DIFFERENTIAL GEOMETRY NOTES

BASED ON

UNDERGRADUATE

LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS

Spring 91

Villanova University

bob jantzen
TABLE OF CONTENTS

PART I: ALGEBRA

Differential Geometry: Class Notes

1. Introduction (unrecorded for pedantry)

2. Index conventions

3. A Vector Space and its Dual Space

4. Linear Transformations of a Vector Space into Itself (and tensors)

5. Tensor product and matrix multiplication

6. Worked problems

Remark

7. Linear transformations and a change of basis

8. Linear transformations between V and V*

9. Invertible maps between V and V*

10. Problems

11. Index shifting (and inner products)

12. Geometric interpretation of index shifting

13. Problem

14. Cute fact

15. Index shifting conventions

16. Problem

17. Partial evaluation of a tensor and index shifting

18. Contraction of tensors

19. R^n with usual inner product

20. Problem

21. Measure motivation

22. Symmetry, properties and volume (measure)

23. The algebra of antisymmetric tensors

24. Why? Review of what we've done so far

25. Problem set (p.43) discussed

26. Remark on generalized Kronecker deltas

27. The wedge product
DIFF GEOM CLASS NOTES 591 VU Dobranzion

TABLE OF CONTENTS

(PART I)

Subspace orientation and antisymmetric tensors (duality operation) 81
Exercises p. 85, 86, 87
Inner product for antisymmetric tensors 88
The unit n-form on an oriented vector space with inner product 89
Linear maps 93
Exercises 97, 98

(PART II : CALCULUS)

The tangent space in multivariable calculus 1
Some problems in 3-D calculus 9
More motivation for the re-interpretation of the tangent space 10
Frames and dual frames 15
More on Lie brackets 17b
Exercises 17b
More on tangent covectors, the differential, and vector fields 17c
Non-Cartesian coordinates on \mathbb{R}^n 18
Cylindrical and spherical coordinates on \mathbb{R}^3 28
Exercise 34
Exercise answer 34b
exercises p. 17b, 17c answered 34c
Summarizing Remark, exercise 35
Exercise p. 35 answered 36
Spherical coordinates in detail 37
Exercise p. 40 worked 40b
Exercises 40c, 41, 42, 43 44
Covariant derivatives in \mathbb{R}^n with Euclidean metric 49
Notation for covariant derivatives 47
Exercise 50
Exercises (150, 160, 180) worked 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duality and extension to tensors of a covariant derivative</td>
<td>54</td>
</tr>
<tr>
<td>Note on class of Cartesian coordinate systems</td>
<td>55</td>
</tr>
<tr>
<td>Exercise</td>
<td>57</td>
</tr>
<tr>
<td>Exercise (p. 99-100) worked</td>
<td>58</td>
</tr>
<tr>
<td>Exercise</td>
<td>59</td>
</tr>
<tr>
<td>The clever way of evaluating the components of the covariant derivative</td>
<td>60</td>
</tr>
<tr>
<td>Exercises</td>
<td>62</td>
</tr>
<tr>
<td>Non-coordinate frames</td>
<td>63</td>
</tr>
<tr>
<td>Exercises</td>
<td>64</td>
</tr>
<tr>
<td>Laplacian and divergence and gradient</td>
<td>65</td>
</tr>
<tr>
<td>Exercises</td>
<td>66</td>
</tr>
<tr>
<td>Aside on determinant differentials</td>
<td>68</td>
</tr>
<tr>
<td>Exercises</td>
<td>69-70</td>
</tr>
<tr>
<td>Second covariant derivatives</td>
<td>71</td>
</tr>
<tr>
<td>Exercises</td>
<td>72-73</td>
</tr>
<tr>
<td>More precise evaluating components of the covariant derivative</td>
<td>74</td>
</tr>
<tr>
<td>Aside on orthogonal matrices</td>
<td>78</td>
</tr>
<tr>
<td>Exercise (p. 40a) worked</td>
<td>84</td>
</tr>
<tr>
<td>Exercise (p. 57) worked</td>
<td>85</td>
</tr>
<tr>
<td>Exercise (p. 59) worked</td>
<td>86</td>
</tr>
<tr>
<td>Exercises (p. 62) worked</td>
<td>87</td>
</tr>
<tr>
<td>Exercises (p. 69) worked</td>
<td>89</td>
</tr>
<tr>
<td>Exercise</td>
<td>90</td>
</tr>
<tr>
<td>Covariant differentiation along a curve and parallel translation</td>
<td>91</td>
</tr>
<tr>
<td>Exercise</td>
<td>92</td>
</tr>
<tr>
<td>Exercise</td>
<td>93</td>
</tr>
<tr>
<td>Exercise</td>
<td>99</td>
</tr>
<tr>
<td>Geodesics</td>
<td>100</td>
</tr>
</tbody>
</table>
Table of Contents (Part II)

- Exercise 101
- The 2-sphere of radius r_0 103
- Exercise 106
- Describing intrinsic curvature 107
- Exercises 110
- Interpretation of curvature 111
- Integration of differential forms 114
 - Parameterized p-surface 115
 - Pulling back differential forms 117
 - Exercises 121,122
 - Change of variables 123
- The exterior derivative d 126
- Exercise 131
- The exterior derivative and a metric 136
 - Exercise 142
- Induced Orientation 145
- Stokes' Theorem 149
- Final remarks 151
- Final exam 156
- Final exam worked 162
- Last page 171
The "brilliant" off the cuff lecture

given on the first day, motivating index positioning and conventions

and the dual space concept on the one hand and

flat and curved spaces and calculus on the other

was not recorded. Perhaps I can reconstruct it

later. For now, just remember that something

preceded page 1 that makes starting up like this

a bit more digestible.