digonalization transformation practice

For each matrix use Maple to find the eigenvalues and the basis changing matrix $B=\left\langle b_{1} \mid b_{2}\right\rangle$ of corresponding eigenvectors, evaluate the matrix product $A_{B}=B^{-1} A B$ to see that it is diagonal and has the corresponding eigenvalues in order along the diagonal, and use the coordinate transformations $x=B y$ and $y=B^{-1} x$ to find the new coordinates $\left\langle y_{1}, y_{2}\right\rangle$ of the point $x=\left\langle x_{1}, x_{2}\right\rangle=\langle-2,4\rangle$ in the plane (use Maple). Then make a grid diagram with the new (labeled) coordinate axes associated with this eigenbasis together with basis vectors and the projection parallelogram of this point $x=y_{1} b_{1}+y_{2} b_{2}$.

First fill in the blanks
$A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right], x=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$,
$\Lambda=[], B=[], \quad B_{B}=[\square]$

$$
\left[A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right], \quad X=\left[\begin{array}{l}
0 \\
5
\end{array}\right],\right.
$$

$$
\Lambda=[], B=\left[\quad B^{-1}=[\square]\right.
$$

