Derivatives of 2D & 3D functions

gradient vector
\[f(x,y) \rightarrow \nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \]
\[f(x,y,z) \rightarrow \nabla f(x,y,z) = \langle f_x(x,y,z), f_y(x,y,z), f_z(x,y,z) \rangle \]
\[\nabla f(P), \quad P = \{ x_1, y_1 \} \]

directional derivative of \(f \) in the direction \(\vec{u} \) at \(P \):
\[D_{\vec{u}} f(P) = \vec{u} \cdot \nabla f(P) \]

2-D level curve
\[\vec{\nabla} f(P_0) = \vec{n} \]
\[f(P_0) = c \]

3-D level surface
\[\vec{\nabla} f(x_0, y_0, z_0) = \vec{n} \]
\[f(P_0) = c \]

normal line to level curve/surface:
thru \(P_0 \) along \(\vec{n} = \vec{\nabla} f(P_0) \)
2D \[x = x_0 + t n_1 \]
\[y = y_0 + t n_2 \]
3D \[x = x_0 + t n_1 \]
\[y = y_0 + t n_2 \]
\[z = z_0 + t n_3 \]

2-D max-min:
find critical pts \(f_x(x_0, y_0) = 0 \) \(\neq f_y(x_0, y_0) \), use 2nd der. test
\[f_{xx}(x_0, y_0) = 0 \]
\[f_{xx}(x_0, y_0) < 0 \]
if also \(x_0 \) constant cross-section, consistent:
\[f_y(x_0, y_0) = 0 \]
\[f_{yy}(x_0, y_0) < 0 \]

appears to be local max:
\[f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2 \]
if \(> 0 \) confirma local max in all directions
\[= 0 \] inconclusive
\[< 0 \] saddle, no local extremum

similarly both positive... local min if confirmed
Derivatives of 2D & 3D functions (2)

tangent plane to graph of 2D function in 3D

\[z = f(x_0, y_0) \]

\[\text{3-vector} \]

\[\mathbf{N} \]

via linear approx:

\[z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \]

\[f(x_0, y_0) \]

\[L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \]

\[L(9, 2, 1) = f(1, 2) + f_x(1, 2)(9 - 1) + f_y(1, 2)(2, 1 - 2) \]

linear approximations:

\[f(x) \approx f(r_0) \quad \text{ref. pt. value} \]

\[\frac{df(r_0)}{d\mathbf{r}} \quad \text{increment} \]

\[\{ \text{differential of } f \} \quad \text{at } r_0 \]

2-D

\[L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \]

\[L(9, 2, 1) = f(1, 2) + f_x(1, 2)(9 - 1) + f_y(1, 2)(2, 1 - 2) \]

3-D

\[L(x_0, y_0, z_0) \]

\[L(9, 2, 1, 0) = f(1, 2, 0) + f_x(1, 2, 0)(9 - 1) + f_y(1, 2, 0)(2, 1 - 2) + f_z(1, 2, 0)(1 - 0) \]

\[\text{Note: } L(x, y, z) = f(x_0, y_0, z_0) \text{ simplifies to tangent plane to level surface} \]

\[f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0 \]

\[\text{or } \nabla f(r_0) \cdot (r - r_0) = 0 \quad \text{gradient is orthogonal to increment vector away from point of tangency} \]

2D & 3D:

\[F(x, y, z) = z - f(x, y) = 0 \]

\[\text{graph of } f \text{ is level surface of } F, \text{ gradient of } F \text{ is normal to tangent plane to } f = \text{ tangent plane to level surface of } F \]

\[\mathbf{N} = \nabla F(x_0, y_0, z_0) = \langle -f_x(x_0, y_0), -f_y(x_0, y_0), 1 \rangle \]

\[\mathbf{N} \cdot (r - r_0) = 0 \]

same result as