: M4 duals with indices 0,1,2,3

4.3.18: M4 duals with indices 1,2,3,4

4.3.19: Euclidean R4 duals

4.3.20: complex plane and real wedge products
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4.3.21: 2-planes in R4 and wedge products

4.4.1: transforming wedge products and star duals in the plane

4.5.1: exponentiating boost matrices

4.5.2: null rotations

4.5.3: antisymmetric 3× 3 matrices and the negative dual vector

4.5.4: commutators of the Lorentz group Lie algebra

4.5.5: commutators of the (pseudo-)orthogonal group Lie algebras

4.5.6: rotations in R4

4.5.7: differentials of rotation matrices

4.5.8: unitary groups
If K = iK is anti-Hermitian, i.e., K = −iK, then multiplying it by i makes it Hermitian

K† = (−iK)† = i(−K) = K .

??: h(2) matrices are Hermitian

4.5.9: the special unitary group SU(2) and SO(3,R)
See the Maple worksheet matrixproducts-nullrotations.mw.

4.5.10: SL(2,R and the Lorentz group in 3 dimensions

4.5.11: quaternions?

4.5.12: squared angular momentum L2

4.5.13: unitary groups again
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Chapter 5

5.1.1: Some problems from 3-d calculus

5.1.2: tangent to level surfaces
We must show that Xf = 0 = Xg.

Xf =

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(y
x

)
= x

(
− y

x2

)
+ y

(
1

x

)
= 0 .

Xg =

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(
z2

x2 + y2

)
= x

(
− 2xz2

(x2 + y2)2

)
+ y

(
− 2yz2

(x2 + y2)2

)
+

2z2

x2 + y2

= −2z2 x2 + y2

(x2 + y2)2
+

z2

x2 + y2
= − 2z2

x2 + y2
+

2z2

x2 + y2
= 0 .

df = d
(y
x

)
=
(
− y

x2

)
dx+

(
1

x

)
dy ,

df(X) =

((
− y

x2

)
dx+

(
1

x

)
dy

)(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=
(
− y

x2

)
x+

1

x
y = 0 .

dg = d

(
z2

x2 + y2

)
=

(
− 2xz2

(x2 + y2)2

)
dx+

(
− 2yz2

(x2 + y2)2

)
dy +

2z

x2 + y2
dz ,

dg(X) =

((
− 2xz2

(x2 + y2)2

)
dx+

(
− 2yz2

(x2 + y2)2

)
dy +

2z

x2 + y2
dz

)(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=

(
− 2xz2

(x2 + y2)2

)
x+

(
− 2yz2

(x2 + y2)2

)
y +

2z

x2 + y2
z = 0 .

5.1.3: elliptical level curves
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5.2.1: polar coordinate calculations

5.3.1: matrix exponential chain rule

d

dt
etA =

d

dt

(
∞∑
k=0

tk

k!
Ak

)

=

(
∞∑
k=0

ktk−1

k!
Ak

)

=

(
∞∑
k=1

tk−1

(k − 1)!
Ak

)

= A

(
∞∑
k=1

tk−1

(k − 1)!
Ak−1

)

= A

(
∞∑
j=0

tj

j!
Aj

)
= AetA .

5.3.2: hyperbolic rotations via matrix exponential

5.3.3: space rotations via the matrix exponential

5.3.4: Cayley-Hamilton theorem for n = 3
See the Maple worksheet cayleyhamilton.mw. The case n = 4 is an interesting challenge.

There is probably a general theory for evaluating the coefficients of the characteristic equation
in terms of the determinant and trace of the powers, but it does not see to show up in web
searches. Try an old fashioned library?

5.3.5: rotations as solutions of a system of differential equations
See Maple worksheet rotationmatrixeigenvectors.mw.

5.3.6: local rest space decomposition in M4

5.3.7: logarithmic spiral group

5.4.1: Lie bracket evaluation

a) X1 = ∂1 , X2 = ∂2 , X3 = x1∂2 − x2∂1 ,

[X2, X3] = −X1 , [X3, X1] = −X2 , [X1, X2] = 0 .

b) X1 = ∂1 , X2 = ∂2 , X3 = x1∂2 + x2∂1

[X2, X3] = X1 , [X3, X1] = −X2 , [X1, X2] = 0 .
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5.4.2: Lie bracket evaluation

a) [u, v] = [x∂x + y∂y + z∂z, y∂x − x∂y]
= x(−∂y) + y(∂x)− y(∂x) + x(∂y) = 0

[u,w] = [x∂x + y∂y + z∂z, (x
2 + y2)(∂x + ∂y) + ∂z]

= (x(2x) + y(2y))(∂x + ∂y)− (x2 + y2)(∂x + ∂y)− ∂z
= (x2 + y2)(∂x + ∂y)− ∂z

[v, w] = [y∂x − x∂y, (x2 + y2)(∂x + ∂y) + ∂z]

= (y(2x)− x(2y))(∂x + ∂y)− (x2 + y2)(−∂y + ∂x)

= (x2 + y2)(−∂x + ∂y)

b) [u, v] = [(x2 + y2)−1/2(x∂x + y∂y), y∂x − x∂y]
= (x2 + y2)−1/2(x(−∂y) + y∂x)

− y(−1/2(x2 + y2)−3/2(2x) + x(−1/2(x2 + y2)−3/2(2y)

− (x2 + y2)−1/2(y∂x + x∂y) = 0

When simplified these 4 terms cancel in pairs.

|A−1| = (x2 + y2)1/2 vanishes at the origin where these vectors are no longer linearly inde-
pendent. In fact v vanishes there, while u has direction dependent limits there.

5.4.3: linear vector field Lie brackets

This is a straightforward calculation.

[X, Y ] = [Aijx
j ∂

∂xi
, Bm

nx
n ∂

∂xm
]

= Aijx
j ∂

∂xi
(Bm

nx
n ∂

∂xm
)−Bm

nx
n ∂

∂xm
(Aijx

j ∂

∂xi
)

= Aijx
jBm

n(
∂xn

∂xi
∂

∂xm
+ xn

∂ 2

∂xi∂xm
)

−Bm
nx

nAij(
∂xn

∂xi
∂

∂xm
+ xj

∂ 2

∂xi∂xm
)

= Aijx
jBm

n
∂xn

∂xi︸︷︷︸
δni

∂

∂xm
−Bm

nx
nAij

∂xj

∂xm︸︷︷︸
δjm

∂

∂xi

= Bm
iA

i
jx
j ∂

∂xm
− AijBj

nx
n ∂

∂xi

= Bm
iA

i
jx
j ∂

∂xm
− AmiBi

jx
j ∂

∂xm

= [B,A]mjx
j ∂

∂xm
= −[A,B]mjx

j ∂

∂xm
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[X,Z] = [Aijx
j ∂

∂xj
, b`

∂

∂x`
]

= −b`Aij
∂xj

∂x`
∂

∂xj
= −Aijbj

∂

∂xi

= −[A b]i
∂

∂xi

[Z,W ] = [b`
∂

∂x`
, Cb ∂

∂xk
] = 0 (constant components)

We can make these results look mathematically pretty by defining

σ(A) = Aijx
j ∂

∂xi
, , ζ(b) = bi

∂

∂xi
.

Then

(1) [σ(A), σ(B)] = −σ([A,B)]

(2) [σ(A), ζ(b)] = −ζ(A, b)

(3) [ζ(b), ζ(c)] = 0

σ : {n × n matrices} −→ {vector fields on Rn} is a linear map from a vector space with a
commutator (the matrix commutator) into a vector space with a commutator (the Lie bracket).
To verify this linearity property check the following as an exercise

σ(aA+ bB) = aσ(A) + aσ(B)) .

The relation (1) says you can do the commutator before or after the map and still get the
same result apart from the minus sign, which can be included as a reflection in the map

[−σ(A),−σ(B)] = −σ([A,B)] .

Thus−σ has the desired property that the order of evaluating the map and the commutator does
not matter. [A vector space with a commutator is called a Lie algebra and such a map between
Lie algebra mapping one commutator into the next is called a Lie algebra homomorphism.]

5.4.4: rotation generator Lie brackets

5.4.5: Laplacian

5.4.6: total angular momentum operator and the Laplacian

5.4.7: spherical basis?

5.5.1: polar coordinates and circles not centered at the origin
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5.5.2: polar coordinates and multipetal curves

5.6.1: mathematical wedding band surface boundaries

5.7.1: transforming a vector field and 1-form

5.7.2: Laplacian in cylindrical coordinates

5.7.3: paracylindrical coordinates

5.8.1: Jacobian matrices for spherical coordinates

5.8.2: spherical coordinate frame rotation

5.8.3: differential, gradient in cylindrical, spherical coordinates
Compute df and grad f = ~∇f in cylindrical coordinate and verify that you get our previous

results quoted in the text.??
Consider the function

f = xy = ρ2 sinφ cosφ =
1

2
ρ2 sin 2φ =

1

2
r2 sin2 θ sin 2φ .

Then
df = ydx+ xdy = X[

~∇f = [df ]] = y
∂

∂x
+ x

∂

∂y
= X

yields our friend X from previous exercises where we saw that

X = ρ sin 2φ
∂

∂ρ
+ cos 2φ

∂

∂φ
= sin θ sin 2φ(r sin θ

∂

∂r
+ cos θ

∂

∂θ
) + cos 2φ

∂

∂φ

X[ = ρ sin 2φdρ+ ρ2 sin 2φdφ = sin θ sin 2φ(r sin θdr + r2 cos θdθ) + r2 sin2 θ cos 2φdφ

[
∂

∂r
]i = gij[

∂

∂r
]j = gir −→ [

∂

∂r
][ = girdx̄

i = grrdr = dr

and similarly

[
∂

∂φ
][ = gφidx̄

i = gφφdφ = r2 sin2 θdφ

[
∂

∂θ
][ = gθidx̄

i = gθθdθ = r2dθ

.

In general
ei
[ = gkje

j
iω

k = gikω
k

so that
X[ = (X iei)

[ = X iei
[ = X igikω

k = Xkω
k .

Similarly
[ωi]] = gijej
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holds for an orthogonal frame, index shifting the frame vectors and dual frame covectors yields
the corresponding basis covector or vector multiplied by the diagonal metric component or its
reciprocal.

5.8.4: spherical coordinates back to Cartesian coordinates

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
+
∂z

∂r

∂

∂z

=
x

r

∂

∂x
+
y

r

∂

∂y
+
z

r

∂

∂z
∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z

= −y ∂
∂x

+ x
∂

∂y

Y = r
∂

∂r
+

∂

∂φ

= (x2 + y2 + z2)1/2
[
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

]
/(x2 + y2 + z2)1/2 +

[
− y ∂

∂x
+ x

∂

∂y

]
= x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− y ∂

∂x
+ x

∂

∂y
= (x− y)

∂

∂x
+ (x+ y)

∂

∂y
+ z

∂

∂z
.

5.8.5: spherical coordinate Laplacian

5.9.1: spherical coordinate commutator using Cartesian coordinates
Calculating the Lie brackets of the spherical coordinates in terms of Cartesian coordinates

is cumbersome. For example

[er, eφ] =

[
(x2 + y2 + z2)−1/2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,−y ∂

∂x
+ x

∂

∂y

]
= (x2 + y2 + z2)−1/2

[
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,−y ∂

∂x
+ x

∂

∂y

]
−
((
−y ∂

∂x
+ x

∂

∂y

)
(x2 + y2 + z2)−1/2

)
︸ ︷︷ ︸

= 0

+

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
︸ ︷︷ ︸
≡ Q = 0(next line)

= 0 ,

since

Q = x

(
∂

∂x
x

)
∂

∂y
+ y

∂

∂y
(−y)

∂

∂x
−
(
−y ∂

∂x
(x)

∂

∂x
+ x

∂

∂y
(y)

∂

∂y

)
= x

∂

∂y
− y ∂

∂x
+ y

∂

∂x
− x ∂

∂y
= 0 .

5.9.2: structure functions of cylindrical and spherical coordinates
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The orthonormal spherical coordinate frame

er̂ =
∂

∂r
, eθ̂ =

1

r

∂

∂θ
, eφ̂ =

1

r sin θ

∂

∂φ

has nonzero Lie brackets, easily calculated in spherical coordinates

[er̂, eθ̂] =

[
∂

∂r
,
1

r

∂

∂θ

]
= − 1

r2

∂

∂θ
= −1

r︸︷︷︸
C θ̂

r̂θ̂

eθ̂ ,

[eθ̂, eφ̂] =

[
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

]
=

1

r2

∂

∂θ

(
1

sin θ

)
∂

∂φ

= − cos θ

r2 sin2 θ

∂

∂φ
= −1

r
cot θ︸ ︷︷ ︸

C φ̂
θ̂φ̂

eφ̂

[eφ̂, er̂] =

[
1

r sin θ

∂

∂φ
,
∂

∂r

]
=

1

r2 sin θ

∂

∂φ
=

1

r︸︷︷︸
C φ̂

φ̂r̂

eφ̂ .

5.9.3: Lie brackets in cylindrical coordinates

5.9.4: Lie brackets in spherical coordinate orthonormal frame
For the spherical coordinate orthonormal frame the nonzero structure functions are

C θ̂
r̂θ̂ = −1

r
, C φ̂

θ̂φ̂ = −1

r
cot θ , C φ̂

φ̂r̂ =
1

r
.

I used the cyclic order 23, 31, 12 7→ r̂θ̂, θ̂φ̂, φ̂r̂ in computing the Lie brackets, rather than i < j
: 23, 13, 12.

5.9.5: Lie brackets in cylindrical coordinate orthonormal frame

eρ̂ =
∂

∂ρ
, eφ̂ =

1

ρ

∂

∂φ
, eẑ =

∂

∂z
,[

eρ̂, eφ̂

]
=

[
∂

∂ρ
,

1

ρ

∂

∂φ

]
= − 1

ρ2

∂

∂φ
= −1

ρ
eφ̂ ,[

eφ̂, eẑ

]
=

[
1

ρ

∂

∂φ
,
∂

∂z

]
= 0 ,

[eẑ, eρ̂] =

[
∂

∂z
,
∂

∂ρ

]
= 0 ,

so

C φ̂
ρ̂φ̂ = −1

ρ
(= −C φ̂

φ̂ρ̂)



800

is the single independent structure function.

5.9.6: duality practice
Substitute e1, e2, e3 by dx,dy,dz (i.e., p-vector −→ p-covector)

∗1 = dx ∧ dy ∧ dz
∗(x1dx+ x2dy + x3dz) = x1dy ∧ dz + x2dz ∧ dx+ x3dx ∧ dy

∗(x23dy ∧ dz + x31dz ∧ dx+ x12dx ∧ dy) = x23dx+ x31dy + x12dz.

∗(x123dx ∧ dy ∧ dz) = x123

∗1 = ωρ̂φ̂ẑ = ωρ̂ ∧ ωφ̂ ∧ ωẑ = dρ ∧ (ρdφ) ∧ (dz) = ρdρ ∧ dφ ∧ dz.
∗(Xρ̂ω

ρ̂ +Xφ̂ω
φ̂ +Xẑω

ẑ) = Xρ̂ω
ρ̂ẑ +Xφ̂ω

ẑφ̂ +Xẑω
ρ̂φ̂

∗(Xφ̂ẑω
φ̂ẑ +Xẑρ̂ω

ẑρ̂ +Xρ̂φ̂ω
ρ̂φ̂) = Xρ̂ẑω

ρ̂ +Xẑρ̂ω
φ̂ +Xρ̂φ̂ω

ẑ

∗(Xρ̂φ̂ẑω
ρφ̂ẑ) = Xρ̂φ̂ẑ

∗1 = ωr̂θ̂φ̂ = ωr̂ ∧ ωθ̂ ∧ ωφ̂ = dr ∧ (rdθ) ∧ (r sin θdφ) = r2 sin θdr ∧ dθ ∧ dφ

X =

Xθ̂φ̂︷ ︸︸ ︷
1

r2 sin θ
Xθφ ω

θ̂φ̂ +
1

r sin θ
Xφrω

φ̂r̂ +
1

r
Xrθω

r̂θ

∗X =
1

r2 sin θ
Xθφω

r̂ +
1

r sin θ
Xφrω

θ̂ +
1

r
Xrθω

φ̂

∗X] =
1

r2 sin θ
Xθφer̂ +

1

r sin θ
Xφreθ̂ +

1

r
Xrθeφ̂

=
1

r2 sin θ
Xθφ

∂

∂r
+

1

r2 sin θ
Xφr

∂

∂θ
+

1

r2 sin θ
Xrθ

∂

∂φ

(∗X])r̂ =
1

r2 sin θ
Xθφ (∗X])θ̂ =

1

r sin θ
Xφr (∗X])φ̂ =

1

r
Xrθ

(∗X])r =
1

r2 sin θ
Xθφ etc.

5.9.7: dual of 2-form in R3

5.9.8: Lie brackets and the derivatives of the frame transformation matrix

5.9.9: rotation generator Lie brackets in spherical coordinates

5.??:
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on page (40c) worked [Lie brackets in cylindrical coordinates]

[X, Y ]ρ̂ = Y ρ̂,ρ̂X
ρ̂ + Y ρ̂,φ̂X

φ̂ −X ρ̂,ρ̂ Y
ρ̂ + C ρ̂

ĵk̂X
ĵY k̂

=
∂

∂ρ
(ρ) · (ρ sin 2φ) +

1

ρ

∂

∂φ
(ρ)︸ ︷︷ ︸

=0

·(ρ cos 2φ)− ∂

∂ρ
(ρ sin 2φ) · ρ

= ρ sin 2φ− ρ sin 2φ = 0

[X, Y ]φ̂ = Y φ̂,ρ̂X
ρ̂ + Y φ̂,φ̂X

φ̂ −X φ̂,ρ̂ Y
ρ̂ + C φ̂

ρ̂φ̂X
ρ̂Y φ̂ + C φ̂

φ̂ρ̂X
φ̂Y ρ̂

= − ∂

∂ρ
(ρ cos 2φ) · ρ+ ρ cos 2φ = 0

[X, Y ]ẑ = Y ẑ ,̂iX
î −X ẑ ,̂iX

î + C ẑ
ĵk̂X

ĵY k̂ = 0

so [X, Y ] = 0. Compare

[X, Y ] = [y
∂

∂x
+ x

∂

∂y
, x

∂

∂x
+ y

∂

∂y
]

= y
∂

∂x
(x)

∂

∂x
+ x

∂

∂y
(y)

∂

∂y
− x ∂

∂x
(x)

∂

∂y
− y ∂

∂y
(y)

∂

∂x

= y
∂

∂x
+ x

∂

∂y
− x ∂

∂y
− y ∂

∂x
= 0 .
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Chapter 6

6.2.1: cylindrical frame connection components
The Maple package tensor is easily used to evaluate the connection components in a coor-

dinate system.
(ρ, φ, z) ∼ (1, 2, 3). Inverting the 2× 2 block of A gives

A−1 =

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1


Check that A−1 A = I . [also given at bottom of page (31). ]

ω̄ = AdA−1 =

 C S 0
−ρ−1S ρ−1C 0

0 0 1

− sinφdφ −ρ cosφdφ− sinφdρ 0
cosφdφ −ρ sinφdφ+ cosφdρ 0

0 0 0



=

 0 −ρ 0
ρ−1 0 0
0 0 0

 dφ+

0 0 0
0 1 0
0 0 0

 ρ−1dρ

so
Γ̄ρφφ = −ρ , Γ̄φφρ = ρ−1 , Γ̄φρφ = ρ−1

are the only nonzero connection components, from the three nomzero entries of ω̄ recalling the
matrix indices (1, 2, 3) ∼ (ρ, φ, z)
The matrix a for the associated orthonormal frame is obtained from A by setting ρ = 1, so one
can derive the corresponding result by putting ρ = 1 into the above calculation:

ˆ̄ω ≡ (ω̄îk̂) ≡ (Γ̄î ĵk̂ω̄
ĵ) =

0 −1 0
1 0 0
0 0 0

 dφ

Γ̄ρ̂φ̂φ̂ = −1, Γ̄φ̂φ̂ρ̂ = 1 are the only nonzero connection components, due to the rotation by the
angle φ of the orthonormal vector fields eρ̂ nad eφ̂ relative to ex and ey.

6.3.1: matrix Lie algebra representation map

6.3.2: rotation generator

6.3.3: pseudoorthogonal generators

6.3.4: efficient use of connection 1-forms

6.3.5: properties of the vector covariant derivative component formula
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6.4.1: covariant constancy of generalized Kronecker delta

Preliminary remark. In any frame we have the definition

δijmn = δimδ
j
n − δinδjm .

If we differentiate this equation

δijmn;k = δim;kδ
j
n + δimδ

j
n;k − δin;kδ

j
m − δinδjm;k = 0

then ∇δ(2) = 0 follows from ∇δ = 0 and the product rule.

However, just using the formula in the barred frame

δ̄ijmn;k = δ̄ijmn, k + Γ̄ik`δ̄
`j
mn + Γ̄jk`δ̄

i`
mn − Γ̄`kmδ̄

ij
`n − Γ̄`knδ̄

ij
m`

= (Γ̄ikmδ̄
j
n − Γ̄iknδ̄

j
m) + (Γ̄jknδ̄

i
m − Γ̄jkmδ̄

i
n)

− (Γ̄ikmδ̄
j
n − Γ̄jkmδ̄

i
n)− (Γ̄jknδ̄

i
m − Γ̄iknδ̄

j
m)

= 0 .

6.4.2: covariant constant fields in cylindrical coordinates

Remember only

Γρφφ = −ρ , Γφφρ = ρ−1 , Γφρφ = ρ−1

are nonzero, and these vectors have no z components and no components depend on z, so this
is basically a 2-dimensional problem (anything with a z index vanishes). So the components of
X = ∂/∂x are

Xρ = cosφ Xφ = −sinφ

ρ

Writing down only the nonzero terms:

Xρ
;ρ = Xρ,ρ +ΓρρiX

i = 0

Xρ
;φ = Xρ,φ +ΓρφφX

φ = − sinφ+ sinφ = 0

Xρ
;z = Xρ,z +ΓρziX

i = 0

Xφ
;ρ = Xφ,ρ +ΓφρφX

φ =
1

ρ2
sinφ− 1

ρ2
sinφ = 0

Xφ
;φ = Xφ,φ +ΓρφρX

ρ = 0

Xφ
;z = Xφ,z +ΓφziX

i = 0

Xz
;i = Xz,i +ΓzijX

j = 0

so X i
; j = 0, i.e., ∇X = 0. There is nothing new to be gained by verifying ∇[ ∂

∂y
] = 0 so let’s
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move on to the covariant constant 1-form dx

[dx]ρ = cosφ [dx]φ = −ρ sinφ , [dx]i; j = [dx]i, j − Γ`ji[dx]`

[dx]i; z = [dx]i, z − Γ`zi[dx]` = 0 , [dx]z; i = [dx]z, i − Γ`iz[dx]` = 0

[dx]ρ ;ρ = [dx]ρ, ρ − Γiρρ[dx]i = 0

[dx]ρ ;φ = [dx]ρ, φ − Γφφρ[dx]φ = 0

[dx]φ ;ρ = [dx]φ, ρ − Γφρφ[dx]φ = 0

[dx]φ ;φ = [dx]φ, φ − Γρφφ[dx]ρ = 0

Similarly there is nothing new to learn from ∇dy = 0. Finally

[dz]ρ = 0 = [dz]φ , [dz]z = 1

so
[dz]i; j = [dz]i,j − Γzji[dz]z = −Γzji = 0 .

6.5.1: orthogonal coordinate connection components

6.5.2: symmetry of connection components

6.5.3: differential log metric determinant

6.5.4: trace of the connection components

6.5.5: cylindrical coordinate connection components
We start from the formulas

• Γ̄ijk =
1

2
ḡi`(ḡ`j, k − ḡjk, ` + ḡk`, j) but ḡij = ḡji so

Γ̄ikj =
1

2
ḡi`(ḡ`k, j − ḡkj, ` + ḡj`, k) = Γ̄ijk

• Γ̄ijk =
1

2
(ḡij, k − ḡjk, i+ ḡki, j)

[Note this is symmetric in (jk) for the same reason]

ḡρρ = 1 = ḡzz , ḡφρ = ρ2 .

At least two indices have to be the same to get a diagonal metric component to differentiate,
otherwise you differentiate an off diagonal metric component which is zero. Finally the only
diagonal component with a nonzero derivative is gφφ = ρ2 so the indices have to be some
permutation of (φφρ) to get a nonzero result.

Γρφφ =
1

2
(gρφ, φ − gφφ, ρ + gφρ, φ) =

1

2
(2ρ) = −ρ

Γφρφ =
1

2
(gφρ, φ − gρφ, φ + gφφ, ρ) =

1

2
(2ρ) = ρ

Γφφρ =
1

2
(gφφ, ρ − gφρ, φ + gρφ, φ) = Γφρφ = ρ
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since symmetric in last two indices in coordinate frame. Now raise first index:

Γρφφ = gρρΓρφφ = −ρ

Γφρφ = gφφΓφρφ = ρ−2(ρ) =
1

ρ
= Γφφρ. Done.

Interpretation:

∇eφeφ = −ρeρ , ∇eφeρ =
1

ρ
eφ = ∇eρeφ

eφ has length ρ. Translate its value at (ρ, φ∆φ) back to (ρ, φ) so has same initial point as eφ
at (ρ, φ). Difference is ≈ −ρ∆φ in radial direction. Try interpreting another.

Figure F.6: Geometrically determining how eφ̂ rotates as one increases φ.

6.5.6: covariant constant tensor

Preliminary remark. Whatever symmetries a tensor has, its covariant derivative has the
same symmetries. Tij = Tji is symmetric so

Tij ;k =
(3)

Tij ,k −Γ`ki
(1)

T`j −Γ`kj
(2)

Ti`

Tji ;k =
(3)

Tji ,k −Γ`ki
(2)

T`i −Γ`ki
(1)

Tj`=
(3)

Tij ,k −Γ`ki
(1)

T`j −Γ`kj
(2)

Ti`

= Tij ;k

A symmetric 2-index object in 3-dimensions has 6 independent components. Its covariant
derivative has 6×3 = 18 in general (still a lot, no?). But really this is a 2-dimensional problem
because nothing depends on z and no z components are nonzero so no z-component of Tij ; k is
nonzero. So we have 3 independent components of Tij times 2 for its covariant derivate for a
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grand total 6. Not too bad. Thus we calculate

(Tρρ,Tφφ, Tρφ) = (cos2 φ, ρ2 sin2 φ,−ρ sinφ cosφ)

Γρφφ = −ρ , Γφρφ = Γφφρ = ρ−1

Tρρ;ρ = Tρρ,ρ − ΓiρρTiρ − ΓiρρTρi = 0

Tρρ;φ = Tρρ,φ − ΓiφρTiρ − ΓiρρTρi = −2 cosφ sinφ+ 2 sinφ cosφ = 0

Tφφ;ρ = Tφφ,ρ − ΓiρφTiφ − ΓiρφTφi = 2ρ sin2 φ− 2ρ sin2 φ = 0

Tφφ;φ = Tφφ,φ − ΓiφφTiφ − ΓiφφTφi = 2ρ2 sinφ cosφ− 2ρ2 sinφ cosφ = 0

Tρφ;ρ = Tρφ,ρ − ΓiρρTiφ − ΓiρφTρi = − sinφ cosφ+ sinφ cosφ = 0

Tρφ;φ = Tρφ,φ − ΓiφρTiφ − ΓiφφTφi = −ρ(cos2 φ− sin2 φ)− ρ sin2 φ+ ρ cos2 φ = 0

Thus all components are zero as expected.

6.6.1: antisymmetric part of connection components

Γi[jk] = {
i

[jk]}+
1

2
(Ci

[jk] − C[jk]
i + C[k

i
j])

=
1

2
Ci

jk

if you don’t believe it :

Ck
i
j = gkmg

inCm
nj = −gkmginCm

jn = −Ckji

6.6.2: cylindrical coordinate orthonormal frame connection components
In Exercise 5.9.5 we found

C φ̂
ρ̂φ̂ = −1

ρ
= −C φ̂

φ̂ρ̂

(only nonzero structure function)

So to get a nonzero component of Γî ĵk̂ the indices must be a permutation of (φ̂, φ̂, ρ̂).

Γρ̂φ̂φ̂ =
1

2
(C ρ̂

φ̂φ̂ − Cφ̂φ̂ρ̂ + Cφ̂
ρ̂
φ̂) =

1

2
(C ρ̂

φ̂φ̂ − C φ̂
φ̂ρ̂ + C φ̂

ρ̂φ̂)

= C φ̂
ρ̂φ̂ = −1

ρ

Γφ̂ρ̂φ̂ =
1

2
(C φ̂

ρ̂φ̂ − Cρ̂φ̂φ̂ + Cφ̂
φ̂
ρ̂) =

1

2
(C φ̂

ρ̂φ̂ − C ρ̂
φ̂φ̂ + C φ̂

φ̂ρ̂) = 0

Γφ̂φ̂ρ̂ =
1

2
(C φ̂

φ̂ρ̂ − Cφ̂ρ̂φ̂ + Cρ̂
φ̂
φ̂) =

1

2
(C φ̂

φ̂ρ̂ − C φ̂
ρ̂φ̂ + C ρ̂

φ̂φ̂)

= C φ̂
φ̂ρ̂ =

1

ρ

Compare with page (58)?? and oops! I forgot to normalize!
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ˆ̄ω = (Γ̄î ĵk̂ω̄
ĵ) =

0 −1 0
1 0 0
0 0 0

 dφ =

 0 −ρ−1 0
ρ−1 0 0
0 0 0

ωφ̂

so
Γ̄ρ̂φ̂φ̂ = −ρ−1 , Γ̄φ̂φ̂ρ̂ = ρ−1

agreement

6.6.3: constant metric component connection

6.6.4: the torsion tensor

6.7.1: Jacobi identity components

6.7.2: commutators of rotations and translations

6.7.3: Lie brackets of linear trasformation generating vector fields

6.7.4: polar coordinate vector fields

6.7.5: 3-sphere vector fields

6.8.1: (pseudo-) orthogonal group generators are Killing vector fields

6.8.2: comma to semicolon rule for Lie derivative of a metric

6.8.3: 1-form Lie derivative

6.8.4: Lie derivative and the Jacobi identity

6.8.5: complex numbers and rotations

6.8.6: gauge invariant derivative

6.8.7: vector potential for electromagnetic field

6.8.8: non-Abelian gauge theories

6.8.9: angular momentum ladder operators and representation theory for SU(2) ∼
SO(3,R)

6.8.10: Gell-Mann matrices

6.9.1: angular momentum commutation relations

??: tracefree Lie algebra
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6.??:
on page (57) worked
Preliminary remark. In any frame we have the definition

δijmn = δimδ
j
n − δinδjm .

If we differentiate this equation

δijmn;k = δim;kδ
j
n + δimδ

j
n;k − δin;kδ

j
m − δinδjm;k = 0

then ∇δ(2) = 0 follows from ∇δ = 0 and the product rule.
However, just using the formula in the barred frame

δ̄ijmn;k = δ̄ijmn, k + Γ̄ik`δ̄
`j
mn + Γ̄jk`δ̄

i`
mn − Γ̄`kmδ̄

ij
`n − Γ̄`knδ̄

ij
m`

= (Γ̄ikmδ̄
j
n − Γ̄iknδ̄

j
m) + (Γ̄jknδ̄

i
m − Γ̄jkmδ̄

i
n)− (Γ̄ikmδ̄

j
n − Γ̄jkmδ̄

i
n)− (Γ̄jknδ̄

i
m − Γ̄iknδ̄

j
m)

= 0 .

??:
on page (59) worked.
Remember only

Γρφφ = −ρ , Γφφρ = ρ−1 , Γφρφ = ρ−1

are nonzero X, Y and no Z components, no components depend on Z, so this is basically a
2-dimensional problem. (anything with a Z index vanishes ).
so:

Xρ = cosφ Xφ = −sinφ

ρ
write down only nonzero terms:

Xρ
;ρ = Xρ,ρ +ΓρρiX

i = 0

Xρ
;φ = Xρ,φ +ΓρφφX

φ = − sinφ+ sinφ = 0

Xρ
;z = Xρ,z +ΓρziX

i = 0

Xφ
;ρ = Xφ,ρ +ΓφρφX

φ =
1

ρ2
sinφ− 1

ρ2
sinφ = 0

Xφ
;φ = Xφ,φ +ΓρφρX

ρ = 0

Xφ
;z = Xφ,z +ΓφziX

i = 0

Xz
;i = Xz,i +ΓzijX

j = 0

so X i
; j = 0, i.e., ∇X = 0. nothing new to be gained by doing ∇[ ∂

∂y
] = 0 so let’s move on :

[dx]ρ = cosφ [dx]φ = −ρ sinφ , [dx]i; j = [dx]i, j − Γ`ji[dx]`

[dx]i; z = [dx]i, z − Γ`zi[dx]` = 0 , [dx]z; i = [dx]z, i − Γ`iz[dx]` = 0

[dx]ρ ;ρ = [dx]ρ, ρ − Γiρρ[dx]i = 0

[dx]ρ ;φ = [dx]ρ, φ − Γφφρ[dx]φ = 0

[dx]φ ;ρ = [dx]φ, ρ − Γφρφ[dx]φ = 0

[dx]φ ;φ = [dx]φ, φ − Γρφφ[dx]ρ = 0
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nothing new from ∇dy = 0. Finally

[dz]ρ = 0 = [dz]φ , [dz]z = 1

so
[dz]i; j = [dz]i,j − Γzji[dz]z = −Γzji = 0 .

6.??:
on page 62 worked

• Γ̄ijk =
1

2
ḡi`(ḡ`j, k − ḡjk, ` + ḡk`, j) but ḡij = ḡji so

Γ̄ikj =
1

2
ḡi`(ḡ`k, j − ḡkj, ` + ḡj`, k) = Γ̄ijk

• Γ̄ijk =
1

2
(ḡij, k − ḡjk, i+ ḡki, j)

[Note this is symmetric in (jk) for the same reason]

ḡρρ = 1 = ḡzz , ḡφρ = ρ2 .

At least two indices have to be the same to get a diagonal metric component to differentiate,
otherwise you differentiate an off diagonal metric component which is zero. Finally the only
diagonal component with a nonzero derivative is gφφ = ρ2 so the indices have to be some
permutation of (φφρ) to get a nonzero result.

Γρφφ =
1

2
(gρφ, φ − gφφ, ρ + gφρ, φ) =

1

2
(2ρ) = −ρ

Γφρφ =
1

2
(gφρ, φ − gρφ, φ + gφφ, ρ) =

1

2
(2ρ) = ρ

Γφφρ =
1

2
(gφφ, ρ − gφρ, φ + gρφ, φ) = Γφρφ = ρ

since symmetric in last two indices in coordinate frame. Now raise first index:

Γρφφ = gρρΓρφφ = −ρ

Γφρφ = gφφΓφρφ = ρ−2(ρ) =
1

ρ
= Γφφρ. Done.

Interpretation:

∇eφeφ = −ρeρ , ∇eφeρ =
1

ρ
eφ = ∇eρeφ

eφ has length ρ. Translate its value at (ρ, φ∆φ) back to (ρ, φ) so has same initial point as eφ
at (ρ, φ). Difference is ≈ −ρ∆φ in radial direction. Try interpreting another.

6.??:
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Figure F.7: Geometrically determining how eφ̂ rotates as one increases φ.

last exercise on page (62) worked

Preliminary remark. Whatever symmetries a tensor has, its covariant derivative has the
same symmetries.

6.??:

on page (64) worked

Γi[jk] = {
i

[jk]}+
1

2
(Ci

[jk] − C[jk]
i + C[k

i
j])

=
1

2
Ci

jk

if you don’t believe it :

Ck
i
j = gkmg

inCm
nj = −gkmginCm

jn = −Ckji

On page (53) we found

C φ̂
ρ̂φ̂ = −1

ρ
= −C φ̂

φ̂ρ̂

(only nonzero structure function)
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So to get a nonzero component of Γî ĵk̂ the indices must be a permutation of (φ̂, φ̂, ρ̂).

Γρ̂φ̂φ̂ =
1

2
(C ρ̂

φ̂φ̂ − Cφ̂φ̂ρ̂ + Cφ̂
ρ̂
φ̂) =

1

2
(C ρ̂

φ̂φ̂ − C φ̂
φ̂ρ̂ + C φ̂

ρ̂φ̂)

= C φ̂
ρ̂φ̂ = −1

ρ

Γφ̂ρ̂φ̂ =
1

2
(C φ̂

ρ̂φ̂ − Cρ̂φ̂φ̂ + Cφ̂
φ̂
ρ̂) =

1

2
(C φ̂

ρ̂φ̂ − C ρ̂
φ̂φ̂ + C φ̂

φ̂ρ̂) = 0

Γφ̂φ̂ρ̂ =
1

2
(C φ̂

φ̂ρ̂ − Cφ̂ρ̂φ̂ + Cρ̂
φ̂
φ̂) =

1

2
(C φ̂

φ̂ρ̂ − C φ̂
ρ̂φ̂ + C ρ̂

φ̂φ̂)

= C φ̂
φ̂ρ̂ =

1

ρ

Compare with page (58??) and oops! I forgot to normalize!

ˆ̄ω = (Γ̄î ĵk̂ω̄
ĵ) =

0 −1 0
1 0 0
0 0 0

 dφ =

 0 −ρ−1 0
ρ−1 0 0
0 0 0

ωφ̂

so
Γ̄ρ̂φ̂φ̂ = −ρ−1 , Γ̄φ̂φ̂ρ̂ = ρ−1 agreement
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Chapter 7

7.1.1: gradient in cylindrical and spherical coordinates

7.1.2: curl and div in cylindrical coordinates

7.1.3: more curl and div in cylindrical coordinates

7.1.5: still more curl and div in cylindrical and spherical coordinates

7.2.1: harmonic coordinates

7.2.2: harmonic function

11.8.2: grad, curl and div in cylindrical and spherical coordinates

7.2.4: Laplacian and angular momentum

∂2

∂x2
=

(
∂

∂x

)2

=

(
cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ

)(
cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ

)
= cos2 φ

∂2

∂ρ2
− 2 cosφ sinφ

ρ

∂2

∂ρ∂φ
− sinφ

ρ
(− sinφ)

∂

∂ρ
+

sin2 φ

ρ2

∂2

∂φ2

+

[
cosφ

(
sinφ

ρ2

)
+

2 sinφ cosφ

ρ2

]
∂

∂φ

= cos2 φ
∂2

∂ρ2
+

sin2 φ

ρ

∂

∂ρ
+

sin2 φ

ρ2

∂2

∂φ2
− 2 cosφ sinφ

ρ

∂2

∂ρ∂φ
+

2 cosφ sinφ

ρ2

∂

∂φ

∂2

∂y2
=

(
∂

∂y

)2

=

(
sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ

)(
sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ

)
= sin2 φ

∂2

∂ρ2
+

cosφ(cosφ)

ρ

∂

∂ρ
+

2 sinφ cosφ

ρ

∂2

∂ρ∂φ
+

cos2 φ

ρ2

∂2

∂φ2

+

[
sinφ cosφ

−ρ2
+

cosφ

ρ

(− sinφ

ρ

)]
∂

∂φ

= sin2 φ
∂2

∂ρ2
+

cos2 φ

ρ

∂

∂ρ
+

cos2 φ

ρ2

∂2

∂φ2
+

2 sinφ cosφ

ρ

∂2

∂ρ∂φ
− 2 cosφ sinφ

ρ2

∂

∂φ

∂2

∂x2
+
∂2

∂y2
= (cos2 φ+ sin2 φ)

∂2

∂ρ2
+

sin2 φ+ cos2 φ

ρ

∂

∂ρ
+

sin2 φ+ cos2 φ

ρ2

∂2

∂φ2

+

[− cosφ sinφ

ρ
+

cosφ sinφ

ρ

]
∂2

∂ρ∂φ
+

[
2 cosφ sinφ

ρ2
− 2 cosφ sinφ

ρ2

]
∂

∂φ

=
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
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Thus the Laplacian expressed in cylindrical coordinates is

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+
∂2

∂z2
.

Replacing (ρ, φ) by (r, θ) in the preliminary result before this yields the Laplacian ∇2 on
R2 in polar coordinates

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
.

Note that
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
=
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
,

so the first two terms can be rewritten as

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
.

7.2.5: angular momentum and Cartesian coordinate functions

7.3.1: matrix product representation of orthonormal frame

7.3.2: spherical coordinate orthonormal frame connection vector

7.3.3: spherical coordinate connection 1-forms

??: gradient and differential in cylindrical coordinates
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Chapter 8

8.1.1: directional derivative along a curve

8.1.2: directional derivative along curve in cylindrical coordinates

8.1.3: covariant derivative in spherical coordinates

8.2.1: parallel transport along lines of latitude

8.2.2: parallel combed hair on the sphere

8.2.3: Tangent cone to a sphere

8.3.1: covariant geodesic equation

8.3.2: geodesic coordinate lines

8.3.3: Lorentz force

8.4.1: metric for a surface of revolution

8.4.2: tangent cone to surface of revolution

8.4.3: planes, cylinders and cones

8.4.4: black hole embedding surfaces

8.4.5: parallel transport along circles

8.5.1: geodesics on a surface of revolution

8.5.2: surface of revolution meridian arclength

8.6.1: plane geodesics in polar coordinates

8.6.2: orbit equation for plane geodesics in polar coordinates

8.6.3: quadratic potential motion

8.6.4: radius versus time

8.12.1: black hole orbits

8.7.1: intrinsic osculating circle

8.7.2: geodesics on the cylinder
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8.7.3: geodesics on the unit sphere

8.7.4: geodesics on the unit sphere: orbit equation

8.7.5: orthonormal coordinate frame connection 1-form matrix by transformation

8.7.6: connection in spacelike pseudospherical coordinates

8.7.7: connection on the spacelike pseudosphere

8.7.8: connection in timelike pseudospherical coordinates

8.7.9: geodesics on the unit timelike pseudosphere

8.7.10: geodesics on the unit hyperboloid of one sheet

8.7.11: parabola of revolution geodesics

8.7.12: geodesics on ellipse of revolution

8.8.1: toroidal coordinates

8.8.2: toroidal coordinates for the torus

8.8.3: toroidal coordinate metric

8.8.4: surface of revolution connection

8.8.5: geodesics on the unit torus

8.9.1: Lagrangian equations for geodesics

8.9.2: simple harmonic oscillator

8.9.3: principle of least action for a charged particle

8.9.4: spherical pendulum: gravity as geometry

8.11.1: cavatappo 2.0

8.11.2: the Lorentz cavatappo 2.0 surface

8.11.3: tilted helical surfaces

8.11.5: helicoids
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Chapter 9

9.1.1: Riemann, Ricci and Einstein in 3 dimensions

9.1.2: Riemann, Ricci and Einstein in 2 dimensions

9.1.3: covariant components of Riemann
a) The antisymmetric part over 3 indices collapses from 6 to 3 terms because of the anti-

symmetry on the last pair of indices

Ri
[jk`] =

1

3!
(Ri

jk` +Ri
k`j +Ri

`jk −Ri
j`k −Ri

kj` −Ri
`kj)

=
1

3
(Ri

jk` +Ri
k`j +Ri

`jk) = 0 .

d) The number of independent conditions represented by the Bianchi identities of the first
kind is the number of combinations of n things taken 4 at a time:(

n

4

)
=

n!

4!(n− 4)!
=

1

4!
n(n− 1)(n− 2)(n− 3) .

The four index values must be distinct since if one value is repeated, we saw that it reduces
to some combination of the pair interchange symmetries. Given one value for the first position
in the Bianchi identities, one can then use the pair interchange symmetries to move any other
of three remaining values into the first slot in all three terms, so every combination of the 4
values is equivalent to any other. Their order does not matter so the number of combinations
of n things taken 4 at a time gives the number of independent conditions represented by the
Bianchi identities. This took me quite some time to reason out. I never would have gotten
to this reasoning without deducing the count from the other two formulas using a computer
algebra system.

9.1.4: symmetries of Riemann

9.1.5: curvature of planes, cylinders, spheres

9.1.6: curvature of an ellipsoid of revolution

9.1.7: curvature of an elliptical paraboloid

9.1.8: curvature of surface of revolution

9.1.9: curvature in cylindrical coordinates

9.1.10: curvature from integrability conditions

9.1.11: Jacobi and Bianchi identities
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9.3.1: frame components of Riemann

9.4.1: meridians on ellipsoid of revolution

9.4.2: minimum convergence length on the ellipsoid of revolution

9.4.3: minimum convergence length on the torus

9.4.4: minimum convergence length on the cavatappo surfaces

9.4.5: curvature of elliptic paraboloid

9.4.6: curvature of pseudospheres compared to corresponding hyperboloids in R3
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Chapter 10

10.3.1: Taylor approximation to the sphere

10.3.2: monkeysaddle degeneracy

10.3.3: Gaussian curvature of a surface of revolution

10.3.4: Gaussian curvature of a helicoid

10.4.1: extrinsic curvature as a connection component

10.4.2: decomposition of curvature on a family of surfaces

10.4.3: spaces of constant curvature

10.4.4: spherical coordinates with a signature change

10.4.5: extrinsic curvature of pseudospheres

10.4.6: curvature of hyperbolic paraboloid

10.5.1: tilted cavatappo surface curvature

10.6.1: shape operator insensitive to length of normal

10.6.2: geodesics on the sphere and ellipsoid

10.6.3: geodesics on the approximate gyroid

10.6.4: rotation of the surface normal compared to the Frenet-Serret frame

10.6.5: relative rotation of Frenet-Serret frame and surface adapted frame

10.6.6: Gaussian curvature of implicitly defined surface
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Chapter 11

11.2.1: integration in the plane over a parallelogram

11.2.2: snow cone centroid integration

11.3.1: differential of surface area

11.4.1: surface integral on a sphere

11.4.2: contraction of 2-form with 2-vector

11.4.3: integration over a triangular surface in space

11.6.2: integration of a 2-form in 3-spacetime

11.7.1: exterior derivatives in cylindrical coordinates

11.7.2: exterior derivative in a frame, curvature 2-form

11.7.3: curvature of the 3-sphere

11.7.4: SU(2) gauge derivative

11.8.1: tensor-valued differential forms

11.8.2: grad curl div

11.8.3: Maxwell’s equations in differential form

11.8.4: vector potential for electromagnetic field

11.8.5: codifferential versus divergence sign
b) Recall ∗

−1
S = (−1)M+p(n−p)∗S for a p-form S. Then for a p-form β we have

δβ = (−1)p+M ∗
−1 ∗d ∗β︸︷︷︸

n−p︸ ︷︷ ︸
n−p+1︸ ︷︷ ︸

n−(n−p+1)=p−1

= (−1)Q ∗d∗β

= (−1)n(p−1)+1 ∗d∗β ,
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where

Q = p+M +M + (p− 1)(n− (p− 1)) = 2M + p+ n(p− 1)− (p− 1)2

= n(p− 1) + 2M + p− p2 + 2p− 1 = n(p− 1)− 1 + [2M + 2p− p(p− 1)]

= n(p− 1) + 1 ,

since the terms in square brackets are even and (−1)−1 = (−1)1.

11.8.6: Maxwell’s equations and the codifferential

11.8.7: spacetime deRham cohomology

11.9.1: snow cone surface integral

11.11.1: paraboloidal solid integration

11.11.2: wedge of cylinder integration

11.11.3: unit ball integration

11.12.1: 3-sphere exterior derivatives

11.12.2: integration between 2-spheres
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Chapter 12: final exam worked

1) Eliminating ν from the first equation ρ = µν −→ ν = ρ/µ leads to a quadratic equation for
µ when substituted into the second equation

z =
1

2
(µ2 − ν2) = 1

2
(µ2 − ρ2/µ2)

µ4 − 2zµ2 − ρ2 = 0

µ2 =
1

2
(2z ±

√
4z2 + 4ρ2) = z +

√
z2 + ρ2 ≥ 0

µ =

√
z +

√
z2 + ρ2 (µ ≥ 0)

or vice versa µ = ρ/ν leads to

z = 1
2
(ρ2/ν2 − ν2)

2z + ν2 = ρ2/ν2

ν4 + 2zν2 − ρ2 = 0

ν2 =
1

2
(2z ±

√
4z2 + 4ρ2) = −z +

√
z2 + ρ2

ν =

√
−z +

√
z2 + ρ2 (ν ≥ 0)

Note

z2 + ρ2︸ ︷︷ ︸
z2+x2+y2=r2

= 1
4
(4µ2ν2 + µ4 − 2µ2ν2 + ν4) =

(
µ2 + ν2

2

)2

so

r =
√
z2 + ρ2 =

µ2 + ν2

2
or µ2 + ν2 =

r

2
.

2) Evaluate the differentials and read off the partial derivative coefficients to arrange in the
Jacobian matrix

x = µν cosφ dx = ν cosφ dµ+ µ cosφ dν − µν sinφ dφ

y = µν sinφ dy = ν sinφ dµ+ µ sinφ dν − µν cosφ dφ

z =
1

2
(µ2 − ν2) dz = µ dµ− ν dν

A−1(x̄) =

ν cosφ µ cosφ −µν sinφ
ν sinφ µ sinφ µν cosφ
µ −ν 0


3) The self-dot products of the orthogonal columns give the diagonal metric components

g = δijdx
i ⊗ dxj = (µ2 + ν2)[dµ⊗ dµ+ dν ⊗ dν] + µ2ν2dφdφ
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4) Row expansion on last row of the determinant of the Jacobian matrix

det A−1(x̄) = µ

∣∣∣∣µ cosφ −µν sinφ
µ sinφ µν cosφ

∣∣∣∣− (−ν)

∣∣∣∣ν cosφ −µν sinφ
ν sinφ µν cosφ

∣∣∣∣
= µ(µ2ν) + ν(µν2) = µν(µ2 + ν2) ≥ 0

shows that the new coordinate frame is positively oriented and the unit volume 3-form is

η = µν(µ2 + ν2)︸ ︷︷ ︸
(gµµgννgφφ)1/2

dµ ∧ dν ∧ dφ

5) The normalized frame and dual frame are

eµ̂ =
1

(µ2 + ν2)1/2

∂

∂µ
, eν̂ =

1

(µ2 + ν2)1/2

∂

∂ν
, eφ̂ =

1

(µν)

∂

∂φ

ωµ̂ = (µ2 + ν2)1/2dµ , ων̂ = (µ2 + ν2)1/2dν , ωφ̂ = µνdφ

(note η = ωµ̂ ∧ ων̂ ∧ ωφ̂ = ωµ̂ν̂φ̂ ) so normalizing the columns of the Jacobian matrix yields the
orthogonal matrix

A−1(x̄) =


ν

(µ2+ν2)1/2
cosφ µ

(µ2+ν2)1/2
cosφ − sinφ

ν
(µ2+ν2)1/2

sinφ µ
(µ2+ν2)1/2

sinφ cosφ

µ
(µ2+ν2)1/2

−ν
(µ2+ν2)1/2

0


and its inverse is its transpose

A(x̄) =


ν

(µ2+ν2)1/2
cosφ ν

(µ2+ν2)1/2
sinφ µ

(µ2+ν2)1/2

µ
(µ2+ν2)1/2

cosφ µ
(µ2+ν2)1/2

sinφ −ν
(µ2+ν2)1/2

− sinφ cosφ 0


Multiplying these rows by the corresponding normalization factors used above for the

columns gives the inverse Jacobian matrix expressed in terms of the new coordinates

A(x̄) =


ν

µ2+ν2
cosφ ν

µ2+ν2
sinφ µ

µ2+ν2

µ
µ2+ν2

cosφ µ
µ2+ν2

sinφ −ν
µ2+ν2

−1
µν

sinφ 1
µν

cosφ 0

 =

(
∂X̄ i

∂xj
(x(x̄))

)
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6) Now recall that 2
√
z2 + ρ2 = µ2 + ν2 which can be used to simplify the differentials of

the new coordinates, so for example,

µ = (z + (z2 + ρ2)1/2)1/2

dµ =
1

2( )1/2

[
dz +

1

2

[2zdz + 2xdx+ 2ydy]

(z2 + ρ2)1/2

]

=
1

2µ

[
(µ2 + ν2)dz + [2zdz + 2xdx+ 2ydy]

µ2 + ν2

]

=
1

2µ

[
2xdx+ 2ydy + 2µ2dz

µ2 + ν2

]
=
xdx+ ydy + µ2dz

µ(µ2 + ν2)

=
µν cosφdx+ µν sinφdy + µ2dz

µ(µ2 + ν2)

=
ν cosφdx+ ν sinφdy + µ2dz

µ2 + ν2

and these components of dµ are exactly the first rows of A(X̄). The second row is handled
similarly. The last row comes from

dφ =
− sinφ

ρ
dx+

cosφ

ρ
dy

which is the cylindrical coordinate result with ρ then replaced by µν.

7) We compute the Lie brackets of the orthonormal frame vectors, recalling [X, Y ] = XY −
Y X

[eν̂ , eφ̂] =

[
(µ2 + ν2)−1/2 ∂

∂ν
, (µν)−1 ∂

∂φ

]
= (µ2 + ν2)−1/2 1

µ
(
−1

ν2
)
∂

∂φ

=
−1

(µ2 + ν2)1/2 ν
eφ̂ → C φ̂

ν̂φ̂ =
−1

(µ2 + ν2)1/2 ν

[eµ̂ , eφ̂] =

[
(µ2 + ν2)−1/2 ∂

∂µ
, (µν)−1 ∂

∂φ

]
= (µ2 + ν2)−1/2 1

ν
(
−1

µ2
)
∂

∂φ

=
−1

(µ2 + ν2)1/2µ
eφ̂ → C φ̂

µ̂φ̂ =
−1

(µ2 + ν2)1/2µ
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[eµ̂ , eν̂ ] =

[
(µ2 + ν2)−1/2 ∂

∂µ
, (µ2 + ν2)−1/2 ∂

∂ν

]
= (µ2 + ν2)−1/2 ∂

∂µ
(ln(µ2 + ν2)−1/2)

∂

∂ν
− (µ2 + ν2)−1/2 ∂

∂ν
(ln(µ2 + ν2)−1/2)

∂

∂µ

=
−1

2
(µ2 + ν2)−1 2µ

(µ2 + ν2)

∂

∂ν
+

1

2
(µ2 + ν2)−1 2ν

(µ2 + ν2)

∂

∂µ

=
1

(µ2 + ν2)2
[−µeν̂ + νeµ̂] →

C µ̂
µ̂ν̂ =

ν

(µ2 + ν2)2
, C ν̂

µ̂ν̂ =
−µ

(µ2 + ν2)2

8) For more manageable matrix notation, introduce the abbreviations 2r = µ2 +ν2, ρ = µν,
S = sinφ and C cosφ a)

ω̄ = A dA−1 =


ν

(2r)2
C ν

(2r)2
S µ

(2r)2

µ
(2r)2

C µ
(2r)2

S −ν
(2r)2

−1
ρ
S 1

ρ
C 0

 d


νC µC −µνS

νS µS µνC

µ −ν 0


︸ ︷︷ ︸0 C −νS

0 S νC
1 0 0

 dµ+

C 0 −µS
S 0 µC
0 −1 0

 dν +

−νS −νS −µνC
νC µC −µνS
0 0 0

 dφ

=


µ

(2r)2
ν

(2r)2
0

−ν
(2r)2

µ
(2r)2

0

0 0 1
µ

 dµ+

 ν
(2r)2

−µ
(2r)2

0
µ

(2r)2
ν

(2r)2
0

0 0 1
ν

 dν +

0 0 −µν2
(2r)2

0 0 −µ2ν
(2r)2

ν
ρ

µ
ρ

0

 dφ

=


Γ̄µµµ Γ̄µµν 0

Γ̄νµµ Γ̄νµν 0

0 0 Γ̄φµφ

 dµ+


Γ̄µνµ Γ̄µνν 0

Γ̄ννµ Γ̄ννν 0

0 0 Γ̄φνφ

 dν +

 0 0 Γ̄µφφ
0 0 Γ̄νφφ

Γ̄µφµ Γ̄νφν 0

 dφ

Identifying the nonzero entries gives the nonzero coordinate components of the connection.
9a) Alternatively by explicit differentiation

Γijk = 1
2
(gij,k−gjk,i +gki,j ) Γijk = giiΓijk = (gii)

−1Γijk (orthogonal coordinate)
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gµµ = gνν = µ2 + ν2 , gφφ = µν

Γµµµ = 1
2
(gµµ,µ−gµµ,µ +gµµ,µ ) = µ Γµµµ =

µ

µ2 + ν2
= [ωµµ]µ

Γµµν = 1
2
(gµµ,ν −gµν ,µ +gνµ,µ ) = ν Γµµν =

ν

µ2 + ν2
= [ωµν ]µ

Γνµµ = 1
2
(gνµ,µ−gµµ,ν +gµν ,µ ) = −ν Γνµµ =

−ν
µ2 + ν2

= [ωνµ]µ

Γνµν = 1
2
(gνµ,ν −gµν ,ν +gνν ,µ ) = µ Γνµν =

µ

µ2 + ν2
= [ωνν ]µ

Γφφµ = 1
2
(gφφ,µ−gφµ,φ +gφµ,φ ) = µν2 Γφφµ =

1

µ
=
ν

ρ

Γφφν = 1
2
(gφφ,ν −gφν ,φ +gφν ,φ ) = νµ2 Γφφµ =

1

ν
=
µ

ρ

Γφµφ = 1
2
(gφµ,φ−gµφ,φ +gφφ,µ ) = µν2 Γφµφ =

1

µ

Γφνφ = 1
2
(gφν ,φ−gνφ,φ +gφφ,ν ) = µ2ν Γφνφ =

1

ν

8b)

P ≡ µ

(µ2 + ν2)1/2
, Q ≡ ν

(µ2 + ν2)1/2
, P 2 +Q2 = 1

∂P

∂µ
=

(µ2 + ν2)1/2 · 1− µ · 1
2

2µ
( )1/2

(µ2 + ν2)
=

(µ2 + ν2)− µ2

(µ2 + ν2)3/2
=

ν2

(µ2 + ν2)3/2

∂P

∂ν
=

(µ2 + ν2)1/2 · 0− µ · 1
2

2ν
( )1/2

(µ2 + ν2)
=

−µν
(µ2 + ν2)3/2

∂Q

∂µ
=

(µ2 + ν2)1/2 · 0− ν · 1
2

2µ
( )1/2

(µ2 + ν2)
=

−µν
(µ2 + ν2)3/2

∂Q

∂ν
=

(µ2 + ν2)1/2 · 1− ν · 1
2

2ν
( )1/2

(µ2 + ν2)
=

(µ2 + ν2)− ν2

(µ2 + ν2)3/2
=

µ2

(µ2 + ν2)3/2

ω̂ = A dA−1

=

QC QS P
PC PS −Q
−S C 0

 d

QC PC −S
QS PS C
P −Q 0


︸ ︷︷ ︸

−µνC ν2C 0
−µνS ν2S 0
ν2 µν 0

 dµ

(µ2 + ν2)3/2
+

µ2C −µνC 0
µ2S −µνS 0
−µν −µ2 0

 dν

(µ2 + ν2)3/2
+

−QS −PS −C
QC PC −S
0 0 0

 dφ
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=

 0 1 0
−1 0 0
0 0 0

 Q

(µ2 + ν2)
[(µ2 + ν2)1/2dµ] +

0 −1 0
1 0 0
0 0 0

 P

(µ2 + ν2)
[(µ2 + ν2)1/2dν]

+

0 0 −Q
0 0 −P
Q P 0

 1

µν
[µνdφ] =

(
Γîk̂ĵ

)
ω̂k̂

Γµ̂µ̂ν̂ =
ν

(µ2 + ν2)3/2
= −Γν̂ µ̂µ̂ , Γν̂ ν̂ν̂ = − µ

(µ2 + ν2)3/2
= −Γν̂ ν̂µ̂

Γµ̂φ̂φ̂ =
−1

µ(µ2 + ν2)1/2
= −Γφ̂µ̂φ̂ , Γν̂ φ̂φ̂ = − 1

ν(µ2 + ν2)1/2
= −Γφ̂φ̂ν̂

9b) or by direct evaluation of the component formulas in an orthonormal frame

Γî ĵk̂ = Γîĵk̂ = 1
2
(Cîĵk̂ − Cĵk̂î + Ck̂îĵ)

Cφ̂µ̂φ̂ =
−1

µ(µ2 + ν2)1/2
, Cφ̂ν̂φ̂ =

−1

ν(µ2 + ν2)1/2

Cµ̂ν̂µ̂ =
−ν

(µ2 + ν2)3/2
, Cν̂µ̂ν̂ =

−µ
(µ2 + ν2)3/2

Γµ̂µ̂ν̂ = 1
2
(Cµ̂µ̂ν̂ − Cµ̂ν̂µ̂ + Cν̂µ̂µ̂) = Cµ̂µ̂ν̂ =

ν

(µ2 + ν2)3/2

Γµ̂ν̂ν̂ = 1
2
(Cµ̂ν̂ν̂ − Cν̂ν̂µ̂ + Cν̂µ̂ν̂) = Cν̂µ̂ν̂ =

−µ
(µ2 + ν2)3/2

Γµ̂φ̂φ̂ = 1
2
(Cµ̂φ̂φ̂ − Cφ̂φ̂µ̂ + Cφ̂µ̂φ̂) = Cφ̂µ̂φ̂ =

−1

µ(µ2 + ν2)1/2

Γν̂ φ̂φ̂ = 1
2
(Cν̂φ̂φ̂ − Cφ̂φ̂ν̂ + Cφ̂ν̂φ̂) = Cφ̂ν̂φ̂ =

−1

ν(µ2 + ν2)1/2

11) For the 2-surface ν = ν0

(2)g = (µ2 + ν2
0)dµ⊗ dµ+ µ2ν0dφ⊗ dφ , , (2)η = µν0(µ2 + ν2

0)1/2dµ ∧ dφ

examining the components of the connection for the 3-metric, only the components Γ̄ijk evalu-
ated above with no ν indices are relevant here:

(2)Γµµµ =
µ

µ2 + ν2
0

, (2)Γφµφ =
1

µ
= (2)Γφφµ , (2)Γµφφ =

−µν2
0

µ2 + ν2
0

.

To get (2)ω, just delete the second row and column of ω̂µdµ+ ω̂φdφ, while setting ν = ν0:

(2)ω =

( µ
µ2+ν20

0

0 µ−1

)
dµ+

(
0

−µν20
µ2+ν20

µ−1 0

)
dφ =

(
µ

µ2+ν20
dµ

−µν20
µ2+ν20

dφ

µ−1dφ µ−1dµ

)
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d

(
µ

µ2 + ν2
0

)
=

(µ2 + ν2
0)− µ(2µ)

(µ2 + ν2
0)2

=
ν2

0 − µ2

(µ2 + ν2
0)2

d (µ−1) = −µ−2dµ .

d(2)ω =

 0
ν20 (µ2−ν20 )

µ2+ν20
dµdφ

−µ−2dµdφ 0

 ( d[f(µ)dµ] = f ′(µ)dµ ∧ dµ = 0 )

(2)ω ∧(2) ω =

 µ
µ2+ν20

dµ
−µν20
µ2+ν20

dφ

µ−1dφ µ−1dµ

 ∧
 µ

µ2+ν20
dµ

−µν20
µ2+ν20

dφ

µ−1dφ µ−1dµ



=

 0 [
−µ2ν20

(µ2+ν20 )2
+

ν20
µ2+ν20

]dµ ∧ dφ

[ −1
µ2+ν20

+ 1
µ2

]dµ ∧ dφ 0



(2)Ω = d (2)ω + (2)ω ∧(2) ω =

 0
µ2ν20

(µ2+ν20 )2
dµ ∧ dφ

−1
µ2+ν20

dµ ∧ dφ 0



(2)Rφ
µµφ =

−1

µ2 + ν2
0

(2)Rµ
φµφ =

µ2ν2
o

(µ2 + ν2
0)2

(2)Rφµµφ =
−µ2ν2

0

µ2 + ν2
0

(2)Rµφµφ =
µ2ν2

o

(µ2 + ν2
0)

= −(2)Rφµµφ .

12)

(2)Rµ̂
φ̂µ̂φ̂ = (gφφ)−1 (2)Rµ

φµφ =
1

(µ2 + ν2
0)2

at µ=0−→ 1

ν0
4

12b)

z =
1

2ν0
2
ρ2 − 1

2
ν0

2 dz

ν0
2

=
ρ

ν0
2

d2z

dρ2
=

1

ν0
2

K =
1/ν2

0

[1 + ρ2/ν0
4]3/2

K|ρ=0 =
1

ν0
2
.

The relationship is
(2)Rµ̂

φ̂µ̂φ̂(µ = 0) = [K(ρ = 0)]2
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Figure F.8: The circles of best fit at the origin.

so
(2)Rαβ

γδ = (2)K δαβγδ , (2)K =
1

(µ2 + ν0
2)2

At the vertex any orthogonal pair of vertical planes through the z-axis are the same and
lead to 2 orthogonal osculating circles of best fit to those parabolas with the same radius and
center.

The “2-curvature” (2)K = Rµ̂
φ̂µ̂φ̂ evaluated there there is just the product of these two

“1-curvatures” K = 1
ν02

. (See page 111. [fix])

Figure F.9: The circles of best fit at away from the origin.

Suppose we consider points on this surface far from the vertex where the parallels nearly
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coincide with the normal intersection of the surface by the normal plane of the meridians,
namely for very large µ (µ >> ν0), then

ρ2

ν4
0

=
µ2ν2

0

ν4
0

=
µ2

ν4
0

>> 1

the horizontal cross-section (φ-coordinate circle of radius ρ = µν0) is a circle whose connecting
vector from its center to the point of tangency is almost along the normal direction. Together
with the osculating circle of the parabola vertical cross-section, one obtains two nearly orthog-
onal circles of best fit.

Kcircle =
1

ρ
=

1

µρ0

Kparabola =
1

ν0
2[1 + ρ2

ν40
]3/2
≈ 1

ν0
2( ρ

2

ν40
)3/2

=
ν0

4

ρ3
=

ν0
4

(µν0)3
=
ν0

µ3

KcircleKparabola ≈ (
1

µν0

)(
ν0

µ3
) =

1

µ4

(2)K =
1

(µ2 + ν0
2)2
≈ 1

µ4

 approximately equal.

13) Examine the geodesic equations for the coordinate curves in turn. One sees that the
second covariant derivative of the µ coordinate lines is proportional to their tangent vector
(geodesic condition), while the nonzero value for the φ coordinate lines is not, hence the latter
are not geodesics.

µ lines:

µ = λ µ′ = 1 µ′′ = 0

φ = φ0 φ′ = 0 φ′′ = 0

D2µ

d2λ
= µ′′ + Γµαβ

dx̄α

dλ

dx̄β

dλ
D2φ

d2λ
= φ′′ + Γφµµ = 0


D2x̄α

d2λ
=

(
µ

µ2 + ν2
0

)
dx̄α

dλ

φ lines:

µ = µ0 µ′ = 0 µ′′ = 0

φ = λ φ′ = 1 φ′′ = 0

D2µ

d2λ
= µ′′ + Γµφφ

dφ

dλ

dφ

dλ
=
−µν2

0

µ2 + ν2

D2φ

d2λ
= φ′′ + Γµφφ

dφ

dλ

dφ

dλ
= 0


D2x̄α

d2λ
not proportional to

dx̄α

dλ

14) Evaluate C φ̂
µ̂φ̂ of part 7) at ν = ν0 :
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C φ̂
µ̂φ̂ =

−1

(µ2 + ν2
0)1/2µ

(2)Γφ̂φ̂µ̂ = 1
2
(Cφ̂φ̂µ̂ − Cφ̂µ̂φ̂ + Cµ̂φ̂φ̂) = −Cφ̂µ̂φ̂ =

1

µ(µ2 + ν2
0)1/2

= −(2)Γµ̂φ̂φ̂

(2)Γφ̂µ̂φ̂ = 1
2
(Cφ̂µ̂φ̂ − Cµ̂φ̂φ̂ + Cφ̂φ̂µ̂) = 0

where of course this last line must vanish because of the antisymmetry in the outer indices.

(2)ω̂ =

(
0 −1
1 0

)
1

µ(µ2 + ν0
2)1/2

(µν0dφ) =

(
0 −1
1 0

)
ν0

(µ2 + ν0
2)1/2

dφ

(2)ω̂ ∧ (2)ω̂ = 0

d (2)ω̂ =

(
0 −1
1 0

)(−1

2

2ν0µ

(µ2 + ν0
2)3/2

)
dµ ∧ dφ =

(
0 1
−1 0

)
1

(µ2 + ν0
2)2

ωµ̂φ̂

(2)Rµ̂
φ̂µ̂φ̂ =

1

(µ2 + ν0
2)2

.

[
(2)Ω̂ = d (2)ω̂ + (2)ω̂ ∧ (2)ω̂

]
since this formula is also valid for an orthonormal frame — or in general — in any frame.

14) b)

(2)∇eµ̂eµ̂ = Γµ̂µ̂µ̂eµ̂ + Γφ̂µ̂µ̂eφ̂ = 0

(2)∇eµ̂eφ̂ = Γµ̂µ̂φ̂eµ̂ + Γφ̂µ̂φ̂eφ̂ = 0

so they are parallel transported along eφ̂ which is the unit tangent to the µ coordiante lines.
The first equality says eµ̂ is auto parallel along µ and hence the curve must be a geodesic.

15) Yeah.

16) Using the matrix coordinate transformation

X̄ i = Aij(x̄)Xj(x(x̄))
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and recalling that x2 + y2 + z2 = r2 = (µ2 + ν2)/2)
2
, one finds

Xµ

Xν

Xφ

 =


νC
2r

νS
2r

µ
2r

µC
2r

µS
2r

−ν
2r

−1
µν
S 1

µν
C 0



−µνS

µνC(
µ2+ν2

2

)2

 =



−µν2CS+µν2CS
2r

+ µ
µ2+ν2

(
µ2+ν2

2

)2

−µ2νCS+µ2νCS
2r

− −ν
µ2+ν2

(
µ2+ν2

2

)2

1



=


µ
4
(µ2 + ν2)

−ν
4

(µ2 + ν2)

1



X̄i = Xj(µ)A−1j
i(x̄)

[Xµ Xν Xφ] = [−µνS µνC (
µ2 + ν2

2
)2]

νC µC −µνS
νS µS −µνC
µ −ν 0


= [−µν2CS + µν2CS +

µ

4
(µ2 + ν2)2

− µ2νCS + µ2νCS − µ

4
(µ2 + ν2)2 µ2ν2]

=
[
µ
4
(µ2 + ν2)2 −µ

4
(µ2 + ν2)2 µ2ν2

]
=
[
gµµX

µ gννX
ν gφφX

φ
]

leading to

X[ =
(µ2 + ν2)2

4
(µdµ− νdν) + µ2ν2dφ

which is consistent with the previous evaluation using the final equality above relating covariant
and contravariant components.

Calculating the covariant derivative along µ[
∇eµX

]i
= X̄ i

;µ = X̄ i
, µ + Γ̄iµjX̄

j

Xµ
;µ = Xµ

, µ + ΓµµµX
µ + ΓµµνX

ν =
1

4
(3µ2 + ν2 + µ2 − ν2) = µ2

Xν
;µ = Xν

, µ + ΓνµµX
µ + ΓνµνX

ν =
1

4
(−2µν − µν − µν) = −µν

Xφ
;µ = Xφ

, µ + ΓφµµX
µ + ΓφµνX

ν + ΓφµφX
φ =

1

µ

∇eµX = µ2eµ − µνeν + µ−1eφ .
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Figure F.10: The orientation of the boundary.

17) {E1, E2} is oriented, E1 points out so E2 gives the induced orientation counterclockwise
from above.

∂Σ :


µ = ν0 µ′ = 0

ν = ν0 ν ′ = 0

φ = λ φ′ = 1

0 ≤ λ ≤ 2π is an oriented parametrization of ∂Σ .

∫
∂Σ

X[ =

∫
∂Σ

(µ2 + nu2/2)2(µdµ− νdν) + µ2ν2dφ

=

∫ 2π

0

ν0
4 [0− 0 + dλ] = 2πν0

4

dX[ = 2
4
(µ2 + ν2)(2νdν ∧ µdµ)− 2

4
(µ2 + ν2)(2µdµ ∧ νdν)︸ ︷︷ ︸

−2µν(µ2+ν2)dµ∧dν

+2µν2dµ ∧ dφ+ 2µ2νdν ∧ dφ

µ = u1 0 ≤ u1 ≤ ν0

ν = ν0 0 ≤ u2 ≤ 2π

φ = u2

 oriented parametrization of Σ

∫
Σ

dX[ =

∫ 2π

0

∫ ν0

0

[0 + 2u1ν0
2du1du2 + 0] = 2π(u1)2ν0

2|ν0 = 2πν0
4

The End (for real).
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Figure F.11:
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