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Preface

These handwritten notes from a course given at Villanova University in the spring semester of
1991 were scanned and posted on the web in 2006 at

http://www34.homepage.villanova.edu/robert.jantzen/notes/dg1991/

and were converted to a LATEX compuscript and revised in 2007 with the help of Hans Kuo of
Taiwan through a serendipitous internet collaboration.

Most undergraduate courses on differential geometry are leftovers from the early part of the
last century, focusing on curves and surfaces in space, which is not very useful for the most
important application of the twentieth century: general relativity and field theory in theoretical
physics. Most mathematicians who teach such courses are not well versed in physics, so perhaps
this is a natural consequence of the distancing of mathematics from physics, two fields which
developed together in creating these ideas from Newton to Einstein and beyond. The idea of
these notes is to develop the essential tools of modern differential geometry while bypassing
more abstract notions like manifolds, which although important for global questions, are not
essential for local differential geometry and therefore need not steal precious time from a first
course aimed at undergraduates.

Part 1 (Algebra) develops the vector space structure of Rn and its dual space of real-valued
linear functions, and builds the tools of tensor algebra on that structure, getting the index
manipulation part of tensor analysis out of the way first. Part 2 (Calculus) then develops
Rn as a manifold first analyzed in Cartesian coordinates, beginning by redefining the tangent
space of multivariable calculus to be the space of directional derivatives at a point, so that all
of the tools of Part 1 then can be applied pointwise in the space. Non-Cartesian coordinates
and the Euclidean metric are then used as a shortcut to what would be the consideration
of more general manifolds with Riemannian metrics in a more ambitious course, followed by
the covariant derivative and parallel transport, leading naturally into curvature. The exterior
derivative and integration of differential forms is the final topic, showing how conventional
vector analysis fits into a more elegant unified framework.

The theme of Part 1 is that one needs to distinguish the linearity properties from the inner
product (“metric”) properties of linear algebra. The inner product geometry governs lengths
and angles, and the determinant then enables one to extend the linear measure of length to
area and volume in the plane or 3-dimensional space, and to p-dimensional objects in Rn. The
determinant also tests linear independence of a set of vectors and hence is key to characterizing
subspaces independent of the particular set of vectors we use to describe them while assigning
an actual measure to the p-parallelepipeds formed by a particular set, once an inner product
sets the length scale for orthogonal directions. By appreciating the details of these basic notions
in the setting of Rn, one is ready for the tools needed point by point in the tangent spaces to Rn,
once one understands the relationship between each tangent space and the simpler enveloping
space.
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Introduction: motivating index algebra

Elementary linear algebra is the mathematics of linearity, whose basic objects are 1- and 2-
dimensional arrays of numbers, which can be visualized as at most 2-dimensional rectangular
arrangements of those numbers on sheets of paper or computer screens. Arrays of numbers of
dimension m can be described as sets that can be put into a 1-1 correspondence with regular
rectangular grids of points in Rm:

{ai|i = 1, . . . , n} 1-d array : n entries

{aij|i = 1, . . . , n1, j = 1, . . . , n2} 2-d array : n1n2 entries

{aijk|i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3} 3-d array : n1n2n3 entries

1-dimensional arrays (vectors) and 2-dimensional arrays (matrices), coupled with the basic op-
eration of matrix multiplication, itself an organized way of performing dot products of two sets
of vectors, combine into a powerful machine for linear computation. When working with arrays
of specific dimensions (3 component vectors, 2×3 matrices, etc.), one can avoid index notation
and the sigma summation symbol

∑n
i=1 after using it perhaps to define the basic operation

of dot products for vectors of arbitrary dimension, but to discuss theory for indeterminant di-
mensions (n-component vectors, m× n matrices), index notation is necessary. However, index
“positioning” (distinguishing subscript and superscript indices) is not essential and rarely used,
especially by mathematicians. Going beyond 2-dimensional arrays to m-dimensional arrays for
m > 2, the arena of “tensors”, index notation and index positioning are instead both essential
to an efficient computational language.

Suppose we start with 3-vectors to illustrate the basic idea. The dot product between two
vectors is symmetric in the two factors

~a = 〈a1, a2, a3〉 , ~b = 〈b1, b2, b3〉

~a ·~b = a1b1 + a2b2 + a3b3 =

3∑

i=1

aibi = ~b · ~a ,

but using it to describe a linear function in R3, a basic asymmetry is introduced

f~a(~x) = ~a · ~x = a1x1 + a2x2 + a3x3 =
3∑

i=1

aixi .

The left factor is a constant vector of “coefficients”, while the right factor is the vector of
“variables” and this choice of left and right is arbitrary but convenient, although some mathe-
maticians like to reverse it for some reason. To reflect this distinction, we introduce superscripts
(up position) to denote the variable indices and subscripts (down position) to denote the coef-
ficient indices, and then agree to sum over the understood 3 values of the index range for any
repeated such pair of indices (one up, one down)

f~a(~x) = a1x
1 + a2x

2 + a3x
3 =

3∑

i=1

aix
i = aix

i .
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The last convention, called the Einstein summation convention, turns out to be an extremely
convenient and powerful shorthand.

This index positioning notation encodes the distinction between rows and columns in matrix
notation, with row indices (left) associated with superscripts, and column indices (right) with
subscripts. A single row matrix or column matrix is used to denote respectively a “coefficient”
vector and a “variable” vector

[
a1 a2 a3

]
,




x1

x2

x3



 .

The matrix product re-interprets the dot product between two vectors as the way to combine
a row vector (left factor) with a column vector (right factor) to produce a single number, the
value of a linear function of the variables

[
a1 a2 a3

]



x1

x2

x3



 = a1x
1 + a2x

2 + a3x
3 = ~a · ~x .

If we agree to use a boldface kernel symbol x for a column vector, and the transpose a
T for a

row vector, where the transpose simply interchanges rows and columns of a matrix, this can be
represented as a

T x = ~a · ~x.
Extending the matrix product to more than one row in the left factor is the second step in

defining a general matrix product, leading to a column vector result

[
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

]


x1

x2

x3



 =

[
a

1T

a
2T

]


x1

x2

x3



 =

[
~a1 · ~x
~a2 · ~x

]
=

[
a1

ix
i

a2
ix

i

]
.

Thinking of the matrix as a 1-dimensional vertical array of row vectors (second equation of
previous equation array), one gets a corresponding array of numbers (a column) as the result,
consisting of the corresponding dot products of the rows with the single column.

Finally, adding more columns to the right factor in the matrix product, we generate corre-
sponding columns in the matrix product, with the resulting array of numbers representing all
possible dot products between the row vectors on the left and the column vectors on the right,
labeled by the same row and column indices as the factor vectors from which they come.

[
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

]


x1

1 x1
2

x2
1 x2

2

x3
1 x3

2



 =

[
a

1T

a
2T

] [
x1 x2

]
=

[
~a1 · ~x1 ~a1 · ~x2

~a2 · ~x1 ~a2 · ~x2

]
.

Denoting these two matrix factors by A and X, then the product matrix has entries (row index
left up, column index right down)

[AX]ij = ai
kx

k
j i = 1..2 , j = i..2
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where the sum
∑3

k=1 is implied. Thus matrix multiplication is just an organized way of dis-
playing all such dot products in an array where the rows correspond to the coefficient vectors
in the left set and the columns correspond to the variable vectors in the right set. The dot
product itself in this context is representing the natural evaluation of linear functions (left)
on vectors (right). No geometry (lengths and angles in Euclidean geometry) is implied in this
context, only linearity.

The matrix product of a matrix with a column vector can be reinterpreted in terms of the
more general concept of a vector-valued linear function of vectors, namely a linear combination
of vectors, in which case the right factor column vector entries play the role of coefficients. In
this case the left factor matrix must be thought of as a horizontal array of column vectors

[
v1

1 v1
2 v1

3

v2
1 v2

2 v2
3

]


x1

x2

x3



 =

[
v1

1x
1 + v1

2x
2 + v1

3x
3

v2
1x

1 + v2
2x

2 + v2
3x

3

]

=
[
~v1 ~v2 ~v3

]



x1

x2

x3



 = x1~v1 + x2~v2 + x3~v3 .

This interpretation extends to more columns on the right, leading to a matrix of columns, each
of which represents a linear combination of the column vectors of the left factor. In this case
the coefficient indices are superscripts since the labels of the vectors being combined linearly
are subscripts, but the one up, one down repeated index summation is still consistent. Note
that when the left factor matrix is not square (in this example, a 2× 3 matrix), one is dealing
with coefficient vectors and vectors of different dimensions, here combining three 2-component
vectors for example.

If we call our basic column vectors just vectors (contravariant vectors, indices up) and call
row vectors “covectors” (covariant vectors, indices down), then combining them with the matrix
product represents the evaluation operation for linear functions, and implies no geometry in the
sense of lengths and angles usually associated with the dot product, although one can easily
carry over this interpretation. In this example R3 is our basic vector space, and the space of
all linear functions on it is equivalent to another copy of R3, the space of all coefficient vectors.
The space of linear functions on a vector space is called the dual space, and given a basis of the
original vector space, expressing linear functions with respect to this basis leads to a component
representation in terms of matrices as above.

It is this basic foundation of a vector space and its dual, together with the natural evalua-
tion represented by matrix multiplication in component language, reflected in superscript and
subscript index positioning respectively associated with column vectors and row vectors, that is
used to go beyond elementary linear algebra to the algebra of tensors, or m-dimensional arrays
for any positive integer m. Index positioning together with the Einstein summation convention
is essential in letting the notation itself directly carry the information about its function in this
scheme of linear mathematics extended beyond the elementary level.

Combining this linear algebra structure with multivariable calculus leads to differential
geometry. Consider R3 with the usual Cartesian coordinates x1, x2, x3 thought of as functions
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on this space. The differential of any function on this space can be expressed in terms of partial
derivatives by the formula

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 = ∂ifdx

i = f,idx
i

using first the abbreviation ∂i = ∂
∂xi for the partial derivative operator and then the abbrevi-

ation f,i for the corresponding partial derivatives of the function f . At each point of R3, the
differentials dxi play the role of linear functions on the tangent space. The differential of f acts
on a tangent vector ~v at a given point by evaluation to form the directional derivative along
the vector

D~vf =
∂f

∂x1
v1 +

∂f

∂x2
v2 +

∂f

∂x3
v3 =

∂f

∂xi
vi ,

so that the coefficients of this linear function of tangent vectors at a given point are the values
of the partial derivative functions there, and hence have indices down compared to the indices
up of the tangent vectors themselves, which belong to the tangent space, the fundamental
vector space describing the diffential geometry near each point of the whole space. In the linear
function notation, the application of the linear function df to the vector ~v gives the same result

df(~v) =
∂f

∂xi
vi .

If ∂f
∂xi are therefore the components of a covector, and vi the components of a vector in the

tangent space, what is the basis of the tangent space, analogous to the natural (ordered) basis
{e1, e2, e3} = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉} of R3 thought of as a vector space in our previous
discussion? In other words how do we express a tangent vector in the abstract form like in
the naive R3 discussion where ~x = 〈x1, x2, x3〉 = xiei? This question will be answered in the
following notes, making the link between old fashioned tensor analysis and modern differential
geometry.


