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Preface.

We define the metric of a space of n dimensions in the manner of Riemann by giving the
expression for the square of its line element:

ds2 =
1...n∑

i,k

aik dxi dxk , (1)

namely the law by which we measure infinitesimal arclengths in the space Sn, from which
the law of measure for finite arclengths follows.

We consider n independent real variables x1, x2, . . . , xn and assume that the coefficients
aik of the quadratic differential form (1) as well as their first and second derivatives are real,
finite and continuous functions of the x for the entire range of values which we consider.
We also assume that the discriminant of expression (1) is always nonzero and that the
coefficients aik fulfill the well known inequalities which make this differential form positive-
definite.

It is well known how the law for measuring angles and the entire geometry of the space
Sn is determined by equation (1). If two spaces Sn, S ′

n can be put into a one-to-one
correspondence in such a way that the line elements are the same, the two spaces will be
called isometric and the two geometries will be identical. When the line elements of the
two spaces only differ by a constant factor or can be reduced to this relationship by a
transformation of coordinates, the two spaces will be called similar, and we will consider
them as belonging to the same type. Their geometries are essentially identical; the only
thing which changes from one to the other is the unit of linear measure.

An isometry of a space Sn into itself will be called a motion of this space. We will
consider the spaces which admit continuous motions into themselves, namely, such that
in the corresponding equations of the transformation appear some arbitrary parameters.
The set of all these motions for a given Sn clearly forms a group. Simple geometrical
considerations show that the number of parameters of this group is necessarily finite, which
is in fact easily demonstrated analytically as we will see. If r is the number of these
parameters in the complete group of motions, in every case this group will consist of a
finite-dimensional continuous Lie5 group Gr generated by r infinitesimal transformations
X1f,X2f, . . . , Xrf .

The problem of determining which spaces possess a continuous group of motions reduces
therefore essentially to the classification of all possible forms of ds2 which possess a Lie
group Gr ≡ (X1f, . . . , Xnf) which transforms ds2 into itself.

While the fundamental equations for the solution of this problem are already known
from the work of Lie himself and of Killing, the problem has not been treated in complete
form as far as I know. Indeed for arbitrary n, attention has been limited to the case in
which figures in the space Sn can be transported with the maximum number of degrees of
freedom: then the space is of constant curvature and the group possesses r = n(n + 1)/2

5S. Lie-F. Engel, Theorie der Transformationsgruppen, Vol. I (1888), Chap. 18, p. 310 and Vol. III

(1893), p. 575. [In the bibliographical footnotes, authors’ first initials and, wherever missing, authors’

names, have been added by the Editor. Also, journal titles were corrected and details of the citations were

added wherever necessary. (Editor)]
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parameters. Only for n = 2, namely for ordinary surfaces, do we know the complete
solution of the problem, and it is known that the number of parameters can only fall into
the two cases r = 1, r = 3. The surfaces of the first family are the one and only ones
which are isometric to a surface of revolution; those of the second are exactly the surfaces
of constant curvature.

In the present work I propose to study completely the case n = 3, in other words to
classify all types of 3-dimensional spaces in which it is possible to transport figures along
a certain degree of freedom. Apart from the extreme case of spaces of constant curvature
which have a group G6 of motions, there exist, as we will show, many intermediary types for
which the number of parameters of the group can assume one of the four values r = 1, 2, 3, 4,
while there do not exist spaces with groups of motions (or with partial subgroups) of 5
parameters.

To point out the main difference between the case of the surfaces n = 2 and that of
n = 3, we remind ourselves that a surface which admits a transitive group of motions is
necessarily of constant curvature, namely, if a point can be transported anywhere, it can
also be rotated around every point. On the other hand there exist spaces of 3 dimensions in
which we can transport any point of the space everywhere with a transformation, but the
space is not of constant curvature; these spaces admit a transitive group of transformations
with 3 or 4 parameters. In the spaces which admit only a group G3 the entire space is
fixed if we fix a single point. In the ones which admit a group G4, it is still possible
to have a continuous rotation G1 around any arbitrary point P ; however, together with
P all the points of a certain geodesic through P remain fixed, so that these groups G4

belong, according to the nomenclature of Lie, to the class of systatic groups. The space is
then lined with a double infinity of such geodetic axes which completely fill the space, and
besides the transformations (translations) which permit a point of a figure to be transported
everywhere, there are still arbitrary rotations possible around any of these axes. Moreover,
spaces which admit a group G3 and those admitting a group G4 are further distinguished
into different irreducible types as we will see.

In the treatise of this problem I present here, I have constantly made use of the theorems
and notations contained in the great work of Lie and more particularly his results on the
composition of groups. They allow us to completely solve the question which approached
directly would present great difficulties. Naturally the same method could be applied to a
space of a larger number of dimensions, but as soon as n > 3, the investigation seems to
get complicated very quickly.

1 The Killing Equations.6

Given a quadratic differential form in n variables:

ds2 =
1..n∑

i,k

aik dxi dxk , (1)

6W. Killing, Über die Grundlagen der Geometrie, Journ. für die r. und ang. Math. (Crelle), 109 (1892),

121–186.
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we look for the conditions which this form must satisfy in order to admit the group G1

generated by the infinitesimal transformation Xf =
∑1..n

r ξr ∂f/∂xr.
It will therefore be necessary and sufficient that the operation Xf acting on the form

(1) give an identically null result. Now we have:

X(ds2) =
∑

i,k

X(aik) dxi dxk +
∑

r,k

ark dX(xr) dxk +
∑

i,r

air dX(xr) dxi ,

namely

X(ds2) =
∑

i,k,r

ξr
∂aik

∂xr
dxi dxk +

∑

r,k

ark dξr dxk +
∑

i,r

air dξr dxi

=
∑

i,k

{∑

r

(
ξr
∂aik

∂xr
+ ark

∂ξr
∂xi

+ air
∂ξr
∂xk

)}
dxi dxk .

The n functions ξ1, ξ2, . . . , ξn therefore will have to fulfill the n(n + 1)/2 linear homo-
geneous first order partial differential equations:

∑

r

{
ξr
∂aik

∂xr
+ air

∂ξr
∂xk

+ akr
∂ξr
∂xi

}
= 0 , (A)

i, k = 1, 2, 3, . . . , n .

Because the determinant of the aik is different from zero, these linear homogeneous equa-
tions in ξ and their first derivatives are linearly independent; moreover it is immediately
seen that they are also linearly independent with respect to the n2 first derivatives of ξ
so that they can be solved for n(n + 1)/2 of these derivatives, chosen conveniently. It is
important to observe with Killing (ibid., p.168) that by again differentiating the funda-
mental equations (A) all the second derivatives of the ξ can be obtained expressed linearly
and homogeneously as functions of the first derivatives and the ξ themselves. In fact, we
differentiate (A) with respect to xl , obtaining:

∑

r

{
∂2aik

∂xr∂xl
ξr +

∂aik

∂xr

∂ξr
∂xl

+
∂air

∂xl

∂ξr
∂xk

+
∂akr

∂xl

∂ξl
∂xi

+air
∂2ξr
∂xk∂xl

+ akr
∂2ξr
∂xi∂xl

}
= 0 .

We then write the equations obtained from this last one by first interchanging k with
l , then i with k , namely:

∑

r

{
∂2ail

∂xr∂xk
ξr +

∂ail

∂xr

∂ξr
∂xk

+
∂air

∂xk

∂ξk
∂xl

+
∂arl

∂xk

∂ξr
∂xi

+air
∂2ξr
∂xk∂xl

+ alr
∂2ξr
∂xi∂xk

}
= 0 ,

∑

r

{
∂2akl

∂xr∂xi
ξr +

∂akl

∂xr

∂ξr
∂xi

+
∂akr

∂xi

∂ξr
∂xl

+
∂arl

∂xi

∂ξr
∂xk

+akr
∂2ξr
∂xi∂xl

+ alr
∂2ξr
∂xi∂xk

}
= 0 .
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Subtracting the first from the sum of these last two and dividing the result by 2, we
obtain:

∑

r

{
arl

∂2ξr
∂xi∂xk

+
∂

∂xr
[l, ik] ξr

+ [r, ik]
∂ξr
∂xl

+ [l, ir]
∂ξr
∂xk

+ [l, kr]
∂ξr
∂xi

}
= 0 ,

l, i, k = 1, 2, 3, . . . , n , (2)

where the Christoffel symbol [l, ik] has the well known meaning

[l, ik] =
1
2

(
∂ail

∂xk
+
∂akl

∂xi
− ∂aik

∂xl

)
.

If in (2) we fix i, k and let l take all the values from 1 to n, the equations thus obtained,
since the determinant of aik is nonzero, can be solved for the second derivatives of ξ.
To write down the solution we indicate by Aik the adjoint of aik divided by the latter’s
determinant.7 Multiplying (2) by Alv and summing from l = 1 to l = n we thus obtain the
required equations:

∂2ξv
∂xi∂xk

+
∑

r,l

Alvξr
∂

∂xr
[l, ik] +

∑

r,l

Alv [r, ik]
∂ξr
∂xl

+
∑

r

{
v

ir

}
∂ξr
∂xk

+
∑

r

[v, kr]
∂ξr
∂xi

= 0 (B)

(i, k = 1, 2, 3, . . . , n) ,

where the Christoffel symbol of the second kind
{ v

ir

}
has the meaning

{
v

ir

}
=
∑

k

Akv [k, ir] .

Equations (B) show us that the general integral of (A) contains the maximum number
of arbitrary constants. In fact assuming the n(n+ 1)/2 functions

ξr ,
∂ξ

∂xi
, (i, r = 1, 2, . . . , n)

as unknowns, using (B) we can express all their first derivatives as (linear and homogeneous)
functions of the same unknowns and we therefore have a system of linear homogeneous total
differential equations, the unknowns then being related by the n(n + 1)/2 equations (A).
The maximum number of arbitrary constants that can appear in the general integral of
(A) will therefore be given by:8

r = n(n+ 1)− n(n+ 1)/2 = n(n+ 1)/2 .

If this maximal number is reached we will have the case of complete integrability and
the space Sn, as is well known, will then be of constant curvature. In each case, the number
r of independent infinitesimal transformations that the differential form (1) admits will be a
finite number r ≤ n(n+1)/2, and these r transformationsX1f,X2f, . . . , Xrf will generate
the continuous group Gr of motions of the space Sn.

7Namely, the inverse [Translator].
8The integral system is in fact specified if we give at one point of space the initial values of the n(n+ 1)

unknown functions which are, however, constrained by n(n + 1)/2 independent relations.
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2 Spaces which admit a group G1.

From equations (A) we immediately deduce a consequence which is important to note; we
can state: two infinitesimal transformations of the space Sn cannot have common trajec-
tories without coinciding. And indeed we show immediately that if ξ1, ξ2, . . . , ξn satisfy
equations (A) and λξ1, λξ2, . . . , λξn is a new set of solutions, the factor λ must necessarily
be constant. In fact replacing ξr by λξr in (A) gives

∑

r

(
airξr

∂λ

∂xk
+ akrξr

∂λ

∂xi

)
= 0 , (3)

from which, setting i = k:
∑

r

arsξr
∂λ

∂xi
= 0 .

Assuming that ∂λ/∂xs 6= 0, it follows that
∑

r arsξr = 0, and from (3), setting k = s,
we deduce that

∑
r arsξr = 0; but the determinant of the a is nonzero and this will imply

that all the ξ are zero.
We now assume that the space Sn admits a group of motions G1 generated by the

infinitesimal transformation Xf =
∑

i ξi∂f/∂xi. We can simplify the computations by
assuming the trajectories of the group as the coordinate lines (x1), so that we have ξ2 =
ξ3 = · · · ξn = 0, and by changing the parameters conveniently we can make ξ1 = 1, namely
Xf = ∂f/∂x1.9

Then (A) gives us simply

∂aik

∂x1
= 0 (i, k = 1, 2, . . . , n) ,

which shows that the coefficients aik are independent of x1. Viceversa it is clear that if in
(1) the coefficients aik do not depend on x1, the transformation x′1 = x1 + constant gives
a continuous group G1 of transformations in the space. And as long as the aik remain
arbitrary functions of the other variables x2, x3, . . . , xn, this group G will be the complete
group of motions.

In the case n = 2 we then recover the well known result that the surface is isometric to
a surface of rotation.

3 Surfaces with a group G2.

We now study the types of ds2 which admit a group G2 of motions, assuming that the
number of variables is n = 2 or n = 3. The result for n = 2 is well known but it is
worthwhile to rederive it again here.

So let us first assume n = 2 and indicate by X1f , X2f the two infinitesimal trans-
formation generators of the group G2 under consideration. Replacing X1f , X2f by new
convenient linear combinations of them, we can always reduce ourselves to the case in
which we have for the composition equations10

(a) [X1, X2]f = 0 , or (b) [X1, X2]f = X1f .

9It is sufficient to assume as new variables y1, y2, . . . , yn an integral of the equation X(y1) = 1 and n− 1

independent integrals of the equation X(y) = 0.
10S. Lie-F. Engel, Vol. III, p. 713

8



The trajectories of the two infinitesimal transformation generators being in each case
distinct (§2), we can assume them respectively as coordinate lines and we then have X1f =
ξ ∂f/∂x1, X2f = η ∂f/∂x2. In case (a) it follows that ∂ξ/∂x2 = 0, ∂η/∂x1 = 0, so that by
making a change of parameters, we can assume ξ = η = 1.

Since the equations (A) have to be satisfied either with ξ1 = 1, ξ2 = 0 or with ξ1 = 0,
ξ2 = 1, it follows that the coefficients of the differential form

ds2 = a11 dx1
2 + 2a12 dx1dx2 + a22 dx2

2

are constants and with a (linear) change of variables we can therefore have ds2 = dx1
2 +

dx2
2, hence the surface has zero curvature. The complete group of motions is the G3

generated by the three infinitesimal transformations

X1f =
∂f

∂x1
, X2f =

∂f

∂x2
, X3f = x2

∂f

∂x1
− x1

∂f

∂x2
.

In case (b) we must have ∂η/∂x1 = 0, −η ∂ξ/∂x2 = ξ, and by changing the parameters
x1, x2, we can set η = 1, ξ = e−x2 , so that

X1f = e−x2 ∂f/∂x1 , X2f = ∂f/∂x2 .

Equations (A), assuming successively ξ1 = 0, ξ2 = 1 and ξ1 = e−x2 , ξ2 = 0, give us

∂a11

∂x2
=
∂a12

∂x2
=
∂a22

∂x2
= 0 ,

∂a11

∂x1
= 0 ,

∂a12

∂x1
= a11 ,

∂a22

∂x1
= 2a12 ,

from which by integration we have a11 = α, a12 = αx1 + β, a22 = αx1
2 + 2βx1 + γ, with

α, β, γ constants. Without loss of generality we can assume α = 1 (by absorbing it into
x1), and writing x1 in place of x1 + β, we will have

ds2 = dx2
1 + 2x1 dx1dx2 + (x1

2 + R2) dx2
2 .

If we set x1 = −veu/R, x2 = u/R, we obtain the typical (parabolic) form

ds2 = du2 + e2u/Rdv2

of the line element of the pseudo-spherical surface. The complete group of motions is the
G3 generated by the infinitesimal transformations:

X1f = e−x2
∂f

∂x1
, X2f =

∂f

∂x2
,

X3f =
1
2
ex2(x1

2 +R2)
∂f

∂x1
− x1e

x2
∂f

∂x2
.

The subgroup G2 under consideration consists of all those groups G1 which have as
trajectories the geodetic circles (with ideal center) inclined at a constant angle to the
parallel oricycles11 x2 = constant.12

In the analysis of the present § only the surfaces of constant zero or negative curvature
have appeared, not those of constant positive curvature. The reason for this is the fact that
the latter surfaces admit a group G3 of motions, but never a real 2-parameter subgroup.

11In Italian: “oricicli” [Translator].
12If one represents these surfaces as pseudo-spheres these trajectories are loxodromes of the surfaces.

9



4 Spaces of 3 dimensions with a group G2.

We now turn our attention to 3-dimensional spaces which admit a 2-parameter group of
motions. The trajectories of the two infinitesimal transformation generators of this G2

being distinct (§2), each point of the space will be moved over a surface by the transforma-
tions of G2. We have therefore a family of surfaces Σ which represent for our group what
Lie calls the minimum invariant varieties . For a given transformation of the G2, any one
of the Σ is transformed into itself and consequently any surface geodesically parallel to a Σ
as well; we deduce from this that the ∞1 surfaces Σ are geodesically parallel;13 moreover,
any each of them, admitting a group G2 of transformations, will be of constant zero or
negative curvature (§3). If we take the surfaces Σ as coordinate surfaces x1 = constant

and their orthogonal trajectories for coordinate lines14 x1, we put the line element into the
geodetic form:

ds2 = dx1
2 + a22 dx2

2 + 2a23 dx2dx3 + a33 dx3
2 . (4)

In each of the infinitesimal transformations X1f , X2f , since ξ1 = 0, the equations (A),
setting i = 1, k = 2, 3, give

a22
∂ξ2
∂x1

+ a23
∂ξ3
∂x1

= 0 , a23
∂ξ2
∂x1

+ a33
∂ξ3
∂x1

= 0 ,

from which since a22a33−a23
2 6= 0, we conclude that ∂ξ2/∂x1 = ∂ξ3/∂x1 = 0, namely that

the coefficients of X1f , X2f are independent of x1.
Assuming this to be true, we take the respective (distinct) trajectories of X1f , X2f as

coordinate lines over one of the surfaces x1 = constant and we will have X1f = ξ ∂f/∂x2,
X2f = η ∂f/∂x3.

We now distinguish again the two cases

(a) [X1, X2]f = 0 and (b) [X1, X2]f = X2f .

In the first case, as in the preceding §, we can make

X1f = ∂f/∂x2 , X2f = ∂f/∂x3

13We can deduce the same conclusion from the fundamental equations (A). Let us assume in fact Σ for

the x1 coordinate surfaces and for the x1 coordinate lines [translator note: second x1 corrected from Bianchi

typo x3 here and in the text as well] their orthogonal trajectories; we will have

ds2 = a11 dx1
2 + a22 dx2

2 + 2a23 dx2dx3 + a33 dx3
2 .

If X1f , X2f are their infinitesimal transformation generators, we have to have X1(x1) = 0, X2(x1) = 0 and

consequently X1f = ξ2 ∂f/∂x2 + ξ3 ∂f/∂x3, X2f = η2 ∂f/∂x2 + η3 ∂f/∂x3. Now applying (A) successively

to X1f , X2f setting i = k = 1 we deduce

∂a11

∂x2
ξ2 +

∂a11

∂x3
ξ3 = 0 ,

∂a11

∂x2
η2 +

∂a11

∂x3
η3 = 0 ,

from which, since

∣∣∣∣
ξ2 ξ3

η2 η3

∣∣∣∣ 6= 0 from §2, it follows that ∂a11/∂x2 = ∂a11/∂x3 = 0. Changing the parameter

x1, one can therefore make a11 = 1 which gives to the line element the geodetic form of the text.
14In the original text, “coordinate lines x3”, which is incorrect [Editor].
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and the line element of the space will take the form

ds2 = dx1
2 + α dx2

2 + 2β dx2dx3 + γ dx3
2 , (a∗)

with α, β, γ being functions only of x1.
In case (b) we take

X1f = ∂f/∂x3 , X2f = ex3 ∂f/∂x2

and we will then have

ds2 = dx1
2 + αdx2

2 + 2(β − αx2) dx2dx3 + (αx2
2 − 2βx2 + γ) dx3

2 , (b∗)

where α, β, γ are still functions only of x1.
Vice versa, whatever are the functions α, β, γ of x1 in (a∗) or (b∗), we will have a

space which admits the 2-parameter group of motions (∂f/∂x2, ∂f/∂x3) in the first case
and another (∂f/∂x3, e

x3∂f/∂x2) in the second case. If α, β, γ remain arbitrary functions
of x1, this G2 is the complete group of motions, as will be shown by the analysis in the
following §§.

5 Spaces with an intransitive group Gr of motions (r ≥ 3).

We now pass to the treatment of 3-dimensional spaces which admit a group of motions with
more than two parameters, beginning with the case in which this group Gr is intransitive.

From the considerations of the preceding § the minimum invariant varieties with respect
to the group will be geodesically parallel surfaces, and because each of these has to admit
a group Gr with r ≥ 3 parameters,15 one necessarily must have r = 3. To the line element
of the space we then give the geodetic form

ds2 = dx2
1 + a22 dx

2
2 + 2a23 dx2dx3 + a33 dx

2
3 (4)

and the geodesically parallel surfaces x1 = constant will be of constant curvature.
Arbitrarily selecting one of these, say x1 = 0, we distinguish three cases characterized

by the curvature K being zero, positive or negative. By substituting for this space a similar
space, we can assume successively

K0 = 0 , K0 = 1 , K0 = −1

and correspondingly we can change the coordinate lines of x2, x3 on the surface x1 = 0 so
that the line element ds20 of x1 = 0 assumes the respective typical forms:

K0 = 0 : ds20 = dx2
2 + dx2

3 , (α)

K0 = 1 : ds20 = dx2
2 + sin2 x3 dx

2
3 , (β)

K0 = −1 : ds20 = dx2
2 + e2x3dx2

3 . (γ)
15That on any surface Σ the group Gr retains r parameters follows immediately from what we have seen

in §4 because if we take the line element in the geodetic form (4), in every single infinitesimal transformation

of Gr one has ξ1 = 0 and ξ2, ξ3 are independent of x1. Of course this is also clear geometrically since if all

the points of a surface Σ remain fixed, the entire space is immobilized.
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The group G3 of motions of x1 = 0 into itself will be generated respectively by the
three infinitesimal transformations:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = x3

∂f

∂x2
− x2

∂f

∂x3
; (α∗)

X1f =
∂f

∂x3
, X2f = sinx3

∂f

∂x2
+ cotx2 cos x3

∂f

∂x3
,

X3f = cosx3
∂f

∂x2
− cotx2 sin x3

∂f

∂x3
; (β∗)

X1f =
∂f

∂x3
, X2f =

∂f

∂x2
− x3

∂f

∂x3
,

X3f = x3
∂f

∂x2
+

1
2
(e−2x2 − x2

3)
∂f

∂x3
. (γ∗)

In all three cases these are also the infinitesimal transformations of the group of
motions of the whole space. Now if for the line element (4) we write the three equa-
tions which result from the fundamental equations (A) setting ξ1 = 0 and successively
(i, k) = (2, 2), (2, 3), (3, 3), we find

∂a22

∂x2
ξ2 +

∂a22

∂x3
ξ3 + 2a22

∂ξ2
∂x2

+ 2a23
∂ξ3
∂x2

= 0 ,

∂a23

∂x2
ξ2 +

∂a23

∂x3
ξ3 + a22

∂ξ2
∂x3

+ a23

(
∂ξ2
∂x2

+
∂ξ3
∂x3

)
+ a33

∂ξ3
∂x2

= 0 ,

∂a33

∂x2
ξ2 +

∂a33

∂x3
ξ3 + 2a23

∂ξ2
∂x3

+ 2a33
∂ξ3
∂x3

= 0 . (C)

These must be satisfied when for ξ2, ξ3 in the three respective cases we substitute the
three pairs of values which belong respectively to the 3 generator substitutions (α∗), (β∗)
or (γ∗).

6 Discussion of the system (C).

We begin with case (α∗) and putting into (C) first16 ξ2 = 1, ξ3 = 0 and then ξ2 = 0, ξ3 = 1,
we deduce from this that ∂aik/∂x2 = ∂aik/∂x3 = 0 (i, k = 2, 3), from which it follows that
the coefficients aik here are functions only of x1. If we now introduce into (C) the values
ξ2 = x3, ξ3 = −x2 which belong to the third infinitesimal transformation, we have a23 = 0,
a22 = a33 and therefore for the line element of the space

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + dx2
3) , (5)

where ϕ(x1) indicates an (arbitrary) function of x1.
In case (β), first setting in (C) ξ2 = 0, ξ3 = 1, the values which correspond to

X1f , we see that a22, a23, a33 do not depend on x3. Then substituting the values ξ2 =
sin x3, ξ3 = cotx2 cos x3 corresponding to X3f , the first of (C) gives us sinx3 ∂a22/∂x2 =
2 cosx3/ sin2 x2 a23, and since neither a22 nor a23 depend on x3, it follows that a23 = 0,
∂a22/∂x2 = 0 and consequently a22 = ϕ2(x1).

16The original paper had (ξ1, ξ2) instead of (ξ2, ξ3) here, which was an obvious typo [Editor].
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The second of (C) then gives immediately a33 = sin2 x2 ϕ
2(x1), so that the line element

of the space has the form

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + sin2 x2 dx
2
3) . (6)

Finally in case (γ), equations (C) with the values ξ2 = 0, ξ3 = 1 belonging to X1f

show that a22, a23, a33 are again independent of x3. Substituting next the values ξ2 = 1,
ξ3 = −x3 corresponding to X2f we find17: ∂a22/∂x2 = 0, ∂a23/∂x2 = a23, ∂a33/∂x2 =
2a33, and finally with the values ξ2 = x3, ξ3 = 1

2(e−2x2 − x2
3) belonging to X3f : a23 = 0,

a22 = a33 e
−2x2 , from which we arrive at the line element

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + e2x2dx2
3) . (7)

Vice versa for any function ϕ(x1) the spaces of the line elements (5), (6), (7) admit the
respective intransitive group G3 of motions (α∗), (β∗) or (γ∗).

We must now discover for which special forms of the function ϕ(x1) it will happen that
the complete group of motions of the space will be larger.

7 The complete group of motions of the space:
ds2 = dx2

1 + ϕ2(x1) (dx2
2 + dx2

3).

In order to determine the most general infinitesimal motionXf = η1 ∂f/∂x1+η2 ∂f/∂x2+
η3∂f/∂x3 of the present space, the fundamental equations (A), setting successively (i, k)
= (1,1), (2,2), (3,3), (1,2), (1,3), (2,3) give the following 6 equations:18

∂η1

∂x1
= 0 , (8)

∂η2

∂x2
+
ϕ′

ϕ
η1 = 0 , (9)

∂η3

∂x3
+
ϕ′

ϕ
η1 = 0 , (10)

∂η1

∂x2
+ ϕ2(x1)

∂η2

∂x1
= 0 , (11)

∂η1

∂x3
+ ϕ2(x1)

∂η3

∂x1
= 0 , (12)

∂η2

∂x3
+
∂η3

∂x2
= 0 . (13)

By taking η1 = 0 naturally one has only the three transfomations (α∗) and the question
to be examined is therefore this: if the above equations can be satisfied with η1 6= 0.

Differentiating (9) with respect to x1, (11) with respect x2 and comparing, with the
observation that by (8), η1 does not depend on x1, we find that

∂2η1

∂x2
2

= (ϕ′′ϕ− ϕ′2) η1 , (14)

17In the original paper, the third equation was ∂a33/∂x3 = 2a33, which was incorrect [Editor].
18The prime indicates the derivative with respect to x1.
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and similarly from (10), (12)

∂2η1

∂x2
3

= (ϕ′′ϕ− ϕ′2) η1 . (15)

Since η1 is different from zero and does not depend on x1, while ϕ is a function only of
x1, the resulting equations (14), (15) show that one will have:

ϕ′′ϕ− ϕ′2 = c , (16)
∂2η1

∂x2
2

=
∂2η1

∂x2
3

= cη1 , (17)

where c is a constant. Integrating (11), (12) we find

η2 = −∂η1

∂x2

∫
dx1

ϕ2(x1)
+ ψ(x2, x3) ,

η3 = −∂η1

∂x3

∫
dx1

ϕ2(x1)
+ χ(x2, x3) , (18)

where ψ, χ are two functions only of x2, x3. By substituting these into (13) it follows that

2
∂2η1

∂x2∂x3

∫
dx1

ϕ2(x1)
=
∂ψ

∂x3
+
∂ψ

∂x2
,

from which, since η1, ψ, χ are independent of x1 while the integral necessarily contains it,
we have

∂2η1

∂x2∂x3
= 0 . (17∗)

Comparing with (17), we have immediately c ∂η1/∂x2 = 0, c ∂η1/∂x3 = 0.
If c 6= 0 we will therefore have η1 = constant, η2 = ψ(x2, x3), η3 = χ(x2, x3), from

which (9) or (10) shows that one has ϕ′/ϕ = constant. But this last result follows even
if c = 0, since then by (17) and (17∗), η1 is a linear function of x2, x3 and since by (18)
∂η2/∂x2 = ∂ψ/∂x2, (9) gives us: ϕ′/ϕ = −1/η1 ∂ψ/∂x2 , from which we can conclude again
that ϕ′/ϕ = constant. Therefore if the present space admits a larger group of motions
(with r > 3 parameters) we necessarily have ϕ′ = kϕ (k constant).

If k = 0 one can make ϕ(x1) = 1 and have ordinary Euclidean space. If k 6= 0 one can
assume that ϕ(x1) = ekx1 , and have the space of constant negative curvature K = −k2.

In both cases the complete group of motions has 6 parameters. The result being well
known, we do not concern ourselves with giving the actual 6 infinitesimal transformation
generators, which are obtained by integrating the above equations.

8 The complete group of motions of the space:
ds2 = dx2

1 + ϕ2(x1) (dx2
2 + sin2 x2 dx

2
3).

We proceed as in the previous §, writing first the equations which follow from (A) in order
to find the most general infinitesimal motion of the space under consideration. We thus
find

∂η1

∂x1
= 0 , (19)
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∂η2

∂x1
= − 1

ϕ2

∂η1

∂x2
, (20a)

∂η2

∂x2
= −ϕ

′

ϕ
η1 , (20b)

∂η3

∂x1
= − 1

ϕ2 sin2 x2

∂η1

∂x3
, (21a)

∂η3

∂x3
= −ϕ

′

ϕ
η1 − cot x2 η2 , (21b)

∂η2

∂x3
+ sin2 x2

∂η3

∂x2
= 0 . (22)

Eliminating by differentiation η2 from (20) and η3 from (21), we find

∂2η1

∂x2
2

= (ϕ′′ϕ− ϕ′2) η1 ,

∂2η1

∂x2
3

= (ϕ′′ϕ− ϕ′2) sin2 x2 η1 − sin x2 cos x2
∂η1

∂x2
,

from which, since η1 6= 0 doesn’t depend on x1, we conclude that

ϕ′′ϕ− ϕ′2 = c (constant) ,

∂2η1

∂x2
2

= cη1 ,
∂2η1

∂x2
3

= c sin2 x2 η1 − sinx2 cosx2
∂η1

∂x2
. (23)

Integrating the first of (20) and the first of (21) with respect to x1 we have:

η2 = −∂η1

∂x2

∫
dx1

ϕ2(x1)
+ ψ(x2, x3) ,

η3 = − 1
sin2 x2

∂η1

∂x3

∫
dx1

ϕ2(x1)
+ χ(x2, x3) , (24)

and substituting into (22) we obtain

2

(
∂2η1

∂x2∂x3
− cotx2

∂η1

∂x3

)∫
dx1

ϕ2(x1)
=

∂ψ

∂x3
+ sin2 x2

∂χ

∂x2
.

Since x1 appears here only in the integrals, we necessarily have

∂2η1

∂x2∂x3
= cotx2

∂η1

∂x3
,

and if we differentiate this with respect to x2 and the first of (23) with respect to x3, we
conclude that (c+ 1) ∂η1/∂x3 = 0, and consequently c = −1 or ∂η1/∂x3 = 0.

We consider in this § the first case c = −1; then from

ϕ′′ϕ− ϕ′2 = −1 , (25)

it follows by differentiation that ϕ′′′ − ϕ′ϕ′′ = 0, so that ϕ′′ = kϕ, (k constant) and (25)
becomes ϕ′2 = 1 + kϕ2.
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If k = 0, neglecting the additive constant in x1 we have ϕ(x1) = x1. If k is negative, we
put k = −1/R2 and we will have ϕ(x1) = R sin(x1/R); finally if k is positive, let k = 1/R2

and it will be ϕ(x1) = R sinh(x1/R).
We have as a consequence the following three forms of the line element of the space:

ds2 = dx2
1 + x2

1 (dx2
2 + sin2 x2 dx

2
3) ,

ds2 = dx2
1 + R2 sin2(x1/R) (dx2

2 + sin2 x2 dx
2
3) ,

ds2 = dx2
1 + R2 sinh2(x1/R) (dx2

2 + sin2 x2 dx
2
3) .

The first form belongs to ordinary Euclidean space (in polar coordinates), the second
and third respectively to spaces of constant positive or negative curvature K = ±1/R2. In
all three cases the complete group of motions has 6 parameters.

9 The group G3 of motions of the space:
ds2 = dx2

1 + dx2
2 + sin2 x2 dx

2
3.

In order to complete the discussion of the previous § there remains to be treated the case
in which we have ∂η1/∂x3 = 0. Equations (23) then become19

∂2η1

∂x2
2

= cη1 ,
∂η1

∂x2
= c tanx2 η1 ,

from which by differentiating the second with respect to x2 and comparing with the first
we conclude (since by assumption η1 6= 0): c(c+ 1) = 0.

Since the case c = −1 has already been discussed in the previous §, there remains for
us here only to assume c = 0 so that η1 = a (constant). Then (24) become η2 = ψ(x2, x3),
η3 = χ(x2, x3) and (20), (21), (22) give us

∂ψ

∂x2
+ a

ϕ′

ϕ
= 0 , (26)

∂χ

∂x3
+ a

ϕ′

ϕ
+ cotx2 ψ = 0 , (27)

∂ψ

∂x3
+ sin2 x2

∂χ

∂x2
= 0 . (28)

In (26), (27) x1 should appear only in ϕ′/ϕ and therefore ϕ′/ϕ = k (constant), so that
ψ = −akx2 + θ(x3), with θ a function only of x3. After this (27), (28) become:

∂χ

∂x2
= − θ′(x3)

sin2 x2
,
∂χ

∂x3
= −ak + akx2 cotx2 − cot x2 θ(x3) , (29)

Forming the integrability condition for these last two equations, we conclude that
θ′′(x3) + θ(x3) = ak(x2 − cosx2 sin x2), so that ak = 0 and since η1 = a 6= 0, we must have
k = 0. So one therefore has ϕ = constant and without loss of generality (by substituting
a similar space), we can make ϕ(x1) = 1, which gives us the line element

ds2 = dx2
1 + dx2

2 + sin2 x2 dx
2
3

19In the second equation, the original paper has a second derivative, which is incorrect [Editor].
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indicated in the title of the section.
As a consequence we must have θ′′(x3)+θ(x3) = 0, from which θ(x3) = b cosx3+c sinx3

with b, c (arbitrary) constants. Then integrating (29), we have χ = − cotx2(b sinx3 −
c cosx3) + d, where d is a new arbitrary constant.

The most general way of satisfying the fundamental equations in the present case is
therefore given by the formula

η1 = a , η2 = b cosx3 + c sinx3 , η3 = cotx2(−b sinx3 + c cosx3) + d ,

with a, b, c, d arbitrary constants.
Thus the complete group of motions of the present space is the 4-parameter group

generated by the infinitesimal transformations

X1f =
∂f

∂x3
, X2f = sinx3

∂f

∂x2
+ cotx2 cosx3

∂f

∂x3
,

X3f = cosx3
∂f

∂x2
− cotx2 sinx3

∂f

∂x3
, X4f =

∂f

∂x1
,

whose composition is given therefore in the equations

[X1, X2]f = X3f , [X1, X3]f = −X2f , [X2, X3]f = X1f ,

[X1, X4]f = [X2, X4]f = [X3, X4]f = 0 .

The form of the line element ds2 = dx2
1 + dx2

2 + sin2 x2 dx
2
3 already renders a priori

evidence that, other than the ∞3 motions which correspond to the sliding of each surface
x1 = constant into itself, there exists here a group G1 with finite equations x′1 = x1 +
constant, x′2 = x2, x′3 = x3.

But our calculations show that this G4 is also the complete group of motions. Such
a group G4 is clearly transitive; furthermore it is systatic since the motions that leave a
point of the space fixed also leave fixed all the points of that geodesic (x1) which passes
through it, so that these geodesics are the systatic varieties of the group. The whole space
can be freely rotated around each one of these, but no other rotation is possible.

10 The group of motions of the space:
ds2 = dx2

1 + ϕ2(x1) (dx2
2 + e2x2dx2

3).

The fundamental equations (A) are translated by the present space into the following:20

∂η1

∂x1
= 0 , (30)

∂η2

∂x1
= − 1

ϕ2

∂η1

∂x2
, (31a)

∂η2

∂x2
= −ϕ

′

ϕ
η1 , (31b)

∂η3

∂x1
= −e

−2x2

ϕ2

∂η1

∂x3
, (32a)

20In the original paper, eq. (31b) had ∂η2/∂x3 on the l.h.s., and eq. (32a) had ∂η1/∂x2 on the r.h.s.,

both of which were incorrect. Correction after the Opere [Editor].
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∂η3

∂x3
= −ϕ

′

ϕ
η1 − η2 , (32b)

∂η2

∂x3
+ e2x2

∂η3

∂x2
= 0 . (33)

Eliminating by differentiation η2 from (31) and η3 from (32) we find

∂2η1

∂x2
2

= (ϕ′′ϕ− ϕ′2) η1 ,

∂2η1

∂x2
3

= e2x2(ϕ′′ϕ− ϕ′2) η1 − e2x2
∂η1

∂x2
,

from which (assuming η1 6= 0) one derives as usual (ϕ′′ϕ− ϕ′2) = c (constant), so that

∂2η1

∂x2
2

= cη1 , (34)

∂2η1

∂x2
3

= e2x2

(
cη1 −

∂η1

∂x2

)
. (35)

Integrating (31a) and (32a) with respect to x1 we obtain:

η2 = −∂η1

∂x2

∫
dx1

ϕ2(x1)
+ ψ(x2, x3) , (36)

η3 = −e−2x2
∂η1

∂x3

∫
dx1

ϕ2(x1)
+ χ(x2, x3) , (37)

and substituting into (33) we have

2

(
∂2η1

∂x2∂x3
− ∂η1

∂x3

)∫
dx1

ϕ2(x1)
=
∂ψ

∂x3
+ e2x2

∂χ

∂x2
.

Applying the usual observation, we deduce from this

∂2η1

∂x2∂x3
=
∂η1

∂x3
.

Differentiating this with respect to x2 and comparing with (34) differentiated with
respect to x3, it follows that (c − 1) ∂η1/∂x3 = 0, from which it follows that c = 1 or
∂η1/∂x3 = 0.

We treat the first case in this section. The equation ϕ′′ϕ − ϕ′ 2 = 1 differentiated
gives ϕ′′ = kϕ, (k constant), so that ϕ′ 2 = kϕ2 − 1. The constant k will necessarily be
positive and, putting k = 1/R2 and neglecting the additive constant in x1, we will have
ϕ(x1) = R cosh(x1/R). In such a case the space has the line element

ds2 = dx2
1 +R2 cosh2(x1/R) (dx2

2 + e2x2 dx2
3)

and is of constant negative curvature K = −1/R2. Its complete group of motions is a G6.
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11 The group G4 of motions of the space:
ds2 = dx2

1 + dx2
2 + e2x2 dx2

3.

We continue the discussion of the previous section assuming now ∂η1/∂x3 = 0.
Equations (34), (35) give21 ∂2η1/∂x2

2 = cη1, ∂η1/∂x2 = cη1 from which c2 = c and
consequently c = 0, the case c = 1 having already been discussed in §10. So we then
have η1 = a (constant), and (36), (37) become η2 = ψ(x2, x3), η3 = χ(x2, x3), while the
equations at the beginning of §10 give

∂ψ

∂x2
+ a

ϕ′

ϕ
= 0 ,

∂χ

∂x3
+ a

ϕ′

ϕ
+ ψ = 0 ,

∂ψ

∂x3
+ e2x2

∂χ

∂x2
= 0 .

We conclude from this that ϕ′ = kϕ (k constant), from which it follows that

ψ = −akx2 + θ(x3) ,
∂χ

∂x2
= −e2x2θ′(x3) ,

∂χ

∂x3
= −ak + akx2 − θ(x3) .

Writing the integrability condition for these last two equations, we find e−2x2θ′′(x3) +
ak = 0, from which k = 0, θ′′(x3) = 0 establishing the most general values of η1, η2, η3 to
be:

η1 = a , η2 = bx3 + c , η3 =
b

2
(e−2x2 − x2

3) − cx3 + d ,

with a, b, c, d arbitrary constants. By replacing the space with a similar space, one can
make ϕ(x1) = 1 as in §9 and one therefore has the line element

ds2 = dx2
1 + dx2

2 + e2x2 dx2
3 .

Therefore here also as in §9, the complete group of motions is a G4. Its infinitesimal
transformation generators are:

X1f =
∂f

∂x3
, X2f = − ∂f

∂x2
+ x3

∂f

∂x3
,

X3f = x3
∂f

∂x2
+

1
2
(e−2x2 − x2

3)
∂f

∂x3
, X4f =

∂f

∂x1
,

and have the composition

[X1, X2]f = X1f , [X2, X3]f = X3f , [X3, X1]f = X2f ,

[X1, X4]f = [X2, X4]f = [X3, X4]f = 0 .

The properties of the group are entirely similar to those already described for the group
in §10. However, the two corresponding spaces belong to essentially different types, a fact
established by the observation that the surfaces orthogonal to the systatic geodesics (x1)
are surfaces of constant positive curvature for the space of §10, while for the present space
they are of constant negative curvature.

We summarize these last results obtained here in the theorem:
21Bianchi used the ordinary derivative d instead of ∂ in both equations here, correction by the Editor.
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If a space of three dimensions admits an intransitive group G3 of motions, its line
element is reducible to one of the 3 standard forms:

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + dx2
3) ,

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + sin2 x2 dx
2
3) ,

ds2 = dx2
1 + ϕ2(x1) (dx2

2 + e2x2 dx2
3)

and in general the complete group of motions is exactly a 3-parameter group. The only
exceptions are the two special spaces

ds2 = dx2
1 + dx2

2 + sin2 x2 dx
2
3 ,

ds2 = dx2
1 + dx2

2 + e2x2 dx2
3 ,

each with a 4-parameter group of motions, and the spaces of constant curvature with 6-
parameter groups.

12 Spaces with a transitive group G3 of motions.

Having exhausted the study of spaces which admit an intransitive G3 of motions in the
previous sections, let us now turn to the treatment of the spaces with a transitive group of
motions.

In this section, we begin to establish in general that given any group G3 whatsoever,
transitive over 3 variables x1, x2, x3, there always exist some spaces of 3 dimensions which
admit it as a group of motions. In fact we establish more generally the analogous result
for any number n of dimensions with the theorem:

Given any transitive group of n parameters over n variables:

Gn ≡ (X1f,X2f, . . . , Xnf) ,

it is always possible to find spaces of n dimensions which admit it as a group of motions.22

To avoid confusion, however, we state immediately that the spaces Sn so determined
may very well admit a larger group as the complete group of motions, as the case n = 2
has already shown (see §3).

We assume in general

Xαf =
1...n∑

i

ξ
(α)
i

∂f

∂xi
, (α = 1, 2, . . . , n) ,

and one will have:
[Xα, Xβ]f =

∑

γ

cαβγXγf , (38)

where cαβγ are the constants of composition. Furthermore, since the group is assumed to
be transitive, the determinant

|ξα)| =

∣∣∣∣∣∣∣∣∣∣

ξ
(1)
1 ξ

(1)
2 · · · ξ

(1)
n

ξ
(2)
1 ξ

(2)
2 · · · ξ

(2)
n

· · · ·
ξ
(n)
1 ξ

(n)
2 · · · ξ

(n)
n

∣∣∣∣∣∣∣∣∣∣

22If the group is not simply transitive the theorem does not hold in general as is already shown by the

theorem at the beginning of §2.
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will be different from zero.
Here the coefficients ξ(α)

i are given as functions of x and we have to determine the
coefficients aik of the differential form ds2 =

∑
i,k aik dxidxk so that it admits the group

Gn, in other words so that the fundamental equations (A) are satisfied by all the n trans-
formationsXαf . To determine the aik we therefore have the n2(n+1)/2 partial differential
equations

Xα(aik) +
∑

r

(
air
∂ξ

(α)
r

∂xk
+ akr

∂ξ
(α)
r

∂xi

)
= 0 , (D)

(α, i, k,= 1, 2, 3, . . . , n) .

If in (D) we fix i, k and let α take the n values 1, 2, . . . , n, we can solve the resulting
equations for the n first derivatives of aik since by hypothesis |ξ(α)

i | 6= 0. We therefore
have a system of linear and homogeneous total differential equations for our unknowns aik .
We show that this system is completely integrable, for which it suffices to prove that by
writing two of the equations (D) for the same unknown aik:

Xα(aik) +
∑

r

air
∂ξ

(α)
r

∂xk
+
∑

r

akr
∂ξ

(α)
r

∂xi
= 0 ,

Xβ(aik) +
∑

s

ais
∂ξ

(β)
s

∂xk
+
∑

s

aks
∂ξ

(β)
s

∂xi
= 0 ,

and if the operation Xα is performed on the second of these, the operation Xβ on the first
of these, and one subtracts the results making use of the same equation (D), the result is
an identity. Using (38) on this relation one obtains in this way first23

∑

γ

cαβγXγ(aik) +
∑

s

Xα(ais)
∂ξ

(β)
s

∂xk
+
∑

s

Xα(aks)
∂ξ

(β)
s

∂xi

−
∑

r

Xβ(air)
∂ξ

(α)
r

∂xk
−
∑

r

Xβ(akr)
∂ξ

(α)
r

∂xi

+
∑

r

air

[
Xα

(
∂ξ

(β)
r

∂xk

)
−Xβ

(
∂ξ

(α)
r

∂xk

)]

+
∑

r

akr

[
Xα

(
∂ξ

(β)
r

∂xi

)
−Xβ

(
∂ξ

(α)
r

∂xi

)]
= 0 . (39)

Now from (38) itself one has

Xα(ξ(β)
r )−Xβ(ξ(α)

r ) =
∑

r

cαβγ ξ
(γ)
r ,

which by differentiating with respect to xk becomes

Xα

(
∂ξ

(β)
r

∂xk

)
−Xβ

(
∂ξ

(α)
r

∂xk

)

=
∑

γ

cαβγ
∂ξ

(γ)
r

∂xk
+
∑

s

(
∂ξ

(α)
r

∂xs

∂ξ
(β)
s

∂xk
− ∂ξ

(α)
s

∂xk

∂ξ
(β)
r

∂xs

)
,

23In the last line of eq. (39),
∑

i
was corrected to

∑
r

[Editor].
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and similarly

Xα

(
∂ξ

(β)
r

∂xi

)
−Xβ

(
∂ξ

(α)
r

∂xi

)

=
∑

γ

cαβγ
∂ξ

(γ)
r

∂xi
+
∑

s

(
∂ξ

(α)
r

∂xs

∂ξ
(β)
s

∂xi
− ∂ξ

(β)
r

∂xs

∂ξ
(α)
s

∂xi

)
.

If in the first 5 terms of (39) we introduce the values of X(a) given by (D) and in the
last 2 terms the values calculated above, we see that it is converted into an identity. We
conclude from this that the system of total differential equations for the aik is completely
integrable and we can therefore give the initial values of the aik arbitrarily at a point of the
space Sn. So if we choose them in such a way that the conditions (of inequality) making
the differential form positive definite are initially satisfied, they will remain so in a certain
neighborhood of that point and we will therefore have defined a space of n dimensions
which admits the group Gn as a group of motions.

13 Preliminary classification of the various types of G3.

With the general considerations of the previous sections we are assured that to any G3

transitive over 3 variables always correspond spaces of 3 dimensions which admit it as
a group of motions. It is not true, however, and is not even true in all cases, that the
complete group of motions of the space obtained is indeed the given G3. It will be seen
instead that there are certain compositions of the G3 which necessarily imply the existence
of a larger group of motions.24 Furthermore we wish to establish for any possible type of G3

a corresponding canonical form for the line element, by performing the integration which
we have only described in the previous section. As the basis of our calculations we take the
classification given by Lie of the possible compositions of groups of 3 parameters.25 But
here an essential warning is necessary for us. In the classification of Lie there is no way
for us to distinguish between real and complex, whereas in this study we wish to report
only on real groups and their real subgroups: we will therefore have to subdivide into more
types some types which are a single type from the general point of view of Lie.

Without repeating the discussion given by Lie (ibid.), it will suffice to point out that,
considering first the integrable groups, to the 6 types classified by Lie according to the
following compositions

(Type I) [X1, X2]f = [X1, X3]f = [X2, X3]f = 0 ,

(Type II) [X1, X2]f = [X1, X3]f = 0 , [X2, X3]f = X1f ,

(Type III) [X1, X2]f = 0 , [X1, X3]f = X1f ,

[X2, X3]f = 0 ,

(Type IV) [X1, X2]f = 0 , [X1, X3]f = X1f ,

[X2, X3]f = X1f +X2f ,

24This happens for the groups G3 of types I, II, III, V in the classification of the present section.
25S. Lie-F. Engel, Vol. III, p. 713 and S. Lie-G. Scheffers, Vorlesungen über continuierliche Gruppen

(1893), p. 565.
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(Type V) [X1, X2]f = 0 , [X1, X3]f = X1f ,

[X2, X3]f = X2f ,

(Type VI) [X1, X2]f = 0 , [X1, X3]f = X1f ,

[X2, X3]f = hX2f , (h 6= 0, 1) ,

we must add a seventh type with the composition

(Type VII) [X1, X2]f = 0 , [X1, X3]f = X2f ,

[X2, X3]f = −X1f + hX2f ,

where the constant h satisfies the inequality 0 ≤ h < 2.26

From our real point of view this composition in effect differs from all of the previous
ones in that, while in the first 6 types one has at least a real invariant subgroup G1, in
type VII, however, no such real subgroup exists.27

Furthermore, it is necessary to observe that in the new composition VII the constant
h is truly essential , namely that if there is a second group (Y1f, Y2f, Y3f) of composition

[Y1, Y2]f = 0 , [Y1, Y3]f = Y2f , [Y2, Y3]f = −Y1f + kY2f ,

(0 ≤ k < 2) , (39)

if k 6= h, then the two groups cannot be put into an isomorphic correspondence. Indeed if
this occurred and we indicate by X̄1f , X̄2f , X̄3f , the infinitesimal transformations of the
first group which correspond respectively to Y1f , Y2f , Y3f in the second, then X̄1f , X̄2f

must be constructed only with X1f , X2f since both pairs of transformations belong to the
derived group. We assume therefore:

X̄1f = aX1f + βX2f , X̄2f = γX1f + δX2f ,

X̄3f = aX1f + bX2f + cX3f ,

and from the assumed relations of composition we find the following relations among the
constants α, β, γ, δ, c:

γ + βc = 0 , δ − αc− hβc = 0 ,

α − kγ − cδ = 0 , β − kδ + cγ + hcδ = 0 ,

so that

α = c(δ − kβ) , γ = −βc ,
{
β(1 − c2) + (hc− k)δ = 0 ,
βc(h− kc) + (c2 − 1)δ = 0 .

26The sign of h is not essential, as one sees by simultaneously changing the signs of X2f , X3f .
27If Y f = α1X1f + α2X2f + α3X3f were the infinitesimal transformation generator of such a subgroup,

the three infinitesimal transformations [Y,X1]f , [Y,X2]f , [Y,X3]f , would have to differ from Y f only by a

constant factor. It follows immediately from this that α3 = 0, and then from

[Y,X3]f = α1X2f + α2(−X1f + hX2f) = ρ(α1X1f + α2X2f) ,

we obtain ρα1 +α2 = 0, ρα2 −α1 −hα2 = 0, so that ρ2 −hρ+ 1 = 0, an equation with complex roots since

h2 < 4.

23



From these last two equations, since both β and δ cannot be simultaneously zero, it
follows that c satisfies the 4th degree equation

c4 − hkc3 + (h2 + k2 − 2)c2 − hkc + 1 = 0 ;

but then the determinant αδ − βγ (since c2 6= 1 because k 6= ±h) would have to be zero,
but that is absurd.

There remains finally to consider the case in which the group G3 is not integrable. For
these groups Lie assigned the single type

(Type VIII) [X1, X2]f = X1f , [X1, X3]f = 2X2f ,

[X2, X3]f = X3f ,

but we must add another:

(Type IX) [X1, X2]f = X3f , [X2, X3]f = X1f ,

[X3, X1]f = X2f ,

which differs from the previous one only in that there does not exist a real 2-parameter
subgroup in this last case.28

14 The groups of type I.

In the first seven types the group G3 contains the Abelian 2-parameter subgroup of motions
G2 ≡ (X1f,X2f). The considerations of §4 show that with respect to this G2 the minimum
invariant varieties are geodesically parallel surfaces of zero curvature. By assuming these
as the coordinate surfaces x1 = constant, we can furthermore make X1f = ∂f/∂x2,
X2f = ∂f/∂x3 and the line element of the space will take the form

ds2 = dx2
1 + α dx2

2 + 2β dx2dx3 + γ dx2
3 , (40)

with α, β, γ functions only of x1. To determine the most general infinitesimal motion of
this space the fundamental equations (A) give us the system

∂η1

∂x1
= 0 ,

∂η1

∂x2
+ α

∂η2

∂x1
+ β

∂η3

∂x1
= 0 ,

∂η1

∂x3
+ β

∂η2

∂x1
+ γ

∂η3

∂x1
= 0 ,

(E)
1
2
α′η1 + α

∂η2

∂x2
+ β

∂η3

∂x2
= 0 ,

1
2
γ ′η1 + β

∂η2

∂x3
+ γ

∂η3

∂x3
= 0 ,

β′η1 + α
∂η2

∂x3
+ β

(
∂η2

∂x2
+
∂η3

∂x3

)
+ γ

∂η3

∂x2
= 0 .

28In the geometrical representation given by Lie on p. 718 of Vol. III, according to reciprocity in the plane

with respect to a conic, one case is distinguished from the other by type VIII having a real conic and type

IX a complex conic.
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Now if we assume that there exists a third infinitesimal transformationX3f = ξ1∂f/∂x1+
ξ2∂f/∂x2 + ξ3∂f/∂x3, which with X1f,X2f generates a group G3, we have in general

[X1, X3]f = aX1f + bX2f + cX3f ,

[X2, X3]f = a′X1f + b′X2f + c′X3f ,

with a, b, c, a′, b′, c′ constants, and therefore the following 6 equations hold

∂ξ1
∂x2

= cξ1 ,
∂ξ2
∂x2

= cξ2 + a ,
∂ξ3
∂x2

= cξ3 + b , (41a)

∂ξ1
∂x3

= c′ξ1 ,
∂ξ2
∂x3

= c′ξ2 + a′ ,
∂ξ3
∂x3

= c′ξ3 + b′ , (41b)

and since we furthermore assume that the group (X1f,X2f,X3f) is transitive, we will have
ξ1 6= 0.

Now the system (E) has to be satisfied when the η are replaced by the ξ and so we will
therefore have29

∂ξ1
∂x1

= 0 ,

cξ1 + α
∂ξ2
∂x1

+ β
∂ξ3
∂x1

= 0 ,

c′ξ1 + β
∂ξ2
∂x1

+ γ
∂ξ3
∂x1

= 0 ,

(F)
1
2
α′ξ1 + α(cξ2 + a) + β(cξ3 + b) = 0 ,

1
2
γ ′ξ1 + β(c′ξ2 + d′) + γ(c′ξ3 + b′) = 0 ,

β′ξ1 + α(c′ξ2 + a′) + β(cξ2 + c′ξ3 + a+ b′) + γ(cξ3 + b) = 0 ,

These are the equations which will serve to solve for us the problem posed for the
groups of the first seven types.

Meanwhile for type I, since the constants a, b, c, a′, b′, c′ are all zero, the last three
equations of (F), remembering that ξ1 6= 0, show that α, β, γ are constants and so the space
is of zero curvature. Since then there do not exist spaces with an Abelian intransitive G3 of
motions, as results from the discussion of the previous sections and also if one wishes, from
the same system (F) and from (41), we can state the result: If a space of 3 dimensions
admits a 3-parameter Abelian group of motions, it is of zero curvature and the group is the
translation group.

15 Digressions relative to spaces of n dimensions.

It will not be useless to observe that the preceding theorem holds for spaces of any number
of dimensions, namely:

A space of n dimensions which admits an n-parameter Abelian group of translations is
necessarily of zero curvature and the group is the translation group.

29In the first line of the equation, the original paper has ∂ξ1/∂x2; correction based on the Opere [Editor].
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To show this it is sufficient to appeal to the result established by Lie30 namely the theo-
rem that if r infinitesimal transformationsX1f,X2f, . . . , Xrf over n variables x1, x2, . . . , xn

commute, i.e., one has [Xi, Xj]f = 0, (i, k = 1, 2, . . . , r) and among the r Xf does not
exist any linear identity of the form

r∑

i=1

αi(x1, x2, . . . , xn)Xif = 0 ,

where the α are functions of the x, with a convenient transformation of variables they can
be reduced to the form:

X1f =
∂f

∂x1
, X2f =

∂f

∂x2
, . . . , Xrf =

∂f

∂xr
,

Therefore with Gn ≡ (X1f,X2f, . . . , Xnf) the hypothetical group, it will be enough to
show that there does not exist among the X1f,X2f, . . . , Xnf an identity of the above form,
namely that Gn is transitive, since then having reduced the group of motions to the canon-
ical form (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn) by the fundamental equations (A) the coefficients
aik of the line element will be independent of all the x, namely absolute constants, and so
we will have a space of zero curvature. Now we assume that among the first s of the Xif :
X1f,X2f, . . . , Xsf does not exist any linear identity of the form mentioned above (and we
will have by the theorem of §2: s ≥ 2 ), while one hasXs+1f = ξ1X1f+ξ2X2f+· · ·+ξsXsf ,
the ξ being functions of the x which are not all constants. By the cited theorem of Lie we
can assume

X1f =
∂f

∂x1
, X2f =

∂f

∂x2
, . . . , Xsf =

∂f

∂xs
,

and we will have
Xs+1f = ξ1

∂f

∂x1
+ ξ2

∂f

∂x2
+ · · ·+ ξs

∂f

∂xs
.

First the conditions

[Xs+1, X1]f = 0 , [Xs+1, X2]f = 0 , . . . , [Xs+1, Xs]f = 0

show that the ξ do not depend on the first s variables x1, x2, . . . , xs. Secondly, the funda-
mental equations (A), where one fixes k and sets i = 1, 2, . . . , s, give

s∑

r=1

air
∂ξr
∂xk

= 0 , (i = 1, 2, 3, . . . , s) .

Now the determinant

∣∣∣∣∣∣∣

a11 a12 . . . a1s

· · · ·
as1 as2 . . . ass

∣∣∣∣∣∣∣
is different from zero, and also positive

since the differential form
∑

i,k aik dxidxk is positive-definite, so that we have the result
that ξ1, ξ2, . . . , ξs are absolute constants, which is absurd.

30See S. Lie-F. Engel, Vol. I, p. 339.
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16 The groups of type II:
[X1, X2]f = [X1, X3]f = 0, [X2, X3]f = X1f .

Applying the general method described in §14, we must now set a = b = c = 0, a′ = 1,
b′ = c′ = 0.

From (41) and the first of (F) one then sees that ξ1 must be a constant, so we set
ξ1 = −1/h, and the last three equations of (F) give us α′ = 0, β′ = hα, γ ′ = 2hβ, from
which by integrating

α = k2 , β = hk2x1 + l , γ = h2k2x2
1 + 2hlx1 +m ,

with k, l,m new constants.31 The line element of the space therefore has the form32

ds2 = dx2
1 + k2 dx2

2 + 2(hk2x1 + l) dx2dx3 + (h2k2x2
1 + 2hlx1 +m) dx2

3 .

Replacing x2, x3 respectively by x2/k, x3/k, we can write

ds2 = dx2
1 + dx2

2 + 2(hx1 + l/k2) dx2dx3 + [(hx1 + l/k2)2 + n2] dx2
3 , (42)

having set n2 = m/k2 − l2/k4, a constant necessarily positive since αγ − β2 > 0.
If we put hx1 + l/k2 = ny1, x2 = n/h y2, x3 = 1/h y3, (42) becomes

ds2 = n2/h2 [dy2
1 + dy2

2 + 2y1 dy2dy3 + (y2
1 + 1) dx2

3] .

By substituting a similar space, we can therefore assume as the standard form for the
line element:

ds2 = dx2
1 + dx2

2 + 2x1 dx2dx3 + (x2
1 + 1) dx2

3 . (43)

This space certainly admits a transitive group G3 of motions of type II, but as we now
show, its complete group of motions is a G4 of which the original G3 is not the derived
subgroup.

To determine the most general infinitesimal motion Xf = η1∂f/∂x1 + η2∂f/∂x2 +
η3∂f/∂x3 of the space (43) it suffices to apply the equations (E) of §14, which here become:

∂η1

∂x1
= 0 , (44)

∂η1

∂x2
+
∂η2

∂x1
+ x1

∂η3

∂x1
= 0 , (45a)

∂η1

∂x3
+ x1

∂η2

∂x1
+ (x2

1 + 1)
∂η3

∂x1
= 0 , (45b)

∂η2

∂x3
+ x1

∂η3

∂x2
= 0 , (46)

x1η1 + x1
∂η2

∂x3
+ (x2

1 + 1)
∂η3

∂x3
= 0 , (47)

η1 +
∂η2

∂x3
+ x1

(
∂η2

∂x2
+
∂η3

∂x3

)
+ (x2

1 + 1)
∂η3

∂x2
= 0 . (48)

31We have indicated the value of α by k2 since it must be positive.
32The h2k2x2

1 in the coefficient of dx2
3 is a correction based on the Opere, the original had h2k2x1 here

[Editor].
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Solving (45) for ∂η2/∂x1 and ∂η3/∂x1 and integrating with respect to x1 with the
observation that by (44) η1 does not depend on x1, we have

η2 =
x2

1

2
∂η1

∂x3
−
(
x2

1

3
+ x1

)
∂η1

∂x2
+ ψ(x2, x3) ,

η3 =
x2

1

2
∂η1

∂x2
− x1

∂η1

∂x3
+ χ(x2, x3) .

By substituting these values of η2, η3 into (46) we obtain a 3rd degree polynomial in x1

which must be identically zero; from this we then deduce:

∂2η1

∂x2
2

=
∂2η1

∂x2∂x3
= 0 ,

∂ψ

∂x2
=

∂χ

∂x2
= 0 .

Proceeding similarly with (47) we finally find

∂2η1

∂x3
2

= 0 ,
∂ψ

∂x3
= −η1 ,

∂χ

∂x3
= 0 ,

so that
∂η1

∂x2
= − ∂2ψ

∂x2∂x3
= 0 .

Therefore η1 will be a linear function depending only on x3, so we set η1 = ax3 + b,
and we have ψ = −1

2ax
2
3 − bx3 + c, χ = d, with a, b, c, d arbitrary constants. With the

corresponding values of η1, η2, η3:

η1 = ax3 + b , η2 =
1
2
ax2

1 −
1
2
ax2

3 − bx3 + c , η3 = −ax1 + d ,

(48) is also satisfied no matter what values a, b, c, d take. So the complete group of motions
of the space (43) is the G4 generated by the four infinitesimal transformations

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = − ∂f

∂x1
+ x3

∂f

∂x2
,

X4f = x3
∂f

∂x1
+

1
2
(x2

1 − x2
3)
∂f

∂x2
− x1

∂f

∂x3
,

whose composition is expressed by the equations

[X1, X2]f = 0 , [X1, X3]f = 0 , [X1, X4]f = 0 ,

[X2, X3]f = X1f , [X2, X4]f = −X3f , [X3, X4]f = X2f .

As one can see, its derived group is the transitive group G3 ≡ (X1f,X2f,X3f) of type
II. The three transformations X1f , X2f , X3f are not related by any linear identity while
one has

X4f =
1
2
(x2

2 + x2
3)X1f − x1X2f − x3X3f ,

and since the coefficients of this relation are functions only of x1, x3, we conclude from
this33 that the group is systatic and the systatic varieties are the coordinate lines (x2).

33S. Lie-F. Engel, Vol. I, p. 502.
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It is clear geometrically that these systatic lines are geodesics of the space,34 and this
statement also follows immediately from the form (43) of the line element of the space.
The properties of the group are similar to those described in §9, §11 for the groups of the
spaces:

ds2 = dx2
1 + dx2

2 + sin2 x2 dx
2
3 ,

ds2 = dx2
1 + dx2

2 + e2x2 dx2
3 .

However, the different nature of these spaces follows immediately upon examining the
compositions of their groups of motions. While for these latter spaces the derived group
is an intransitive and simple G3, for the space (43) the derived group is a transitive and
integrable G3. We also observe an essential difference geometrically since for those spaces
discussed previously the systatic geodesics admit a family of orthogonal surfaces, which
does not occur for the space (43).35

Finally we observe that it is easy to write the equations of the present group G4 in
finite terms. Those of the derived subgroup are given by the equations:

x′1 = x1 + a1 , x
′
2 = x2 − a1x3 + a2 − a1a3 , x

′
3 = x3 + a3 ,

with parameters a1, a2, a3. It now suffices to associate with these ∞3 motions the group
G1 generated by the infinitesimal transformation whose finite equations are

x′1 = x1 cos t+ x3 sin t , x′3 = −x1 sin t+ x3 cos t ,

x′2 =
1
4
(x2

1 − x2
3) sin(2t)− 1

2
x1x3 cos(2t) + x2 −

1
2
x1x3

and which represents a rotation around the geodesic x1 = 0, x3 = 0 by an angle easily seen
to be t.

17 The groups of type III:
[X1, X2]f = 0 , [X1, X3]f = X1f, [X2, X3]f = 0.

For the above composition we must set a = 1, b = c = 0, a′ = b′ = c′ = 0 in the equations
of §14, from which it again follows that ξ1 is constant, so we set ξ1 = −1/h, and the last 3
equations of (F) give us α′ = 2hα, γ ′ = 0, β′ = hβ.

Integrating and choosing conveniently the variables x2, x3 we can make α = e2hx1 ,
β = nehx1 , γ = 1, with n a new constant, and by replacing the space by a similar one, we
can set h = 1 and have as the standard form of the line element of the present space:

ds2 = dx2
1 + e2x1 dx2

2 + 2nex1 dx2dx3 + dx2
3 . (49)

One will observe that if n = 0 one again obtains the space of §11. Since αγ − β2 has
to be positive, we will have n2 < 1, and since the sign of n is not essential (as one sees by
changing x2 into −x2, for example), we can assume 0 < n < 1.

34In fact take two arbitrary points P,Q on a coordinate line (x2). Those transformations of the space

which leave P fixed also leave Q fixed and consequently all the points of the geodesic which joins P to Q,

which therefore must coincide with the coordinate line (x2).
35To determine the possible surfaces orthogonal to the geodesic (x2) one would have the total differential

equation dx2 + x1dx3 = 0 which is not integrable.
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We will see that also in the case n > 0 as for n = 0, the space (49) has a 4-parameter
group of motions.

The equations (E) §14 here become

∂η1

∂x1
= 0 , (50)

∂η1

∂x2
+ e2x1

∂η2

∂x1
+ nex1

∂η3

∂x1
= 0 , (51a)

∂η1

∂x3
+ nex1

∂η2

∂x1
+
∂η3

∂x1
= 0 , (51b)

ex1η1 + ex1
∂η2

∂x2
+ n

∂η3

∂x2
= 0 , (52)

nex1
∂η2

∂x3
+
∂η3

∂x3
= 0 , (53)

nex1η1 + e2x1
∂η2

∂x3
+ nex1

(
∂η2

∂x2
+
∂η3

∂x3

)
+
∂η3

∂x2
= 0 . (54)

Solving (51) and integrating with respect to x1 we obtain:

η2 =
−ne−x1

1− n2

∂η1

∂x3
+

e−2x1

2(1 − n2)
∂η1

∂x2
+ ψ(x2, x3) ,

η3 =
−ne−x1

1− n2

∂η1

∂x2
− x1

1 − n2

∂η1

∂x3
+ χ(x2, x3) .

Substituting into (52), (53), (54) we conclude that

∂η1

∂x3
= 0 ,

∂2η1

∂x2
2

= 0 ,
∂ψ

∂x3
=

∂χ

∂x2
=

∂χ

∂x3
= 0 ,

∂ψ

∂x2
= −η1 ,

from which

η1 = ax2 + b , η2 =
ae−2x1

2(1− n2)
− 1

2
ax2

2 − bx2 + c , η3 =
−ane−x1

1 − n2
+ d ,

with a, b, c, d arbitrary constants. The group of motions of the space (49) is therefore the
G4 generated by the 4 infinitesimal transformations:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f =

∂f

∂x1
− x2

∂f

∂x2
,

X4f = x2
∂f

∂x1
+

1
2

(
e−2x1

1 − n2
− x2

2

)
∂f

∂x2
− ne−x1

1 − n2

∂f

∂x3

with the composition:

[X1, X2]f = 0 , [X1, X3]f = −X1f , [X1, X4]f = X3f ,

[X2, X3]f = 0 , [X2, X4]f = 0 , [X3, X4]f = −X4f .

The relation

X4f =
1
2

(
e−2x1

1 − n2
+ x2

2

)
X1f − ne−x1

1 − n2
X2f + x2X3f
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shows that the group is systatic and that the systatic varieties are the geodesics (x3). These
geodesics do not admit orthogonal surfaces except in the case n = 0 already considered in
§11. We observe that the derived group is here the group G3 ≡ (X1f,X3f,X4f), which
is simply transitive and belongs to type VIII. In the space (49) we therefore also have an
example of spaces corresponding to this type. To this purpose and for a better comparison
with the results that we will establish in §28, we note the following transformation of the
line element (49). Set:

x1 = y1 , x2 = e−y1(y2 − ny3) , x3 = y3

and one will obtain

ds2 = [1 + (y2 − ny3)2] dy2
1 + dy2

2 + (1− n2) dy2
3 − 2(y2 − ny3) dy1dy2 . (49∗)

18 Similarities of the groups of motions of two spaces of the type (49).

The line element (49) of the space of the previous section contains a constant n and we
propose to demonstrate that this constant is truly essential, namely that to two distinct
values of n (0 < n < 1) correspond two spaces which are neither isometric nor similar.36

Assuming therefore a second line element of the form

ds2 = dy1
2 + e2y1 dy2

2 + 2mey1 dy2dy3 + dy3
2 , (55)

where m 6= n, we must prove that it cannot be transformed into the line element (49) nor
into one which differs from it by a constant factor. In our investigation we will make use
of the well known criteria for the transformability of two differential quadratic forms es-
tablished by Christoffel and Lipshitz, but most of all we utilize here the circumstance that
the two forms to be compared admit two respective 4-parameter groups G4, Γ4 of trans-
formations into themselves, making available for us the general theorems of Lie. Therefore
we make the following observation that we will equally apply to the analogous research of
the following sections. The supposed equations of transformation

x1 = ϕ1(y1, y2, y3) , x2 = ϕ2(y1, y2, y3) , x3 = ϕ3(y1, y2, y3)

must obviously transform the group of motions G4 of the one space into the Γ4 of the
other. First it is necessary to see if the two groups G4, Γ4 are similar. When this necessary
condition is satisfied the assumed transformability of the two line elements still does not
follow from it, but there will remain only to see if the equation found by transforming G4

into Γ4 can be specialized so that it also puts the two spaces into the relation of similarity.
To see if the two groups G4, Γ4 are similar, according to the general criteria of Lie37

we must first of all get the groups into an isomorphic correspondence38 in the most general
way. Therefore with (§17)

Y1f =
∂f

∂y2
, Y2f =

∂f

∂y3
, Y3f =

∂f

∂y1
− y2

∂f

∂y2
,

Y4f = y2
∂f

∂y1
+

1
2

(
e−2y1

1 −m2
− y2

2

)
∂f

∂y2
− me−y1

1 −m2

∂f

∂y3
,

36See the preface.
37S. Lie-F. Engel, Vol. I, p. 327.
38In Italian: “isomorfismo oleodrico” [Translator].
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as the generating transformations of Γ4, with the same composition as the generators
X1f,X2f,X3f,X4f of G4, it will be useful to choose in G4 (in the most general way) four
other generators X̄1f, X̄2f, X̄3f, X̄4f so that they still have the same composition, namely
one has:

[X̄1, X̄2]f = 0 , [X̄1, X̄3]f = −X̄1f , [X̄1, X̄4]f = X̄3f ,

[X̄2, X̄3]f = 0 , [X̄2, X̄4]f = 0 , [X̄3, X̄4]f = −X̄4f .

If one observes first that the derived group of G4 coincides either with (X̄1f, X̄3f, X̄4f)
or with (X1f,X3f,X4f), it follows from this that X1f,X3f,X4f must be composed of
only X̄1f, X̄3f, X̄4f . Moreover since X̄2f , like X2f , is the only transformation in G4 which
commutes with every other in the group, X2f must differ from X̄2f by a constant factor
λ; we have therefore

X1f = α1X̄1f + α2X̄3f + α3X̄4f ,

X3f = β1X̄1f + β2X̄3f + β3X̄4f ,

X4f = γ1X̄1f + γ2X̄3f + γ3X̄4f ,

X2f = λX̄2f , (56)

with α, β, γ, λ being constants. The composition relations translate into the following
equations for α, β, γ; the α, γ must be constrained by the relations

α2
2 + 2α1α3 = 0 , γ2

2 + 2γ1γ3 = 0 , α1γ3 + α3γ1 + α2γ2 = 1 (57)

and the β must be expressed in terms of these by the formulas

β1 = α2γ1 − α1γ2 , β2 = α1γ3 − α3γ1 , β3 = α3γ2 − α2γ3 . (58)

In order to check what follows, it is worth noting that the following relations are a
consequence of the ones above

α3β1 + α1β3 + α2β2 = 0 , γ3β1 + γ1β3 + γ2β2 = 0 ,

β2
2 + 2β1β3 = 1 . (59)

As a consequence the determinant

∣∣∣∣∣∣∣

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

∣∣∣∣∣∣∣
is equal to +1, and solving for the

X̄f one has39

X̄1f = γ3X1f + β3X3f + α3X4f ,

X̄3f = γ2X1f + β2X3f + α2X4f ,

X̄4f = γ1X1f + β1X3f + α1X4f ,

by which all the minors of second order of this determinant are equal to one element, for
example, α3 = α2β3 − α3β2, etc.

39The second and third equation in the original paper had X̄2f and X̄3f on the l.h.s., respectively;

correction based on the Opere [Editor].
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So having put the two groups G4 ≡ (X̄1f, X̄2f, X̄3f, X̄4f), Γ4 ≡ (Y1f, Y2f, Y3f,

Y4f) into an isomorphic correspondence, it is necessary to identify the relationship among
Y1f, Y2f, Y3f, Y4f , namely:

Y4f =
1
2

(
e−2y1

1 −m2
+ y2

2

)
Y1f − me−y1

1 −m2
Y2f + y2Y3f (60)

with the one which correspondingly relates X̄4f to X̄1f, X̄2f, X̄3f . Now substituting into
the relation

X4f =
1
2

(
e−2x1

1 − n2
+ x2

2

)
X1f − ne−x1

1 − n2
X2f + x2X3f

the values (56), we find:40

{
α3

2

(
e−2x1

1− n2
+ x2

2

)
+ β3x2 − γ3

}
X̄4f

=

{
γ1 − β1x2 −

α1

2

(
e−2x1

1 − n2
+ x2

2

)}
X̄1f (60*)

+

{
γ2 − β2x2 −

α2

2

(
e−2x1

1 − n2
+ x2

2

)}
X̄3f +

nλe−x1

1− n2
X̄2f .

We introduce the abbreviations

e−x1

√
1 − n2

= ξ ,
e−y1

√
1 −m2

= η , λ
n
√

1 −m2

m
√

1 − n2
= µ (61)

and identifying the coefficients of (60), (60*) we find the three equations41

y2 =
γ2 − β2x2 − α2(ξ2 + x2

2)/2
α3(ξ2 + x2

2)/2 + β3x2 − γ3
, (62a)

η =
−µξ

α3(ξ2 + x2
2)/2 + β3x2 − γ3

, (62b)

1
2
(η2 + y2

2)
{
α3(ξ2 + x2

2)/2 + β3x2 − γ3

}

+
α1

2
(ξ2 + x2

2) + β1x2 − γ1 = 0 . (62*)

If these three equations are compatible the two groups are similar and equations (62)
then give in the corresponding equations of transformation y1, y2 expressed in terms of
x1, x2 (Lie, ibid.). Now by substituting the values of y2, η given by (62) into (62*) and
completing the square, we obtain

µ2ξ2 + µ2
[
α2

2
ξ2 +

α2

2
x2

2 + β2x2 − γ2

]2

+2
(
α3

2
ξ2 +

α3

2
x2

2 + β3x2 − γ3

)(
α1

2
ξ2 +

α1

2
x2

2 + β1x2 − γ1

)
= 0

40The last term on the r.h.s. was preceded by a minus sign in the original, now corrected to a positive

sign after the Opere [Editor].
41The r.h.s. of (62b) lacked the minus sign in the original, now corrected after the Opere [Editor].
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which must therefore be an identity in ξ, x2. Taking into account the relations (57), (58),
(59) among the constants α, β, γ one immediately finds it necessary and sufficient for this
to be true that one have µ2 = 1, namely λ2 = m2(1−n2)

n2(1−m2)
.

One concludes from this that the two groups G4, Γ4 are indeed similar and for the most
general equations which transform the one group into the other, one necessarily has42

y2 =
γ2 − β2x2 − α2(ξ2 + x2

2)/2
α3(ξ2 + x2

2)/2 + β3x2 − γ3
, (63a)

η =
±ξ

α3(ξ2 + x2
2)/2 + β3x2 − γ3

, (63b)

from which, as one sees, y1, y2 are independent of x3.

19 The constant n is essential in
ds2 = dx2

1 + e2x1 dx2
2 + 2nex1 dx2dx3 + dx2

3.

To demonstrate this claim we observe finally that since the equations of transformation
must change X1f,X2f,X3f,X4f respectively into

α1Y1f + α2Y3f + α3Y4f , λY2f ,

β1Y1f + β2Y3f + β3Y4f , γ1Y1f + γ2Y3f + γ3Y4f ,

from these follow the values of all the first partial derivatives of the y with respect to the
x.43 Of these equations it is enough for us to write the following ones:

∂y1
∂x2

= α2 + α3y2 ,

∂y3
∂x1

= −me−y1

1 −m2
(α3x2 + β3) ,

∂y3
∂x2

= −mα3e
−y1

1 −m2
,
∂y3
∂x3

= λ . (64)

By substituting the expression (63) for y2 into the value of ∂y1/∂x2 one has

∂y1
∂x2

=
α3x2 + β3

α3(ξ2 + x2
2)/2 + β3x2 − γ3

. (65)

Given this, from the assumed transformability of the two line elements we will have:

dy2
1 + e2y1 dy2

2 + 2mey1 dy2dy3 + dy2
3

= λ2{dx2
1 + e2x1 dx2

2 + 2nex1dx2dx3 + dx2
3} . (66)

We now apply the equations of Christoffel

∂2yν

∂xr∂xs
+
∑

i,k

{
ν

ik

}

y

∂yi

∂xr

∂yk

∂xs
=
∑

µ

{
µ

rs

}

x

∂yν

∂xµ
, (ν, r, s = 1, 2, 3) ,

42The original paper had α2 instead of α3 in (63a), which was a typo [Editor].
43In general Xif is changed into ∂f/∂y1 Xi(y1) + ∂f/∂y2 Xi(y2) + ∂f/∂y3 Xi(y3), hence the formulas

indicated in the text.
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the index x or y attached to the Christoffel symbol indicating whether it is constructed in
terms of the form of the x or that of the y.44 Setting ν = 2, r = 2, s = 3 and replacing
the Christoffel symbols by their actual values one obtains m2λ

1−m2 ∂y1/∂x2 = nex1∂y3/∂x1,
or using (64), (65)

m2λe−x1

1−m2

α3x2 + β3

α3(ξ2 + x2
2)/2 + β3x2 − γ3

+
nme−y1

1 −m2
(α3x2 + β3) = 0 .

Therefore, if α3 = 0, β3 = 0 does not hold, one must have

mλ
√

1− n2ξ + n
√

1 −m2η {α3(ξ2 + x2
2)/2 + β3x2 − γ3} = 0 ,

namely by (62b)
mλ

√
1− n2 − n

√
1 −m2µ = 0 ,

or equivalently
m2(1− n2)− n2(1−m2) = 0 ,

or equivalently
m2(1− n2) + n2(1−m2) = 0 ,

which is absurd since n2 < 1, m2 < 1. Therefore we will have α3 = β3 = 0 implying
α2 = 0, β2

2 = 1, from which (63) tells us that y2 is only a function of x2, and y1 differs from
x1 only by an additive constant. After this (66) immediately gives λ2 = 1 (comparing the
terms in dx2

1), namely
m2(1− n2) = n2(1 −m2) ,

and consequently n2 = m2 as indeed we wished to show.45

20 The groups of type IV:
[X1, X2]f = 0 , [X1, X3]f = X1f, [X2, X3]f = X1f +X2f .

To apply the equations of §14 to the present composition we must set a = 1, b = 0, c = 0,
a′ = 1, b′ = 1, c′ = 0. From this it follows that ξ1 is constant, so we set ξ1 = −2/h and the
last three of (F) §14 become

α′ = hα , β′ = h(α + 2β)/2 , γ ′ = h(β + γ) ,

44It is useful to note that the Christoffel symbols of the second kind
{

l
ik

}
are not changed in value by

multiplying the line element by a constant factor.
45The signs preceding the second terms on the l.h.s. in the previous two displayed equations were plus

signs in the original (propagating from sign errors noted above), requiring a further short argument to

obtain the desired result now deleted after the Opere. The deleted material after the second displayed

equation was:

“which is absurd since n2 < 1, m2 < 1. Therefore we will have α3 = β3 = 0 implying α2 = 0, β2
2 = 1,

from which (63) tells us that y2 is only a function of x2, and y1 differs from x1 only by an additive

constant. After this (66) immediately gives λ2 = 1 (comparing the terms in dx2
1), namely

m2(1 − n2) = n2(1 − m2) , ”

[Editor].
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from which by integrating and conveniently disposing of a factor independent of x2, x3, we
can assume46

α = ehx1 , β = ehx1(hx1/2 + l) , γ = ehx1 [(hx1/2 + l)2 +m2] ,

with l,m constants. Changing x1 into x1 +constant and replacing the space with a similar
space, we have for the standard form of the present case

ds2 = dx1
2 + ex1{dx2

2 + 2x1 dx2dx3 + (x2
1 + n2) dx2

3} . (67)

Applying equations (E) §14 to determine the most general infinitesimal motion of the
space, we find the following equations:

∂η1

∂x1
= 0 , (68)

e−x1
∂η1

∂x2
+
∂η2

∂x1
+ x1

∂η3

∂x1
= 0 , (69a)

e−x1
∂η1

∂x3
+ x1

∂η2

∂x1
+ (x1

2 + n2)
∂η3

∂x1
= 0 , (69b)

1
2
η1 +

∂η2

∂x2
+ x1

∂η3

∂x2
= 0 , (70)

1
2
(x2

1 + n2 + 2x1)η1 + x1
∂η2

∂x3
+ (x2

1 + n2)
∂η3

∂x3
= 0 , (71)

(x1 + 1)η1 +
∂η2

∂x3
+ x1

(
∂η2

∂x2
+
∂η3

∂x3

)
+ (x2

1 + n2)
∂η3

∂x2
= 0 . (72)

Solving (69) we obtain

∂η2

∂x1
=
e−x1

n2

[
x1
∂η1

∂x3
− (x2

1 + n2)
∂η1

∂x2

]
,

∂η3

∂x1
=
e−x1

n2

[
x1
∂η1

∂x2
− ∂η1

∂x3

]
,

and integrating with respect to x1, of which η1 is independent by (68), we have

η2 =
e−x1

n2

[
(x2

1 + n2 + 2x1 + 2)
∂η1

∂x2
− (x1 + 1)

∂η1

∂x3

]
+ ψ(x2, x3) ,

η3 =
e−x1

n2

[
∂η1

∂x3
− (x1 + 1)

∂η1

∂x2

]
+ χ(x2, x3) .

Substituting into (70), we immediately deduce from this

∂2η1

∂x2
2

=
∂2η1

∂x2∂x3
= 0 ,

∂χ

∂x2
= 0 ,

∂ψ

∂x2
= −1

2
η1 ,

so that the substitution in (71) gives

∂2η1

∂x3
2

= 0 ,
∂χ

∂x3
= −1

2
η1 ,

∂ψ

∂x3
= −η1 ,

46hx1 in the original paper was corrected to hx1/2 after the Opere [Editor].
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hence
∂η1

∂x2
= −2

∂2χ

∂x2∂x3
= 0 ,

∂η1

∂x3
= −2

∂2ψ

∂x2∂x3
= 2

∂η1

∂x2
= 0 .

In this way we find for the most general values of η1, η2, η3 the formulas

η1 = a , η2 = −a
2
x2 − ax3 + b , η3 = −a

2
x3 + c ,

with a, b, c arbitrary constants. Therefore the complete group of motions is only a G3 here;
it is generated by the 3 infinitesimal transformations

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
,

X3f = − ∂f

∂x1
+
(
x2

2
+ x3

)
∂f

∂x2
+
x3

2
∂f

∂x3
(73)

and has the composition47

[X1, X2]f = 0 , [X1, X3]f =
1
2
X1f , [X2, X3]f = X1f +

1
2
X2f .

21 The constant n is essential in
ds2 = dx2

1 + ex1 [dx2
2 + 2x1 dx2dx3 + (x2

1 + n2) dx2
3].

Analogously to what we have done for the spaces of §17, we also want to see here if the
constant n of the present line element (67) is essential. We respond affirmatively to the
question by showing that a second line element48

ds2 = dy2
1 + ey1 [dy2

2 + 2y1 dy2dy3 + (y2
1 +m2) dy2

3] , (74)

where m2 6= n2, cannot be identified with the original nor be proportional to it. Proceeding
exactly as in §18 we first compare the two respective groups of motions G3, Γ3, the first
generated by the transformations (73), the second instead by49

Y1f =
∂f

∂y2
, Y2f =

∂f

∂y3
, Y3f = − ∂f

∂y1
+
(
y2
2

+ y3

)
∂f

∂y2
+
y3
2
∂f

∂y3

with the same composition

[Y1, Y2]f = 0 , [Y1, Y3]f =
1
2
Y1f , [Y2, Y3]f = Y1f +

1
2
Y2f .

We must find the most general transformation which changes the one group into the
other and see if it can give rise to the hypothesized transformation of the two line elements.
We therefore take three other transformation generators of Γ3, let them be Ȳ1f, Ȳ2f, Ȳ3f ,
which have the same composition as above; we therefore have

Ȳ1f = αY1f + βY2f , Ȳ2f = γY1f + δY2f ,

Ȳ3f = aY1f + bY2f + cY3f ,

47To have the canonical composition it would suffice to double X1f,X3f .
48Equation number ”(74)” is missing in the original, added by the Editor.
49The second term on the r.h.s. of the 3rd equation had ∂f/∂y3 in the original, which was incorrect

[Editor].
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and among the constants α, β, γ, δ, c the relations

αc+ 2βc = α , βc = β , γc+ 2δc = 2α+ γ , δc = 2β + δ ,

from which it follows that β = 0, c = 1, δ = α and consequently:

Ȳ1f = αY1f , Ȳ2f = γY1f + αY2f ,

Ȳ3f = aY1f + bY2f + Y3f .

There certainly exist transformations which change X1f , X2f , X3f respectively into
Ȳ1f, Ȳ2f, Ȳ3f because the two simply transitive groups are isomorphic.50 For one such
transformation the partial derivatives of the y with respect to the x must assume the
following values:

∂y1
∂x1

= 1 ,
∂y1
∂x2

= 0 ,
∂y1
∂x3

= 0 ,

∂y2
∂x1

= α

(
x2

2
+ x3

)
+ γ

x3

2
− a− y2

2
− y3 ,

∂y2
∂x2

= α ,
∂y2
∂x3

= γ ,

∂y3
∂x1

= α
x3

2
− b− y3

2
,
∂y3
∂x2

= 0 ,
∂y3
∂x3

= α .

Integrating we have the actual equations in finite terms

y1 = x1 + h ,

y2 = αx2 + γx3 + ke−x1/2 − cx1e
−x1/2 − 2a+ 4b ,

y3 = αx3 + ce−x1/2 − 2b ,

with h, c, k new constants. The line element (74) therefore becomes:

dx2
1 + eh

{(
cx1

2
− c− k

2

)
dx1 + αe

x1
2 dx2 + γe

x1
2 dx3

}2

+2eh(x1 + h)
{(

cx1

2
− c− k

2

)
dx1 + αe

x1
2 dx2 + γe

x1
2 dx3

}

×
{
− c

2
dx1 + αe

x1
2 dx3

}

+eh
{
(x1 + h)2 +m2

}
·
{
− c

2
dx1 + αe

x1
2 dx3

}2

.

Comparing with the line element (67) we must set the coefficients of dx1dx2 and dx1dx3

to zero; we immediately find c = 0, k = 0; and then comparing the terms in dx2
2, dx2dx3

and dx2
3 one deduces 51

α2eh = 1 , {γα+ α2(x1 + h)}eh = x1 ,

{γ2 + 2αγ(x1 + h) + α2(x1 + h)2 + α2m2}eh = x2
1 + n2 .

From this it follows that α2eh = 1, γ + αh = 0, so that n2 = m2, Q.E.D.
50S. Lie-F. Engel, Vol. I, p. 340.
51This partial sentence is the translator’s interpretation of Bianchi’s intended meaning. Bianchi’s original

phrase in which he meant to refer to equation (67) “Comparing this with the line element (64), we must

set the coefficients of dx1dx2 and dx1dx3 to zero, which leads to...” has a proof correction at the end of

his article (implemented by the Editors of Opere) stating “The penultimate line on p. 312 should read:

equating the coefficients of dx1dx2 and dx1dx3 we find immediately”, but this omits the necessary “to zero”

and removes any equation number [Editor].
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22 The groups of type V:
[X1, X2]f = 0 , [X1, X3]f = X1f, [X2, X3]f = X2f .

The constants a, b, c, a′, b′, c′ of §14 here take the values a = 1, b = 0, c = 0, a′ = 0, b′ = 1,
c′ = 0, from which it follows that ξ1 is again constant, so we set ξ1 = −2/h, and the last
three of (F) §14 give

α′ = hα , γ ′ = hγ , β′ = hβ ,

from which by integrating we have

α = lehx1 , β = mehx1 , γ = nehx1 ,

with l,m, n constants. Changing (linearly) the parameters x2, x3 we obtain

ds2 = dx2
1 + e2hx1 (dx2

2 + dx2
3) ,

the line element which belongs to the space of constant negative curvature.
In this case the existence of the transitive group G3 of motions of the designated type

implies a complete group of motions (non-Euclidean) of 6 parameters.

23 The groups of type VI:
[X1, X2]f = 0 , [X1, X3]f = X1f, [X2, X3]f = hX2f , h 6= 0, 1.

For the groups of this type we must set a = 1, b = c = 0, a′ = 0, b′ = h, c′ = 0 in the
equations. From this it follows that ξ1 is constant, so we set ξ1 = −2/k and the usual
equations (F) §14 give us

α′ = kα , 2β′ = k(h+ 1)β , γ ′ = hkγ ,

from which by integrating and absorbing two of the constants of integration into x2, x3, we
find

α = ekx1 , β = nek(h+1)x1/2 , γ = ehkx1 ,

where n is a constant which can clearly be assumed positive, so that (because αγ−β2 > 0)
we will have 0 < n < 1.

By passing to a similar space we can make k = 2, so

ds2 = dx2
1 + e2x1 dx2

2 + 2ne(h+1)x1 dx2dx3 + e2hx1 dx2
3 . (76)

One will observe that for h = 0 this reduces to type III and the line element (76) is
then changed into the one (49) of the spaces of §17. 52

The most general infinitesimal motion of this space is determined, according to (E) §14,
by the following equations:53

∂η1

∂x1
= 0 , (77)

52We have not been able to treat the particular case h = 0 together with the general case, because only

for h = 0 does one have a 4-parameter group of motions.
53The factor n in the last term of (79) is absent in the original, correction after the Opere [Editor].
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∂η1

∂x2
+ e2x1

∂η2

∂x1
+ ne(h+1)x1

∂η3

∂x1
= 0 , (78a)

∂η1

∂x3
+ ne(h+1)x1

∂η2

∂x1
+ e2hx1

∂η3

∂x1
= 0 , (78b)

ex1

(
η1 +

∂η2

∂x2

)
+ nehx1

∂η3

∂x2
= 0 , (79)

hη1 + ne(1−h)x1
∂η2

∂x3
+
∂η3

∂x3
= 0 , (80)

n(h+ 1)e(h+1)x1η1 + e2x1
∂η2

∂x3
+ ne(h+1)x1

(
∂η2

∂x2
+
∂η3

∂x3

)

+e2hx1
∂η3

∂x2
= 0 . (81)

Solving (78) for ∂η2/∂x1, ∂η3/∂x1, we obtain

∂η2

∂x1
=
ne−(h+1)x1

1− n2

∂η1

∂x3
− e−2x1

1 − n2

∂η1

∂x2
,

∂η3

∂x1
=
ne−(h+1)x1

1− n2

∂η1

∂x2
− e−2hx1

1 − n2

∂η1

∂x3
. (82)

The integration of these last two with respect to x1 leads us to separate the two cases

a) h = −1 , b) h 6= −1 .

In case a) by integrating we obtain

η2 =
nx1

1− n2

∂η1

∂x3
+

e−2x1

2(1− n2)
∂η1

∂x2
+ ψ(x2, x3) ,

η3 =
nx1

1− n2

∂η1

∂x2
− e2x1

2(1− n2)
∂η1

∂x3
+ χ(x2, x3) ,

and substituting into the successive equations (79), (80), (81), we find

∂2η1

∂x2
2

=
∂2η1

∂x2∂x3
=
∂2η1

∂x3
2

= 0 ,

∂ψ

∂x3
= 0 ,

∂ψ

∂x2
= −η1 ,

∂χ

∂x2
= 0 ,

∂χ

∂x3
= η1 .

from which it follows that

η1 = a , η2 = −ax2 + b , η3 = ax3 + c ,

with a, b, c constants. In this case therefore the group of motions is only a G3 with the
infinitesimal transformation generators:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = − ∂f

∂x1
+ x2

∂f

∂x2
− x3

∂f

∂x3
.

Case b). Now let h 6= −1. Equations (82) integrated give

η2 = − ne(h+1)x1

(h+ 1)(1− n2)
∂η1

∂x3
+

e−2x1

2(1− n2)
∂η1

∂x2
+ ψ(x2, x3) ,

η3 = − ne(h+1)x1

(h+ 1)(1− n2)
∂η1

∂x2
+

e−2hx1

2h(1 − n2)
∂η1

∂x3
+ χ(x2, x3) ,
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and substituting into (79) remembering that h is different from 0, 1,−1, we find

∂2η1

∂x2
2

= 0 , n
∂2η1

∂x2∂x3
= 0 ,

∂χ

∂x2
= 0 ,

∂ψ

∂x2
= −η1 .

Substituting into (80) therefore gives

∂2η1

∂x3
2

= 0 ,
∂ψ

∂x3
= 0 ,

∂χ

∂x3
= −hη1 ,

and from this follow for η1, η2, η3 the values

η1 = a , η2 = −ax2 + b , η3 = −hax3 + c ,

with a, b, c arbitrary constants. We therefore have as the complete group of motions the
G3 generated by the three infinitesimal transformations

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = − ∂f

∂x1
+ x2

∂f

∂x2
+ hx3

∂f

∂x3
.

which indeed has the composition

[X1, X2]f = 0 , [X1, X3]f = X1f , [X2, X3]f = hX2f .

We now see that the result obtained above for h = −1 is included in the general case.

24 The constant n is essential in54

ds2 = dx2
1 + e2x1dx2

2 + 2ne(h+1)x1dx2dx3 + e2hx1dx2
3.

That the constant h is essential in this line element is clear since it is already essential
in the composition of its group of motions; but now we wish to show that the constant n
(apart from sign) is also essential. Therefore let there be the two spaces

ds2 = dx2
1 + e2x1dx2

2 + 2ne(h+1)x1dx2dx3 + e2hx1dx2
3 (α)

ds2 = dy2
1 + e2y1dy2

2 + 2me(h+1)y1dy2dy3 + e2hy1dy2
3 ; (β)

we wish to prove that assuming the two spaces are similar implies n2 = m2.
The group Γ3 of motions of the second space is generated by the three infinitesimal

transformations

Y1f =
∂f

∂y2
, Y2f =

∂f

∂y3
, Y3f = − ∂f

∂y1
+ y2

∂f

∂y2
+ hy3

∂f

∂y3

and if, along with the hypothesized equations of correspondence between the two spaces,
we assume that55 X1f,X2f,X3f are changed respectively into Ȳ1f, Ȳ2f, Ȳ3f , then these
latter ones must be combinations of Y1f, Y2f, Y3f and have the same composition

[Ȳ1, Ȳ2]f = 0 , [Ȳ1, Ȳ3]f = Ȳ1f , [Ȳ2, Ȳ3]f = hȲ2f .

54Bianchi’s obvious typo was corrected here, there was a ”+” between e2x1 and dx2
2 [Editor].

55The original paper has Y1f , Y2f and Y3f here; correction based on the Opere [Editor].
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It is clear in the first place that Ȳ1f, Ȳ2f must be combinations of Y1f, Y2f only, so that
we will have

Ȳ1f = αY1f + βY2f , Ȳ2f = γY1f + δY2f ,

Ȳ3f = aY1f + bY2f + cY3f .

Taking into account the composition equations we see that for h 6= −1 one necessarily
has β = γ = 0, c = 1, so that it follows that

Ȳ1f = αY1f , Ȳ2f = δY2f , Ȳ3f = aY1f + bY2f + Y3f .

while for h = −1 there is also possible another case

Ȳ1f = βY2f , Ȳ2f = γY1f , Ȳ3f = aY1f + bY2f − Y3f ,

which does not differ from the previous one, however, apart from the exchange of y2 and
y3 and the change of y1 into −y1 (this clearly does not change the line element). We
can therefore limit ourselves to the first case, in which by integrating the equations of the
transformations we find

y1 = x1 + k , y2 = αx2 + le−x1 − a , y3 = δx3 + pe−hx1 − b/h ,

where k, l, p indicate new constants. Substituting into the line element (β) we obtain

dx2
1 + e2x1+2k(αdx2 − le−x1 dx1)2

+2me(h+1)(x1+k)(αdx2 − le−x1 dx1)(δ dx3 − hpe−hx1 dx1)

+2e2h(x1+k)(δ dx3 − hpe−hx1 dx1)2 .

Expressing the fact that this differential form differs from (α) only by a constant fac-
tor, it suffices to compare the coefficients of dx2

2, dx2dx3, dx2
3 to find α2e2k = δ2e2hk =

(m/n)e(h+1)kαδ , from which it indeed follows that n2 = m2, Q.E.D.

25 The groups of type VII1:
[X1, X2]f = 0, [X1, X3]f = X2f, [X2, X3]f = −X1f .

Treating in general the case of the groups of type VII of composition

[X1, X2]f = 0, [X1, X3]f = X2f, [X2, X3]f = −X1f + hX2f ,

we must give to the constants a, b, c, a′, b′, c′ of §14 the values a = 0, b = 1, c = 0, a′ = −1,
b′ = h, c′ = 0, from which one has ξ1 = constant, so we set ξ1 = 1/k and equations (F)
(ibid.) give us

α′ + 2kβ = 0 , γ ′ − 2kβ + 2hkγ = 0 , β′ − kα + hkβ + kγ = 0 . (83)

For the integration it is convenient to separate the case h = 0 from the general case.
We assume h = 0 in this section and integrating (83) we will have

α = c1 sin(2kx1) + c2 cos(2kx1) + c3 ,

β = −c1 cos(2kx1) + c2 sin(2kx1) ,

γ = −c1 sin(2kx1) − c2 cos(2kx1) + c3 ,
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where c1, c2, c3 are three constants. We exclude the case in which the first two are both
zero since then the space would be of zero curvature. Changing x1 into x1 + constant, we
can make c1 = 0 and varying the parameters x2, x3 proportionally we can make c2 = 1;
finally by replacing the space with a similar space, we will have the following standard
form for the line element:

ds2 = dx2
1 + (n+ cosx1) dx2

2 + 2 sinx1 dx2dx3 + (n− cosx1) dx2
3 , (84)

where the constant n will be positive and > 1 since α, γ, αγ − β2 must be positive. The
equations (E) §14 to determine η1, η2, η3 become:

∂η1

∂x1
= 0 , (85)

∂η1

∂x2
+ (n+ cosx1)

∂η2

∂x1
+ sin x1

∂η3

∂x1
= 0 , (86a)

∂η1

∂x3
+ sin x1

∂η2

∂x1
+ (n− cosx1)

∂η3

∂x1
= 0 , (86b)

−1
2

sinx1 · η1 + (n+ cos x1)
∂η2

∂x2
+ sinx1

∂η3

∂x2
= 0 , (87)

1
2

sinx1 · η1 + sin x1
∂η2

∂x3
+ (n− cosx1)

∂η3

∂x3
= 0 , (88)

cos x1η1 + (n+ cosx1)
∂η2

∂x3
+ sinx1

(
∂η2

∂x2
+
∂η3

∂x3

)

+(n − cos x1)
∂η3

∂x2
= 0 . (89)

Solving (86) for ∂η2/∂x1, ∂η3/∂x1 and integrating we have

η2 =
1

n2 − 1

{
(sinx1 − nx1)

∂η1

∂x2
− cosx1

∂η1

∂x3

}
+ ψ(x2, x3) ,

η3 =
1

n2 − 1

{
−(sinx1 + nx1)

∂η1

∂x3
− cos x1

∂η1

∂x2

}
+ χ(x2, x3) ,

and substituting these values into the successive equations we see that one must have

∂2η1

∂x2
2

=
∂2η1

∂x2∂x3
=
∂2η1

∂x3
2

= 0 ,

∂ψ

∂x2
= 0 ,

∂ψ

∂x3
= −1

2
η1 ,

∂χ

∂x2
=

1
2
η1 ,

∂χ

∂x3
= 0 ,

so that we obtain:
η1 = a , η2 = −a

2
x3 + b , η3 =

a

2
x2 + c ,

with a, b, c constants. Here too the group of motions is of three parameters and its gener-
ating transformations are

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = 2

∂f

∂x1
− x3

∂f

∂x2
+ x2

∂f

∂x3
, (90)

with the composition

[X1, X2]f = 0 , [X1, X3]f = X2f , [X2, X3]f = −X1f .
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26 The groups of type VII2:
[X1, X2]f = 0 , [X1, X3]f = X2f , [X2, X3]f = −X1f + hX2f , h 6= 0 (0 < h < 2).

The equations (83)56 give us

β = −α
′

2k
, γ = α+

α′′

2k2
+
hα′

2k
,

and hence to determine α, the linear and homogeneous constant coefficient equation

α′′′ + 3hkα′′ + 2k2(h2 + 2)α′ + 4hk3α = 0 ,

whose characteristic equation

ρ3 + 3hkρ2 + 2k2(h2 + 2)ρ+ 4hk3 = 0 ,

setting ρ = kr, becomes

r3 + 3hr2 + 2(h2 + 2)r+ 4h = 0 .

.
One root of this equation is r1 = −h and the other two r2, r3, since h2 < 4, are complex

conjugates:
r2 = −h + i

√
4 − h2 , r3 = −h− i

√
4 − h2 .

If for brevity we set v =
√

4 − h2, we have for α the expression:

α = c1e
−hkx1 + c2e

−hkx1 cos(kvx1) + c3e
−hkx1 sin(kvx1) ,

where c1, c2, c3 are three arbitrary constants.
We exclude the case in which one takes c2 = c3 = 0 because then the space would be of

constant negative curvature. By adding a constant to x1 we can make (if c2 6= 0) c3 = 0,
and passing to a similar space we will obtain

α = e−hx1(n+ cos vx1) ,

β =
1
2
e−hx1 (h cosvx1 + v sin vx1 + nh) ,

γ = e−hkx1

(
2− v2

2
cos vx1 +

hv

2
sin vx1 + n

)
.

We note that from this follows the result

αγ − β2 = v(n2 − 1)e−2hx1/4 ,

from which |n| > 1 so that n > 0 since α > 0.
The first equations of (E) §14, solved for ∂η2/∂x1, ∂η3/∂x1, give

∂η2

∂x1
=

4e2hx1

(n2 − 1)v2

{
β
∂η1

∂x3
− γ

∂η1

∂x2

}
,

∂η3

∂x1
=

4e2hx1

(n2 − 1)v2

{
β
∂η1

∂x2
− α

∂η1

∂x3

}
.

56In the original paper, “equations (84)”, which is incorrect [Editor].
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Substituting the values of α, β, γ and integrating with respect to x1 we obtain

η2 =

{
h2 − v2

2v2(n2 − 1)
cos vx1 +

h

(n2 − 1)v
sin vx1 +

2n
v2(n2 − 1)

}
ehx1

∂η1

∂x3

−
{
h(1 − v2)
v2(n2 − 1)

cos vx1 +
h2 − 1

(n2 − 1)v
sin vx1 +

4n
v2h(n2 − 1)

}
ehx1

∂η1

∂x2

+ψ(x2, x3) ,

η3 =

{
h2 − v2

2v2(n2 − 1)
cos vx1 +

h

(n2 − 1)v
sin vx1 +

2n
v2(n2 − 1)

}
ehx1

∂η1

∂x2

−
{

h

v2(n2 − 1)
cos vx1 +

1
(n2 − 1)v

sin vx1 +
4n

v2h(n2 − 1)

}
ehx1

∂η1

∂x3

+χ(x2, x3) .

If we now take the other three equations (E) §14:

γ ′η1 + 2β
∂η2

∂x3
+ 2γ

∂η3

∂x3
= 0 , α′η1 + 2α

∂η2

∂x2
+ 2β

∂η3

∂x2
= 0 ,

β′η1 + 2α
∂η2

∂x3
+ β

(
∂η2

∂x2
+
∂η3

∂x3

)
+ γ

∂η3

∂x2
= 0

and substitute the values of α, β, γ, η2, η3 into them, it suffices to equate the coefficients of
the terms in e−hx1 , e−hx1 cos vx1, e−hx1 sin vx1, to find

∂ψ

∂x2
= 0 ,

∂ψ

∂x3
= −η1 ,

∂χ

∂x2
= η1 ,

∂χ

∂x3
= hη1 ,

from which it follows that

η1 = a , η2 = −ax3 + b , η3 = ax2 + ahx3 + c ,

with a, b, c arbitrary constants. Therefore in the present case the space has as a group of
motions the G3 generated by the three infinitesimal transformations:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f =

∂f

∂x1
− x3

∂f

∂x2
+ (x2 + hx3)

∂f

∂x3
,

with the composition

[X1, X2]f = 0 , [X1, X3]f = X2f , [X2, X3]f = −X1f + hX2f .

We see that setting h = 0 one returns to the results of the previous section, changing the
notation in a very simple way.

27 The constant n is essential in the line elements of the two previous sections.

In the line element of the spaces of the previous section appear the two constants h, n,
the first of which is essential, already being so by the composition of the group (§13). We
now show that the constant n is essential, and with this result the same thing will also be
proved for the spaces of §25 which correspond to h = 0.
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We must show that two spaces of respective line elements:

ds2 = dx2
1 + e−hx1(n+ cos vx1) dx2

2

+e−hx1(h cos vx1 + v sin vx1 + nh) dx2dx3

+e−hx1

(
2 − v2

2
cos vx1 +

hv

2
sin vx1 + n

)
dx2

3 ,

ds2 = dy2
1 + e−hy1 (m+ cos vy1) dy2

2

+e−hy1 (h cos vy1 + v sin vy1 +mh) dy2dy3

+e−hy1

(
2 − v2

2
cos vy1 +

hv

2
sin vy1 +m

)
dy2

3 ,

cannot be similar unless n2 = m2.
The group G3 of motions of the first space is generated by the infinitesimal transfor-

mations (90) and the Γ3 of the second by the three

Y1f =
∂f

∂y2
, Y2f =

∂f

∂y3
, Y3f =

∂f

∂y1
− y3

∂f

∂y2
+ (y2 + hy3)

∂f

∂y3
,

with the same composition. Suppose that in the hypothesized transformationX1f,X2f,X3f

are changed into Ȳ1f, Ȳ2f, Ȳ3f ; we will have:

Ȳ1f = αY1f + βY2f , Ȳ2f = γY1f + δY2f ,

Ȳ3f = aY1f + bY2f + cY3f .

From the composition equations

[Ȳ1, Ȳ2]f = 0 , [Ȳ1, Ȳ3]f = Ȳ2f , [Ȳ2, Ȳ3]f = −Ȳ1f + hȲ2f ,

it immediately follows that c = 1, γ = −β, δ = α + hβ, so

Ȳ1f = αY1f + βY2f , Ȳ2f = −βY1f + (α+ hβ)Y2f ,

Ȳ3f = aY1f + bY2f + Y3f .

When the y are expressed in terms of the x, they must consequently satisfy the following
equations:

∂y1
∂x1

= 1 ,
∂y1
∂x2

= 0 ,
∂y1
∂x3

= 0 ,

∂y2
∂x2

= α ,
∂y2
∂x3

= −β ,

∂y3
∂x2

= β ,
∂y3
∂x3

= α + hβ .

It suffices to compare the terms in dx2
2 in the two line elements (91), (92) to obtain the

following equation, in which λ denotes a constant factor:

α2(cos vy1 +m) + αβ(h cos vy1 + v sin vx1 + hm)

+β2

(
2 − v2

2
cos vy1 +

hv

2
sin vy1 +m

)

= λ(cosvx1 + n) .
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This must be converted into an identity in x1 by setting y1 = x1 + k (k constant).
Setting vk = σ (constant), and comparing corresponding terms in the above equations, we
derive the three relations

α2 + hαβ + β2 = λn/m (93)

α2 cos σ + αβ(h cosσ + v sin σ)

+β2

(
2 − v2

2
cos σ +

hv

2
sin σ

)
= λ ,

−α2 sinσ + αβ(−h sin σ + v cosσ)

+β2

(
−2 − v2

2
sinσ +

hv

2
cosσ

)
= 0 .

Multiplying respectively the last two equations, first by cos σ, − sinσ then by sinσ,
cos σ, and each time summing, we obtain

α2 + hαβ +
2 − v2

2
β2 = λ cosσ , vαβ +

hv

2
β2 = λ sinσ ,

which squared and summed, remembering that v2 + h2 = 4 give (α2 + hαβ + β2)2 = λ2,
from which by (93) n2 = m2, Q.E.D.

28 The groups of type VIII:
[X1, X2]f = X1f, [X1, X3]f = 2X2f, [X2, X3]f = X3f .

Having exhausted the research on spaces which admit an integrable transitive G3 of mo-
tions, we now turn to the case of a simple transitive G3, beginning with type VIII.

We consider in G3 the G2 generated by X2f,X3f and proceed as in §4 by assuming the
geodesically parallel surfaces invariant with respect to the subgroup G2 as the coordinate
surfaces x1 = constant, and we furthermore give to X2f,X3f the canonical form (ibid.)

X2f = ∂f/∂x3 , X3f = ex3∂f/∂x2 .

For the line element of the space we therefore have

ds2 = dx2
1 + α dx2

2 + 2(β − αx2) dx2dx3 + (αx2
2 − 2βx2 + γ) dx2

3 , (94)

with α, β, γ functions of x1.
Now let X1f = ξ1 ∂f/∂x1 + ξ2 ∂f/∂x2 + ξ3 ∂f/∂x3 be the third generating transfor-

mation of G3, in which, the group being transitive, we will have ξ1 6= 0. Because the
composition equations [X1, X2]f = X1f , [X1, X3]f = 2X2f hold, the ξ must satisfy the
following equations:

∂ξ1
∂x3

= −ξ1 ,
∂ξ2
∂x3

= −ξ2 ,
∂ξ3
∂x3

= −ξ3 ,

∂ξ1
∂x2

= 0 ,
∂ξ2
∂x2

= ξ3 ,
∂ξ3
∂x2

= −2e−x3 ,

from which integrating leads to

ξ1 = Ae−x3 , ξ2 = (Bx2 − x2
2 + C)e−x3 , ξ3 = (B − 2x2)e−x3 , (95)
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with A,B, C functions only of x1.
Expressing the fact that, with the values (95) of the ξ and assuming

a11 = 1 , a12 = a13 = 0 ,

a22 = α , a23 = β − αx2 , a33 = αx2
2 − 2βx2 + γ ,

the fundamental equations (A) §1 are satisfied, we find among the unknown functions
α, β, γ, A,B, C of x1 the 6 following equations:

A′ = 0 ,

αC ′ + βB′ = 0 , βC ′ + γB′ = A ,
1
2
Aα′ + αB − 2β = 0 ,

1
2
Aβ′ − αC − γ = 0 ,

1
2
Aγ ′ − 2βC − γB = 0 .

The first tells us that A is a constant, different from zero by hypothesis; then multiplying
the last three respectively by γ, −2β, α and summing leads to A(α′γ + αγ ′ − 2ββ′) = 0 so
that αγ − β2 = constant.

We therefore set
A = 2k , αγ − β2 = n2 (96)

and it follows that α, β, γ are expressed in terms of B′, C ′ by the formulas

α =
n2

2k
B′ , β = −n

2

2k
C ′ , γ =

2k
B′ +

n2

2k
C ′2

B′ , (97)

while B,C must satisfy the simultaneous second order differential equations:

kB′′ +BB′ + 2C ′ = 0 , n2B′C ′′ +
n2

k
B′2C +

n2

k
C ′2 + 4k = 0 .

The first of these is immediately integrable, and indicating by 2a the constant of integration,
we find

C = a− k

2
B′ − 1

4
B2 . (98)

Finally by substituting this into the last one we have, to determine B(x1), the third order
differential equation

−kn
2

4
B′B′′′ +

kn2

8
B′′2 − n2

2
B′3 +

an2

2k
B′2 + 2k = 0 .

Having integrated this, (98) gives us the value of C and (97) those of α, β, γ in the line
element (94) of the space.

We treat in this section the particular case in which B′ is constant, namely B′′ = 0, a
case which returns us to the spaces already considered in §17. We will have

B′ = l , B = lx1 +m , C ′ = −l(lx1 +m)/2 ,

with l,m constants,57 so by (97):

α =
n2l

2k
, β =

n2l

2k
lx1 +m

2
, γ =

2k
l

+
n2l

2k

(
lx1 +m

2

)2

.

57One observes that the constant l cannot be zero because then we would have B′ = C ′ = 0, and

consequently A = 0.
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Setting (lx1 +m)/2 = y1, the line element (94) becomes

ds2 =
4
l2
dy2

1 +
n2l

2k

{
dx2

2 + 2(y1 − x2) dx2dx3 +

[
(y1 − x2)2 +

4k2

n2l2

]
dx2

3

}
,

and passing to a similar space by dividing by n2l/2k:

ds2 = a2 dy2
1 + dx2

2 + 2(y1 − x2) dx2dx3 +
{
(y1 − x2)2 + b2

}
dx2

3 ,

a, b being constants. We now set y1 = b/a z1, x2 = by2 and dividing by b2 leads to

ds2 = dz2
1 + dy2

2 + 2
(
z1
a

− y2

)
dy2dx3 +

{(
z1
a

− y2

)2

+ 1

}
dx2

3 ,

a formula which differs only in notation from (49*) of §17. Therefore, in the case B′′ = 0,
the group of motions of the space is a G4 of composition already examined.

29 Integration in the general case by elliptic functions.

We now treat the general case in which B′ is variable, therefore B′′ as well because of the
differential equation (99).

We immediately reduce this equation to a quadrature, assuming as the independent
variable B′ = s and taking B′′2 = t for the unknown function. In this way (99) becomes

−s dt
ds

+ t =
4s3

k
− 4as2

k2
− 16
n2

,

from which by integrating

t = −2s3

k
+

4as2

k2
+ cs − 16

n2
,

with c a new arbitrary constant. We have therefore

B′′ =
ds

dx1
=

√

−2s3

k
+

4as2

k2
+ cs− 16

n2
,

namely

x1 =
∫

ds√
−2s2

k + 4as2

k2 + cs − 16
n2

.

We integrate this by introducing the Weierstrass elliptical function58 P(x1) with the
invariants

g2 =
4a2

3k4
+

c

2k
, g3 =

4
n2k2

− 8a3

27k6
− ac

6k3
, (100)

and neglecting the additive constant in x1 as is permissible, we will have

B′ = s =
2a
3k

− 2kP(x1) . (101)

58Bianchi’s notation Px1, ζx1 was changed to the now-common P(x1), ζ(x1) [Editor].
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Integrating again we introduce the Weierstrass function ζ(x1) = σ′(x1)
σ(x1)

and one has

B =
2a
3k
x1 − 2kζ(x1) + h , (102)

with h a new constant, so that from (98) we have

C =
2a
3

+ k2P(x1) −
1
4

{
2a
3k
x1 + 2kζ(x1) + h

}2

, (103a)

C ′ = k2P ′(x1) −
(
a

3k
− kP(x1)

){
2a
3k
x1 + 2kζ(x1) + h

}
.

(103b)

Equations (97) then give us immediately for the values of α, β which appear in the line
element

α =
an2

3k2
− n2P(x1) , (104a)

β = −kn
2

2
P ′(x1) +

n2

2k

(
a

3k
− kP(x1)

)(
2a
3k
x1 + 2kζ(x1) + h

)
.

(104b)

The value of γ appears above instead in fractional form with the denominator B′ =
2k(a/(3k2) − P(x1)), but if we transform it, taking into account the relation P ′2(x1) =
4P3(x1) − g2P(x1)− g3 and applying it to the values (100) of the invariants we find

γ = −k2n2P2(x1) −
an2

3
P(x1) +

2a2n2

9k2
+
ck2n2

8

+
n2

4k

(
a

3k
− kP(x1)

)(
2a
3k
x1 + 2kζ(x1) + h

)2

−kn
2

2
P ′(x1)

(
2a
3k
x1 + 2kζ(x1) + h

)
. (105)

It is worth noting that, in view of the relation P ′′(x1) = 6P2(x1) − g2/2, the derivative of
β has the following value:59

β′ =
cn2

8
+

4a2n2

9k3
− 2an2

3k
P(x1) − 2kn2P2(x1)

−n
2

2
P ′(x1)

(
2a
3k
x1 + 2kζ(x1) + h

)
. (106)

59The preceding formulas can be greatly simplified by observing that without loss of generality one can

set h = 0, n = k = 1, as follows from simple considerations. Then e = a/3 is a root of the equation

4e3 − g2e − g3 = 0 and one has

α = e − P(x1) , β = −1

2
P(x1) + (e −P(x1))(ex1 + ζ(x1)) ,

γ = −P2(x1) − eP(x1) + e2 +
g2

4
+ (e − P(x1))(ex1 + ζ(x1))

2 .
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30 The most general group of motions of the space of the previous section.

To find the most general infinitesimal motion Xf = ξ1 ∂f/∂x1 + ξ2 ∂f/∂x2 + ξ3 ∂f/∂x3

of our space we recall the fundamental equations (A) §1. First setting i = k = 1 we have
∂ξ1/∂x1 = 0, which shows that ξ1 does not depend on x1. The remaining equations give
us

∂ξ1
∂x2

+ α
∂ξ2
∂x1

+ (β − αx2)
∂ξ3
∂x1

= 0 , (107a)

∂ξ1
∂x3

+ (β − αx2)
∂ξ2
∂x1

+ (αx2
2 − 2βx2 + γ)

∂ξ3
∂x1

= 0 , (107b)

1
2
α′ξ1 + α

∂ξ2
∂x2

+ (β − αx2)
∂ξ3
∂x2

= 0 , (108)

1
2
(α′x2

2 − 2β′x2 + γ ′)ξ1 − (β − αx2)ξ2 + (β − αx2)
∂ξ2
∂x3

+(αx2
2 − 2βx2 + γ)

∂ξ3
∂x3

= 0 , (109)

(β′ − α′x2)ξ1 − αξ2 + α
∂ξ2
∂x3

+ (β − αx2)
(
∂ξ2
∂x2

+
∂ξ3
∂x3

)

+(αx2
2 − 2βx2 + γ)

∂ξ3
∂x2

= 0 . (110)

Solving (107) for ∂ξ2/∂x1, ∂ξ3/∂x1 we have:

∂ξ2
∂x1

=
1
n2

{
(β − αx2)

∂ξ1
∂x3

− (αx2
2 − 2βx2 + γ)

∂ξ1
∂x2

}
, (111a)

∂ξ3
∂x1

=
1
n2

{
(β − αx2)

∂ξ1
∂x2

− α
∂ξ1
∂x3

}
. (111b)

We integrate the preceding equations with respect to x1, and for brevity set α0 =∫
α dx1, β0 =

∫
β dx1, γ0 =

∫
γ dx1, fixing, however, the additive constants in α0, β0, γ0:

we assume, according to (104)

α0 =
an2

3k2
x1 + n2ζ(x1) , (112a)

β0 = −kn
2

2
P(x1) +

n2

8k

(
2a
3k
x1 + 2kζ(x1) + h

)2

. (112b)

Regarding the value of γ0, we need only observe that by formula (105) it contains terms
that cannot in any way be eliminated with those arising from α0, β0. Given this, integrating
(111) we have

ξ2 =
1
n2

{
(β0 − α0x2)

∂ξ1
∂x3

− (α0x
2
2 − 2β0x2 + γ0)

∂ξ1
∂x2

}
+ ψ(x2, x3) , (113)

ξ3 =
1
n2

{
(β0 − α0x2)

∂ξ1
∂x2

− α0
∂ξ1
∂x3

}
+ χ(x2, x3) .

Substituting into (108), (109), (110) all those terms which contain γ0 must be zero
separately by the observation made above; from this we then obtain ∂2ξ1/∂x2

2 = 0,
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∂2ξ1/∂x2∂x3 = ∂ξ1/∂x2, so that (108) becomes:
1
2
α′ξ1 +

3α
n2

(β0 − α0x2)
∂ξ1
∂x2

− 2α0

n2
(β − αx2)

∂ξ1
∂x2

− αα0

n2

∂ξ1
∂x3

+(β − αx2)
∂χ

∂x2
+ α

∂ψ

∂x2
= 0 .

If we observe that in this the term in ζ2(x1), arising from β0, cannot be cancelled by any
other, we see that we must have

∂ξ1
∂x2

= 0 , (114)

after which the previous equation becomes

−n
2

2
P ′(x1)ξ1 +

{
n2

2k

(
a

3k
− kP(x1)

)(
2a
3k
x1 + 2kζ(x1) + h

)
− kn2

2
P ′(x1)

}
∂χ

∂x2

−n
2

k

(
a

3k
− kP(x1)

)
x2
∂χ

∂x2
+
n2

k

(
a

3k
− kP(x1)

)
∂ψ

∂x2

−n
2

k

(
a

3k
− kP(x1)

)(
ζ(x1) +

a

3k2
x1

)
∂ξ1
∂x3

= 0 .

Equating to zero the terms in P ′(x1), P(x1)ζ(x1) leads to

k
∂χ

∂x2
= −ξ1 ,

∂ξ1
∂x3

= −ξ1 (115)

and subsequently
∂ψ

∂x2
=
h− 2x2

2k
ξ1 . (116)

Taking into account the equations obtained so far, (113) become

ξ2 =
α0x2 − β0

n2
ξ1 + ψ(x2, x3) , ξ3 =

α0

n2
ξ1 + χ(x2, x3)

and so one has60

∂ξ2
∂x2

=
(
α0

n2
+
h− 2x2

2k

)
ξ1 ,

∂ξ2
∂x3

= −α0x2 − β0

n2
ξ1 +

∂ψ

∂x3
,

∂ξ3
∂x2

=
∂χ

∂x2
,
∂ξ3
∂x3

= −α0

n2
ξ1 +

∂χ

∂x3
.

Substituting into (109), we then find

∂χ

∂x2
=
x2

k
ξ1 ,

∂ψ

∂x3
= ψ +

(
x2

2

k
− hx2

k
− 2a

3k

)
ξ1

and finally we find for the most general values of ξ1, ξ2, ξ3:61

ξ1 = c1e
−x3 , ξ2 = c1

{
α0x2 − β0

n2
− x2

2

2k
+
hx2

2k
+

a

3k

}
e−x3 ,

ξ3 = c1
α0

n2
e−x3 − c1x2

k
e−x3 + c3 ,

with three arbitrary constants c1, c2, c3. Therefore in the general case considered in the
present section the complete group of motions is only a G3.

60In the original paper, the second denominator on the r.h.s of the first equation is just k. Correction

made after the Opere [Editor].
61The term hx2/2k in the second equation is absent in the original paper; correction made after the Opere

[Editor].
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31 Another method for the groups of type VIII.

In the work of the previous sections on the spaces which admit a transitive group G3 of
motions of type VIII we have seen the elliptical functions introduced. This depends on
having wished to establish the geodesic form of the line element, making evident a family of
pseudospherical surfaces, geodesically parallel and invariant with respect to a subgroup of
two parameters. But, if we aim only to establish any form whatsoever for the line element,
we can proceed much more directly by applying the general method described in §12 to a
simple form of the group G3. We now discuss this second way of treating the problem. In
any event, we necessarily have to apply it in the last case of the groups of type IX, because
there (real) 2-parameter subgroups do not exist.

We start from the theorem of Lie that two simply transitive and equally composed
groups are always similar. Therefore if we take any particular form whatsoever of a group
G3 transitive over three variables with the composition of type VIII and determine the
most general 3-dimensional spaces which admit it as a group of motions, any other space
with a transitive group of motions of the same composition will necessarily be identical
with one of these.

Given this, referring ourselves to the calculations made at the beginning of §28, we
choose for the type of G3 transitive over three variables of composition

[X1, X2]f = X1f , [X1, X3]f = 2X2f , [X2, X3]f = X3f

the one which is generated by the following three infinitesimal transformations:62

X1f = e−x3
∂f

∂x1
− x2

2e
−x3

∂f

∂x2
− 2x2e

−x3
∂f

∂x3
,

X2f =
∂f

∂x3
, X3f = ex3

∂f

∂x2

and we determine, in the most general way, the coefficients of the line element of the space

ds2 =
∑

i,k

aik dxidxk

so that it admits the group G3.
For this we must make use of the fundamental equations (A), or equivalently (D) §12,

applying them to the above three transformations. Beginning with X2f we see that the 6
coefficients have to be independent of x3. Then applying them to X3f , we find:

∂a11

∂x2
= 0 ,

∂a22

∂x2
= 0 ,

∂a33

∂x2
+ 2a23 = 0 ,

∂a12

∂x2
= 0 ,

∂a13

∂x2
+ a12 = 0 ,

∂a23

∂x2
+ a22 = 0 ,

from which by integrating

a11 = A , a12 = B , a22 = C ,

a13 = D − Bx2 , a23 = E − Cx2 , a33 = Cx2
2 − 2Ex2 + F ,

62The original paper has ∂f
∂x3

instead of ∂f
∂x2

in the first equation; correction after the Opere [Editor].
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where A,B, C,D,E,F are functions only of x1. Finally if we apply them to X1f , taking
into account the preceding values of the ∂aik/∂x2, we obtain

∂a11

∂x1
= 0 ,

∂a22

∂x1
= 4a22x2 + 4a23 ,

∂a33

∂x1
= 2a13 − 4a23x

2
2 − 4a33x2 ,

∂a12

∂x1
= 2a12x2 + 2a13 ,

∂a13

∂x1
= a11 − 2a12x

2
2 − 2a13x2 ,

∂a23

∂x1
= a12 + 2a33 − 2a22x

2
2 ,

from which we derive

A = constant , C ′ = 4E , E ′ = B + 2F ,

F ′ = 2D , B′ = 2D , D′ = A ,

and so

A = a2 , B = a2x2
1 + 2bx1 + c , (117)

C = a2x4
1 + 4bx3

1 + 2(c+ 2d)x2
1 + 4ex1 + f , D = a2x1 + b ,

E = a2x3
1 + 3bx2

1 + (c+ 2d)x1 + e , F = a2x2
1 + 2bx1 + d ,

with a, b, c, d, e, f six arbitrary constants. In conformity with the general theorem of §12,
we verify in this way that our system of total differential equations is completely integrable,
the initial values of the 6 coefficients aik remaining arbitrary for x1 = x2 = 0.

We observe that from equations (117) it follows that C is an arbitrary fourth degree
polynomial in x1; say Q(x1), with the first coefficient positive (or zero), and one then has63

A =
Q(4)(x1)

24
, B =

Q′′(x1)
12

+ h , C = Q(x1) ,

D =
Q′′′(x1)

24
, E =

Q′(x1)
4

, F =
Q′′(x1)

12
− h

2
,

with h an arbitrary constant.
The surfaces invariant with respect to the subgroup (X2f,X3f) are x1 = constant;

these are geodesically parallel, as follows from the general theorem and as we confirm here
by calculating the differential parameter of the first order for x1, which has the value

∆1x1 = a22a33 − a2
23 = CF −E2 .

From the expressions (117) for C,E, F , the binomial CF−E2 is a fourth degree polyno-
mial P (x1) in x1. The arclength s of the geodesics orthogonal to the surfaces x1 = constant

is given, as one knows, by

s =
∫

dx1√
∆1x1

=
∫

dx1√
P (x1)

,

from which we again see the elliptic functions introduced here, confirming what we have
said at the beginning of the present section.

63Bianchi’s QIV was replaced by the more familiar Q(4) [Editor].
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32 The groups of type IX:
[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f .

According to the method described at the beginning of the previous section, we must first
choose here the form of a group G3 transitive over three variables of the desired composi-
tion. We fix as the general type the group generated by the following three infinitesimal
transformations:

X1f =
∂f

∂x2
,

X2f = cosx2
∂f

∂x1
− cotx1 sin x2

∂f

∂x2
+

sin x2

sin x1

∂f

∂x3
,

X3f = − sinx2
∂f

∂x1
− cotx1 cos x2

∂f

∂x2
+

cos x2

sinx1

∂f

∂x3
,

which is clearly transitive and offers the composition IX. If a space of line element

ds2 =
∑

i,k

aik dxidxk

is to admit this group as a group of motions, first of all the coefficients aik must be
independent of x2 because of the form of X1f . Secondly, expressing by means of (D) §12
the fact that the space admits the infinitesimal transformation X2f (or the other X3f)64

we find the following system of partial differential equations65 for the 6 coefficients aik :

∂a11

∂x1
= 0 ,

∂a11

∂x3
= 2a13 cotx1 −

2a12

sinx1
,

∂a22

∂x1
= 2a22 cotx1 −

2a23

sinx1
,
∂a22

∂x3
= 2a12 sinx1 ,

∂a33

∂x1
= 0 ,

∂a33

∂x3
= 0 ,

∂a12

∂x1
= 2a12 cotx1 −

a13

sinx1
,
∂a12

∂x3
= a11 sinx1 + a23 cot x1 −

a22

sinx1
,

∂a13

∂x1
= 0 ,

∂a13

∂x3
= a33 cot x1 −

a23

sinx1
,

∂a23

∂x1
= a23 cotx1 −

a33

sinx1
,
∂a23

∂x3
= a13 sinx1 .

We observe that a33 is a constant and so

∂2a13

∂x3
2

= − 1
sin x1

∂a23

∂x3
= −a13 ,

we then have
a33 = a2 , a13 = b cosx3 + c sinx3 ,

with a, b, c constants. Substituting into the formula which gives ∂a13/∂x3 we obtain

a23 = a2 cosx1 + sinx1 (b sinx3 − c cosx3) .
64It suffices that it admit the two X1f , X2f in order for it to also admit the third since [X1,X2]f = X3f .
65The original paper had a23 on the l.h.s. of the 4th equation and ∂/∂x2 on the l.h.s. of the 8th equation,

both of which were incorrect [Editor].
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Now since a11 is a function only of x3, we set a11 = 2ϕ(x3), so that from the formula
which gives ∂a11/∂x3 it follows that

a12 = cos x1 (b cosx3 + c sinx3) − sinx1 ϕ
′(x3) .

Then integrating the two equations for a22 we have

a22 = 2 sinx1 cosx1 (b sinx3 − c cosx3) − 2 sin2 x1 ϕ(x3)

+a2 + d sin2 x1 ,

with d a new constant. Finally by substituting into the formula which gives ∂a12/∂x3, we
find for ϕ(x3) the differential equation

ϕ′′(x3) = −4ϕ(x3) + a2 + d ,

and so by integration66

ϕ(x3) = e cos(2x3) + f sin(2x3) + (a2 + d)/4 ,

with e, f new constants. With the values thus determined for the 6 coefficients aik, the
above stated equations are actually satisfied, whatever the 6 constants a, b, c, d, e, f are.

We can then directly show, making use of the usual fundamental equations (A), that
the complete group of motions is the given G3, except when the four constants b, c, e, f are
simultaneously zero. We prefer to treat this problem in another way, taking advantage of
the theorem of Lie on the composition of groups, which makes the work simpler. We add
that we can also apply the same method to the groups of type VIII to derive again the
results of §28, §30.

33 Spaces which admit as a subgroup of motions a group G3 of type IX.

Suppose that we have a space which admits a transitive G3 of type IX as a subgroup of
motions, but that its group of motions is larger. If we exclude the case of spaces of constant
curvature, this larger group cannot be other than a 4-parameter group, a fact which we
state here postponing its demonstration to §36.

Given the hypothesized G4 containing the simple subgroup G3 of composition67

[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f ,

by the indicated theorem of Lie,68 we can choose the fourth infinitesimal generating trans-
formation of G4 so that one has

[X1, X4]f = [X2, X4]f = [X3, X4]f = 0 .
66The original paper has x3/2 instead of 2x3; correction after the Opere [Editor].
67The original paper had X1, X3 on the left in the first commutator, an obvious typo [Editor].
68See S. Lie-F. Engel, Vol. III, p. 723 and S. Lie-C. Scheffers, p. 574, Theorem 9. — It is worth noting

that the theorems used here depend only on the relationships among the constants of composition ciks and

do not lose their validity by limiting them to the consideration of real groups and subgroups, as we do here.
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We consider in G4 the G2 of Abelian motions generated for example by X1f,X4f

and as in §14 we choose as coordinate surfaces x1 = constant the surfaces invariant with
respect to the group G2. Proceeding as in the cited section we can furthermore assume
X1f = ∂f/∂x2, X4f = ∂f/∂x3, and give the line element of the space the form

ds2 = dx2
1 + α dx2

2 + 2β dx2dx3 + γ dx2
3 ,

with α, β, γ functions only of x1. Now letX2f = η1∂f/∂x1+η2∂f/∂x2+η3∂f/∂x3; because
of [X1, X2]f = X3f , it follows that

X3f =
∂η1

∂x2

∂f

∂x1
+
∂η2

∂x2

∂f

∂x2
+
∂η3

∂x2

∂f

∂x3
.

Since on the other hand one must also have [X2, X4]f = 0, [X3, X1]f = X2f , η1, η2, η3

must satisfy the conditions:

∂η1

∂x3
=
∂η2

∂x3
=
∂η3

∂x3
= 0 ,

∂2η1

∂x2
2

+ η1 = 0 ,
∂2η2

∂x2
2

+ η2 = 0 ,
∂2η3

∂x2
2

+ η3 = 0 ,

from which we will have

η1 = A sinx2 + B cos x2 , η2 = C sinx2 +D cos x2 ,

η3 = E sin x2 + F cos x2 ,

where A,D,C,D,E,F are functions only of x1. From the first of equations (E) §14, it
follows that η1 does not depend on x1 and so A,B are absolute constants. Finally from
the composition equation [X2, X3]f = X1f we get the following three equations

AC +BD = 0 , BC ′ −AD′ = C2 +D2 + 1 ,

AF ′ −BE ′ + CE +DF = 0 .

There is no loss of generality in adding a constant to x2 in such a way that B = 0 69

and since one cannot simultaneously have A = 0, as can be seen from the second of the
equations (β), we will also have C = 0, so −AD′ = 1 +D2, AF ′ +DF = 0.

Integrating the first equation and ignoring the additive constant in x1, as is allowed,
we will have D = − tan(x1/A), F = k/ cos(x1/A), with k an arbitrary constant.

If we now apply the other equations (E) §14, the relation

1
2
γ ′η1 + β

∂η2

∂x3
+ γ

∂η3

∂x3
= 0

shows us that γ is constant, so we set γ = h2 and the remaining equations give us

E = 0 ,

αD′ + βF ′ = −A , βD′ + h2F ′ = 0 ,

Aα′/2 = αD + βF , Aβ′ = βD + h2F ,

69This assumes A 6= 0; if this is not true, one would change x2 into π/2 + x2.
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from which we get

α = A2 cos
(
x1

A

)
+ h2k2 sin2

(
x1

A

)
, β = h2k sin

(
x1

A

)
, γ = h2 .

If we set x1 = Ay1, x3 = Ay3/h, n = hk/A, then dividing the line element by h2, we
find the standard form

ds2 = dy2
1 + (cos2 y1 + n2 sin2 y1) dx2

2 + 2n sin y1 dx2dy3 + dy2
3

which, by changing the notation, we can write as

ds2 = dx2
1 + (sin2 x1 + n2 cos2 x1) dx2

2 + 2n cosx1 dx2dx3 + dx2
3 . (118)

One sees that for n = 0 we obtain the space already considered in §9. This case
must be excluded here though because it would lead to η3 = 0 and the derived group
(X1f,X2f,X3f) is then intransitive.

We also exclude the case n = 1 because the line element then becomes

ds2 = dx2
1 + dx2

2 + dx2
3 + 2 cosx1 dx2dx3

and belongs to the space of constant positive curvature K = 1/4. In fact let x1 = 2y1,
x2 = y2 + y3, x3 = y2 − y3 and one has

ds2 = 4(dy2
1 + cos2 y1 dy2

2 + sin2 y1 dy
2
3)

which indeed belongs to one such space. The geodesically parallel surfaces x1 = constant

are in this case Clifford surfaces of zero curvature.

34 The complete group of motions of the space:
ds2 = dx2

1 + (sin2 x1 + n2 cos2 x1) dx2
2 + 2n cosx1 dx2dx3 + dx2

3.

To determine the most general infinitesimal motion

Xf = η1 ∂f/∂x1 + η2 ∂f/∂x2 + η3 ∂f/∂x3

of the space of the line element (118), the equations (E) §14 give us the following equations

∂η1

∂x1
= 0 , (119)

∂η1

∂x2
+ (sin2 x1 + n2 cos2 x1)

∂η2

∂x1
+ n cos x1

∂η3

∂x1
= 0 , (120a)

∂η1

∂x3
+ n cos x1

∂η2

∂x1
+
∂η3

∂x1
= 0 , (120b)

(1 − n2) sinx1 cos x1 η1 + (sin2 x1 + n2 cos2 x1)
∂η2

∂x2

+n cos x1
∂η3

∂x2
= 0 , (121)

n cos x1
∂η2

∂x3
+
∂η3

∂x3
= 0 , (122)

−n sin x1 η1 + (sin2 x1 + n2 cos2 x1)
∂η2

∂x3

+n cos x1

(
∂η2

∂x2
+
∂η3

∂x3

)
+
∂η3

∂x2
= 0 . (123)
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Solving (120) for ∂η2/∂x1, ∂η3/∂x1, and integrating with respect to x1, on which η1

does not depend by (119), leads to the result:

η2 = cotx1
∂η1

∂x2
− n

sinx1

∂η1

∂x3
+ ψ(x2, x3) , (124a)

η3 =
{
n2 cotx1 − (1− n2)x1

} ∂η1

∂x3
− n

sinx1

∂η1

∂x2
+ χ(x2, x3) . (124b)

Substituting into (122), we have

−n sinx1
∂2η1

∂x2∂x3
+ n cos x1

∂ψ

∂x3
+ (n2 − 1)x1

∂2η1

∂x3
2

+
∂χ

∂x2
= 0 ,

and so since n2 − 1 6= 0:

∂2η1

∂x2∂x3
=
∂2η1

∂x3
2

= 0 ,
∂ψ

∂x3
=

∂χ

∂x3
= 0 .

Substituting now into (121), we then obtain

∂ψ

∂x2
=

∂χ

∂x2
= 0 ,

∂2η1

∂x2
2

= −η1 ,

and with these equations (123) is also satisfied. It follows next that ∂η1/∂x3 = 0, so

η1 = a cosx2 + b sinx2 ,

η2 = cotx1(−a sinx2 + b cosx2) + c ,

η3 =
n

sin x1
(a sinx2 − b cosx2) + d ,

with a, b, c, d arbitrary constants.
Therefore the complete group of motions of the space (118) is the G4 generated by the

four infinitesimal transformations:

X1f =
∂f

∂x2
,

X2f = cosx2
∂f

∂x1
− cotx1 sin x2

∂f

∂x2
+
n sinx2

sinx1

∂f

∂x3
,

X3f = − sinx2
∂f

∂x1
− cotx1 cos x2

∂f

∂x2
+
n cosx2

sinx1

∂f

∂x3
,

X4f =
∂f

∂x3
,

which has the composition:

[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f ,

[X1, X4]f = [X2, X4]f = [X3, X4]f = 0 .

This group is systatic and the systatic varieties are the geodesics (x3), which however,
except in the case n = 0, do not admit orthogonal trajectories.
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35 The constant n is essential in
ds2 = dx2

1 + (sin2 x1 + n2 cos2 x1) dx2
2 + 2n cosx1 dx2dx3 + dx2

3.

We wish to show finally that in the line element (113) the constant n, apart from sign,70

is actually essential and namely that if a second space

ds2 = dy2
1 + (sin2 y1 +m2 cos2 y1) dy2

2 + 2m cos y1 dy2dy3 + dy2
3 (126)

is similar to the first, one must necessarily have n2 = m2.
Adopting for this the same method which has served us in the analogous cases, we

observe that the group Γ4 of motions of the space (126) is generated by the four infinitesimal
transformations:

Y1f =
∂f

∂y2
,

Y2f = cos y2
∂f

∂y1
− cot y1 sin y2

∂f

∂y2
+
m sin y2
sin y1

∂f

∂y3
,

Y3f = − sin y2
∂f

∂y1
− cot y1 cos y2

∂f

∂y2
+
m cosy2
sin y1

∂f

∂y3
,

Y4f =
∂f

∂y3
,

with the composition:

[Y1, Y2]f = Y3f , [Y2, Y3]f = Y1f , [Y3, Y1]f = Y2f ,

[Y1, Y4]f = [Y2, Y4]f = [Y3, Y4]f = 0 .

First we must determine if the group G4 of the first space is similar to the Γ4 of the
second. Assuming that the equations of transformation change X1f , X2f , X3f , X4f ,
respectively into Ȳ1f , Ȳ2f , Ȳ3f , Ȳ4f , the Ȳ f must be combinations of the Y f and have
their same composition. From this it follows that, since Y4f is the only infinitesimal
transformation of Γ4 which commutes with every other, Ȳ4f will not differ from it other
than by a constant factor a, while Ȳ1f , Ȳ2f , Ȳ3f , belonging to the derived group, will not
involve Y4f and one will have71

Ȳ1f = c11Y1f + c12Y2f + c13Y3f ,

Ȳ2f = c21Y1f + c22Y2f + c23Y3f ,

Ȳ3f = c31Y1f + c32Y2f + c33Y3f , Ȳ4f = aY4f .

The composition equations

[Ȳ1, Ȳ2]f = Ȳ3f , [Ȳ2, Ȳ3]f = Ȳ1f , [Ȳ3, Ȳ1]f = Ȳ2f

show that the nine constants cik are the coefficients of an orthogonal matrix of determinant
= +1. Now among X1f , X2f , X3f , X4f , holds the unique relation

X4f =
1
n
{cosx1X1f + sin x1 sinx2X2f + sinx1 cos x2X3f}

70Changing the sign of either x2 or x3 changes the sign of n.
71The original paper had X2 instead of Y2 in the second equation, an obvious typo [Editor].
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and similarly among the Yif the other

Y4f =
1
m

{cos y1 Y1f + sin y1 sin y2Y2f + sin y1 cos y2 Y3f} .

Expressing the x in terms of the y, we have

Ȳ4f =
1
n

{
cosx1 Ȳ1f + sin x1 sinx2 Ȳ2f + sin x1 cos x2 Ȳ3f

}

or equivalently

Y4 =
1
an

{(c11 cos x1 + c21 sinx1 sin x2 + c31 sinx1 cos x2)Y1f

+(c12 cos x1 + c22 sinx1 sin x2 + c32 sinx1 cos x2)Y2f

+(c13 cos x1 + c23 sinx1 sin x2 + c33 sinx1 cos x2)Y3f} .

Comparing this with (γ) leads to the three equations

(an/m) cosy1 = c11 cos x1 + c21 sinx1 sin x2 + c31 sin x1 cos x2 ,

(an/m) siny1 sin y2 = c12 cos x1 + c22 sinx1 sin x2 + c32 sin x1 cosx2 ,

(an/m) siny1 cos y2 = c13 cos x1 + c23 sinx1 sin x2 + c33 sin x1 cos x2 .

The compatibility of these three equations in y1, y2 gives, according to the general
theory, the necessary and sufficient condition for the similarity of the two groups G4, Γ4.
This condition is found immediately by squaring and summing the above three equations,
which gives a2n2/m2 = 1. It suffices therefore to take a = ±m/n in order that correspond-
ing equations of transformation of G4 into Γ4 exist. Equations (127) show that one has
∂y1/∂x3 = ∂y2/∂x3 = 0.

For the rest, expressing the fact that the Xif are transformed respectively into the Ȳif ,
we can find all the values of the first partial derivatives of the y with respect to the x. It
suffices for us to note here, in addition to the two above, the following

∂y2
∂x2

= c11 − c12 cot y1 sin y2 − c13 cot y1 cos y2 , (128a)

cosx2
∂y1
∂x1

= c22 cos y2 − c23 sin y2

+ cotx1 sinx2(c12 cos y2 − c13 sin y2) , (128b)
∂y3
∂x3

= a . (128c)

Assuming now that the two line elements are transformable one into the other, except
for a constant factor, we utilize as in §19 the Christoffel formula

∂2yν

∂xr∂xs
+
∑

i,k

{
ν

ik

}

y

∂yi

∂xr

∂yk

∂xs
=
∑

µ

{
µ

rs

}

x

∂yν

∂xµ
,

setting ν = 1, r = 2, s = 3 and substituting for the Christoffel symbols their actual values,
we obtain

sin y1
∂y2
∂x2

=
n

am
sinx1

∂y1
∂x1

,
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or equivalently by (128)

cos x2(c11 sin y1 − c12 cos y1 sin y2 − c13 cos y1 cos y2)

=
n

am
{sinx1(c22 cos y2 − c23 sin y2)

+ cos x1 sinx1(c12 cos y2 − c13 sin y2)} .

Multiplying this last equation by a2n2/m2 sin y1 = sin y1, noting (127) one obtains the
equation

c11 cos x2

{
1− (c11 cos x1 + c21 sinx1 sin x2 + c31 sin x1 cosx2)2

}

−c12 cosx2(c11 cosx1 + c21 sin x1 sinx2 + c31 sin x1 cosx2)

×(c12 cos x1 + c22 sin x1 sin x2 + c32 sin x1 cosx2)

−c13 cosx2(c11 cosx1 + c21 sin x1 sinx2 + c31 sin x1 cosx2)

×(c13 cos x1 + c23 sin x1 sin x2 + c33 sin x1 cosx2)

=
n2

m2
{c22 sin x1(c13 cosx1 + c23 sinx1 sin x2 + c33 sinx1 cos x2)

+c12 cosx1 sin x2(c13 cosx1 + c23 sinx1 sinx2 + c33 sinx1 cosx2)

−c23 sinx1(c12 cosx1 + c22 sin x1 sinx2 + c32 sin x1 cosx2)

− c13 cos x1 sinx2(c12 cos x1 + c22 sinx1 sin x2 + c32 sin x1 cos x2)} ,

which must prove to be an identity in x1, x2. Setting x2 = 0 in this equation we find

n2

m2
(c11 sin2 x1 − c31 sin x1 cosx1) = c11 sin2 x1 − c31 sinx1 cosx1

so n2 = m2, unless one has c11 = 0, c31 = 0 so that also c22 = 0, c23 = 0, c21 = ±1.
Introducing these values of c into the above identity leads to: (n2/m2 − 1)c21 = 0 and

so again n2 = m2, Q.E.D.

36 The impossibility of other spaces with continuous groups of motions.

In the previous sections we have exhausted the study of the 3-dimensional spaces which
admit intransitive groups of motion or transitive 3-parameter groups. And now we show
that with this we have also determined all the possible spaces which admit continuous
groups of motions.

Therefore, since the group of motions of a space cannot have more than 6 parameters,
it will clearly suffice to show that a (transitive) group of motions with 6, 5, or 4 parameters
necessarily contains some real 3-parameter subgroup.

If we treat a G6 this is clear since then the motions which leave a point of the space
fixed form precisely a real subgroup with 6 − 3 = 3 parameters.72

If the complete group of motions is a G4 we easily find the same thing recalling that
the derived group of a G4 possesses at most 3 parameters and therefore, in any case, there
exist real 3-parameter subgroups in G4. And indeed if the G4 is generated by the four
infinitesimal transformations X1f , X2f , X3f , X4f , and the derived group is the identity,

72S. Lie-F. Engel, Vol. I, p. 204.
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or (X1f) or (X1f,X2f) or even (X1f,X2f,X3f), then (X1f,X2f,X3f) will always be a
real 3-parameter subgroup.

It remains to show the same property for a G5. In this transitive group those motions
which leave an arbitrary point of the space fixed form a real G2 and we propose to establish
that such a G2 would necessarily be contained in a real subgroup G3 of the G5. Lie73 shows
that indeed every G2 in a group with r ≥ 3 parameters is contained in at least one subgroup
G3; however, it could easily happen that in the general case these subgroups G3 are only
complex. But if we apply the same derivation given by Lie (ibid.) we see that our assertion
will be proved when it is shown that if

E1f =
∑

i,k

aikxk
∂f

∂xi
, E2f =

∑

i,k

bikxk
∂f

∂xi

are two linear homogeneous transformations in three variables x1, x2, x3 such that one has
[E1, E2]f = kE1f (k constant) and one interprets x1, x2, x3 as homogeneous coordinates of
a point in a plane, then there will be at least one real point that will remain fixed by both
transformations (fixed point). It is known that to find the fixed points with respect to the
E1f one has the system of equations

a11x1 + a12x2 + a13x3 = ρx1 ,

a21x1 + a22x2 + a23x3 = ρx2 ,

a31x1 + a32x2 + a33x3 = ρx3

and since the cubic equation with real coefficients
∣∣∣∣∣∣∣

a11 − ρ a12 a13

a21 a22 − ρ a23

a31 − ρ a32 a33 − ρ

∣∣∣∣∣∣∣
= 0

has at least one real root, there will certainly be at least one real fixed point with respect
to E1f . If there exists for E1 an isolated real fixed point, then since by assumption
[E1, E2]f = kE1f , it will be fixed with respect to E2f .74 So it will suffice to consider the
case in which E1f has no real isolated fixed points. This happens only when the above
cubic equation has a single root, which furthermore makes all the second order minors of
the same determinant zero.75 Then all the fixed points are distributed over a (real) line
and if we assume this line as the side x3 = 0 of the fundamental triangle, we give to E1f ,
as is immediately seen, the form76

E1f = ρ

(
x1
∂f

∂x1
+ x2

∂f

∂x2
+ x3

∂f

∂x3

)
+ αx3

∂f

∂x1
+ βx3

∂f

∂x2
.

If one had77 α = β = 0, E1f would leave every point fixed and a real fixed point of E2f

would satisfy the required condition. If β 6= 0, changing x1 into x1 + hx2, we can make
73S. Lie-F. Engel, Vol. I, pp.592–593.
74See S. Lie-F. Engel, Vol. 1, p. 507, Theor. 104.
75See the precise discussion in S. Lie-G. Scheffers, pp.510-511.
76The original paper had ∂f/∂x3 in the second term, an obvious typo [Editor].
77The original paper had α3 = β3 = 0 here, an obvious typo [Editor].
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α = 0 and we will thus have

E1f = ρ

(
x1

∂f

∂x1
+ x2

∂f

∂x2
+ x3

∂f

∂x3

)
+ βx3

∂f

∂x2
.

If E1f, E2f were in the involution relation78 [E1, E2]f = 0, the above considerations are
already sufficient to demonstrate the assertion, since in the most unfavorable case where
neither E1f nor E2f possess a real isolated fixed point, the meeting point of the two lines
of the respective invariant points would satisfy the desired condition.

Therefore we assume in
[E1, E2]f = kE1f (a)

that k 6= 0. One then has79

E2f = (a1x1 + a2x2 + a3x3)
∂f

∂x1
+ (b1x1 + b2x2 + b3x3)

∂f

∂x2

+(c1x1 + c2x2 + c3x3)
∂f

∂x3
.

The condition (a) gives kρ = 0, a2 = c1 = c2 = 0, b2 = c3 + k, so that ρ = 0 and we
can make

E1f = x3
∂f

∂x2
,

E2f = (a1x1 + a3x3)
∂f

∂x1
+ (b1x1 + b2x2)

∂f

∂x2
+ c3x3

∂f

∂x3
.

The real point of coordinates (0, 1, 0) remains fixed by both transformations.

37 The impossibility of groups G5 of motions.

By what we have shown in the previous section, there does not exist any space which has
a G5 for the complete group of motions. From this it follows that if a space should admit
a subgroup G5 of motions, also admitting a G6, it would be of constant curvature. But
we can easily go farther and show that the groups G6 of motions of the spaces of constant
curvature do not contain a real subgroups of 5 parameters, namely:

There does not exist any 3-dimensional space whose group of motions contains a real
5-parameter subgroup.

Assuming the existence of such a G5 of motions, its subgroup G2 which leaves any point
P whatsoever of the space fixed is contained, by the previous section, in a real G3. This
G3 would necessarily be transitive since otherwise with motions of G3 one could transport
P anywhere, but every point would remain fixed by a double infinity of motions of the G3

which is absurd. The group G3 being transitive, we can apply the methods developed in
§§5–11 and therefore give the line element of the space of constant curvature one of the
following 6 forms:

ds2 = dx2
1 + dx2

2 + dx2
3 , K = 0 , (α1)

78In Italian: “relazione involutoria” [Translator].
79The original paper had ∂f/∂x1 instead of ∂f/∂x3 in the last term [Editor].
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ds2 = dx2
1 + e2x1(dx2

2 + dx2
3) , K = −1 , (α2)

ds2 = dx2
1 + x2

1(dx
2
2 + sin2 x2 dx

2
3) , K = 0 , (β1)

ds2 = dx2
1 + sin2 x1(dx2

2 + sin2 x2 dx
2
3) , K = 1 , (β2)

ds2 = dx2
1 + sinh2 x1(dx2

2 + sin2 x2 dx
2
3) , K = −1 , (β3)

ds2 = dx2
1 + cosh2 x1(dx2

2 + sin2 x2 dx
2
3) , K = −1 , (γ)

which is adapted to the subgroup G3 of rotations about a point80 generated in the respective
cases (α), (β), (γ) by the three infinitesimal transformations designated in §5 by (α∗),
(β∗), (γ∗). For each of these forms we have to determine, by integrating the fundamental
equations (A), the form of the complete group G6 of motions and see if there exists a
subgroup G5 of the G6 containing the G3. The answer being negative, the stated property
will be established.

Here I limit myself to carrying out the calculations for one case. We choose, for example,
the (parabolic) form

ds2 = dx2
1 + e2x1(dx2

2 + dx2
3)

of the line element of the pseudospherical spaces. Integrating the equations of §7 we
easily find that the complete group G6 of motions is generated by the 6 infinitesimal
transformations:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = x3

∂f

∂x2
− x2

∂f

∂x3
,

X4f = x2
∂f

∂x1
+

1
2
(e−2x1 + x2

3 − x2
2)
∂f

∂x2
− x2x3

∂f

∂x3
,

X5f = x3
∂f

∂x1
− x2x3

∂f

∂x2
+

1
2
(e−2x1 + x2

2 − x2
3)
∂f

∂x3
,

X6f =
∂f

∂x1
− x2

∂f

∂x2
− x3

∂f

∂x3
.

We now write the related composition equations:

[X1, X2]f = 0 , [X1, X3]f = −X2f , [X1, X4]f = X6f ,

[X1, X5]f = −X3f , [X1, X6]f = −X1f ,

[X2, X3]f = X1f , [X2, X4]f = X3f , [X2, X5]f = X6f ,

[X2, X6]f = −X2f ,

[X3, X4]f = X5f , [X3, X5]f = −X4f , [X3, X6]f = 0 ,

[X4, X5]f = 0 , [X4, X6]f = X4f ,

[X5, X6]f = X5f ,

the inspection of which would suffice to show us that there does not exist in the G6 any
real G5 containing the subgroup G3 = (X1f,X2f,X3f).

80As is seen, in the space of zero curvature (Euclidean), we have two different forms for the line element,

one (α) corresponding to the case of a center of rotation at infinity, the second (β) to the case of the center

of rotation at a finite distance. For the pseudospherical spaces (K = −1) we have three distinct forms (α),

(β), (γ), according to whether the center of rotation is at infinity or a finite distance, or is ideal, and finally

for the space of Riemann (K = +1) only one form. These geometric circumstances are well known from

the theory of spaces of constant curvature.
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In fact let Y f be an infinitesimal transformation of G5 that does not belong to G3; we
can set Y f = aX4f + bX5f + cX6f with a, b, c constants. In G5 there will therefore also
exist the three infinitesimal transformations

[X1, Y ]f = aX6f − bX3f − cX1f ,

[X2, Y ]f = aX3f + bX6f − cX2f ,

[X3, Y ]f = aX5f − bX4f ,

and so also aX6f , bX6f , and hence in any case X6f since if a = b = 0, Y f reduces
to X6f . Now the four transformations X1f , X2f , X3f , X6f , of G5 actually generate a
G4 and if by Zf = aX4f + bX5f we indicate the last infinitesimal transformation, then
[X3, Z]f = aX5f −bX4f must be a combination of X1f , X2f , X3f , X6f , Zf and so differs
from Zf only by a constant factor ρ. Therefore one will have a = ρb, b = −ρa from which
ρ2 + 1 = 0 and so Zf = X4f + iX5f , which gives only a complex G5. Demonstrations
completely analogous, as the reader can verify, are valid in all the other cases.

38 Summarized table of the line elements.

It will be useful to summarize the results obtained by gathering together in a table the
various types to which we have reduced, in the course of this study, the line elements of all
possible spaces which admit continous groups of motions.

We divide these spaces into six categories according to the type of their complete group
G of motions. We assign a space to the category A) when its group of motions is a G1,
to B) when it is a G2, to C) when it is an intransitive G3. The other two categories D) ,
E) contain the spaces whose group of motions is transitive, D) those with a G3, E) those
with a G4. Finally the sixth category F) will include the spaces of constant curvature
which admit a group G6 of motions. In the same table we also give the infinitesimal
transformation generators and their composition.

Category A

Groups G1

ds2 = Σ aik dxidxk

with coefficients aik independent of x1

group:

X1f =
∂f

∂x1

Category B

Groups G2

ds2 = dx2
1 + α dx2

2 + 2β dx2dx3 + γ dx2
3
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with α, β, γ functions only of x1

group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3

composition:
[X1, X2] = 0

ds2 = dx2
1 + α dx2

2 + 2(β − αx2) dx2dx3 + (αx2
2 − 2βx2 + γ) dx2

3

with α, β, γ functions of x1

group:

X1f =
∂f

∂x3
, X2f = ex3

∂f

∂x2

composition:
[X1, X2]f = X2f

Category C

Groups G3 intransitive

α) ds2 = dx2
1 + ϕ2(x1)(dx2

2 + dx2
3)

with ϕ(x1) an arbitrary function of x1

group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = x3

∂f

∂x2
− x2

∂f

∂x3

composition:

[X1, X2]f = 0 , [X1, X3]f = −X2f , [X2, X3]f = X1f

β) ds2 = dx2
1 + ϕ2(x1)(dx2

2 + sin2 x2 dx3)2

group:

X1f =
∂f

∂x3
, X2f = sinx3

∂f

∂x2
+ cotx2 cosx3

∂f

∂x3
,

X3f = cosx3
∂f

∂x2
− cotx2 sinx3

∂f

∂x3

composition:

[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f

γ) ds2 = dx2
1 + ϕ2(x1) (dx2

2 + e2x2 dx3)2
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group:

X1f =
∂f

∂x3
, X2f =

∂f

∂x2
− x3

∂f

∂x3
,

X3f = x3
∂f

∂x2
+

1
2
(e−2x2 − x2

3)
∂f

∂x3

composition:

[X1, X2]f = −X1f , [X1, X3]f = X2f , [X2, X3]f = −X3f

Category D

Groups G3 transitive

Type IV
ds2 = dx2

1 + ex1 [dx2
2 + 2x1 dx2dx3 + (x2

1 + n2) dx3)2]

group:

X1f = 2
∂f

∂x2
, X2f =

∂f

∂x3
,

X3f = −2
∂f

∂x1
+ (x2 + 2x3)

∂f

∂x2
+ x3

∂f

∂x3

composition:

[X1, X2] = 0 , [X1, X3]f = X1f , [X2, X3]f = X1f +X2f

Type VI
ds2 = dx2

1 + e2x1 dx2
2 + 2ne(h+1)x1 dx2dx3 + e2hx1 dx2

3

group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
,

X3f = − ∂f

∂x1
+ x2

∂f

∂x2
+ hx3

∂f

∂x3

composition:

[X1, X2] = 0 , [X1, X3]f = X1f , [X2, X3]f = hX2f

Type VII
ds2 = dx2

1 + e−hx1
{
(n+ cos vx1) dx2

2 + (h cos vx1 + v sinx1 + hn) dx2dx3

+
(

2−v2

2 cos vx1 + hv
2 sin vx1 + n

)
dx2

3

}

group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
,

X3f =
∂f

∂x1
− x3

∂f

∂x2
+ (x2 + hx3)

∂f

∂x3

composition:

[X1, X2] = 0 , [X1, X3]f = X2f , [X2, X3]f = −X1f + hX2f
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Type VIII81

ds2 = Q(4)(x1)
24 dx2

1 + Q(x1) dx2
2 +

(
Q(x1)x2

2 −
Q′(x1)

2 x2 + Q′′(x1)
2 − h

2

)
dx2

3

+2
(

Q′′(x1)
12 + h

)
dx1dx2 + 2

{
Q′′′(x1)

24 −
(

Q′′(x1)
12 + h

)
x2

}
dx1dx3

+2
(

Q′(x1)
4 −Q(x1)x2

)
dx2dx3 ,

with Q(x1) a fourth degree polynomial in x1 with its first
coefficient positive (or zero), and h a constant

group:

X1f = e−x3
∂f

∂x1
− x2

2e
−x3

∂f

∂x2
− 2x2e

−x3
∂f

∂x3
;

X2f =
∂f

∂x3
, X3f =

∂f

∂x2

composition:

[X1, X2]f = X1f , [X1, X3]f = 2X2f , [X2, X3]f = X3f

Type IX82

ds2 = Σi,k aik dxidxk

a11 = 2e cos 2x3 + 2f sin 2x3 + (a2 + d2)/2 ,

a22 = 2 sinx1 cosx1(b sinx3 − c cosx3) − a11 sin2 x1 + a2 + d sin2 x1 ,

a33 = a2 , a13 = b cosx3 + c sinx3 ,

a12 = cosx1(b cosx3 + c sinx3) + 2 sinx1(e sin 2x3 − f cos 2x3) ,

a23 = a2 cosx1 + sinx1(b sinx3 − c cosx3)

group:

X1f =
∂f

∂x2
, X2f = cosx2

∂f

∂x1
− cotx1 sinx2

∂f

∂x2
+

sinx2

sinx1

∂f

∂x3
,

X3f = − sinx2
∂f

∂x1
− cot x1 cosx2

∂f

∂x2
+

cosx2

sinx1

∂f

∂x3

composition83:

[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f

Category E

Groups G4
84

a) [Type II]
ds2 = dx2

1 + dx2
2 + 2x1 dx2dx3 + (x2

1 + 1) dx2
3

81Bianchi’s QIV was replaced by the more familiar Q(4) [Editor].
82The original paper had x3/2 instead of 2x3, which was incorrect. Also, the second term in a12 had the

coefficient 1/2 instead of 2, corrected here after the Opere [Editor].
83The original paper had Xf in the second commutator on the r.h.s., an obvious typo [Editor].
84Simply transitive subgroup Bianchi types added in brackets by translator for clarity.
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group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f = − ∂f

∂x1
+ x3

∂f

∂x2
,

X4f = x3
∂f

∂x1
+

1
2
(x2

1 − x2
3)
∂f

∂x2
− x1

∂f

∂x3

composition:

[X1, X2] = [X1, X3] = [X1, X4] = 0 ,

[X2, X3]f = X1f , [X2, X4]f = −X3f , [X3, X4]f = X2f

b) [Types III, VIII]
ds2 = dx2

1 + e2x1 dx2
2 + 2nex1 dx2dx3 + dx2

3

group:

X1f =
∂f

∂x2
, X2f =

∂f

∂x3
, X3f =

∂f

∂x1
− x2

∂f

∂x2
,

X4f = x2
∂f

∂x1
+

1
2

(
e−2x1

1 − n2
− x2

2

)
∂f

∂x2
− ne−x1

1 − n2

∂f

∂x3

composition:

[X1, X2] = 0 , [X1, X3]f = −X1f , [X1, X4]f = X3f ,

[X2, X3] = 0 , [X2, X4] = 0 , [X3, X4]f = −X4f

c) [Type IX]

ds2 = dx2
1 + (sin2 x1 + n2 cos2 x1) dx2

2 + 2n cosx1 dx2dx3 + dx2
3

group:

X1f =
∂f

∂x2
, X2f = cos x2

∂f

∂x1
− cot x1 sinx2

∂f

∂x2
+
n sinx2

sin x1

∂f

∂x3
,

X3f = − sin x2
∂f

∂x1
− cot x1 cosx2

∂f

∂x2
+
n cosx2

sinx1

∂f

∂x3
, X4f =

∂f

∂x3

composition:

[X1, X2]f = X3f , [X2, X3]f = X1f , [X3, X1]f = X2f ,

[X1, X4] = [X2, X4] = [X3, X4] = 0

Category F

Groups G6 — spaces of constant curvature

39 Conclusion.

Having classified all possible types of spaces which admit a continuous group of motions,
it remains only that we say how, given the line element of a space, one can verify whether
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that same space admits a continuous group of motions, and if so, how the equations are
found which reduce the line element to one of the typical forms of our table.

For this purpose it is enough to recall the equations (A) §1 which are precisely according
to Lie, the equations of definition85 of the group. With only algebraic operations and
differentiation one evaluate the number r of parameters of the group and decides on its
transitivity or intransitivity,86 so that one sees immediately to which of our categories the
given space belongs.

The integration of the fundamental equations (A) then gives us the actual form of the
infinitesimal transformations of the group and this makes the composition evident to us,
after which one will decide immediately to which type in the category the space belongs
since one will clearly find in the table one and only one group which offers the same or an
equivalent composition.

Then one tries to identify the two groups, namely to assign the values of the constants
which enter in the group of canonical form and to calculate the equations of transformation.
To this task one responds perfectly applying the general criteria for the similarity of groups
given in the work of Lie.

NOTE

After the editing of the present Memoria Professor Ricci brought my attention to a Nota
of Professor Levi-Civita, where by chance particular 3-dimensional spaces with 3 or 4-
parameter groups of motions are already given (see T. Levi-Civita, Sul moto di un corpo
rigido attorno ad un punto fisso [On the motion of a rigid body around a fixed point],
Rendiconti della Reale Accademia dei Lincei (5), 5 (2nd sem. 1896), 3–9; 122–123).

87

85S. Lie-F. Engel, Vol 1, §50, p.186.
86S. Lie-F. Engel, Vol 1, p.217.
87The original paper has a “correzione” here that corrects a sentence at the end of sec. 21. In the

translation, the appropriate correction was made where it belongs [Editor].
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