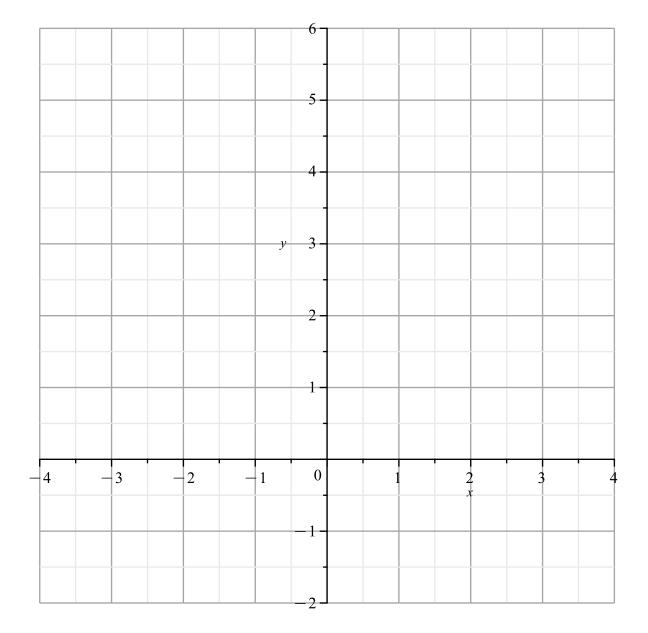
digonalization transformation practice

For each matrix use Maple to find the eigenvalues and the basis changing matrix $B = \langle b_1 | b_2 \rangle$ of corresponding eigenvectors, evaluate the matrix product $A_B = B^{-1}A$ B to see that it is diagonal and has the corresponding eigenvalues in order along the diagonal, and use the coordinate transformations x = B y and $y = B^{-1}$ x to find the new coordinates $\langle y_1, y_2 \rangle$ of the point $x = \langle x_1, x_2 \rangle = \langle -2, 4 \rangle$ in the plane (use Maple). Then make a grid diagram with the new (labeled) coordinate axes associated with this eigenbasis together with basis vectors and the projection parallelogram of this point $x = y_1 b_1 + y_2 b_2$.

First fill in the blanks

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} -2 \\ 4 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 4 \\ 4 & 3 \end{bmatrix}, \quad A$$



$$\begin{bmatrix} A = \begin{bmatrix} -3 & 2 \\ -3 & 4 \end{bmatrix}, & X = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \\ \Lambda = \begin{bmatrix} \end{bmatrix}, & B = \begin{bmatrix} \end{bmatrix}, & B^{-1} = \begin{bmatrix} \end{bmatrix}, & A_B = \begin{bmatrix} \end{bmatrix}, & Y = \begin{bmatrix} \end{bmatrix}$$

