the 3d vector space of (at most) quadratic expressions in a variable

The space of (at most) quadratic functions in a single variable x is a 3-dimensional vector space: the sum of two quadratics is a quadratic whose ordered coefficients are the sum of the individual quadratics, while the ordered coefficients of a scalar multiple of a quadratic are just the scalar times the ordered coefficients of the quadratic. It is natural to order the powers of the variable x in increasing order from 0 to 2 (so that we can easily extend this discussion to any number of powers by adding additional terms, as in Taylor polynomials). Technically a quadratic function must have the coefficient of its squared term be nonzero, otherwise it is a linear function or even a constant function, so we are talking about the space of "at most" quadratic polynomials, namely polynomials of degree at most 2. This will be understood here when we refer to these functions as quadratics.

To each quadratic corresponds a vector of ordered coefficients, and adding quadratics or scalar multiplying them corresponds directly to the same vector operations on the corresponding vectors:

The ordered set of functions $\{1, x, x^2\}$ is a basis of this vector space since every quadratic can be expressed uniquely as a linear combination of these three functions, with respective coefficients traditionally called (c, b, a). These coefficients correspond respectively to the Cartesian coordinates $(x_1, x_2, x_3) = (c, b, a)$ on \mathbb{R}^3, while the basis $\{1, x, x^2\}$ has coefficient vectors $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and so corresponds to the usual basis $\{\vec{i}, \vec{j}, \vec{k}\}$ of \mathbb{R}^3. Thus we can picture each quadratic function as a vector (arrow) in space.

The three functions $\{1, x, x^2\}$ are linearly independent functions since if any linear combination of them equals the zero function 0, then all the coefficients have to be zero, and they certainly span the space of all quadratics by definition. Thus they satisfy the two properties of a basis.

However, we could also express any quadratic function in terms of its Taylor polynomial about a value of x different from 0, say $x = 1$. This gives us another set of coefficients which are related to the old coefficients by a linear transformation, equivalently a new basis of this vector space with new coordinates $\{y_1, y_2, y_3\}$:

The relationship between them is obtained just by expanding the right hand side (by multiplying it out) and comparing coefficients on both sides of the equation

so identifying the coefficients of the powers of x on each side gives
\[(a, b, c) = (A, B - 2 A, A - B + C) \]

\[
\begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix}
=
\begin{bmatrix}
 A \\
 -2 A + B \\
 C + A - B
\end{bmatrix}
\]

(4)

The inverse transformation is obtained by simply evaluating the Taylor polynomial centered at \(x = 1 \) using calculus and comparing coefficients of powers of \((x - 1) \) on both sides of the equation:

\[
f := x \rightarrow a x^2 + b x + c;
\]

\[
f(1), f'(1), f''(1);
\]

\[
f(x) = f(1) + f'(1) (x - 1) + \frac{1}{2} f''(1) (x - 1)^2
\]

\[
f := x \rightarrow a x^2 + b x + c
\]

\[
a + b + c, 2 a + b, 2 a
\]

\[\]

\[c + b x + a x^2 = a + b + c + (2 a + b) (x - 1) + a (x - 1)^2\]

(5)

\[
C + B (x - 1) + A (x - 1)^2 = \text{taylor}(a x^2 + b x + c, x = 1, 3)
\]

\[
C + B (x - 1) + A (x - 1)^2 = a + b + c + (2 a + b) (x - 1) + a (x - 1)^2
\]

(6)

Matching the coefficients on both sides of the equation:

\[\]

\[
(A, B, C) = (a, b + 2 a, c + b + a)
\]

(7)

Rewriting this in ascending order of powers using the more familiar Cartesian coordinate symbols \(\{x_1, x_2, x_3\} = \{c, b, a\} \) for the old coefficients and \(\{y_1, y_2, y_3\} = \{C, B, A\} \) for the new coefficients, we get the following linear coordinate transformation from the old coordinates to the new coordinates

\[\]

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{bmatrix}
=
\begin{bmatrix}
 x_1 + x_2 + x_3 \\
 x_2 + 2 x_3 \\
 x_3
\end{bmatrix}
\]

(8)

and from the new coordinates to the old coordinates above

\[\]

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
=
\begin{bmatrix}
 y_1 - y_2 + y_3 \\
 y_2 - 2 y_3 \\
 y_3
\end{bmatrix}
\]

(9)

Alternatively we can describe this in terms of the new basis functions \(\{1, x - 1, (x - 1)^2\} = \{1, x - 1, 1 - 2 x + x^2\} \) which have old coordinate vectors respectively (which are the columns of the basis changing matrix; careful now \(B \) will be a matrix):

\[\]

\[
(B^{-1})
\]

\[
B := \langle \langle 1, 0, 0 \rangle | \langle -1, 1, 0 \rangle | \langle 1, -2, 1 \rangle \rangle;
\]
\[
B := \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{bmatrix}
\]

so the expressing the old coordinates in terms of the new coordinates:
\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
y_1 - y_2 + y_3 \\
y_2 - 2y_3 \\
y_3
\end{bmatrix}
\]

Together we have the coordinate transformation and its inverse
\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
y_1 - y_2 + y_3 \\
y_2 - 2y_3 \\
y_3
\end{bmatrix},
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} = \begin{bmatrix}
x_1 + x_2 + x_3 \\
x_2 + 2x_3 \\
x_3
\end{bmatrix}
\]

As far as linear operations of function addition and scalar multiplication are concerned, instead of working with the abstract vector space of quadratic functions, we can work entirely in ordinary space using coordinates with respect to the "natural basis" of either space which correspond to each other in this obvious correspondence between the two spaces, or some other basis which might be of interest, like the second one we came up with using the Taylor polynomial. This helps us visualize the abstract 3d vector space in terms of the concrete familiar vector space \(\mathbb{R}^3 \).

Visualizable mathematics is always more powerful that symbol pushing.

Here are the old (black) and new (red, blue, green) basis vectors:
\[
\begin{align*}
e1 & := \text{arrow}(0, 0.03, 0), (1, 0, 0), \text{shape = arrow, color = black, thickness = 2} : \\
e2 & := \text{arrow}(0, 1, 0), \text{shape = arrow, color = black, thickness = 2} : \\
e3 & := \text{arrow}(0, 0, 1), \text{shape = arrow, color = black, thickness = 2} : \\
v1 & := \text{arrow}(1, 0, 0), \text{shape = arrow, color = red, thickness = 2, shape = cylindrical_arrow} : \\
v2 & := \text{arrow}((-1, 1, 0), \text{shape = arrow, color = blue, thickness = 2, shape = cylindrical_arrow}) : \\
v3 & := \text{arrow}(1, -2, 1), \text{shape = arrow, color = green, thickness = 2, shape = cylindrical_arrow}) : \\
display(e1, e2, e3, v1, v2, v3, axes = boxed, scaling = constrained)
\end{align*}
\]
Relevance to Linear Differential Equations

An arbitrary quadratic function is the general solution of a simple linear homogeneous differential equation, although Maple uses a slightly different basis of the vector space of solutions, reversing the order of the coefficients back to descending powers, and including a factorial like the Taylor polynomial:

\[y''' = 0; \]
\[\text{dsolve}(% , y(x)) \]

\[\frac{d^3}{dx^3} y(x) = 0 \]

\[y(x) = \frac{1}{2} C_1 x^2 + C_2 x + C_3 \] \hspace{1cm} (13)

The solution space of this differential equation is a vector space, and the powers of \(x \) provide a natural basis for it. The arbitrary coefficients \(1/2 \ C_1, \ C_2, \ C_3 \) are the corresponding coordinates on that solution space. Thus the machinery we developed for the \(\mathbb{R}^n \) spaces will be important in understanding linear differential equations like this one, whose general solutions are linear combinations of certain linearly independent basic solutions. Once we find enough (linearly independent) basic solutions to span the whole solution space, we get the general solution as an arbitrary linear combination of these basic solutions.