4D: \(\mathbb{R}^4 \rightarrow x \)

df, \(\frac{dy}{dx} \), ratio of differentials of \(x \) and \(y \) along tangent line to \(y = f(x) \)

differential = derivative times differentials of independent variable

2D: \(\mathbb{R}^2 \rightarrow x \)

partial derivative

\[\frac{\partial}{\partial x} (...) = \frac{\partial f}{\partial x} \]

pronounce "partial \(x \) of (...)"

acts on expression to its right

containing variables \(x \) and \(y \)

(y held fixed during differentiation)

vector derivative

\[\nabla = \left< \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right> = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} \]

pronounce "del"

\[\nabla f = \left< \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right> \]

produce vector field from function \(f \)

(\(\text{grad } f \))

differential

\[df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = dz \]

differential = sum of partial derivatives times differentials of independent variables

\(dx, dy, dz \) are increments of variables along tangent plane