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12.

SOME THEOREMS OF ANALYTICAL MECHANICS

OF GREAT IMPORTANCE FOR QUANTUM THEORY

“Alcuni Teoremi di Meccanica Analitica Importanti per la Teoria dei Quanti,”

Nuovo Cimento 25, 271–285, (1923).

§ 1. – Ehrenfest’s principle of adiabatics,1 as is known, states that, if a mechan-

ical system is in a quantum orbit and its mechanism, forces or constraints, are

changed in an infinitely slow way, the system remains in a quantum preferred orbit

during the whole transformation. In order that this principle have a definite sense,

it is obviously necessary that the final orbit of the system only depend on the final

mechanism and not on any particular sequence of intermediate mechanisms followed

during the transformation. Burgers2 has shown that this is really the case, at least

for those kinds of systems which up to now have been considered almost exclusively

only in quantum theory, i.e., for systems which either admit a complete separation

of variables or at least can be represented by means of angular coordinates.3 In

this case, their motion can always be considered as resulting from periodic motions,

generally having as many periods as the number of degrees of freedom or in case

of degeneracy, a lower number. But just at this moment, the study of the simplest

atomic structures having been accomplished,4 some problems which do not admit

angular coordinates are presenting themselves with increasing urgency, first of all

the three-body problem which occurs in the study of the Helium molecule and the

simplified form of the four-body problem which occurs in the study of the hydro-

gen molecule. As is known, all the efforts made up to now to reduce the study

of these systems to that of systems with angular coordinates have failed. Thus it

seems to be desirable to investigate whether and how far is it possible to attempt

an extension of the principle of adiabatics to general systems, hoping that it can

give some information which can help in the search for rules suitable to determine

the preferred orbits of these more general systems.

§ 2. – First of all we should fix a classification of the systems to be studied.

1P. Ehrenfest, Ann. d. Phys. 51, p. 327, 1916.
2Burgers. Versl. Akad. van Wetensch. Amsterdam, 25 November 1916. – Ann. d. Phys. 52, p. 195;

1917. – Phil. Mag. 33, p. 514; 1917.
3See for instance Sommerfeld. “Atombau und Spektrallinen, III ed. Zusatz 7.
4They are the hydrogen atom and its various perturbations (Zeeman effect, Stark effect, and

Feinstruktur) and the ion of the hydrogen molecule H
+
2 , when nucleus rotations are not present.
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Therefore we turn to the usual representation of the state of the system by means of a

point in a 2f-dimensional space Γ, which has q1, q2, . . . , qf as the general coordinates

of the system and p1, p2, . . . , pf as their conjugate momenta. We have, through each

point of this space, a trajectory which corresponds to the motion of the system

having its initial position and velocity determined by the point itself. We shall

assume the forces and the constraints of the system to be time-independent and the

forces are derivable from a potential so that an integral associated with conservation

of energy exists. We call E hypersurfaces the hypersurfaces energy = constant;

through each point of Γ passes one of the E’s on which (because of the energy

integral) the trajectory through the point is located.

The so called quasi-ergodic5 mechanical systems enjoy the property that the

trajectory generally passes infinitely close to every point of E, so to densely fill a

(2f − 1)-dimensional manifold.

However, it may be that our system, besides the energy integral, admits some

other uniform integral independent of time. In this case the manifold filled by the

trajectory will obviously have a lower number of dimensions. Thus let us assume

that our system has all together m uniform first integrals independent of time,

Φ1 (p, q) = c1; Φ2 = c2; . . . ; Φm = cm

where ci are arbitrary constants. We shall have, through each point of Γ, a (2f−m)-

dimensional manifold G, the intersection of the m hypersurfaces Φi = ci; and the

trajectory passing through that point will be entirely contained in G.

In general it will not be possible to find a submanifold within G which contains

the entire trajectory; on the contrary, based on the analogy with quasi-ergodic

systems, we shall assume for our systems that in general all of G is densely filled

by the trajectory, i.e., that the trajectory passes infinitely close to all the points of

G. In this way, the trajectory will come out characterized, at least in its statistical

elements, only by the knowledge of the values Φ1, Φ2, . . . , Φm corresponding to it.

Therefore we call these values characteristics of the trajectory.

Then a quasi-ergodic system has only one characteristic, its energy.

A system with its energy independent of time, which admits separation of vari-

ables, has in general as many characteristics as degrees of freedom, corresponding to

the f a constants of Jacobi’s complete integral; a higher number can only occur in

the case of degeneracy, i.e., when linear relations with integer coefficients between

the fundamental frequencies exist. Let us consider, for instance, the motion of a

point in a plane acted on by a force proportional to the distance from two orthogo-

nal straight lines. If the two attraction coefficients are not commensurate, the point

describes an open Lissajous curve in the plane.

And in the four-dimensional space Γ the representative point densely fills a two-

dimensional surface G. Therefore the system has two characteristics; for them we can

5The author recently demonstrated that ordinary mechanical systems are in general quasi-ergodic,

so that this is the most common case.
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take the energies of the projections of the motion onto the two orthogonal straight

lines. If instead the attraction coefficients are commensurate, the Lissajous curve

degenerates into a closed curve and G becomes one-dimensional; this corresponds

to three characteristics.

§ 3. – Now suppose we can change arbitrarily the forces, or the constraints of

the system, i.e., what all together we shall call the mechanism of the system, with

a happy naming due to P. Hertz,6

If we change the mechanism in an infinitely slow way, we have what is said to be

an adiabatic transformation; and in § 5, we shall easily find a system of differential

equations which shows how the characteristics of the system change when the guid-

ing parameter µ of the mechanism changes adiabatically. But, as we have already

mentioned, one can speak of the application of Ehrenfest’s principle to a definite

system only if the values that its characteristics take at the end of an adiabatic

transformation only depend on the final mechanism and not on the intermediate

workings passed through during the transformation. To study this question, we

shall assume afterwards that the mechanism, rather than depending on only one

parameter, depends on two parameters λ and µ. The dependence of the character-

istics on λ and µ, instead of being a system of ordinary differential equations, will

then be obviously expressed by a system of total differential equations; then the

conditions for having the final values of the characteristics not depending on the

path followed during the transformation in the λ, µ plane coincide with the integra-

bility conditions for this system. We shall demonstrate that these conditions, for

the quasi-ergodic system, are really satisfied. Instead, for the systems having more

than one characteristic, they are not satisfied in general although important classes

of exceptions exist.

§ 4. – Before passing to the study of adiabatic transformations it is convenient

to consider some formulas which are useful for calculating the probability that,

at any instant, the representative point is in G. Then for uniformity of notation,

we call x1, x2, ...., x2f the coordinates of Γinstead of p1, . . . , pf , qi, . . . , qf as above.

Our problem can now be formulated in this way: calculate the probability that, at

a certain instant, x1, x2, . . . , x2f−m have values between x1 and x1 + dx1, x2 and

x2 +dx2,. . . ,x2f−m and x2f−m +dx2f−m, while the remaining m x’s obviously take

the values necessary to maintain the representative point in G.

Now we know from statistical mechanics that Liouville’s theorem states that

the necessary condition for having a stationary distribution of the points in the

space Γ is that their density in Γ should have a constant value on any G. A volume

element of Γ can be written dx1 dx2 . . . dx2f , but also, taking as new variables

x1, x2, . . . , x2f−m, Φ1, Φ2, . . . , Φm as 1
D

dx1 dx2 . . . dx2f−m dΦ1 dΦ2 . . . dΦm, where

6P. Herz. Ann. d. Phys. 33, p. 225, 537; 1910. Weber, Gans. Repertorium der Physik I, 2; 1916.

We refer to these articles for any explanations regarding the statistical part of the text.
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D is the functional determinant ∂(Φ1,...,Φm)
∂(x2f−m+1 ,...,x2f ) . And since during the motion

dΦ1, dΦ2, . . . , dΦm obviously remain constant, the aforesaid volume element comes

out to be proportional to 1
D

dx1 . . . dx2f−m . Therefore also the desired probability

is proportional to this expression; and since the total probability is obviously = 1,

we finally find that the desired probability is given by

dσ
D

∫

dσ
D

, (1)

where for short we set dσ = dx1 dx2 . . . dx2f−m and the integral is extended over

all values of x1, x2, . . . , x2f−m corresponding to the points of G.

Before leaving this subject, we still want to deduce a formula that will be useful

in the case of quasi-ergodic systems. In this case G is a hypersurface, and we assume

for the sake of simplicity that it should be closed, and such that it is intersected

in only one point by each radius vector coming out from an origin within it. This

because a more general approach, even though it is not essentially different, would

cause rather complicated calculations. We refer the space Γ to polar coordinates,

by characterizing each point in terms of its radius vector and the intersection of this

vector with the unit hypersphere having the origin as center. We denote by H the

only characteristic, i.e., the energy. In accordance with what was said above, the

probability that at a certain instant the representative point lies within an element

of solid angle dω is proportional to the hypervolume comprised between the two

hypersurfaces H (x1, . . . , x2f) = H , and H (x1, . . . , x2f) = H + dH , and the solid

angle dω. This volume, except for the constant factor dH , is evidently r2f−1dω
Hr

,

where Hr = ∂H
∂r

. Since the total probability must be =1, we find that the desired

probability is given by

r2f−1 dω
Hr

∫

r2f−1 dω
Hr

, (2)

where the integral is extended over the entire unit sphere.

§ 5. – In this section we assume the mechanism of our system to be a function

of a parameter µ and we aim to study how the characteristics change when this

parameter changes adiabatically. Since the mechanism depends on the parameter

µ, in general also the characteristics Φ1, Φ2, . . . , Φm will depend on µ, besides on

the p’s and q’s. Then, if at a certain instant the parameter µ changes by dµ, the

characteristic Φi will correspondingly undergo the change ∂Φi

∂µ
∂µ. Since we are in

the presence of an adiabatic change, to have the effective change of Φi, we must

consider the average of this expression which, according to the results of the previous

section, will be

dµ

∫

∂Φi

∂µ
dσ
D

∫

dσ
D

(3)
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which is a function only of µ and Φ1, . . . , Φm. The dependence of the characteristics

on µ in an adiabatic transformation will then be expressed by the system of ordinary

differential equations:

dΦ1

dµ
=

∫

∂Φ1

∂µ
dσ
D

∫

dσ
D

;
dΦ2

dµ
=

∫

∂Φ2

∂µ
dσ
D

∫

dσ
D

; . . . ;
dΦm

dµ
=

∫

∂Φm

∂µ
dσ
D

∫

dσ
D

. (4)

If we know the values of the Φ’s, for instance at µ = 0, the integration of

this system gives us their values for any µ. In the particular case of quasi-ergodic

systems, the system (4) reduces to the single equation:

dH

dµ
=

∫ Hµ

Hr
r2f−1dω

∫

dω
Hr

r2f−1
, (5)

where Hµ =
∂H

∂µ
.

§ 6. – Now we want to study in which cases the final values of the characteristics

are independent of the way followed in passing adiabatically from the initial mech-

anism to the final one. Therefore we shall represent the mechanism of the system

as a function of two parameters, λ and µ . If one alters adiabatically these two

parameters by dλ and dµ respectively, the same conclusion of the preceding section

shows that the corresponding change of the characteristic is:

dΦi =

∫

∂Φi

∂λ
dσ
D

∫

dσ
D

dλ +

∫

∂Φi

∂µ
dσ
D

∫

dσ
D

dµ (i = 1, 2, . . . , m) . (6)

The coefficients of dλ and dµ are evidently functions only of λ and Φ1, . . . , Φm,

so the m equations (6) represent a system of total differential equations; if it turns

out to be completely integrable, the final values of the Φ’s will be effectively inde-

pendent of the way followed during the transformation, otherwise not. We want to

demonstrate that, in the case of quasi-ergodic systems, the condition of complete

integrability is satisfied. In fact, for these systems, system (6) reduces to only a

single total differential equation constructed analogously to (5)

dH = Ldλ + Mdµ , (7)

where we set

L =

∫

r2f−1Hλdω
Hr

∫

r2f−1dω
Hr

, M =

∫ r2f−1Hµdω

Hr
∫

r2f−1dω
Hr

(8)

so L and M represent two functions of λ, µ and H . As we know, for obtaining the

complete integrability of (7), it is necessary and sufficient that the total derivatives

of L with respect to µ and of M with respect to λ be equal. Therefore it must be

that

∂L

∂µ
+ M

∂L

∂H
=

∂M

∂λ
+ L

∂M

∂H
. (9)
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To demonstrate that this equality is really satisfied, let us begin by calculating

the left hand side. Therefore, let us imagine giving independent variations δH and

δµ to H and µ, leaving λ unchanged; we will then have

δL =
∂L

∂H
δH +

∂L

δµ
δµ . (10)

On the other hand, from the first of (8), we find that:

δL =
1

(

∫

r2f−1dω
Hr

)2

{ (
∫

r2f−1dω

Hr

)

δ

∫

r2f−1Hλdω

Hr

−

(
∫

r2f−1Hλdω

Hr

)

δ

∫

r2f−1dω

H2
r

}

. (11)

In the calculation of the two variations of the integrals within the curly brackets,

we can of course interchange the symbols δ and
∫

, since the limits of integration do

not change since it is extended over the whole unit hypersphere. Thus we have:

δ

∫

r2f−1dω

Hr

= (2f − 1)

∫

r2f−2δrdω

Hr

−

∫

r2f−1δHrdω

H2
r

. (12)

On the other hand, from the invariance on the unit sphere, one has:

δH = Hrδr + Hµδµ

from which it follows that

δr =
δH

Hr

−
Hµ

Hr

δµ

and also

δHr = Hrrδr + Hrµδµ =
Hrr

Hr

δH +

(

Hrµ −
HrrHµ

Hr

)

δµ .

By substituting these expressions for δr, δHr into (12), one finds:

δ

∫

r2f−1dω

Hr

= δH

{

(2f − 1)

∫

r2f−2dω

H2
r

−

∫

r2f−1Hrrdω

H3
r

}

−δµ

{

(2f − 1)

∫

r2f−2Hµdω

H2
r

+

∫

r2f−1dω

H2
r

(

Hµr −
HµHrr

Hr

)}

.

In a similar way one finds:

δ

∫

r2f−1Hλdω

Hr

= δH

{

(2f − 1)

∫

r2f−2Hλdω

H2
r

+

∫

r2f−1Hλrdω

H2
r

−

−

∫

r2f−1HλHrr

H3
r

dω

}

+ δµ

{

− (2f − 1)

∫

r2f−2HλHµdω

H2
r

+

∫

r2f−1dω

Hr

(

Hλr −
HλrHµ

Hr

)

−

∫

r2f−1Hλdω

H2
r

(

Hµr −
HµHrr

Hr

)}

.
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By substituting these two last expressions into (11), and comparing with (10),

one finally finds:

∂L

∂H
=

1
(

∫

r2f−1dω
Hr

)2

[(
∫

r2f−1dω

Hr

){

(2f − 1)

∫

r2f−2Hλdω

H2
r

+

∫

r2f−1Hλrdω

H2
r

−

∫

r2f−1HλHrr

H3
r

dω

}

−

(
∫

r2f−1Hλdω

Hr

){

(2f − 1)

∫

r2f−2dω

H2
r

−

∫

r2f−1Hrrdω

H3
r

}]

.

∂L

∂µ
=

1
(

∫

r2f−1dω
Hr

)2

[(
∫

r2f−1dω

Hr

){

− (2f − 1)

∫

r2f−2HλHµdω

H2
r

+

∫

r2f−1dω

Hr

(

Hλµ −
HλrHµ

Hr

)

−

∫

r2f−1Hλdω

H2
r

(

Hµr −
HµHrr

Hr

)}

−

∫

r2f−1Hλdω

Hr

{

(2f − 1)

∫

r2f−2Hµdω

H2
r

+

∫

r2f−1dω

H2
r

(

Hµr −
HµHrr

Hr

)}]

.

These two last equations, together with the second of (8), give us all the elements

necessary to calculate the left hand side of (9). Once it has been calculated, it is im-

mediate to recognize from its explicit expression that λ and µ appear symmetrically;

thus (9) is verified.

Therefore we can conclude that for the quasi-ergodic systems, the value assumed

by the energy at the end of an adiabatic transformation does not depend at all on

the intermediate mechanisms of the transformation.

§ 7. – We now return to the systems with more than one characteristic. In order

that the final characteristics be independent of the intermediate mechanisms of the

transformation also for these systems, the conditions of complete integrability of the

system (6) should be identically satisfied. But if through a calculation, obviously

more complicated than that performed in the preceding section but not essentially

different from it, we effectively build up these conditions, we find that in general

they are not satisfied. Rather than report here this lengthy calculation, we prefer to

show the argument through an example of a system with two characteristics. The

example we choose is very similar to another one I have recently used in a note on

the principle of adiabatics.

From an origin O, we draw in a plane two orthogonal axes x, y. Then we take in

the first quadrant two points P, Q and draw the perpendiculars from them to axes

(PA, PB, QC, QD). We shall assume that P lies inside the rectangle OCQD. Now

let us suppose that inside the concave polygon APBDQCA a mass point is moving

not acted on by forces and elastically bouncing off the walls of the polygon. The

absolute values u, v of the components of the velocity of the point along the axes x,

y clearly remain constant during the motion, so the system has two characteristics.

Suppose we keep the point Q (of coordinates a, b) fixed but are free to move the
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point P (of coordinates λ, µ). In this way we shall have accomplished a mechanical

system with two characteristics u, v and depending on two parameters λ, µ. By

easy arguments, analogous to the ones carried out in the note quoted above, one

finds that, changing adiabatically the position of the point P, then u and v change

following the rule:

d log u =
2µ dλ

ab − λµ
; d log v =

2λ dµ

ab − λµ
.

Obviously neither of these two equations is completely integrable; therefore the

values that u and v take at the end of a transformation also depend on the path

followed by the point P. Therefore in general, it is not possible to apply Ehrenfest’s

principle to systems with more characteristics.

§ 8. – However, some important classes of exceptions to this rule exist. We

aim to study them in this section. The first one, and also the most important,

is that of the systems with angular coordinates. Of these systems, according to

Burgers’ theorems, we not only know that Ehrenfest’s principle can be applied (in

the sense that it leads in any case to definite final conditions) but also that for them

the aforesaid principle proves be verified, by experience as a logical consequence of

Sommerfeld’s conditions which are supported by all the theory and the experience

made on the hydrogen atom.

Another remarkable class of exceptions to the conclusions of § 7 is the following:

Let us assume that of the m characteristics of our system only one, the energy,

depends explicitly on the parameters λ, µ of the mechanism. I say that for these

systems, at the end of every adiabatic transformation, the energy takes a value

independent of the intermediate mechanisms, while the other characteristics in fact

remain unchanged.

The fact that all the characteristics apart from the energy remain unchanged

comes out clearly from the circumstance that, since they do not contain the pa-

rameters explicitly, they remain unchanged in all the elementary processes of the

transformation; the same conclusion can be drawn from system (6) since, if Φi is

one of these characteristics, one has by hypothesis
∂Φi

∂λ
=

∂Φi

∂µ
= 0.

For demonstrating that the final value of the energy does not depend on the

path followed during the transformation in the plane of λ, µ, one could put forward

a consideration analogous to that of § 6. But it is easier to remark that, on the

basis of the hypothesis, by means of a canonical transformation independent of the

parameters, one can try to transform the characteristics independent of the param-

eters into coordinates of Γ. After this, the considerations of § 6 can be repeated

word for word and the constant characteristics simply stand for constant param-

eters. Systems of this kind occur very frequently in applications; for instance, of

this kind are all the systems which have, as the only uniform integrals besides the

energy (and not dependent on the energy), some integral of the conservation of



May 28, 2008 14:52 Proceedings Trim Size: 9.75in x 6.5in Fermi971

9

momentum, or angular momentum, since the latter are always independent of the

parameters of the mechanism.

§ 9. – As regards a possible application of these remarks to the theory of quanta,

we remark the following: On the basis of our conclusions, the possibility of an exten-

sion of Ehrenfest’s principle is ruled out, save for the exceptions mentioned above.

Instead, for quasi-ergodic systems, or the exceptions studied in § 8, such an appli-

cation is not a priori ruled out, though obviously it is not possible now to foresee

if experience will confirm its results. All the same, one might try to see if, going

in this direction, some useful information on the rules for the determination of the

quantum orbits of the systems without angular coordinates might be obtained. Of

course, Ehrenfest’s principle by itself, even if experience should confirm it in this

more general application, is not sufficient for the determination of such rules. It

only allows us, when we know the selected orbits of a certain system, to deduce the

orbits for all the systems which can be obtained from it by means of an adiabatic

transformation. Therefore perhaps it might be useful, apart from the complexity

of calculations, for finding the quantitative relations between the spark spectra, for

instance of the alkaline metals, and the arc spectra of the noble gases. In fact, the

systems which emit these spectra only differ in the charge of the nucleus and thus

can be easily transformed from one into the other.

Göttingen, April 1923.


