On the three-dimensional spaces which admit a

continuous group of motions:>

Essay by member Luigi Bianchi

Contents

1 The Killing Equations.3

2 Spaces which admit a group G;.
3 Surfaces with a group Gs.

4 Spaces of 3 dimensions with a group Gbs.

5 Spaces with an intransitive group G, of motions (r > 3).

6 Discussion of the system (C).

7 The complete group of motions of the space:
ds? = da? + ¢*(z1) (dz3 + dz3).

8 The complete group of motions of the space:
ds? = dz? + ©*(x1) (do3 + sin? 24 d23).

9 The group G5 of motions of the space:
ds? = dx? + dx} + sin® 24 dx3.

10 The group of motions of the space:
ds? = da3 + ©*(z1) (dz + e**2dz3).

11 The group G4 of motions of the space:
ds? = da? + dz3 + €22 dad.

12 Spaces with a transitive group G35 of motions.
13 Preliminary classification of the various types of Gs.

14 The groups of type I.

10

11

12

13

14

16

17

19

20

22

24

1QOriginal title: Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Memorie
di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Terza, Tomo XI, pp. 267-352 (1898).
Printed with the kind permission of the Accademia Nazionale delle Scienze, detta dei XL, in Rome, the

current copyright owner. Translated by Robert Jantzen, Department of Mathematical Sciences, Villanova

University, Villanova, Pa 19085, USA.

2This paper was also reprinted in: Opere [The Collected Works of Luigi Bianchi], Rome, Edizione

Cremonese, 1952, vol. 9, pp. 17-109.



15 Digressions relative to spaces of n dimensions.

16 The groups of type 1I:
(X1, Xo]f = [X1, X3]f =0, [Xo, X3]f = X1f.

17 The groups of type 111:
(X1, Xol f =0, [X3, X5]f = Xuf, [Xo, X5]f =0.

18 Similarities of the groups of motions of two spaces of the type (49).

19 The constant n is essential in
ds? = da? + e?*1 dx3 + 2ne®t dzodzs + dr3.

20 The groups of type IV:
(X1, Xo]lf =0, [X1, Xa]f = Xuf, [Xo, X3|f = Xuf + Xof.

21 The constant n is essential in
ds® = da3 + e®[dz3 + 221 dvodzs + (23 + n?) dxd).

22 The groups of type V:
(X1, Xo]f =0, [X1, X5]f = X1f, [Xo, X5]f = Xof.

23 The groups of type VI:
(X1, Xo]f =0, [X1, Xs5]f = X1f, [Xo, X5]f =hXof , h#0,1.

24 The constant n is essential in*
ds? = da? + e**'dx3 + 2ne" ¥ dggdas + ey,

25 The groups of type VII;:
(X1, Xo]f =0, [X1, X3]f = Xof, [Xo, X3]f=—-X1f.

26 The groups of type VIls:
(X1, Xo]f =0, [ X1, X3]f = Xof , [Xo, X5|f = —Xa1f+hXof , h#£0 (0 < h <2).

27 The constant n is essential in the line elements of the two previous sec-
tions.

28 The groups of type VIII:
(X1, Xolf = Xaf, [Xq, Xa]f =2Xof, [Xo, X5|f = X3f.

29 Integration in the general case by elliptic functions.
30 The most general group of motions of the space of the previous section.
31 Another method for the groups of type VIII.

32 The groups of type IX:
(X1, Xo]f = X3f ,[Xo, X5|f = X1 f , [ X3, Xu]f = Xof.

25

27

29

34

35

37

39

39

41

42

45

47

49

51

53

55



33 Spaces which admit as a subgroup of motions a group G35 of type IX.

34 The complete group of motions of the space:
ds® = da? + (sin® 1 + n? cos? x1) dx3 + 2n cos vy drodrs + dri.

35 The constant n is essential in
ds® = d:ﬂ% + (sin2 x1 + n? cos? x1) d:ﬂ% + 2n cos xy daxodrs + dm%.

36 The impossibility of other spaces with continuous groups of motions.

37 The impossibility of groups G5 of motions.
38 Summarized table of the line elements.

39 Conclusion.

56

58

60

62

64

66

70



Preface.

We define the metric of a space of n dimensions in the manner of Riemann by giving the
expression for the square of its line element:

l.n
ds? = Z a;r dr; dzy, | (1)
ik
namely the law by which we measure infinitesimal arclengths in the space S,,, from which
the law of measure for finite arclengths follows.

We consider n independent real variables x1, o, .. ., z, and assume that the coefficients
a;i, of the quadratic differential form (1) as well as their first and second derivatives are real,
finite and continuous functions of the x for the entire range of values which we consider.
We also assume that the discriminant of expression (1) is always nonzero and that the
coefficients a;;, fulfill the well known inequalities which make this differential form positive-
definite.

It is well known how the law for measuring angles and the entire geometry of the space
S, is determined by equation (1). If two spaces S,, S) can be put into a one-to-one
correspondence in such a way that the line elements are the same, the two spaces will be
called isometric and the two geometries will be identical. When the line elements of the
two spaces only differ by a constant factor or can be reduced to this relationship by a
transformation of coordinates, the two spaces will be called similar, and we will consider
them as belonging to the same type. Their geometries are essentially identical; the only
thing which changes from one to the other is the unit of linear measure.

An isometry of a space S, into itself will be called a motion of this space. We will
consider the spaces which admit continuous motions into themselves, namely, such that
in the corresponding equations of the transformation appear some arbitrary parameters.
The set of all these motions for a given S, clearly forms a group. Simple geometrical
considerations show that the number of parameters of this group is necessarily finite, which
is in fact easily demonstrated analytically as we will see. If r is the number of these
parameters in the complete group of motions, in every case this group will consist of a
finite-dimensional continuous Lie® group G, generated by 7 infinitesimal transformations
Xif, Xof, ..., X, f.

The problem of determining which spaces possess a continuous group of motions reduces
therefore essentially to the classification of all possible forms of ds?> which possess a Lie
group G, = (X1f,..., X,f) which transforms ds? into itself.

While the fundamental equations for the solution of this problem are already known
from the work of Lie himself and of Killing, the problem has not been treated in complete
form as far as I know. Indeed for arbitrary n, attention has been limited to the case in
which figures in the space 5,, can be transported with the mazimum number of degrees of
freedom: then the space is of constant curvature and the group possesses r = n(n + 1)/2

°S. Lie-F. Engel, Theorie der Transformationsgruppen, Vol. 1 (1888), Chap. 18, p. 310 and Vol. III
(1893), p. 575. [In the bibliographical footnotes, authors’ first initials and, wherever missing, authors’
names, have been added by the Editor. Also, journal titles were corrected and details of the citations were
added wherever necessary. (Editor)]



parameters. Only for n = 2, namely for ordinary surfaces, do we know the complete
solution of the problem, and it is known that the number of parameters can only fall into
the two cases r = 1, r = 3. The surfaces of the first family are the one and only ones
which are isometric to a surface of revolution; those of the second are exactly the surfaces
of constant curvature.

In the present work I propose to study completely the case n = 3, in other words to
classify all types of 3-dimensional spaces in which it is possible to transport figures along
a certain degree of freedom. Apart from the extreme case of spaces of constant curvature
which have a group Gg of motions, there exist, as we will show, many intermediary types for
which the number of parameters of the group can assume one of the four values r = 1, 2, 3, 4,
while there do not exist spaces with groups of motions (or with partial subgroups) of 5
parameters.

To point out the main difference between the case of the surfaces n = 2 and that of
n = 3, we remind ourselves that a surface which admits a transitive group of motions is
necessarily of constant curvature, namely, if a point can be transported anywhere, it can
also be rotated around every point. On the other hand there exist spaces of 3 dimensions in
which we can transport any point of the space everywhere with a transformation, but the
space is not of constant curvature; these spaces admit a transitive group of transformations
with 3 or 4 parameters. In the spaces which admit only a group G3 the entire space is
fixed if we fix a single point. In the ones which admit a group Gy, it is still possible
to have a continuous rotation (G; around any arbitrary point P; however, together with
P all the points of a certain geodesic through P remain fixed, so that these groups G4
belong, according to the nomenclature of Lie, to the class of systatic groups. The space is
then lined with a double infinity of such geodetic axes which completely fill the space, and
besides the transformations (translations) which permit a point of a figure to be transported
everywhere, there are still arbitrary rotations possible around any of these axes. Moreover,
spaces which admit a group GG3 and those admitting a group G4 are further distinguished
into different irreducible types as we will see.

In the treatise of this problem I present here, I have constantly made use of the theorems
and notations contained in the great work of Lie and more particularly his results on the
composition of groups. They allow us to completely solve the question which approached
directly would present great difficulties. Naturally the same method could be applied to a
space of a larger number of dimensions, but as soon as n > 3, the investigation seems to
get complicated very quickly.

1 The Killing Equations.°

Given a quadratic differential form in n variables:

1.n
ds? = Z a;r dr; dzy, | (1)
ik

SW. Killing, Uber die Grundlagen der Geometrie, Journ. fiir die r. und ang. Math. (Crelle), 109 (1892),
121-186.



we look for the conditions which this form must satisfy in order to admit the group G;
generated by the infinitesimal transformation X f = 1" ¢, f /0,

It will therefore be necessary and sufficient that the operation X f acting on the form
(1) give an identically null result. Now we have:

X(dsz) = Z X (a;) dz; dxy, + Z ar, dX (z,) dxy, + Z air dX (x,) dz; ,

i,k r.k @,Tr

namely

X(ds®) = > gT% dvidze + Y app dé dag + Y agy dé; da;

ik,r "k "
_ Oap, ¢, 0, |
- % {; (£T 62177« + ark aZEZ + a;p al’k) } dlEz dlEk .

The n functions &, o, . . ., &, therefore will have to fulfill the n(n + 1)/2 linear homo-
geneous first order partial differential equations:

aaik ) % agr} o
; {gr 8:@ + a;r alﬂk + agy 8::3@ =0 s (A)

ik=1,2,3,....,n.

Because the determinant of the a;; is different from zero, these linear homogeneous equa-
tions in £ and their first derivatives are linearly independent; moreover it is immediately
seen that they are also linearly independent with respect to the n? first derivatives of ¢
so that they can be solved for n(n + 1)/2 of these derivatives, chosen conveniently. It is
important to observe with Killing (ibid., p.168) that by again differentiating the funda-
mental equations (A) all the second derivatives of the £ can be obtained expressed linearly
and homogeneously as functions of the first derivatives and the & themselves. In fact, we
differentiate (A) with respect to z; , obtaining:

Z azaik aaik 657« aair 657« + aakr aél
oz, 0x; > Oz, Ox;  Ox; Oz Ox; Ox;

2 2
0% a@}zo'

T

+aar 0xr0x) + ke 0x;0x;

We then write the equations obtained from this last one by first interchanging k& with
[, then ¢ with k , namely:

> &ai Oai 08 Oair O Oyt 0%
Oz, 0z > Oz, Oxr  Oxp Ox;  Oxp Ox;

2 2
0%, a@}zo’

T

+a; +a
" OxrOx; Ir 0x;0xy

> O*ay n Oayy 0§, n Oay, O&, n Oa,; 9&,
Oz, 0x; > Oz, Ox; Ox; Ox;  Ox; Oxy

9%, 9%,
+agy £ + ay 3 }:0.

T

Ox;0x; 0x;0xy



Subtracting the first from the sum of these last two and dividing the result by 2, we
obtain:

0%, 0
XT: {aﬂ 0x;0xy O:ET 1 ik1 &

2 06 L 06 5&} _
+ [T7 Zk] aZEl + [l7 ZT] aZEk + [l7 k"l"] a:EZ - 0 9
li,k=1,2,3,...,n, (2)

where the Christoffel symbol [l, ik] has the well known meaning

(aau n dap aaik)
Oz Ox; ox; )

If in (2) we fix i, k and let [ take all the values from 1 to n, the equations thus obtained,

[l,ik] =

since the determinant of a;. is nonzero, can be solved for the second derivatives of .
To write down the solution we indicate by A;; the adjoint of a;; divided by the latter’s
determinant.” Multiplying (2) by A;, and summing from [ = 1 to [ = n we thus obtain the
required equations:

0% +ZA§ k] + 3 A ] O
0x;0x} tsr T b oxy
9&; o0&
—I—Z{ }&Ek zrj[v,k‘r] 0, 0 (B)

(i,k=1,2,3,...,n) ,

where the Christoffel symbol of the second kind { } has the meaning

{Z;} Z%:Akv [k, ir]

Equations (B) show us that the general integral of (A) contains the maximum number
of arbitrary constants. In fact assuming the n(n + 1)/2 functions

&,g—fi, (i,r=1,2,...,n)
as unknowns, using (B) we can express all their first derivatives as (linear and homogeneous)
functions of the same unknowns and we therefore have a system of linear homogeneous total
differential equations, the unknowns then being related by the n(n + 1)/2 equations (A).
The mazimum number of arbitrary constants that can appear in the general integral of
(A) will therefore be given by:8

r=nn+1)—nn+1)/2=n(n+1)/2.

If this maximal number is reached we will have the case of complete integrability and
the space 5, as is well known, will then be of constant curvature. In each case, the number
r of independent infinitesimal transformations that the differential form (1) admits will be a
finite number r < n(n+1)/2, and these r transformations X; f, Xof, ..., X, f will generate
the continuous group G, of motions of the space S,.

"Namely, the inverse [Translator].
8The integral system is in fact specified if we give at one point of space the initial values of the n(n+ 1)
unknown functions which are, however, constrained by n(n + 1)/2 independent relations.



2 Spaces which admit a group G;.

From equations (A) we immediately deduce a consequence which is important to note; we
can state: two infinitesimal transformations of the space S, cannot have common trajec-
tories without coinciding. And indeed we show immediately that if &1, &, ..., &, satisfy
equations (A) and A1, Ao, .. ., A§, is a new set of solutions, the factor A must necessarily
be constant. In fact replacing &, by A&, in (A) gives

Z (air&"ﬂ + akr&r%) =0, (3)

- Oxk

from which, setting ¢ = k:
oA
rsSr =0.
XT:& : Oz

Assuming that O\/dzxs # 0, it follows that Y, a,s& = 0, and from (3), setting k = s,
we deduce that Y, a,s& = 0; but the determinant of the a is nonzero and this will imply
that all the & are zero.

We now assume that the space S, admits a group of motions G generated by the
infinitesimal transformation X f = >,&0f/0x;. We can simplify the computations by
assuming the trajectories of the group as the coordinate lines (z1), so that we have £ =
& =---£, =0, and by changing the parameters conveniently we can make £&; = 1, namely
X f = af / 6:1:1.9

Then (A) gives us simply

daiy,
xy

which shows that the coefficients a;; are independent of x1. Viceversa it is clear that if in

=0 (i,k=1,2,...,n),

(1) the coefficients a;; do not depend on x1, the transformation 2} = x1 + constant gives
a continuous group (G of transformations in the space. And as long as the a;; remain
arbitrary functions of the other variables xo, 3, ..., z,, this group G will be the complete
group of motions.

In the case n = 2 we then recover the well known result that the surface is isometric to
a surface of rotation.

3 Surfaces with a group Gbs.

We now study the types of ds? which admit a group G5 of motions, assuming that the
number of variables is n = 2 or n = 3. The result for n = 2 is well known but it is
worthwhile to rederive it again here.

So let us first assume n = 2 and indicate by X;f, Xof the two infinitesimal trans-
formation generators of the group G2 under consideration. Replacing X f, Xsf by new
convenient linear combinations of them, we can always reduce ourselves to the case in

which we have for the composition equations'®

(a) [X1, Xo]f =0, or  (b) (X1, Xo]f = Xaf .

Tt is sufficient to assume as new variables y1,ys2, . . ., yn an integral of the equation X (y1) = 1 and n — 1
independent integrals of the equation X (y) = 0.
103, Lie-F. Engel, Vol. III, p. 713



The trajectories of the two infinitesimal transformation generators being in each case
distinct (§2), we can assume them respectively as coordinate lines and we then have X;f =
E0f/0x1, Xof =ndf/0xs. In case (a) it follows that 0¢/0xy = 0, On/0z1 = 0, so that by
making a change of parameters, we can assume £ =n = 1.

Since the equations (A) have to be satisfied either with & = 1, & = 0 or with & = 0,
& =1, it follows that the coefficients of the differential form

d82 = a1 d$12 + 2a19 dx1dxo + a9 d$22

are constants and with a (linear) change of variables we can therefore have ds? = dz1? +
dzo?, hence the surface has zero curvature. The complete group of motions is the G3
generated by the three infinitesimal transformations

0 0
X1f:a—i,X2f:a—:ia

_,9f  9f
X3f - 8::31 - 8:132 '

In case (b) we must have On/0x1 = 0, —n9§/0xs = &, and by changing the parameters
1, T2, we can set n =1, & = e7*2, so that

le =e ™2 af/a:El s ng = af/a:Eg .

Equations (A), assuming successively & =0, & =1 and § = e 2, {3 = 0, give us

OJai1 Oaiz  Oag

= = =0 ,
8:132 8:132 8:132
daq1 dais Oasa 9

= y A = Qa y A = a s
8::31 8::31 1 8::31 12

from which by integration we have ay, = a, aja = ax; + 3, as = ax1? + 26z + v, with
a, 3, constants. Without loss of generality we can assume o = 1 (by absorbing it into
x1), and writing x1 in place of x1 + 3, we will have

ds® = d:n% + 221 dz1dze + (:1312 + Rz) dxs? .

/B x5 = u/R, we obtain the typical (parabolic) form

ds® = du® + e**/ B y?

If we set 1 = —ve*

of the line element of the pseudo-spherical surface. The complete group of motions is the
(i3 generated by the infinitesimal transformations:

2, Of of
= T2 __7 = —
le =e€ al'l 9 X2f a$2 )

1 0 0
X3f = Eemz ($12 + Rz)a—i — :Elemza—;li .

The subgroup G5 under consideration consists of all those groups G; which have as
trajectories the geodetic circles (with ideal center) inclined at a constant angle to the
parallel oricycles'! zo = constant.'?

In the analysis of the present § only the surfaces of constant zero or negative curvature
have appeared, not those of constant positive curvature. The reason for this is the fact that
the latter surfaces admit a group G3 of motions, but never a real 2-parameter subgroup.

"In Italian: “oricicli” [Translator].
121f one represents these surfaces as pseudo-spheres these trajectories are loxodromes of the surfaces.



4 Spaces of 3 dimensions with a group G.

We now turn our attention to 3-dimensional spaces which admit a 2-parameter group of
motions. The trajectories of the two infinitesimal transformation generators of this Go
being distinct (§2), each point of the space will be moved over a surface by the transforma-
tions of G2. We have therefore a family of surfaces ¥ which represent for our group what
Lie calls the minimum invariant varieties. For a given transformation of the G, any one
of the ¥ is transformed into itself and consequently any surface geodesically parallel to a X
as well; we deduce from this that the co! surfaces 3 are geodesically parallel;'® moreover,
any each of them, admitting a group G5 of transformations, will be of constant zero or
negative curvature (§3). If we take the surfaces ¥ as coordinate surfaces z1 = constant

1 21, we put the line element into the

and their orthogonal trajectories for coordinate lines
geodetic form:

d82 = d:l?lz “+ a9 d:l?gz + 2a93 drodxs + ass d:l?gz . (4)

In each of the infinitesimal transformations X f, Xof, since & = 0, the equations (A),
setting 1 = 1, k = 2, 3, give

082 98 _ 06 983 _
azza +a2381 0,a23a$1+ 3 G0, 0,

from which since agsass — ag3? # 0, we conclude that 9&/0x1 = 0&3/0x1 = 0, namely that
the coefficients of X7 f, Xof are independent of x;.

Assuming this to be true, we take the respective (distinct) trajectories of Xi f, Xof as
coordinate lines over one of the surfaces x1 = constant and we will have X1 f = £ 0f/0xa,

Xof =ndf/0xs.

We now distinguish again the two cases
((I) [Xl,Xg]f =0 and (b) [Xl,Xg]f:ng .
In the first case, as in the preceding §, we can make

le = af/aiﬂg s ng = af/aiﬂg

13We can deduce the same conclusion from the fundamental equations (A). Let us assume in fact ¥ for

the 1 coordinate surfaces and for the z1 coordinate lines [translator note: second z1 corrected from Bianchi
typo x3 here and in the text as well] their orthogonal trajectories; we will have

d82 = a1l da:lz =+ a29o dxzz + 2a23 dzadrs + ass da:32

If X1f, Xof are their infinitesimal transformation generators, we have to have X1(z1) = 0, X2(z1) = 0 and
consequently X1 f =& 0f/0x2+&30f/0x3, Xof = n20f/0x2 +ns df /Oxs. Now applying (A) successively
to X1 f, Xof setting i = k = 1 we deduce

Oai1 Oai1 Oai1 Oai1

02 2T s =0 Lt A

n3 =0,

553

from which, since # 0 from §2, it follows that da11 /0x2 = Ba11/0x3 = 0. Changing the parameter

T1, one can therefore make a11 = 1 which gives to the line element the geodetic form of the text.
In the original text, “coordinate lines x3”, which is incorrect [Editor].

10



and the line element of the space will take the form
ds® = dx1? + adzo® + 28 dxadrs + v ds? | (a®)

with a, 3, being functions only of x;.
In case (b) we take

le = af/a:Eg s ng = e af/a:Eg
and we will then have
ds® = dz1? 4+ adzy® + 2(8 — axy) degdzs + (axs® — 2620 + ) dxs® | (b")

where «, 8,y are still functions only of z;.

Vice versa, whatever are the functions «, 3,7 of z1 in (a*) or (b*), we will have a
space which admits the 2-parameter group of motions (0f/0x9, 0f/0x3) in the first case
and another (0f/0x3,€"30f/0x2) in the second case. If a, 3, remain arbitrary functions
of x1, this G5 is the complete group of motions, as will be shown by the analysis in the
following §§.

5 Spaces with an intransitive group G, of motions (r > 3).

We now pass to the treatment of 3-dimensional spaces which admit a group of motions with
more than two parameters, beginning with the case in which this group G, is intransitive.

From the considerations of the preceding § the minimum invariant varieties with respect
to the group will be geodesically parallel surfaces, and because each of these has to admit

15

a group G, with r > 3 parameters,® one necessarily must have r = 3. To the line element

of the space we then give the geodetic form
ds® = da? + ago da 4 2a93 dradrs + ass d:n% (4)

and the geodesically parallel surfaces x1 = constant will be of constant curvature.

Arbitrarily selecting one of these, say x1 = 0, we distinguish three cases characterized
by the curvature K being zero, positive or negative. By substituting for this space a similar
space, we can assume successively

Koy=0, Kg=1, Ko=—1

and correspondingly we can change the coordinate lines of xs, x5 on the surface 1 = 0 so
that the line element ds? of 21 = 0 assumes the respective typical forms:

Ky=0: dsy = da3+da}, ()
Ky=1: dsj = drj+sin®z3da] (B)
Koy=-1: dsy = da3+e**3dx} . (7)

5That on any surface ¥ the group G, retains r parameters follows immediately from what we have seen
in §4 because if we take the line element in the geodetic form (4), in every single infinitesimal transformation
of G, one has £; = 0 and &3, &3 are independent of z1. Of course this is also clear geometrically since if all
the points of a surface ¥ remain fixed, the entire space is immobilized.

11



The group G3 of motions of z1 = 0 into itself will be generated respectively by the
three infinitesimal transformations:

_of _of N af w2l ]
_of /
Xif= 8—2173 , Xof = sm:nga:E + cot zo COS!E?)@:E?) )
ng = cosgpga—f — cot zo sin xg—— f ; (ﬁ*)
Ox T2 Ox €3
le:af 5 X2f_af_ 3af 5
0r3 Oz Oz3
o af 1 —2x9 _ 2 a_f *
X3f = 333—8:132 + 2(6 ‘733)8:133 . ()

In all three cases these are also the infinitesimal transformations of the group of
motions of the whole space. Now if for the line element (4) we write the three equa-
tions which result from the fundamental equations (A) setting £ = 0 and successively
(i, k) =(2,2),(2,3),(3,3), we find

aagg aagg af 653

6:13252 53-1-2 22a + 2a 2382 =0,

dass 6@23 9% (552 553) 9

6:13252 53-1-&226 + a3 62+63 a338$2_0’

0 8 0&s 15)

6(:1133;52 a33§3 + 2a23 aé + 2a33 662 =0. (C)

These must be satisfied when for £, £3 in the three respective cases we substitute the
three pairs of values which belong respectively to the 3 generator substitutions (o), (5%)

or (v7).
6 Discussion of the system (C).

We begin with case (o*) and putting into (C) first'® &, =1, 3 = 0 and then & =0, &3 =1
we deduce from this that da;;/0xo = da;/dxs =0 (i, k = 2, 3), from which it follows that
the coefficients a;; here are functions only of z1. If we now introduce into (C) the values
&9 = x3, £&3 = —xo which belong to the third infinitesimal transformation, we have as3 = 0,
azo = azsz and therefore for the line element of the space

ds® = d:n% + 902(:131) (d:n% + d:n%) , (5)

where p(z1) indicates an (arbitrary) function of z;.

In case (), first setting in (C) {&a = 0, & = 1, the values which correspond to
X1 f, we see that aos, ass, azs do not depend on x3. Then substituting the values & =
sin g, £&3 = cot xy cos xg corresponding to X3 f, the first of (C) gives us sinzg dage/dxs =
2 cos 23/ sin? 9 agz, and since neither agy nor asz depend on w3, it follows that ass = 0,
Daga/0xe = 0 and consequently age = p?(x1).

15The original paper had (£1,&:) instead of (£2,&3) here, which was an obvious typo [Editor].
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The second of (C) then gives immediately ags3 = sin? x5 (1), so that the line element
of the space has the form

ds® = dz? + ©*(x1) (da3 + sin® zo da?) . (6)

Finally in case (), equations (C) with the values & = 0, {3 = 1 belonging to X f
show that a9, a3, azs are again independent of x3. Substituting next the values & =1,
€3 = —x3 corresponding to Xof we find'": OQagy/0xs = 0, Dags/Oxs = ags, Dasz/Oxy =
~222 _ 22) belonging to X3f: ass = 0,
ass = asz e 22, from which we arrive at the line element

2a33, and finally with the values & = z3, 3 = %(e

ds® = dz? + ©*(x1) (das + e**2dx3) . (7)

Vice versa for any function ¢(z1) the spaces of the line elements (5), (6), (7) admit the
respective intransitive group Gs of motions (a*), (%) or (v¥).

We must now discover for which special forms of the function ¢(z;) it will happen that
the complete group of motions of the space will be larger.

7 The complete group of motions of the space:
ds? = dx? + ¢*(x1) (da3 + da3).

In order to determine the most general infinitesimal motion X f = 1y 9f/0x1+n2 0f /0xa+
130 f/0x3 of the present space, the fundamental equations (A), setting successively (i, k)
= (1,1), (2,2), (3,3), (1,2), (1,3), (2,3) give the following 6 equations:'®

om .

o ¢

a$2 + (,0 771 - 0 9 (9)
onz ¢

a;Us + (’0”71 - ) (10)
0 0

G, TG =0, (1)
0 0

du. FE @G =0, (12)
Ona O3 .

Fos Gy =0 (13)

By taking n; = 0 naturally one has only the three transfomations (o*) and the question
to be examined is therefore this: if the above equations can be satisfied with n; # 0.

Differentiating (9) with respect to x1, (11) with respect x9 and comparing, with the
observation that by (8), 71 does not depend on z1, we find that

62771 1" 12
923 (o= "), (14)

"In the original paper, the third equation was dass /0r3 = 2ass, which was incorrect [Editor].
¥The prime indicates the derivative with respect to z1.
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and similarly from (10), (12)

62771 1" /2
923 (o= )m (15)

Since 7 is different from zero and does not depend on z1, while ¢ is a function only of
x1, the resulting equations (14), (15) show that one will have:

Plo—¢'t=c, (16)
52771 82771
Oz3 ox? “n (17)

where ¢ is a constant. Integrating (11), (12) we find

0 d
N2 = _8771 / ad +¢($27$3) )
€2

@*(z1)
. 8171 d:E1
m= g | ey ) (18)

where 1, x are two functions only of z9, x3. By substituting these into (13) it follows that

62’1’}1 / dxq . oY oY

O0x00x3 ) ©%(1) dzrs | Oy’
from which, since 71, ¢, x are independent of x1 while the integral necessarily contains it,
we have 52
- (17
6:1328:133

Comparing with (17), we have immediately ¢ 9n;/0ze = 0, ¢ On1/dx3 = 0.

If ¢ # 0 we will therefore have 71 = constant, ny = ¥(x2,x3), N3 = x(z2,x3), from
which (9) or (10) shows that one has ¢’/¢ = constant. But this last result follows even
if ¢ = 0, since then by (17) and (17*), n; is a linear function of x9, x3 and since by (18)
Ong/0x9 = O /0xa, (9) gives us: ¢’/ = —1/m O /Dxo , from which we can conclude again
that ¢’ /¢ = constant. Therefore if the present space admits a larger group of motions
(with 7 > 3 parameters) we necessarily have ¢’ = ko (k constant).

If £ = 0 one can make ¢(x1) = 1 and have ordinary Euclidean space. If k # 0 one can
assume that ¢(z1) = €1, and have the space of constant negative curvature K = —k?.

In both cases the complete group of motions has 6 parameters. The result being well
known, we do not concern ourselves with giving the actual 6 infinitesimal transformation
generators, which are obtained by integrating the above equations.

8 The complete group of motions of the space:
ds? = dz? + ¢*(x1) (dx3 + sin® 2 d23).

We proceed as in the previous §, writing first the equations which follow from (A) in order
to find the most general infinitesimal motion of the space under consideration. We thus
find

om

= 1
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ang__ 1 8n1

dr, 0wy
ang__ !

5—:132 = —5771 )

g _ 1 Om (21a)
a$1 ¢2$n2$25$3’

o3 ¢

—— = ——n1 — cot , 21b

O3 % o Cob 22 (21b)
2 8173

o2 .
— —=0. 22
s + sin” xy Dg (22)

Eliminating by differentiation 7y from (20) and 73 from (21), we find

52771
02
52771
a2

= ("o —¢'*)m ,

o 12\ i 2 . m
= (¢"p — ¢ %) sin” w9 1 — sin x4 cos xo——

a$27

from which, since n; # 0 doesn’t depend on x;, we conclude that

82771 .
z3

62

¢ —¢'*=c (constant) ,

. . m
= csin® zo 1 — sinzg cos xg —— . (23)

a$2

Integrating the first of (20) and the first of (21) with respect to x; we have:

0 d
W2:—a—2/i+¢($27$3)7

n3 =

sin? z9 013

©*(z1)
1 §&E_/ﬁ dxq
©*(z1)

+ x (22, 73) , (24)

and substituting into (22) we obtain

9 m
a$26$3

tZEQ%)/ diy :8_¢+Sin2$2%'
a$3

©2(x1)  Oxs Oza

Since z1 appears here only in the integrals, we necessarily have

52771 om
=cotxg—,
T

and if we differentiate this with respect to x5 and the first of (23) with respect to x3, we

conclude that (¢+ 1) 9n1/0x3 = 0, and consequently ¢ = —1 or 9y /dxs = 0.

We consider in this § the first case ¢ = —1; then from

Plo—¢?=-1, (25)

it follows by differentiation that ¢ — ¢'¢” = 0, so that ¢” = ke, (k constant) and (25)

becomes /2 = 1 + kp?.
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If £ = 0, neglecting the additive constant in x1 we have ¢(z1) = 1. If k is negative, we
put k = —1/R? and we will have (1) = Rsin(z1/R); finally if k is positive, let k = 1/R?
and it will be ¢(z1) = Rsinh(z1/R).

We have as a consequence the following three forms of the line element of the space:

ds® = dz? + 2% (da + sin® zy d3) |
ds® = dz? + R*sin®(z1/R) (dx3 + sin® x5 d2?) |
ds® = dz? + R%sinh®(z1/R) (dx3 + sin® o da3) .
The first form belongs to ordinary Euclidean space (in polar coordinates), the second

and third respectively to spaces of constant positive or negative curvature K = +1/R?. In
all three cases the complete group of motions has 6 parameters.

9 The group G3 of motions of the space:
ds? = dx? + dz3 + sin® x5 dz3.

In order to complete the discussion of the previous § there remains to be treated the case

in which we have 911 /0x3 = 0. Equations (23) then become!?
% =c % = ctanx
aZE% m , aZEQ 27,

from which by differentiating the second with respect to xo and comparing with the first
we conclude (since by assumption n; # 0): ¢(c+1) = 0.

Since the case ¢ = —1 has already been discussed in the previous §, there remains for
us here only to assume ¢ = 0 so that 71 = a (constant). Then (24) become 12 = 1 (z2, x3),
13 = x(x2, x3) and (20), (21), (22) give us

o ¢
r _ 2

B +a - 0, (26)
ox , ¢

——+a—+cotzap =0, (27)
Oz3 ®

oY ) ox _

o + sin” zo 2y 0. (28)

In (26), (27) z1 should appear only in ¢ /¢ and therefore ¢’/ = k (constant), so that
Y = —akxa + 0(x3), with 6 a function only of x3. After this (27), (28) become:
Ix 0'(z3)  Ox

0ty sinla, 95 —ak + akxy cot zo — cot x4 0(x3) | (29)
2

Forming the integrability condition for these last two equations, we conclude that
0" (x3) +0(x3) = ak(xe — coswasin ), so that ak = 0 and since 1 = a # 0, we must have
k = 0. So one therefore has ¢ = constant and without loss of generality (by substituting
a similar space), we can make ¢(z1) = 1, which gives us the line element

ds® = dz? + dz2 + sin?® x5 da?
1 2 3

911 the second equation, the original paper has a second derivative, which is incorrect [Editor].
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indicated in the title of the section.

As a consequence we must have 0" (x3)+60(x3) = 0, from which §(z3) = bcoszz+csinxs
with b, ¢ (arbitrary) constants. Then integrating (29), we have y = — cotze(bsinzg —
ccosxs) + d, where d is a new arbitrary constant.

The most general way of satisfying the fundamental equations in the present case is
therefore given by the formula

m=a, ny=>bcosxs+ csinxs, n3 = cot xo(—bsinxs + ccosxs) +d ,

with a, b, ¢, d arbitrary constants.
Thus the complete group of motions of the present space is the 4-parameter group
generated by the infinitesimal transformations

_of _ i O 95
Xif= B3’ Xof = sm:nga:E2 + cot xo cos:nga:Es ,

B of . Of _ of
X3f = cos:nga:E2 — cot xg sm:nga:z3 , Xuf = oz;

whose composition is given therefore in the equations

(X1, Xolf = X3f , [ X1, X3]f = —Xof , [Xo, X5]f = Xuf ,
(X1, Xo]f = [Xo, Xyl f = [X3, X4]f=0.

The form of the line element ds? = dx? + dx3 + sin® 2o dx3 already renders a priori
evidence that, other than the co® motions which correspond to the sliding of each surface
x1 = constant into itself, there exists here a group G with finite equations x} = x; +
constant, xh = xo, T4 = T3.

But our calculations show that this G4 is also the complete group of motions. Such
a group G4 is clearly transitive; furthermore it is systatic since the motions that leave a
point of the space fixed also leave fixed all the points of that geodesic (1) which passes
through it, so that these geodesics are the systatic varieties of the group. The whole space
can be freely rotated around each one of these, but no other rotation is possible.

10 The group of motions of the space:
ds? = dx? + ¢*(x1) (dad + e**2dz?).

The fundamental equations (A) are translated by the present space into the following:2°

2—2 ~0, (30)

g_Zz _ —%m 7 (31b)
—2x9

g—z:—e(pz g—;';, (32a)

201n the original paper, eq. (31b) had dn2/0z3 on the Lh.s., and eq. (32a) had 97y /dx2 on the r.h.s.,
both of which were incorrect. Correction after the Opere [Editor].
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s _ ¢

= —— —_ 2
O, PR (32b)
g | oy, O3
8:133 te 8:132 - 0 ) (33)

Eliminating by differentiation 7y from (31) and 73 from (32) we find

62771 " 12

6—:13% = (90 Y= )771 )

0?2 0

5 7721 _ e2m2 (90//90 o 90/2) m— 62:22&
T3

8:132 ’

from which (assuming 71 # 0) one derives as usual (¢"¢ — ¢'2) = ¢ (constant), so that

82771

a;ﬁ% C’r}17 ( )
Pm o, on

927~ °© (Cm_a—:ng> ' (35)

Integrating (31a) and (32a) with respect to 21 we obtain:

. 8171 d:E1
n2 = _aZEQ / 02 (21) + (22, 23) | (36)
—22, O dzy
_ _ 2T
3= —¢ O3 / 2(z1) + x (22, 23) , (37)

and substituting into (33) we have

2£i_@1/®1;%%m%
Ox90x3 Oz ©2(r1) Ows Oxy

Applying the usual observation, we deduce from this

Om__ Om
6:1328:133 8:133 '

Differentiating this with respect to xo and comparing with (34) differentiated with
respect to x3, it follows that (¢ — 1) 9n1/0xs = 0, from which it follows that ¢ = 1 or
8171 / 8:133 = 0.

We treat the first case in this section. The equation ¢”p — ¢'? = 1 differentiated
gives ¢ = ko, (k constant), so that ¢'2 = kp? — 1. The constant k will necessarily be
positive and, putting k¥ = 1/R? and neglecting the additive constant in z1, we will have
¢(x1) = Rcosh(xz1/R). In such a case the space has the line element

ds® = dz? + R* cosh®(21/R) (dx3 + ¢**2 dx3)

and is of constant negative curvature K = —1/R2. Its complete group of motions is a Gg.
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11 The group G4 of motions of the space:
ds® = dz? + da3 + e**2 da?.

We continue the discussion of the previous section assuming now 97, /0zs = 0.

Equations (34), (35) give?! 9211 /0x2% = cmy, On1/0xe = cny from which ¢? = ¢ and
consequently ¢ = 0, the case ¢ = 1 having already been discussed in §10. So we then
have 11 = a (constant), and (36), (37) become 1y = 1 (x2, z3), N3 = Xx(x2,x3), while the
equations at the beginning of §10 give

oy ¢ 9 ¢’ N oy, OX

+a—=0 —X—I—a——|—¢:0 - +e
¥

=0.
O 7 " Ox3 " Oxs o

We conclude from this that ¢’ = k¢ (k constant), from which it follows that

Y = —akxs + 0(x3) ,

0 0
8—;(2 = —e?®2¢/(x3) | 8—;(3 = —ak + akxy — 0(x3) .

Writing the integrability condition for these last two equations, we find e=2%26" (x3) +
ak = 0, from which k = 0, 8”(x3) = 0 establishing the most general values of 1, 72,13 to
be:

b
m=a, n2=brz+c, 77325(6_2952—5'3%)—03334-(1,

with a, b, ¢, d arbitrary constants. By replacing the space with a similar space, one can
make ¢(x1) =1 as in §9 and one therefore has the line element

ds® = dz? + da3 + 2™ da? .

Therefore here also as in §9, the complete group of motions is a G4. Its infinitesimal

transformation generators are:

_of _of of
Xif = O2s Xof = pr. +$3—6:133 ;

_ L OF 1 oy 2 OF _of
X3f - 3338:132 + 2(6 :E3) 8:133 ’ 4f N 8::31 ’

and have the composition

(X1, Xo]f = X0 f, [Xo, Xa]f = X3f, [X3, Xa]f = Xof ,
(X1, Xy f = [Xo, Xyl f = [X3, X4]f=0.

The properties of the group are entirely similar to those already described for the group
in §10. However, the two corresponding spaces belong to essentially different types, a fact
established by the observation that the surfaces orthogonal to the systatic geodesics (1)
are surfaces of constant positive curvature for the space of §10, while for the present space
they are of constant negative curvature.

We summarize these last results obtained here in the theorem:

21 Bianchi used the ordinary derivative d instead of @ in both equations here, correction by the Editor.
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If a space of three dimensions admits an intransitive group G3 of motions, its line
element is reducible to one of the 8 standard forms:

ds® = dz? + ©*(x1) (das + dx?) |
ds® = dz? + ©*(x1) (dal + sin® 2o da3) |
ds® = da? + ¢*(21) (dz3 + €*** dx3)
and in general the complete group of motions is exactly a 3-parameter group. The only
exceptions are the two special spaces
ds® = dz? + da3 + sin® zo da3 |
ds® = dz? + da3 + e**2 da |
each with a 4-parameter group of motions, and the spaces of constant curvature with 6-
parameter groups.

12 Spaces with a transitive group G3 of motions.

Having exhausted the study of spaces which admit an intransitive (G3 of motions in the
previous sections, let us now turn to the treatment of the spaces with a transitive group of
motions.

In this section, we begin to establish in general that given any group (3 whatsoever,
transitive over 3 variables x1, xo, x3, there always exist some spaces of 3 dimensions which
admit it as a group of motions. In fact we establish more generally the analogous result
for any number n of dimensions with the theorem:

Given any transitive group of n parameters over n variables:

GnE(levXva"'van) ;

it is always possible to find spaces of n dimensions which admit it as a group of motions.??

To avoid confusion, however, we state immediately that the spaces S, so determined
may very well admit a larger group as the complete group of motions, as the case n = 2
has already shown (see §3).

We assume in general
l.n
a) Of
Xaf: Zéz( )g ) (a:1727"'7n) )

and one will have:

[(Xa, Xalf = capy Xy f (38)
Y

where c,g, are the constants of composition. Furthermore, since the group is assumed to
be transitive, the determinant

(1) L@

1 2 n
(2) 2 . @

€)= > "
51") 52") - ﬁl")

221f the group is not simply transitive the theorem does not hold in general as is already shown by the
theorem at the beginning of §2.
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will be different from zero.

Here the coefficients éi(a) are given as functions of x and we have to determine the
coefficients a;;; of the differential form ds? = Zi,k a;i, dx;dzxy, so that it admits the group
Gy, in other words so that the fundamental equations (A) are satisfied by all the n trans-
formations X, f. To determine the a;; we therefore have the n?(n+1)/2 partial differential

equations
¢ ¢
azk + Z < ET + agr ;;Z ) (D)
(a,z,k‘,—l,2,3,..., ) )
If in (D) we fix 4, k and let « take the n values 1,2,...,n, we can solve the resulting

equations for the n first derivatives of a;; since by hypothesis |£Z-(a)| # 0. We therefore
have a system of linear and homogeneous total differential equations for our unknowns a;.
We show that this system is completely integrable, for which it suffices to prove that by
writing two of the equations (D) for the same unknown a;:
65 * 0&"
azk +Zazr - Zakra—rzoa
T ;L'Z
& X o¢t”
Xs(a; Qjs——— a
6( zk)+¥ is allﬁk +¥ ks 8:13@

=0,

and if the operation X, is performed on the second of these, the operation Xz on the first

of these, and one subtracts the results making use of the same equation (D), the result is

an identity. Using (38) on this relation one obtains in this way first®

oel? s
) + 3 Kol 2+ Kl 2
Y i

_ZXg Ajy) —— a& ZXg agr) aér'

Z

I3 el
o[ <a—u> (5]
oel? oei\1
+2T:ak, lXa<a$i>—Xﬁ<a$i =0. (39)

Now from (38) itself one has

Xa(gv(“ﬁ ) Xﬁ Era Z CapBy 67" )

which by differentiating with respect to xj becomes
() @)
; o0& X, o0&
Oz Oz

Z (“/) Z a&a) aggﬁ) - agsa) agﬁﬁ)
N Cam 0z, Oz Oxs |’

Oz

**In the last line of eq. (39), >, was corrected to Y [Editor].

21



and similarly

o6 o)
Xa < a:EZ B Xﬁ a:EZ

aé(“/) a&a) aggﬁ) agﬁﬁ) agsa)
=3 a2 |
5 s

T; +Z ors Ox;  Oxs Oy

If in the first 5 terms of (39) we introduce the values of X (a) given by (D) and in the
last 2 terms the values calculated above, we see that it is converted into an identity. We
conclude from this that the system of total differential equations for the a;; is completely
integrable and we can therefore give the initial values of the a;, arbitrarily at a point of the
space Sp,. So if we choose them in such a way that the conditions (of inequality) making
the differential form positive definite are initially satisfied, they will remain so in a certain
neighborhood of that point and we will therefore have defined a space of n dimensions
which admits the group G,, as a group of motions.

13 Preliminary classification of the various types of Gs.

With the general considerations of the previous sections we are assured that to any Gg
transitive over 3 variables always correspond spaces of 3 dimensions which admit it as
a group of motions. It is not true, however, and is not even true in all cases, that the
complete group of motions of the space obtained is indeed the given G3. It will be seen
instead that there are certain compositions of the G3 which necessarily imply the existence
of a larger group of motions.?* Furthermore we wish to establish for any possible type of G5
a corresponding canonical form for the line element, by performing the integration which
we have only described in the previous section. As the basis of our calculations we take the
classification given by Lie of the possible compositions of groups of 3 parameters.?> But
here an essential warning is necessary for us. In the classification of Lie there is no way
for us to distinguish between real and complex, whereas in this study we wish to report
only on real groups and their real subgroups: we will therefore have to subdivide into more
types some types which are a single type from the general point of view of Lie.

Without repeating the discussion given by Lie (ibid.), it will suffice to point out that,
considering first the integrable groups, to the 6 types classified by Lie according to the
following compositions

(TypeI)  [Xu1, Xolf = [Xu, X5]f = [Xo, X5]f =0,
(Type IT)  [X1, Xo|f = [X1, X3]f =0, [Xo, Xa]f = Xuf ,
(Type IIT)  [X31, Xo]f =0, [Xy, X5|f = Xuf ,

[Xo, X5]f =0,
(Type IV)  [X1, Xolf =0, [X1, Xs]f = Xuf,
[Xo, X3 f = Xof + Xaof ,

24This happens for the groups G of types I, II, III, V in the classification of the present section.
258, Lie-F. Engel, Vol. III, p. 713 and S. Lie-G. Scheffers, Vorlesungen iber continuierliche Gruppen
(1893), p. 565.
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(Type V) [X1, Xo]f =0, [X1, X5]f =Xuf ,
(X2, X5 f = Xaof ,

(Type VI)  [X1, Xolf =0, [X1, Xs]f = Xuf,
(X2, X3]f =hXof , (h#0,1),

we must add a seventh type with the composition

(Type VII)  [X1, Xo]f =0, [X1, X3]f = Xof ,
(X9, Xa|f = = X1 f + hXof ,

where the constant h satisfies the inequality 0 < h < 2.26

From our real point of view this composition in effect differs from all of the previous
ones in that, while in the first 6 types one has at least a real invariant subgroup Gy, in
type VII, however, no such real subgroup exists.?”

Furthermore, it is necessary to observe that in the new composition VII the constant
h is truly essential, namely that if there is a second group (Y1 f, Yaf, Y3f) of composition

(0<k<?2), (39)

if k # h, then the two groups cannot be put into an isomorphic correspondence. Indeed if
this occurred and we indicate by Xif, Xof, X3f, the infinitesimal transformations of the
first group which correspond respectively to Y7 f, Yaof, Y3f in the second, then X f, Xof
must be constructed only with X7 f, Xof since both pairs of transformations belong to the
derived group. We assume therefore:

Xif =aXqf+ BXof , Xof =vXaf +6Xof ,
Xsf =aX1f +bXof +cXsf,

and from the assumed relations of composition we find the following relations among the
constants «, 3,7, 9, ¢

Y+ PBc=0, d —ac—hBc=0,
a—ky—cd=0, 8—kéi+cy+hcd=0,

so that
Bl —c%)+ (he—k)§ =0,

a=c(d—kB), v=—pc, {ﬁc(h—kc)+(62—1)5:0'

26The sign of h is not essential, as one sees by simultaneously changing the signs of X2 f, X3 f.

Y f=a1 X1 f+ aeXaf + asXsf were the infinitesimal transformation generator of such a subgroup,
the three infinitesimal transformations [Y, X1]f, [Y, X2|f, [Y, X3]f, would have to differ from Y f only by a
constant factor. It follows immediately from this that as = 0, and then from

Y, Xs]f = a1 Xof + aa(=Xu1f + hXof) = plarXaf + a2 Xaf) ,

we obtain pai + a2 =0, paz — a1 —haz = 0, so that p2 —hp+1 =0, an equation with complex roots since
h? < 4.
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From these last two equations, since both 3 and § cannot be simultaneously zero, it
follows that c satisfies the 4th degree equation

A —hke® + (WP 4+E* —2)® —hke+1=0;

but then the determinant ad — 3y (since ¢? # 1 because k # 4h) would have to be zero,
but that is absurd.
There remains finally to consider the case in which the group G5 is not integrable. For
these groups Lie assigned the single type
(Type VIII)  [Xy, Xo|f = Xuf , [X1, X3]f =2Xof ,
[X27X3]f = X3f )

but we must add another:
(Type IX)  [X1, Xolf = Xaf , [Xo, X3|f = X f ,
(X3, X1]f = Xaof ,

which differs from the previous one only in that there does not exist a real 2-parameter

subgroup in this last case.?®

14 The groups of type I.

In the first seven types the group G5 contains the Abelian 2-parameter subgroup of motions
Gy = (X1f, Xof). The considerations of §4 show that with respect to this G the minimum
invariant varieties are geodesically parallel surfaces of zero curvature. By assuming these
as the coordinate surfaces z1 = constant, we can furthermore make X;f = 0f/0xa,
Xof = 0f/0x3 and the line element of the space will take the form

ds* = dr} + a drj + 2Bdwedrs + ydrs (40)

with «, 3, v functions only of 1. To determine the most general infinitesimal motion of
this space the fundamental equations (A) give us the system

om .
oy O
5771 6172 ons -
8:132 ta 8::31 +ﬁa$1 ’
Om | g O _
8:133 8::31 8::31 ’
(E)
1, oz ons
20”71 +a8:132 +ﬁa$2 =0 ’
I 0772 0773
6 19} 0 0
Bm +ag? 72 +ﬁ(ﬂ+ﬂ>+ g5 .
8:133 8:132

%81n the geometrical representation given by Lie on p. 718 of Vol. III, according to reciprocity in the plane
with respect to a conic, one case is distinguished from the other by type VIII having a real conic and type
IX a complex conic.
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Now if we assume that there exists a third infinitesimal transformation Xsf = £0f/0z1+
&0 f/0xo + £30f/Oxs, which with X7 f, Xof generates a group G3, we have in general

(X1, Xa]f = aX1f +0Xof +cX3f,
[(Xo, X f =d' X1 f + V' Xof + I X3f ,

with a, b, ¢, a’, V', ¢ constants, and therefore the following 6 equations hold

oS 08 08

a$2 - Cél 9 a - 662 + a 9 a;ﬁz - 663 + b 9 (418’)
afl 52 / / 653 o /

a;U _Cél 9 a 662—1—& 9 a;ﬁg _C£3+b 9 (41b)

and since we furthermore assume that the group (X1 f, Xof, X3f) is transitive, we will have

& #0.
Now the system (E) has to be satisfied when the 7 are replaced by the £ and so we will

therefore have??
o0&
oy
0 0
C£1+ 6 +ﬁ 63 = VU,
8::31
8 0
dey+ o 52 5‘”’—0,
8::31

S0'6 +alcl +a) + Beks +8) =0,

SYE + B +d) + (s +H) =0,
Bé+a(dé+d)+ Blcéa+ & +a+b)+7v(c€s+b) =0

These are the equations which will serve to solve for us the problem posed for the
groups of the first seven types.

Meanwhile for type I, since the constants a,b,c,a’,b’,c are all zero, the last three
equations of (F'), remembering that £ # 0, show that «, 3, v are constants and so the space
is of zero curvature. Since then there do not exist spaces with an Abelian intransitive G of
motions, as results from the discussion of the previous sections and also if one wishes, from
the same system (F) and from (41), we can state the result: If a space of 3 dimensions
admits a 3-parameter Abelian group of motions, it is of zero curvature and the group is the
translation group.

15 Digressions relative to spaces of n dimensions.

It will not be useless to observe that the preceding theorem holds for spaces of any number
of dimensions, namely:

A space of n dimensions which admits an n-parameter Abelian group of translations is
necessarily of zero curvature and the group is the translation group.

291n the first line of the equation, the original paper has 8¢, /Ox2; correction based on the Opere [Editor].
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To show this it is sufficient to appeal to the result established by Lie3 namely the theo-
rem that if r infinitesimal transformations X1 f, Xof, ..., X,.f over n variables x1, xs, ..., Ty,
commute, i.e., one has [X;, X;]f =0, (4,k = 1,2,...,r) and among the r X f does not
exist any linear identity of the form

r
Zai(:Ela €2, .. 7$n)XZf =0 )
=1

where the a are functions of the z, with a convenient transformation of variables they can
be reduced to the form:

of

0
le:a—lquXzf of

6;132 PN

of

oz, ’

, Xof

Therefore with G, = (X1 f, Xof, ..., X,,f) the hypothetical group, it will be enough to
show that there does not exist among the X1 f, Xof, ..., X,,f an identity of the above form,
namely that GG,, is transitive, since then having reduced the group of motions to the canon-
ical form (0f/0x1,0f/0xa,...,0f/0x,) by the fundamental equations (A) the coefficients
a;, of the line element will be independent of all the x, namely absolute constants, and so
we will have a space of zero curvature. Now we assume that among the first s of the X;f:
X1f, Xaof,..., Xsf does not exist any linear identity of the form mentioned above (and we
will have by the theorem of §2: s > 2 ), whileone has X1 f = & X1 f+&Xof 4+ 4+ & X f,
the £ being functions of the z which are not all constants. By the cited theorem of Lie we
can assume

_of _9f _ of
le_a$17X2f_a$27"'7X8f_a$s7
and we will have
- of of of
AXs+1f—£16—$1 +f2a—$2+ +£Sa$s .
First the conditions
[(Xor1, X1]f =0, [Xep1, Xo]f =0, ... | [Xsp1, X]f =0

show that the £ do not depend on the first s variables x1, z9, ..., zs. Secondly, the funda-
mental equations (A), where one fixes k and sets i = 1,2,..., s, give

S

d
> air—& =0,(i=1,2,3,...,5) .
r=1 a:Ek

a1 a2 ... Qis
Now the determinant . . . . is different from zero, and also positive

Gs1 As2 ... Ggs
since the differential form Zi,k a;i, dx;dxy, is positive-definite, so that we have the result

that &1, &9, ..., &s are absolute constants, which is absurd.

308ee S. Lie-F. Engel, Vol. I, p. 339.
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16 The groups of type II:
(X1, Xolf = [X1, X5 f =0, [X2, X3]f = X1 f.

Applying the general method described in §14, we must now set a = b=c =0, a’ = 1,
bV =c=0.

From (41) and the first of (F) one then sees that £ must be a constant, so we set
& = —1/h, and the last three equations of (F) give us o/ = 0, ' = ha, 7/ = 2h3, from
which by integrating

a=k*, B=hk*z,+1, v=h?k*z? 4+ 2hlz, +m ,

with k&, 1, m new constants.?! The line element of the space therefore has the form3?

ds® = do? + k* do3 + 2(hk*zy + 1) dradrs + (h2k*x? + 2hlzy + m) do3 .
Replacing z9, x3 respectively by xo/k, x3/k, we can write
ds? = dz? + da? + 2(hay + 1/k?) deodxs + [(hay + 1/k2)? +n? da? | (42)

having set n? = m/k? —12/k*, a constant necessarily positive since ay — 3? > 0.
If we put hz1 + 1/k? = ny1, v2 = n/hya, x3 = 1/hys, (42) becomes

ds* = n®/h? [dyf + dy3 + 2y1 dyadys + (i + 1) dz3] .

By substituting a similar space, we can therefore assume as the standard form for the
line element:
ds® = dz? + da3 4 2x1 drodrs + (22 + 1) da? . (43)

This space certainly admits a transitive group Gg of motions of type II, but as we now
show, its complete group of motions is a G4 of which the original G3 is not the derived
subgroup.

To determine the most general infinitesimal motion X f = mdf/0x1 + n20f/0xs +
130 f/0x3 of the space (43) it suffices to apply the equations (E) of §14, which here become:

8771 .
8:131 =0, (44)

om on2 6173
8:132 + 8::31 Tt 8::31
om on2 ( 1) o3

=0, (45a)

8—3 +x a— + 8—:131 =0, (45b)
6172 6173
= 4

8:133 e 8:132 0 ’ ( 6)

Ony 0
s+ o+ (@) e =0, (47)

8:133 ox T3

0 0 0 ons

m+a—ZZ+m (azera—Z)Jr( +1)a772 0. (48)

31We have indicated the value of o by k? since it must be positive.
32The h%k?2? in the coefficient of dx3 is a correction based on the Opere, the original had h2k%z; here
[Editor].
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Solving (45) for Ony/0x1 and Ons/0x; and integrating with respect to x; with the
observation that by (44) 7, does not depend on 1, we have

2 2
ot om (ﬂ :,31) O e 2a)

2= 2 8:133 3 8:132
2
_xpom  Om
= D2y 3318:133 + x(22, 23) .

By substituting these values of 72, 13 into (46) we obtain a 3rd degree polynomial in 1
which must be identically zero; from this we then deduce:

*m 0*m oy Ox

8:1322 N 6:1328:133 N ’ 8—:132 N 8—:132

=0.

Proceeding similarly with (47) we finally find

Py OO
6:1332 B ’ 8:133 = 8:133 B ’
so that
on __ 0% _
8:132 N 6:1328:133 N

Therefore n; will be a linear function depending only on x3, so we set 171 = azxs + b,
and we have 1 = —%a:n% —bxs + ¢, x = d, with a, b, ¢, d arbitrary constants. With the
corresponding values of 1y, 72, n3:

2

1 1
m=ax3+b, n2:§a$1—§a$§—b$3+c, N3 = —ax1+d,

(48) is also satisfied no matter what values a, b, ¢, d take. So the complete group of motions
of the space (43) is the G4 generated by the four infinitesimal transformations

of of of of
e = — —_ ——
Xuf Dy’ Xof s’ X3f R +!E3—a$2 ,
of 1,45 5 0f of
X, f = a2 (2 _
4f = x3 B, + 2(5'31 333)8:132 3318:133 ;

whose composition is expressed by the equations

[leXQ]fzov [X17X3]f:07 [X17X4]f:07
[(Xo, X3]f = X1 f, [Xo, Xu|f = —X3f, [X3, Xu|f = Xof .

As one can see, its derived group is the transitive group G3 = (X1 f, Xof, X3f) of type
II. The three transformations Xi f, Xof, X3f are not related by any linear identity while
one has

1
Xuf = 5(3;% +22) X1 f — 21 Xof — 23X3f ,

and since the coefficients of this relation are functions only of x1, x3, we conclude from
this?3 that the group is systatic and the systatic varieties are the coordinate lines (w).

338, Lie-F. Engel, Vol. I, p. 502.
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It is clear geometrically that these systatic lines are geodesics of the space,3 and this
statement also follows immediately from the form (43) of the line element of the space.
The properties of the group are similar to those described in §9, §11 for the groups of the
spaces:

ds® = dz? + da + sin® zy da3 |

ds® = dz? + da3 + 2™ dx3 .

However, the different nature of these spaces follows immediately upon examining the
compositions of their groups of motions. While for these latter spaces the derived group
is an intransitive and simple G3, for the space (43) the derived group is a transitive and
integrable GG3. We also observe an essential difference geometrically since for those spaces
discussed previously the systatic geodesics admit a family of orthogonal surfaces, which
does not occur for the space (43).35

Finally we observe that it is easy to write the equations of the present group G4 in
finite terms. Those of the derived subgroup are given by the equations:

/ / /
Ty =21+ a1, Ty =T2 —a1xr3+ ax —ajaz , r3 = T3 +as,

with parameters a1, as, as. It now suffices to associate with these co® motions the group
(G1 generated by the infinitesimal transformation whose finite equations are

:Ell = x1cost+ x3sint , :E/3 = —x1sint + x3cost ,
1 1 1
xh = Z(JE% — 22) sin(2t) — 52123 cos(2t) + xg — 52123

and which represents a rotation around the geodesic x1 = 0, x3 = 0 by an angle easily seen
to be t.

17 The groups of type III:
(X1, Xol f =0, [X1, Xs]f = Xuf, [Xo, X3]f =0.

For the above composition we must set a =1, b=c =0, ' =V = ¢ = 0 in the equations
of §14, from which it again follows that & is constant, so we set & = —1/h, and the last 3
equations of (F) give us o/ = 2ha, v/ =0, 5/ = hf.

Integrating and choosing conveniently the variables xo,x3 we can make o = e2h@1,
B = neM® v =1, with n a new constant, and by replacing the space by a similar one, we

can set h = 1 and have as the standard form of the line element of the present space:
ds® = dz? + e**1 da3 + 2ne™ daodrs + das . (49)

One will observe that if n = 0 one again obtains the space of §11. Since ay — % has
to be positive, we will have n? < 1, and since the sign of n is not essential (as one sees by
changing x5 into —z9, for example), we can assume 0 < n < 1.

34n fact take two arbitrary points P,Q on a coordinate line (z2). Those transformations of the space
which leave P fixed also leave @) fixed and consequently all the points of the geodesic which joins P to @,
which therefore must coincide with the coordinate line (x2).

35To determine the possible surfaces orthogonal to the geodesic (z2) one would have the total differential
equation dx2 + z1drs = 0 which is not integrable.
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We will see that also in the case n > 0 as for n = 0, the space (49) has a 4-parameter
group of motions.

The equations (E) §14 here become

om
8771 2(21 6772 1 6773
2 L] —2 =0 ol
8:132 te 8::31 +ne 8::31 ’ ( a)
om 2 On2 | Ons
“n a2 T _ g 51b
8:133 +ne 8::31 8::31 ( )
0 0
e“ln + err 912 + nIB _ g , (52)
8:132 8:132
Ony | Ons

w202 L 7 53

ne 8:133 + 8:133 ’ ( )
o2 On2 . Ons on3

o1 201202 | pemn (224 2B L 7B g 54

nein te 8:133 e (8:132 8:13;;) 8:132 ( )
Solving (51) and integrating with respect to z1 we obtain:
—ne~ 1 O e 2" Oy
T 02 0 - 2(1 — n?) Oxo ez 2s)
_cnemom = Om + x(z2, 3)
B2 Oxry 1 —n?0zs3 X\T2,%3) -
Substituting into (52), (53), (54) we conclude that
om _g &m0 Ox _Ox _, W _ _
8:133 ’ 8:1322 ’ 8:133 8:132 8:133 ’ 8:132 o
from which
ae201 1 5 —ane™ "1
m=axz+b, ﬁ2=m—§a$2—b$2+ca ﬁszﬁ‘i'd,

with a, b, ¢, d arbitrary constants. The group of motions of the space (49) is therefore the
(G4 generated by the 4 infinitesimal transformations:
of of of  of

X f=—-2  Xof=—-L Xof =2 —
lf aZEQ ) 2f a$3 ) 3f alﬂl $2a$2 )

—2x1 —x1
R

or; 2 1—n2 2 Ory 1 —mn2dxs

with the composition:

(X1, Xol f
[X27X3]f

) [X17X3]f:_X1f7 [X17X4]f:X3f7

=0
=0, [X27X4]f:07 [X37X4]f: —-Xuf .

The relation

1 [ e 20 9 ne 1
Xaf =5\ Tzt )| Xuf — o Xof 22 Xsf
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shows that the group is systatic and that the systatic varieties are the geodesics (z3). These
geodesics do not admit orthogonal surfaces except in the case n = 0 already considered in
§11. We observe that the derived group is here the group G3 = (X3 f, X3f, X4f), which
is simply transitive and belongs to type VIIIL. In the space (49) we therefore also have an
example of spaces corresponding to this type. To this purpose and for a better comparison
with the results that we will establish in §28, we note the following transformation of the
line element (49). Set:

T1=y1, Ta=¢€ (Y2 —ny3), T3 =1y3
and one will obtain

ds®> = 1+ (y2 — nyg)z] dy% + dy% +(1- nz) dy§ — 2(y2 — nys3) dy1dys - (49x)

18 Similarities of the groups of motions of two spaces of the type (49).

The line element (49) of the space of the previous section contains a constant n and we

propose to demonstrate that this constant is truly essential, namely that to two distinct

values of n (0 < n < 1) correspond two spaces which are neither isometric nor similar.36
Assuming therefore a second line element of the form

ds® = dy® + €V dys® + 2me”* dyadys + dys® (55)

where m # n, we must prove that it cannot be transformed into the line element (49) nor
into one which differs from it by a constant factor. In our investigation we will make use
of the well known criteria for the transformability of two differential quadratic forms es-
tablished by Christoffel and Lipshitz, but most of all we utilize here the circumstance that
the two forms to be compared admit two respective 4-parameter groups Gy, 'y of trans-
formations into themselves, making available for us the general theorems of Lie. Therefore
we make the following observation that we will equally apply to the analogous research of
the following sections. The supposed equations of transformation

1 = 01(y1,Y2,43) , T2 = p2(y1,¥2,¥3) » 3 = ©3(Y1,%2,93)

must obviously transform the group of motions G4 of the one space into the I'y of the
other. First it is necessary to see if the two groups G4, I'4 are similar. When this necessary
condition is satisfied the assumed transformability of the two line elements still does not
follow from it, but there will remain only to see if the equation found by transforming G4
into I'y can be specialized so that it also puts the two spaces into the relation of similarity.

To see if the two groups Gy, I'y are similar, according to the general criteria of Lie®”
we must first of all get the groups into an isomorphic correspondence®® in the most general
way. Therefore with (§17)

of 0 of of
if=-—,Yof =", Y35f="——yp7,
1f 1 of 315 3f o ou
~of 1 e 2 o\ Of  me ¥ Of
if yza—g/1+2<1—m2_y2> dyy 1 —m2dyz’

36See the preface.
378, Lie-F. Engel, Vol. I, p. 327.
381n Italian: “isomorfismo oleodrico” [Translator].
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as the generating transformations of I'y, with the same composition as the generators
X1f, Xof, Xsf, Xyuf of Gy, it will be useful to choose in G4 (in the most general way) four
other generators X f, Xof, Xsf, X4f so that they still have the same composition, namely
one has:

(X1, Xol f
[X27X3]f

:07 [X17X3]f:_X1f7 [X17X4]f:X3f7
=0, [X27X4]f:07 [X37X4]f: _X4f .

If one observes first that the derived group of G4 coincides either with (X1 f, X3f, X4f)
or with (X3 f, X5f, X4f), it follows from this that X;f, X3f, X4f must be composed of
only X1 f, X3f, X4f. Moreover since X f, like X5 f, is the only transformation in G4 which
commutes with every other in the group, X»f must differ from Xof by a constant factor
A; we have therefore

Xif =onXif + 0 Xaf +asXyf |
Xsf = B X1 f + PoX3f + B3 Xuf |
Xof = Xof + 7 Xsf +3Xaf
Xof = MXof | (56)

with «, 3,7, A being constants. The composition relations translate into the following
equations for «, 3, v; the «, v must be constrained by the relations

Oé% + 2013 =0, ’722 +27173 =0, a1yz3+azy; +axy2 =1 (57)
and the 0 must be expressed in terms of these by the formulas

B1=asy1 —a1v2, B2 =173 — a3y, 3= a3y — 273 . (58)

In order to check what follows, it is worth noting that the following relations are a
consequence of the ones above

agb +a1fs+azfe =0, y361 + NP3+ 1262=0,
B5+28183=1. (59)
a1 G2 Q3
As a consequence the determinant | 31 [y 3 | is equal to +1, and solving for the

Y1 Y2 V3
X f one has?”

Xif = X1 f + BsXsf + asXaf ,
Xsf =vX1f+ BeXsf + aaXaf ,
Xuf = mXaf + b Xsf +anXaf,

by which all the minors of second order of this determinant are equal to one element, for
example, ag = asf3 — agfs, etc.

39The second and third equation in the original paper had Xaf and Xsf on the Lh.s., respectively;
correction based on the Opere [Editor].
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So haVing put the two groups G4 = (lev X2f7 X3f7 X4f)7 Iy = (Yifv Yéfv Yéfv
Y1 f) into an isomorphic correspondence, it is necessary to identify the relationship among
Yif,Yof, Y3f,Ysf, namely:

1 e_2y1
Yif=-[— 2 Y f —
af 2(1—m2 —|—y2> 1f

me_yl
T Yaf +¥af (60)

with the one which correspondingly relates X4 f to X1 f, Xof, X3f. Now substituting into

the relation
e ne

1 —2x1 ) —x1
Xaf=5 |1z to2 ) Xaf - 5 Xof + 22 X3f

1—n

the values (56), we find:4°

—2x1
a3 (& —
{7 (m + 33%) + B3z — 73} Xaf

aq e—2m1 9 _ .
= - b gt Xuf (60%)
—2x1 —x1
ag [ e 9 S nie S
_ B X Xof .
+{72 Pazr — (1_n2 +!E2>} sf + 1o Xaf

We introduce the abbreviations

e ™ _¢ e n/1—m?2 (61)
Vi-nz " J1-m?2 myv1 —n? a

and identifying the coefficients of (60), (60*) we find the three equations*!

72— Bomy — (€2 + 23) /2

v az(E2 +a3)/2 + B3x2 — 73 (622)
LS
= 62b
7 az(E2 +13)/2 + Bzxa — 3 (62D)
S+ 3) {s(€ + a3)/2 + fsa — 5,
+%(£2 + ZE%) + p1xe —v1 =0. (62%)

If these three equations are compatible the two groups are similar and equations (62)
then give in the corresponding equations of transformation yi,ys expressed in terms of
x1,x2 (Lie, ibid.). Now by substituting the values of ya,n given by (62) into (62*) and
completing the square, we obtain

242 2|02, Q2 9 2
HoET+ 75 +7$2+ﬁz$2—72

(6% (6% (6% (6%
+2 (7362 + ;:E% + B30 — ’73) (7162 + é:ﬂ% + Prao — '71) =0

40The last term on the r.h.s. was preceded by a minus sign in the original, now corrected to a positive
sign after the Opere [Editor].
“'The r.h.s. of (62b) lacked the minus sign in the original, now corrected after the Opere [Editor].
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which must therefore be an identity in &, x5. Taking into account the relations (57), (58),
(59) among the constants «a, 3, one immediately finds it necessary and sufficient for this
to be true that one have > = 1, namely \2 = ;—n;((ll%gz—g

One concludes from this that the two groups G4, I'y are indeed similar and for the most

general equations which transform the one group into the other, one necessarily has*?

_ 2~ Pz — oo (&2 + 23) /2
b2 a3(§2 4 x3) /2 + fBawg — 3

_ = (63D)
= a3(&2 4 23) /2 + Bawg —v3

(63a)

from which, as one sees, y1, 2 are independent of x3.

19 The constant n is essential in
ds? = dx? + e**1 dx3 + 2ne® duodxs + dal.

To demonstrate this claim we observe finally that since the equations of transformation
must change X1 f, Xof, X3f, X4f respectively into

OZlYif—FO[QYéf-FOZgYZ;f ) AYéf,
BiYif + BeYsf + B3Yaf , mYif + vYsf +3Yyef,

from these follow the values of all the first partial derivatives of the y with respect to the
2.3 Of these equations it is enough for us to write the following ones:

0
a—yl = a2 +Qasgy2,
€2
0y3 me Y1 0y3 mage Y1 Oys
0z 1 —m? (aszs + B3) 0z 1—m?2 ’ Oz (64)

By substituting the expression (63) for y, into the value of dy;/dxs one has

oy _ a3T2 + (3
Ory  3(§2+x3)/2+ Baxy — 3

(65)
Given this, from the assumed transformability of the two line elements we will have:

dy? + e*' dys + 2me¥" dysdys + dys
= A{dx? + %™ dad + 2ne” daodas + das) . (66)

We now apply the equations of Christoffel

Ox, 0 +i2k: {zk‘}y oz, Oxs 2“: {rs}m 8z, ’ (v,r,s=1,2,3),

“2The original paper had s instead of a3 in (63a), which was a typo [Editor].
“3In general X;f is changed into Of/dy1 Xi(y1) + 0f/dy2 Xi(y2) + 0F/0ys Xi(y3), hence the formulas
indicated in the text.
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the index x or y attached to the Christoffel symbol indicating whether it is constructed in
terms of the form of the z or that of the y.** Setting ¥ = 2, r = 2, s = 3 and replacing
the Christoffel symbols by their actual values one obtains %ayl /0xo9 = ne™ dys /0y,
or using (64), (65)

m2le %1 aszxo + O3 nme Y1

1—m? a3(&+a3)/2+ fsaa—y3 1—m

Therefore, if a3 =0, 83 = 0 does not hold, one must have
mAV1 —n2 +nv1—m2n{az(E2 +23)/2+ faxy — 13} =0,

namely by (62b)

mAV1—n2—nv1-—m?u=0,

or equivalently
m?(1 —n?) —n*(1—m?) =0,

or equivalently
m2(1—n?)+n*(1-m?) =0,

which is absurd since n? < 1, m? < 1. Therefore we will have a3 = (33 = 0 implying
as =0, 32 = 1, from which (63) tells us that ys is only a function of 2, and y; differs from
x1 only by an additive constant. After this (66) immediately gives A?> = 1 (comparing the
terms in dz?), namely

m?(1 —n?) = n?(1 —m?),

2

and consequently n? = m? as indeed we wished to show.%

20 The groups of type IV:
(X1, Xolf =0, [ X1, X3]f = Xuf, [Xo, Xs]f = X1 f + Xaf.

To apply the equations of §14 to the present composition we must set a =1, b =0, ¢ =0,
a =1, =1, =0. From this it follows that & is constant, so we set £&; = —2/h and the
last three of (F) §14 become

o =ha, B =hla+28)/2, v =h(B+7),

41t is useful to note that the Christoffel symbols of the second kind {22} are not changed in value by

multiplying the line element by a constant factor.
4>The signs preceding the second terms on the Lh.s. in the previous two displayed equations were plus
signs in the original (propagating from sign errors noted above), requiring a further short argument to
obtain the desired result now deleted after the Opere. The deleted material after the second displayed
equation was:
“which is absurd since n? < 1, m? < 1. Therefore we will have az = 83 = 0 implying a2 = 0, 32 = 1,
from which (63) tells us that y2 is only a function of z2, and y; differs from z1 only by an additive
constant. After this (66) immediately gives A\*> = 1 (comparing the terms in dz?), namely

m?(1—n?) =n*(1—m?) ,”

[Editor].
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from which by integrating and conveniently disposing of a factor independent of xo, x3, we

can assume46

a=e", B=e"(ha1/241) , v =" [(he /24 1) +m?]

with [, m constants. Changing x1 into z1 + constant and replacing the space with a similar

space, we have for the standard form of the present case

ds® = dz1? + e" {dx3 + 221 dxodrs + (23 + n?) d23} .

(67)

Applying equations (E) §14 to determine the most general infinitesimal motion of the

space, we find the following equations:

om

day

e_mlg—ZJrg—ZJr:ﬁg—E:O,
e_mlg—z)—l-mg—z-l-(:nlz—l-nz)g—z =0,
%771—1—2—:2—1—3312—:2:0,

%($%+n2+2$1)771 +$1g—z)+($%+n2)g_2 -0,
(5’31+1)771+g—zz+:v1 (g—ZJrg—Z) +(:c?+n2)g—z:0.

Solving (69) we obtain

Oy _ e[ Om o o %]
0z n2 [:El 0x3 (@1 +n )aZEQ ’
Ons _ e [ om 8771]

Tl — ——
0z n2 Oxy Ox3

and integrating with respect to x1, of which 7; is independent by (68), we have

e~ 1 9 9 om om
M= —5 [(ZE1+’I’L +2$1+2)a—$2_($1+1)6—$3 + (w2, 23)
e ™ [Om om
=3 [8—:133 — (o1 + 1)8—:132] + x(x2,23) .

Substituting into (70), we immediately deduce from this

2 2
o“n  0°m 0 Ox 0 o 1

6:1322 N 6:1328:133 B ’ 8:132 - ’ 8:132 - _5771 ’
so that the substitution in (71) gives

0% ox 1 oY

i T LR e

“Shgy in the original paper was corrected to hax1/2 after the Opere [Editor].
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hence

om _ 5 Px O, O om
8:132 6:1328:133 ’ 8:133 6:1328:133 8:132 '
In this way we find for the most general values of 11, 12, 73 the formulas

a a
m=a, 772:—5532—@!33‘1'57 773:_5:173—1_67

with a, b, c arbitrary constants. Therefore the complete group of motions is only a G3 here;
it is generated by the 3 infinitesimal transformations

X1f:af X :ﬁ

a$2 Y 2f a;ﬁg Y
af ) af T3 af
X = —_—— JR— - -
3f 8::31 ( 2 +$3> 8:132 * 2 8:133 (73)
and has the composition®”

1 1
(X1, Xo]f =0, [X1, X3]f = §X1f7 [Xo, X3]f = X1 f + §X2f-
21 The constant n is essential in

ds? = dx? + e®[dx3 + 2z dvodxs + (z3 + n?) dad).

Analogously to what we have done for the spaces of §17, we also want to see here if the

constant n of the present line element (67) is essential. We respond affirmatively to the
question by showing that a second line element?*®

ds® = dy} + e [dy5 + 2y1 dyadys + (y7 +m®) dy3] , (74)
where m? # n?, cannot be identified with the original nor be proportional to it. Proceeding

exactly as in §18 we first compare the two respective groups of motions G3, I's, the first
generated by the transformations (73), the second instead by?*?

of of of (yz ) of | ys3 Of
Y; —  YVof== Y3f=—"+ =+ — 4+ =
1f s of s 3f o 5 ) 5 T 2 a0
with the same composition

YL Yalf =0, WYl = ghf , Y, Y5lf = Yif + 3¥af

We must find the most general transformation which changes the one group into the
other and see if it can give rise to the hypothesized transformation of the two line elements.

We therefore take three other transformation generators of I's, let them be Yi f, Yo f, Y3 f,
which have the same composition as above; we therefore have

Y3f = aY1f 4+ bYaf +cYsf

47To have the canonical composition it would suffice to double X f, X3 f.
“®Equation number ”(74)” is missing in the original, added by the Editor.

“The second term on the r.h.s. of the 3rd equation had 8f/ys in the original, which was incorrect
[Editor].
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and among the constants «, 3,7, J, ¢ the relations
ac+2Bc=a, Bec=F, yc+20c=2a+7, fc=20+6,
from which it follows that 3 =0, ¢ =1, § = a and consequently:
Vif =aVif ,\Yaf =yYif +aYaf ,
Ysf =aYif+bYaf +Ysf .
There certainly exist transformations which change X1 f, Xof, X3f respectively into
Yif,Yof,Ysf because the two simply transitive groups are isomorphic.’® For one such

transformation the partial derivatives of the y with respect to the x must assume the
following values:

W o m
8:1:1 8:1:2 8:1:3

O _ (ﬂ+ >+ v _ . 0w _ Oy

8:1:1 -« 2 e 72 @ 2 el 8:1:2 “ 8:1:3 v
s _ @3, ¥s Oy Oys _

8:1:1 2 2762172 76:173

Integrating we have the actual equations in finite terms
y1=x1+h,
Yo = axo + Yyx3 + ke ™1/2 _ cpie /2 _9q + 4b ,
ys = azs +ce "1/2 — 2p

with h, ¢, k new constants. The line element (74) therefore becomes:
k . . 2
d:z:% + ¢! { (C:E—l —c— 5) dxy1 + ozeTld:Eg + ’7671(11173}

—|—2eh(:1:1 + h) {(7 —c— g) dxy1 + oze%ldzng + ’76%(11173}

X {—%d:pl +Oé€%d$3}
2
+eP {(:171 + h)2 —|—m2} . {—%d:pl + ozeTldzng} .

Comparing with the line element (67) we must set the coefficients of dzydxy and dzidzrs

to zero; we immediately find ¢ = 0, k = 0; and then comparing the terms in da2, dzedrs

and dz3 one deduces !

o2 =1, {ya+o?(z1+h)}e =z,
{v2 4+ 20y (x4 ) + o®(z1 + h)2 + ®m?}et = 22 +n? .
From this it follows that a?e” = 1, v + ah = 0, so that n? = m?, Q.E.D.

508, Lie-F. Engel, Vol. I, p. 340.
51This partial sentence is the translator’s interpretation of Bianchi’s intended meaning. Bianchi’s original

phrase in which he meant to refer to equation (67) “Comparing this with the line element (64), we must
set the coefficients of dzxidxe and dxidzrs to zero, which leads to...” has a proof correction at the end of
his article (implemented by the Editors of Opere) stating “The penultimate line on p. 312 should read:
equating the coefficients of dz1dzr2 and dx1dzs we find immediately”, but this omits the necessary “to zero”
and removes any equation number [Editor].

38



22 The groups of type V:
(X1, Xolf =0, [X1, X3]f = X1f, [Xo, X3]f = Xaf.

The constants a, b, c,a’, V', ¢’ of §14 here take the valuesa=1,0=0,c=0,d =0,V =1,
¢ =0, from which it follows that & is again constant, so we set & = —2/h, and the last
three of (F) §14 give

Oé/:hOé, 7/:h77 ﬁ/:hﬁa

from which by integrating we have

hxq hxq

a=1e"r B=me" | v =mne""

with [, m,n constants. Changing (linearly) the parameters x5, x5 we obtain
ds? = da? + €21 (dad + da?) |

the line element which belongs to the space of constant negative curvature.
In this case the existence of the transitive group G3 of motions of the designated type
implies a complete group of motions (non-Euclidean) of 6 parameters.

23 The groups of type VI:
(X1, Xolf =0, [X1,X3]f =X1f, [Xo, X5]f=hXof , h#0,1.

For the groups of this type we must set a = 1, b =c =0, a =0, = h, ¢ = 0 in the
equations. From this it follows that &; is constant, so we set & = —2/k and the usual
equations (F) §14 give us

o =ka, 26/ =k(h+1)8, v = hky,

from which by integrating and absorbing two of the constants of integration into xo, z3, we

find
o= ek.’El ’ /3 — nek(h—l—l).’El/Q Y= ehkrl

Y

where n is a constant which can clearly be assumed positive, so that (because ary — 32 > 0)
we will have 0 <n < 1.
By passing to a similar space we can make k = 2, so

ds? = da? + 2™ dz? + 2ne "V dpydag + 2 dad (76)

One will observe that for h = 0 this reduces to type III and the line element (76) is
then changed into the one (49) of the spaces of §17. 52
The most general infinitesimal motion of this space is determined, according to (E) §14,

by the following equations:®?
2—2 —0, (77)

52We have not been able to treat the particular case h = 0 together with the general case, because only
for h = 0 does one have a 4-parameter group of motions.
®3The factor n in the last term of (79) is absent in the original, correction after the Opere [Editor].
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(78a)
(78b)
(79)

(80)

(81)

(82)

Om 2o 02 ey O
Oxo 0x1 0y ’
O o ye N2 one, O3
T3 8::31 8::31 ’
5772> hay I3
{2 By,
(771 * 8:132 e 8:132
—hyzy M2 O
n e 8:133 8:133 ’
’I’L(h + 1)e(h+1)m1,’71 + e2m1% + ne(h—l—l)ml (% + %)
8:133 8:132 8:133
—I—ezhml% =0.
8:132
Solving (78) for dny/0x1, On3/dx1, we obtain
on2 ne~(h+1)a1 877 e 2 om
or1  1—-n2 Oxs 1-—n20my’
6773 B ne—(h—l—l)ml 6771 e—2hz1 6771
dry 1—n?2 0zy 1—n20z3
The integration of these last two with respect to x; leads us to separate the two cases
a) h=-1 b) h #—1.
In case a) by integrating we obtain
_ nxp O e Oy
N2 = 1_n2 a$3 2(1 — ’I’L2) aZEQ + ¢($27 $3) )
nry Om e om (w9, 3)
= - T, )
B 20z, 2(1—n2) day | BT
and substituting into the successive equations (79), (80), (81), we find
52771 _ 52771 _ 52771 0
8:1322 6:1328:133 8:1332 ’
oy 0 oy ox ox
8:133_ 76:E2_ nl’alEg_ 76:E3_771'
from which it follows that
m=a, n=—ars+b, ny=arz+c,

with a, b, ¢ constants.
infinitesimal transformation generators:

of of of of of

X = X = — = —— _ _—

1f g’ of 9 3f 9 1+ 290 3338:133
Case b). Now let h # —1. Equations (82) integrated give
ne(h—l—l).’ﬂl 6771 6—2:21 6771

n = _(h—l— (1 —n2)8—:n3 + 72(1 _nz)a—@ + (2, 3) ,
(h—l—l).’El a —2hxq a

= - s n ° n + X($27$3) )

(h+ D)(1 - n?) darz
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In this case therefore the group of motions is only a G3 with the



and substituting into (79) remembering that h is different from 0,1, —1, we find

0% &*m Ix o
= , 1 = s o 0 y A — -
8:1322 6:1328:133 8:132 8:132
Substituting into (80) therefore gives
2
Om _g, 00 g, OX gy
8:133 8:133 8:133

and from this follow for 1y, 72, n3 the values
m=a, n=—ary+b, n3=—hars +c,

with a, b, c arbitrary constants. We therefore have as the complete group of motions the
(i3 generated by the three infinitesimal transformations

of of of of of
X.f=="L  Xof=="L X f=—-1 hzs
f =5 Xof A 3f 9z, T T2gy, The T
which indeed has the composition
(X1, Xolf =0, [ X1, X5l f = Xuf ,[Xo, Xs]f = hXaf .
We now see that the result obtained above for h = —1 is included in the general case.

24 The constant n is essential in®*
ds? = da? + e**1dad + 2ne" Do duodas + 21 dx3.

That the constant h is essential in this line element is clear since it is already essential
in the composition of its group of motions; but now we wish to show that the constant n
(apart from sign) is also essential. Therefore let there be the two spaces

ds? = da? + 2™1dad + 2ne "V drydas + 2 da? (@)
ds? = dy? + e dy2 + 2me "N dyydys + 2" dy? (B)
2 2

we wish to prove that assuming the two spaces are similar implies n* = m*=.
The group I's of motions of the second space is generated by the three infinitesimal

transformations

3} 3} 3}
97 , Yaf = —a—f-i' 2a—f+hy3

of
dys3

af

Nf=g - Nf=5-

and if, along with the hypothesized equations of correspondence between the two spaces,
we assume that® X f, Xof, X3f are changed respectively into Yif,Yaf, Y3 f, then these
latter ones must be combinations of Y7 f, Ya f, Y3 f and have the same composition

4Bianchi’s obvious typo was corrected here, there was a 74”7 between e?** and dz3 [Editor].
5The original paper has Yi f, Yo f and Ysf here; correction based on the Opere [Editor].
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It is clear in the first place that Y; f, Y> f must be combinations of Y7 f, Y5 f only, so that
we will have
Vif =aYif +bYaf +cVaf .

Taking into account the composition equations we see that for h # —1 one necessarily
has 8 =~ =0, ¢ =1, so that it follows that

Vif=aYif, Yof =0Yaf , Yaf = aYif + 0Yaf + V3f .
while for A = —1 there is also possible another case

which does not differ from the previous one, however, apart from the exchange of y» and
y3 and the change of y; into —y; (this clearly does not change the line element). We
can therefore limit ourselves to the first case, in which by integrating the equations of the
transformations we find

1

yi=z1+k, yp=azs+le ™ —a, y3 =03 +pe " —b/h,

where k, [, p indicate new constants. Substituting into the line element ((3) we obtain
dz? + 2172 (q dgy — le™™ dxp)?
+2me M DETR) (o dry — 167 d1) (8 dwg — hpe™ " day)
+26?M@HR) (5 dzg — hpe ™™ dzy)? .

Expressing the fact that this differential form differs from («) only by a constant fac-

tor, it suffices to compare the coefficients of dz3, dzedzs, da3 to find a?e?h = 5220k =

(m/n)ehtDkqag | from which it indeed follows that n? = m?, Q.E.D.

25 The groups of type VII;:
(X1, Xolf =0, [X1, X5]f = Xof, [Xo, Xs]f = -Xaf.
Treating in general the case of the groups of type VII of composition
(X1, Xo]f =0, [X1, X3]f = Xof, [Xo, Xa]f = —Xu1f + hXof,

we must give to the constants a, b, c,a’, V', ¢ of §14 the valuesa =0,b=1,¢c=0, a’ = —1,
b = h, ¢ =0, from which one has & = constant, so we set & = 1/k and equations (F)
(ibid.) give us

o +2k=0,~ —2kB+2hky=0, ' —ka+hkB+ky=0. (83)

For the integration it is convenient to separate the case h = 0 from the general case.
We assume h = 0 in this section and integrating (83) we will have

a = c1sin(2kx1) + co cos(2kzy) +c3
B = —c1 cos(2kxy) + cosin(2kzy)

v = —cp 8in(2kx1) — ¢ cos(2kx1) + c3
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where ¢y, co, c3 are three constants. We exclude the case in which the first two are both
zero since then the space would be of zero curvature. Changing x1 into x1 + constant, we
can make ¢; = 0 and varying the parameters xo, x3 proportionally we can make co = 1;
finally by replacing the space with a similar space, we will have the following standard
form for the line element:

ds® = da? + (n + cosxy) do3 + 2sinxy dradrs + (n — cosxy) das (84)

where the constant n will be positive and > 1 since a, v, ay — 42 must be positive. The
equations (E) §14 to determine 7y, 72, 73 become:

o .
om o | . ns _
. + (n + cosxy) . +sinz 1 0, (86a)
om Ona ons B
o3 + sinx . + (n — cosxq) 0z, 0, (86D)

1. ona 0
—§sm:n1'771—|—(n—|-cosznl)a—772—l—51 8—;}3:0’ (87)
lsm x1 - 1M + sin :Elai + (n — cosxy)—— Ons =0, (88)
2 8:133 ox T3
cos 1M1 + (n + cos :El)% + sinzy (5772 + %>

0x3 Oxy  Ox3
+(n — cosx1)— Ons =0. (89)

Oz
Solving (86) for dny/0x1, On3/dx1 and integrating we have

1 0 Om

Ny = SR {(sin:m - n$1)822 cosT 1823} + (w2, 23) |
1 9 Om

N3 = R { (sm:m—|—n:131)a—77;—COS!E1622}+X($27$3) )

and substituting these values into the successive equations we see that one must have

&*m _ &*m _ &*m
6:1322 N 6:1328:133 N 6:1332
W _y 0 _ L ox 1 Ox_
8:132 ’ 8:133 2771 ’ 8:132 2771 ’ 8:133 ’

=0,

so that we obtain:

a a
m=a, 7722—53334-5, m=gr2tc,

with a, b, ¢ constants. Here too the group of motions is of three parameters and its gener-

ating transformations are

le:aajf ng—2a—f— ﬁ‘F 2af

8::31 8 i) 8:133 (90)

Xof = 8:;)"

with the composition

[Xl,Xg]fZO, [X17X3]f:X2f7 [X27X3]f: _le .
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26 The groups of type VIls:
(X1, Xo]f =0, [X1,X5]f = Xof , [Xo, Xs]f =—-Xaf +hXof , h#£0 (0 <h <2).
The equations (83)°° give us
o o hd
AR TE AT

and hence to determine «, the linear and homogeneous constant coefficient equation

ﬁ:_

o + 3hka” + 2k*(h? + 2)a/ + 4hk3a =0,
whose characteristic equation
p® + 3hkp? + 2k2 (W + 2)p+ 4hk® = 0 ,
setting p = kr, becomes

3+ 3hr? + 2R +2)r +4h =0 .

One root of this equation is 7y = —h and the other two 7, 73, since h? < 4, are complex

T2:—h+’i\/4—h2,T’3=—h—’i\/4—h2.

If for brevity we set v = /4 — h%, we have for a the expression:

conjugates:

o = cre R o R cos(kua) + cse MR sin(kvay) |

where c1, co, c3 are three arbitrary constants.

We exclude the case in which one takes co = ¢3 = 0 because then the space would be of
constant negative curvature. By adding a constant to x1 we can make (if ca # 0) ¢3 = 0,
and passing to a similar space we will obtain

—hml(

a=e n+ cosvry) ,

1
3= 5e‘hml (hcosvry + vsinvzy + nh) ,
2 — v? h
vy = e hm (TU cosvxy + 71) sinvry + n) .

We note that from this follows the result
ay — 8% = v(n2 — 1)6_2“1/4 ,

from which |n| > 1 so that n > 0 since o > 0.
The first equations of (E) §14, solved for dns/0x1, On3/0x1, give

Ona 4e2hr { om om }

dzr1  (n2—1)v2 | O3 78—:E2

Iz det { om %}
or;  (n2—1)v2 | Oz a@:ﬂg '

®6In the original paper, “equations (84)”, which is incorrect [Editor].
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Substituting the values of «, 8,y and integrating with respect to x; we obtain

(n? —1)v s v2(n? —1)

h(1 — v?) -1 . 4n ha O
—{7COSUZE1+ﬁSIDUZE1+m emla—;ljz

h? — 02 h 2n hay %
8:133

02
h 4n hay om
{vz(nz — 1) CoSvx| + (n2 — 1)1) sinvxy + h(n )} D2
+X($27 $3)
If we now take the other three equations (E) §14:
0 0 0
7771+2ﬁ—+27ﬂ =0, a/m + 2252 1 287B
8:133 8 8:132
onz | O3 onz
o3 02)
ﬁ"?l + aalEg +ﬁ 8:132 + 8:133 + 8:132

and substitute the values of «, 3,7, 12, 73 into them, it suffices to equate the coefficients of

the terms in e "*1, e="1 cosvzy, e M1 sin vy, to find
0 _, 9 _ X _ Ox _
a$2 - 9 a;ﬁg - ”71 9 a$2 - ”71 9 a;ﬁg - ”71 9

from which it follows that
nm=a, n=-—axrs+b, n3=are + ahxs+c,

with a, b, c arbitrary constants. Therefore in the present case the space has as a group of
motions the G5 generated by the three infinitesimal transformations:
of of of of

le:a—waXzf:a—%aXsf 8—:131_ a—‘i'(l"z-l-hl"s)

of

8:133 ’
with the composition
(X1, Xo]f =0, [ X1, X3|f = Xof , [Xo, X5|f = —X1f +hXof .

We see that setting h = 0 one returns to the results of the previous section, changing the

notation in a very simple way.

27 The constant n is essential in the line elements of the two previous sections.

In the line element of the spaces of the previous section appear the two constants h,n,
the first of which is essential, already being so by the composition of the group (§13). We
now show that the constant n is essential, and with this result the same thing will also be
proved for the spaces of §25 which correspond to A = 0.
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We must show that two spaces of respective line elements:

ds? = da? + e (n + cos vry) da

+e "1 (hcosvay + vsinvzy + nh) drodzs

2 — 2 h
e he ( 5 COSUZ1 + 71) sinvzy —|—n> d:n% ,

ds? = dy% + e (m + cosvyy) dy%
+e M1 (hcosvyy + vsinvyr + mh) dyadys

2 —v? hv
e ( 2 cos vy + D) sin vy, —|—m> dy% )

cannot be similar unless n? = m2.

The group G3 of motions of the first space is generated by the infinitesimal transfor-
mations (90) and the I's of the second by the three

aof aof of of of
Lf 9’ of s 3f o 9y + (y2 + y3)8y3 ,

with the same composition. Suppose that in the hypothesized transformation X1 f, Xo f, X5 f
are changed into Y; f, Ya f, Y3 f; we will have:

Yif =aYif + BYaf ,Yaf =AYif +0Yaf ,
Vaf = aYif +bYaf + cVaf .
From the composition equations
Y1, Yol f =0, [V1,Y3]f =Yaf , [V2,Y3]f = ~Yif + hYaf
it immediately follows that c=1,v= -3, § = a + hg, so

Vif=aYif +BYaf , Yof = —BYif + (a+ hB)Yaf ,
Yaf = aYif +bYaf + Ysf .

When the y are expressed in terms of the x, they must consequently satisfy the following
equations:

o oy oy

- =1 7 = — =

8::31 ’ 8:132 0 ’ 8:133 0 ’
Oy2 dy2
5. —0, —=—0,
8:132 8:133
Oys Oys
el P R

It suffices to compare the terms in dz3 in the two line elements (91), (92) to obtain the
following equation, in which A denotes a constant factor:

o?(cosvy; + m) 4+ aB(hcosvy; + vsinvzy + hm)

5 (2 —0v? hv .
+0 5 cosvy1—|—751nvy1—|—m

= A(cosvzy +n) .
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This must be converted into an identity in x; by setting y; = 21 + k (k constant).
Setting vk = o (constant), and comparing corresponding terms in the above equations, we
derive the three relations

o 4+ haf + 3% = \n/m (93)

a?coso 4 af(hcoso +vsino)

2 —v? h
—I—ﬁ2< 2U cosa—l—%sina):/\,

—a?sine + af(—hsino + vcoso)

2

2 — h
—I—ﬁz (- 2U Sin(f—l—%COSU) =0.

Multiplying respectively the last two equations, first by coso, —sino then by sino,
cos o, and each time summing, we obtain

92 _ 2
o® + haff + Y

h
8% = Acoso , vaf + 71)62 = Asino ,

which squared and summed, remembering that v? + h? = 4 give (a2 + hafB + %)% = A2,
from which by (93) n? = m?, Q.E.D.

28 The groups of type VIII:
(X1, Xo|f = Xaf, [X1, Xa]f = 2Xof, [Xo, X5|f = X3f.

Having exhausted the research on spaces which admit an integrable transitive G3 of mo-
tions, we now turn to the case of a simple transitive G5, beginning with type VIII.

We consider in G3 the G9 generated by Xsf, X3f and proceed as in §4 by assuming the
geodesically parallel surfaces invariant with respect to the subgroup Gs as the coordinate
surfaces x1 = constant, and we furthermore give to Xof, X3f the canonical form (ibid.)

ng = af/a:Eg s ng = €m3af/a$2 .
For the line element of the space we therefore have
ds® = dz? + adrl + 2(8 — axy) dredrs + (aas — 2Bz + ) d23 | (94)

with «, 8, functions of ;.

Now let X1 f = & 0f/0x1 + & 0f /0xa + E30f/0xs be the third generating transfor-
mation of GGz, in which, the group being transitive, we will have & # 0. Because the
composition equations [X1, Xo|f = X3 f, [X1, X3]f = 2Xof hold, the £ must satisfy the
following equations:

06 0 s
a;ﬁg - _61 9 a;ﬁg - 62 9 a;ﬁg - 63 9
061 082 &3 _
251 Z52 783 9p3
8:132 0 ’ 8:132 63 ’ 8:132 ’
from which integrating leads to
G =Ae™ | &= (Bry—a3+Cle™ , &3 =(B—2x)e ™, (95)
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with A, B, C' functions only of z;.
Expressing the fact that, with the values (95) of the £ and assuming

a1 =1, a;p=a;3=0,
az = a a3 = — axy , azs = axs — 2062+ 7 ,
the fundamental equations (A) §1 are satisfied, we find among the unknown functions
a, 8,7, A, B, C of x1 the 6 following equations:
A=0,
aC' + BB =0, BC'+~vB' = A,
1 1 1
§Ao/—|—ozB—2ﬁ:0, EAﬁl—aC’—y:O, EAV’—QﬁC’—yB:O.
The first tells us that A is a constant, different from zero by hypothesis; then multiplying
the last three respectively by v, —23, a and summing leads to A(a/y + ay’ —288") =0 so

that ary — 32 = constant.
We therefore set

A=2k, ay— 3 =n? (96)
and it follows that «, 3,y are expressed in terms of B’,C’ by the formulas
n? n? 2k n?(C"?
e —B/ = —— / = — _
=l R T T 97)

while B, C' must satisfy the simultaneous second order differential equations:

2 2
kB" + BB' +2C" =0, n2B'C" + %3’20 n %0’2 L4k =0.

The first of these is immediately integrable, and indicating by 2a the constant of integration,
we find
Cea-Fp_lp (98)
2 4
Finally by substituting this into the last one we have, to determine B(x1), the third order
differential equation
kn? ) I kn? 12 n? /3 an? 2 .
_TBB —1—?3 —73 +WB +2k=0.

Having integrated this, (98) gives us the value of C' and (97) those of «, 3,7 in the line
element (94) of the space.

We treat in this section the particular case in which B’ is constant, namely B” =0, a

case which returns us to the spaces already considered in §17. We will have
B =1,B=lx;+m, C' =—l(lxy +m)/2,

with I, m constants,” so by (97):

n2l n?llx; +m 2k n n2l (l:nl + m>2
o= — = —— = — _ - .
2% ok 2 T 1 T )
5TOne observes that the constant ! cannot be zero because then we would have B’ = ¢’ = 0, and

consequently A = 0.
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Setting (lz1 4+ m)/2 = y1, the line element (94) becomes

n?l
ds® = 3 dyl + o7 {d:ng + 2(y1 — x2) dxodrs +

4k2
(y1 — m2)* + Q—ZQ] dw%} ;
and passing to a similar space by dividing by n?l/2k:

ds? = a? dy} + da} + 2(y1 — w2) dwadas + { (41 — 22)* + b} da}

a,b being constants. We now set y; = b/a 21, ro = by and dividing by b? leads to

2
ds? —dzl —|—dy2—|—2 (——y2> dygdl'g—l—{(% —y2> —1—1} d:n% ,

a formula which differs only in notation from (49*) of §17. Therefore, in the case B” =0,
the group of motions of the space is a G4 of composition already examined.

29 Integration in the general case by elliptic functions.

We now treat the general case in which B’ is variable, therefore B” as well because of the
differential equation (99).

We immediately reduce this equation to a quadrature, assuming as the independent
variable B’ = s and taking B"? =t for the unknown function. In this way (99) becomes

dt o 453 4as® 16
s TR R a2
from which by integrating
253 4as® 1
b=t T

with ¢ a new arbitrary constant. We have therefore

ds 283 4as? 16
B// B =7 I -
d:E1 \/ k * k‘2 ’I’L2 ’

namely

/ 252 | das? 16
\/s as+cs_n_(23

k+k2

We integrate this by introducing the Weierstrass elliptical function®® P(x;) with the

invariants ) 3
4a c 4 8a ac
_ . c - = = 100
P=ga T og BT T e o8 (100)
and neglecting the additive constant in x; as is permissible, we will have
, 2a
B =s= T 2kP(x1) . (101)

8Bianchi’s notation Pz1, (x1 was changed to the now-common P(z1), ¢(x1) [Editor].

49



o' (z1)

(o) and one has

Integrating again we introduce the Weierstrass function ((z1) =

2
B= 3—Z$1 — 2kC(z1) + (102)

with h a new constant, so that from (98) we have

2a 1 (2a 2
C = T + k2P (1) — 1 {3—k$1 + 2k((x1) + h} , (103a)
C' = k2P (1) — (i — kP( )) {2—“ + 2k¢( )+h}
= T 3k I 3k$1 I .
(103b)
Equations (97) then give us immediately for the values of «, 3 which appear in the line
element
an? 9
a=gm—n P(x1) , (104a)
kn? _, n? [ a 2a
= —— — (= —k — 2k h) .
5= =S Plan) + 5 (5 — kPG ) (G +26¢(an) + )
(104b)

The value of ~ appears above instead in fractional form with the denominator B’ =
2k(a/(3k%) — P(x1)), but if we transform it, taking into account the relation P'%(z1) =
4P3(x1) — g2P(x1) — g3 and applying it to the values (100) of the invariants we find

2 9 2,2 k,2 2
Y= k0P () = T Pan) + T +

TR
n® [ a 2a 2
+E (3_k‘ — kP(JEl)) (3—k$1 + Qk‘C(lEl) + h)
kn? 2
_%'Pl(:nl) (3—ZJE1 + Qk‘C(lEl) + h) . (105)

It is worth noting that, in view of the relation P”(x1) = 6P?(z1) — g2/2, the derivative of
3 has the following value:%"

2

cn 4a?n?  2an?

/T e e _ 22
B'="g+ 5w — g Do)~ 2kn’P(a)
2 2
_%’Pl(;pl) (3—2:31 + 2k (1) + h) . (106)

% The preceding formulas can be greatly simplified by observing that without loss of generality one can
set h = 0, n = k = 1, as follows from simple considerations. Then e = a/3 is a root of the equation
4e® — gse — g3 = 0 and one has

a=c—P@), f=—3P@)+(e—Pln)en + (@),

7= =P(1) —ePlar) + ¢+ G+ (e = Plar)) (e + (1))
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30 The most general group of motions of the space of the previous section.

To find the most general infinitesimal motion X f = & 0f/0x1 + §&0f/0xe + E30f /O3
of our space we recall the fundamental equations (A) §1. First setting ¢ = k = 1 we have
0&1/0x1 = 0, which shows that £ does not depend on z7. The remaining equations give

us
agl 862 863 o
oz “0m + (8- azy )a—ggl =0, (107a)
961 06y ) 0ts
dx3 +(6- )a—:gl +(axy — 2022 + 7)6_331 =0, (107D)
1 862 863 .
Eaf —I—aa——l—(ﬁ ZIJg)a—:Ez_O 7 (108)
%(o/:ng —28'w0 + )& — (B — ax)és + (B — a;pz)g_z
+(az3 — 2Bz2 + 7)2&; 0, (109)
+(axy — 20wz + 7)653 =0. (110)
)

Solving (107) for 9¢/0x1, 0&3/0x1 we have:

0 1 _ S 961

o2 =~ {(9- aa) oot~ (as} ~ 2002 4 ) g1 | (111a)
08 1 &1 &1

8::31 B ’I’L_g{(ﬁ_ )8:132 _aalEg} ' (111b)

We integrate the preceding equations with respect to x1, and for brevity set ag =
Jadxy, Bo = [ Bdxi, y0 = [7dzxi, fixing, however, the additive constants in ag, 5o, Yo:
we assume, according to (104)

an n2

ap = 5371 + n2¢(z1) , (112a)
kn? n? /2a 2

Regarding the value of 79, we need only observe that by formula (105) it contains terms
that cannot in any way be eliminated with those arising from ag, Gy. Given this, integrating
(111) we have

& = % {(ﬁo - 0‘05’32)2—2 — (a3 — 28wz + Vo)g5 } + (w2, 73) (113)
1 0 0
=3 {(ﬁo - ozo:nz)a—ilz o 82} + x(@2, x3) .

Substituting into (108), (109), (110) all those terms which contain vy must be zero
separately by the observation made above; from this we then obtain 92%¢;/0z9% = 0,

51



0%¢1/0x90x3 = 0&1 /02, so that (108) becomes:

051 aag 9§
506+ 5 (o - Oéolﬂz)a—:pz -—(B- 0‘5’32)@—332 T2 Ous

If we observe that in this the term in ¢?(x1), arising from [y, cannot be cancelled by any

other, we see that we must have
%
8:132

after which the previous equation becomes

~0, (114)

2 2 9 kn? o
P e + {Z—k (;—k _ mv@g) (3—Z:¢1 +2kC () + h) - P (ml)} 8—52

n? [ a ox n®/a oY
—? (3_k‘ — kP(JEl)) :Eza—:Ez + ? (3_k‘ — kP(JEl)) a—:m
§ 961

Equating to zero the terms in P’(z1), P(x1)((z1) leads to
k‘% 0&1

= — - = 115
8:132 61 ’ 8:133 61 ( )
and subsequently 5
¢ h — 2:E2
— = . 116
s o7 &1 (116)
Taking into account the equations obtained so far, (113) become
apTa — a
&2 = %ﬁoéﬁ + (z2,23) , &3 = n—gé’l + x(22, z3)

and so one has%%
%:(% h—QJEg)g %:_a0$2—ﬁ0£+6_¢
0xo n? 2k b 9ag n? S
% _ o O
8:132 8:132 ’ 8:133
Substituting into (109), we then find

ox _m, 0P _ a§ _ hry 2

_ap ox
B n? 61 + 8:133 '

and finally we find for the most general values of &1, &, £3:61

_ aoxr2 — By x5 hao a _
g 3 g _—_— = _— —_ 3
61 cie ) 62 Cl{ ’I’L2 2k‘+ 2% +3k‘} )
§3=oc1 20—y A2 oy c3

n? k
with three arbitrary constants cq, ca, c3. Therefore in the general case considered in the
present section the complete group of motions is only a Gj.

%0n the original paper, the second denominator on the r.h.s of the first equation is just k. Correction

made after the Opere [Editor].
51The term hao /2k in the second equation is absent in the original paper; correction made after the Opere

[Editor].
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31 Another method for the groups of type VIII.

In the work of the previous sections on the spaces which admit a transitive group Gg3 of
motions of type VIII we have seen the elliptical functions introduced. This depends on
having wished to establish the geodesic form of the line element, making evident a family of
pseudospherical surfaces, geodesically parallel and invariant with respect to a subgroup of
two parameters. But, if we aim only to establish any form whatsoever for the line element,
we can proceed much more directly by applying the general method described in §12 to a
simple form of the group GG3. We now discuss this second way of treating the problem. In
any event, we necessarily have to apply it in the last case of the groups of type IX, because
there (real) 2-parameter subgroups do not exist.

We start from the theorem of Lie that two simply transitive and equally composed
groups are always similar. Therefore if we take any particular form whatsoever of a group
(3 transitive over three variables with the composition of type VIII and determine the
most general 3-dimensional spaces which admit it as a group of motions, any other space
with a transitive group of motions of the same composition will necessarily be identical
with one of these.

Given this, referring ourselves to the calculations made at the beginning of §28, we
choose for the type of G3 transitive over three variables of composition

(X1, Xo]f = Xuf , [X1, X3]f =2Xof , [Xo, X3]f = X3f

the one which is generated by the following three infinitesimal transformations:%?
a3 OF o 4 Of 2 OF
X f = %3 _ z3 -9 z3
lf ¢ 8::31 T2¢ 8:132 r2e 8:133 ’
of of
Xof = X3f ="
2f a;ﬁg Y 3f € a$2

and we determine, in the most general way, the coefficients of the line element of the space
ds® = Z a;k dx;dxy,
ik

so that it admits the group Gj.

For this we must make use of the fundamental equations (A), or equivalently (D) §12,
applying them to the above three transformations. Beginning with Xof we see that the 6
coefficients have to be independent of x3. Then applying them to X3f, we find:

8@11 . aagg 6a33

=0 =0, —+2 =0
8:132 ’ 8:132 ’ 8:132 + 423 ’
daio 6@13 a(123

—0 —0, == —0
Dza 7 Oz 1270 g, T2 =0

from which by integrating

a1 =4, a2=8B, ap=C,
a3 =D — Bzsy agng—ClL'g,a3320$§—2E$2+F,

52The original paper has % instead of % in the first equation; correction after the Opere [Editor].
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where A, B,C, D, E, F' are functions only of z;. Finally if we apply them to X;f, taking
into account the preceding values of the da; /02, we obtain

daiy Oaga
=0, = 4agex2 + 4asz ,
8::31 8::31
6a33
2
= 2(113 — 4(123:E2 — 4(133:E2 s
8::31
Jaia dai3
2
= 2a1272 + 2a13 , —— = a11 — 2a1205 — 2a1372 ,
8::31 8::31
Oass
2
= a2 + 2a33 — 2a2275 ,
8::31

from which we derive
A =constant , C' =4E , E' = B +2F
F'=2D, B =2D, D =A,
and so
a’, B=a%z? +2bz1 + ¢, (117)
a’x} 4 4bx? + 2(c 4 2d)x? + 4exy + f , D = a’x1 + 0,
a?x3 +3bxt + (c+ 2d)wy + e, F =a’x} +2bay +d ,

A
c
E

with a, b, ¢, d, e, f six arbitrary constants. In conformity with the general theorem of §12,
we verify in this way that our system of total differential equations is completely integrable,
the initial values of the 6 coefficients a;; remaining arbitrary for z1 = zo = 0.

We observe that from equations (117) it follows that C' is an arbitrary fourth degree
polynomial in z; say Q(x1), with the first coefficient positive (or zero), and one then has®?

QW(zy) , _ Q"(x1)

A= BTy ke O=Qmy).
Do Q///($1) E= Ql(;pl) Fe Q//(Zﬂl) - E |
24 4 12 2

with h an arbitrary constant.

The surfaces invariant with respect to the subgroup (Xaof, X3f) are x1 = constant;
these are geodesically parallel, as follows from the general theorem and as we confirm here
by calculating the differential parameter of the first order for 1, which has the value

2 2
AllEl = G22G33 — A93 = CF - FE*.

From the expressions (117) for C, E, F, the binomial CF — E? is a fourth degree polyno-
mial P(z1) in z1. The arclength s of the geodesics orthogonal to the surfaces 1 = constant
is given, as one knows, by

/ dxrq dxrq

S = =

\/AllEl \/P(:El) ’

from which we again see the elliptic functions introduced here, confirming what we have
said at the beginning of the present section.

%3 Bjanchi’s Q'Y was replaced by the more familiar Q* [Editor].

54



32 The groups of type IX:
(X1, Xolf = X3f ,[Xo, X5|f = Xuf , [ X3, Xu]f = Xaof.

According to the method described at the beginning of the previous section, we must first
choose here the form of a group (G transitive over three variables of the desired composi-
tion. We fix as the general type the group generated by the following three infinitesimal

transformations:
of
Xif ==—,
1f Dy
0 0 i 0
Xof = cos:ng—f — cotxq SiDZEQ—f + S?D:Ez —f ,
0x1 Oxro  sinxy Oxs
0 0 0
Xsf = —sin:ng—f —cotxy cos:ng—f C(,)S‘,Ez —f ,
ox1 Oxry  sinxy Oxs

which is clearly transitive and offers the composition IX. If a space of line element

ds® = Z a;k dx;dxy,
ik
is to admit this group as a group of motions, first of all the coefficients a;; must be
independent of x5 because of the form of X; f. Secondly, expressing by means of (D) §12
the fact that the space admits the infinitesimal transformation Xsf (or the other X3f)%*
we find the following system of partial differential equations® for the 6 coefficients a;z:

8@11 8@11 2(112
=0, = 2a13cotxy — — ,
oy O3 sin 1
Oaza 2a93  Oaga .
= 2a92cot x] — — , = 2a19sinxy ,
0x1 sinzy = Oxs
6a33 6a33
=0 , =0 ,
8::31 8:133
daiz aiz3  Oaiz . a2
= 2a1acot r1 — — , = a11slnx1 + a3 cot 1 — — ,
0x1 sinzy = Oxs sin 1
dai3 dai3 a3
=0, = aggcotxy — — )
oy O3 sin 1
Jass azz  Oaas .
= ag3cot x1 — — , = ai3sinzry .
X1 SN T T3
0 0

We observe that aszs is a constant and so

62(113 1 aagg

=—= = —ai3
2 sinzy Oxs3 ’

8:133

we then have
ass = a’ , ay3 = beosxs + csinxs |

with a, b, ¢ constants. Substituting into the formula which gives day3/0x3 we obtain

ag3 = a’cos x| + sinxy (bsinzs — ccosxs) .

641t suffices that it admit the two X1 f, X2f in order for it to also admit the third since [X1, X2|f = X3f.
55The original paper had a3 on the Lh.s. of the 4th equation and 0/0x2 on the Lh.s. of the 8th equation,
both of which were incorrect [Editor].
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Now since aj; is a function only of z3, we set a;; = 2p(x3), so that from the formula
which gives daq1/0x3 it follows that

a1g = cos 1 (bcosxz + csinzg) — sinxy ' (3) .
Then integrating the two equations for ass we have

agy = 2sinzy coszy (bsinag — ccosxs) — 2sin? 21 p(x3)

+a? + dsin® 1y ,

with d a new constant. Finally by substituting into the formula which gives dai2/0x3, we
find for ¢(z3) the differential equation

¢"(x3) = —dp(x3) +a® +d

and so by integration%

@(x3) = ecos(2x3) + fsin(2x3) + (a* 4 d) /4 ,

with e, f new constants. With the values thus determined for the 6 coefficients a;, the
above stated equations are actually satisfied, whatever the 6 constants a, b, ¢, d, e, f are.

We can then directly show, making use of the usual fundamental equations (A), that
the complete group of motions is the given G3, except when the four constants b, c, e, f are
simultaneously zero. We prefer to treat this problem in another way, taking advantage of
the theorem of Lie on the composition of groups, which makes the work simpler. We add
that we can also apply the same method to the groups of type VIII to derive again the
results of §28, §30.

33 Spaces which admit as a subgroup of motions a group Gj of type IX.

Suppose that we have a space which admits a transitive G3 of type IX as a subgroup of
motions, but that its group of motions is larger. If we exclude the case of spaces of constant
curvature, this larger group cannot be other than a 4-parameter group, a fact which we
state here postponing its demonstration to §36.

Given the hypothesized G4 containing the simple subgroup Gs of composition®”

(X1, Xolf = X3f , [Xo, Xa]f=Xuf, [ X3, Xi]f = Xaof ,

by the indicated theorem of Lie,%® we can choose the fourth infinitesimal generating trans-
formation of G4 so that one has

(X1, Xu]f = [Xo, X4|f = [X3, X4]f=0.

56The original paper has x3 /2 instead of 2x3; correction after the Opere [Editor].

57The original paper had X1, X3 on the left in the first commutator, an obvious typo [Editor].

%8See S. Lie-F. Engel, Vol. III, p. 723 and S. Lie-C. Scheffers, p. 574, Theorem 9. — It is worth noting
that the theorems used here depend only on the relationships among the constants of composition c;xs and
do not lose their validity by limiting them to the consideration of real groups and subgroups, as we do here.

56



We consider in G4 the G5 of Abelian motions generated for example by X f, X4f
and as in §14 we choose as coordinate surfaces x1 = constant the surfaces invariant with
respect to the group Gs. Proceeding as in the cited section we can furthermore assume
X1f =0f/0xo, Xuf = 0f/0x3, and give the line element of the space the form

ds® = dz? + adxl + 208 drodrs + v da? |

with «, 3, functions only of z1. Now let Xof = m0f/0x1+n20f/0xo+n30f/0x3; because
of [ X1, Xo|f = X3f, it follows that

Om Of | Omy OF | Ons Of
8:132 8::31 8:132 8:132 8:132 8:133 '

Since on the other hand one must also have [Xo, X4]f = 0, [ X3, Xi]f = Xof, n1,m2, M3
must satisfy the conditions:

X3f =

Om _ Onx _ Ons

= = =0
8:133 8:133 8:133 ’
0% 91 9*n3
8:E22 +m ) a$22 + 12 ) a$22 + 73 )

from which we will have

n1 = Asinxo + Bcosza , ng = Csinxy + Dcoszy

n3 = E'sinxo + F cosxs

where A, D,C, D, E, F are functions only of x;. From the first of equations (E) §14, it
follows that 71 does not depend on x; and so A, B are absolute constants. Finally from
the composition equation [Xs, X3]f = X;f we get the following three equations

AC+BD =0, BC' —AD' =C?*+D?*+1,
AF' —BE'+CE+ DF =0.

There is no loss of generality in adding a constant to s in such a way that B = 0 9

and since one cannot simultaneously have A = 0, as can be seen from the second of the
equations (), we will also have C =0, so —AD' =1+ D? AF' + DF = 0.

Integrating the first equation and ignoring the additive constant in x1, as is allowed,
we will have D = —tan(z1/A), F = k/ cos(x1/A), with k an arbitrary constant.

If we now apply the other equations (E) §14, the relation

1, o2 ons
- e LA
27771 +ﬁa$3 +76:E3

shows us that v is constant, so we set v = h? and the remaining equations give us
E=0,
aD' +BF =—A, BD' +h*F' =0,
Ad//2=aD+ BF , Af' = 8D + h*F |

69T his assumes A # 0; if this is not true, one would change x> into 7/2 + 2.
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from which we get
a = A2 cos (%) + h2k? sin? (%) , B = hksin (%) Y =h2.
If we set x1 = Ayi, 3 = Ayz/h, n = hk/A, then dividing the line element by h?, we
find the standard form
ds® = dy% + (0052 y1 + n? sin? Y1) d:n% + 2nsiny; dradys + dy?%
which, by changing the notation, we can write as

2

ds® = dz? + (sin® z1 + n? cos® x1) da + 2n cos 1 drodas + das . (118)

One sees that for n = 0 we obtain the space already considered in §9. This case
must be excluded here though because it would lead to n3 = 0 and the derived group
(X4 f, Xof, X3f) is then intransitive.

We also exclude the case n = 1 because the line element then becomes

ds® = da? + da + da3 + 2 cos x1 dradrs

and belongs to the space of constant positive curvature K = 1/4. In fact let =1 = 2y,
T2 = Y2 + Y3, 3 = y2 — y3 and one has

ds® = 4(dy? + cos® y dys + sin® dy%)

which indeed belongs to one such space. The geodesically parallel surfaces 1 = constant
are in this case Clifford surfaces of zero curvature.

34 The complete group of motions of the space:
ds? = d:n% + (sin2 x1 + n? cos? x1) d:E% + 2n cosxq drodrs + d:n%.

To determine the most general infinitesimal motion
Xf=mof/0x1+n20f/0x2+n30f/0x3
of the space of the line element (118), the equations (E) §14 give us the following equations

om
an _yg 119
9 (119)
0 0
O—Z; + (sin® 21 +n? coszznl)a—;}i —|—ncos:n18—$1 =0, (120a)
om Ony . Ons
am ane 9B _ 120b
s + ncosxy D2, + o1 ( )
(1 —n?)sinzy cos 21 ny + (sin? 21 + n? cos? :El)a—772
€2
0
+n cos :Elﬂ =0, (121)
8:132
Ony | Ons
Gz 95 _ g 122
7, COS T1 D25 + D3 (122)
0
—nsinz m + (sin 21 +n? cos? ;) gin
8:133
ona | O3 ons
il —P _0. 123
+ncos (8:132 + 8:133) + B (123)
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Solving (120) for dny/0x1, On3/dx1, and integrating with respect to x1, on which 7
does not depend by (119), leads to the result:
om n_ Om

Ne = cotx1—— — — — + ¥ (xo, 3) , (124a)
Oxro sinxy Oxs

om _ _n_ Om

N3 = {n2 cotxy — (1 — n2)$1} - — + x(x2, x3) . (124b)
Oxrs sinxy Oxo
Substituting into (122), we have
0*m 2 &*m  Ox
—nsi = ~1 X,
nsinzg 923025 + ncosxy e + (n )T1 0a? + Ds

and so since n? — 1 # 0:

52771 . 52771
6:1328:133 B 6:1332

6 9v Ox
_0’8—:133_8:133_0'

Substituting now into (121), we then obtain

W _ox _ Om_ _
8:132 N 8:132 N ’ 8:1322 -

and with these equations (123) is also satisfied. It follows next that dn;/0z3 = 0, so

N1 =acosxo + bsinxsy |

12 = cot x1(—asinze + bcosxy) + ¢,

n
n3 = ——(asinzy —bcoszy) +d ,
SN Iq
with a, b, ¢, d arbitrary constants.
Therefore the complete group of motions of the space (118) is the G4 generated by the
four infinitesimal transformations:

of
Xif=—=—
lf aZEQ )
0 0 i 0
Xof = cos:ng—f — cot x1 SiDZEQ—f + n,SID$2 —f ,
0x1 Oxo sinxy Oxs
0 0
X3f = —sinzo—— — cotzy cos:ng—f + ’I’L(?OS:EQ —f ,
0x1 0xy sinzy Ors
of
Xuf = =—
4f a;ﬁg )

which has the composition:

(X1, Xolf = X3f , [Xo, Xa]f = Xuf, [X3, Xi]f = Xof ,
(X1, Xu]f = [Xo, Xy|f = [X3, X4]f=0.

This group is systatic and the systatic varieties are the geodesics (x3), which however,
except in the case n = 0, do not admit orthogonal trajectories.
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35 The constant n is essential in
ds® = d:n% + (sin2 x1 + n? cos? x1) dZE% + 2n cosxq drodrs + d:n%.

We wish to show finally that in the line element (113) the constant n, apart from sign,”®
is actually essential and namely that if a second space

ds® = dy? + (sin® y1 + m? cos® y1) dy3 + 2m cosyy dyadys + dy3 (126)

is similar to the first, one must necessarily have n? = m?.

Adopting for this the same method which has served us in the analogous cases, we
observe that the group I'y of motions of the space (126) is generated by the four infinitesimal
transformations:

of
Yif=—
lf ayz Y

of . Of  msiny; Of
Yzf:cosyga——cotylslnyg— a4 >
U1 0ya siny; Oys

) of Of mecosys Of
Yaf = —sinya— —cotyicosya = + —————,
o 0y siny; 0y3
of

with the composition:

First we must determine if the group G4 of the first space is similar to the I'y of the
second. Assuming that the equations of transformation change X;f, Xof, Xsf, Xuf,
respectively into Y; f, Yaf, Y3f, Y4f, the Y f must be combinations of the Y f and have
their same composition. From this it follows that, since Yjf is the only infinitesimal
transformation of I'y which commutes with every other, Y, f will not differ from it other
than by a constant factor a, while Yi f, Yaof, Y3 £, belonging to the derived group, will not
involve Y3 f and one will have™

Yif = ciYif +cioYaf +c13Ysf
Yaof = caYif + caaYaof + casYsf
Yaf = cq1Yif + csoYof +es3Ysf , Yaf = aYaf .

The composition equations

show that the nine constants c;;, are the coefficients of an orthogonal matrix of determinant
= +1. Now among X1 f, Xof, X5f, X4f, holds the unique relation

1
Xyf = —{coszy Xy f +sinxysinxg Xof + sinzy cosxo X3f}
n

"Changing the sign of either z2 or 3 changes the sign of n.
"'The original paper had X instead of Y in the second equation, an obvious typo [Editor].
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and similarly among the Y; f the other
Vil = —{cosy Vif +singy singnYa] +sinya cos o Y}
Expressing the z in terms of the y, we have
Yif = % {cos:nl Y1 f +sinaz; sinzy Ya f + sin 2 cos zo Y})f}

or equivalently

1 . . .
Yy = — {(c11cosx1 + co1 sinxy sin xg + ¢33 sinxy cos x2) Y7 f
an

+(c12 €08 1 + oo 8inxq Sin g + 39 sinxy cos z2)Ya f

+(c13c08 1 + co3sinwy sinxg + c3gsinxy cos w9)Ysf} .
Comparing this with (v) leads to the three equations

(an/m) cosyy = c11cosx1 + c21 Sinq sin xg + 31 8in x1 cos Tg |
(an/m) siny; sinys = ¢12 €08 1 + C22 sinxq sin 9 + ¢392 sin 1 cos xa

(an/m) siny; cosys = €13C0S T1 + C23sinxq sin e + c33sinxq cos s .

The compatibility of these three equations in y1, y» gives, according to the general
theory, the necessary and sufficient condition for the similarity of the two groups Gy, I'y.
This condition is found immediately by squaring and summing the above three equations,
which gives a?n?/m? = 1. It suffices therefore to take a = +m/n in order that correspond-
ing equations of transformation of G4 into I'y exist. Equations (127) show that one has
ayl/alEg = ayg/alEg =0.

For the rest, expressing the fact that the X, f are transformed respectively into the Y; f,
we can find all the values of the first partial derivatives of the y with respect to the x. It
suffices for us to note here, in addition to the two above, the following

0
a_yz = 11 — c1pcotyy sinys — c13cotyy cosys (128a)
)
0
COS :Egﬂ = (22COSY2 — C23 sin Y2
8::31
+ cot xy sinxa(c12 cOS Y2 — c138inYs) (128b)
0
g = . (128¢)
8:133

Assuming now that the two line elements are transformable one into the other, except
for a constant factor, we utilize as in §19 the Christoffel formula

0%y, v Oyi Oy, 1 oy,
O:ETO:ES—I_%;{Z'IC} _z“:{ } oz,

)
y 01y O rs), Oz,

setting v = 1, r = 2, s = 3 and substituting for the Christoffel symbols their actual values,

we obtain
. Y2 no . 1
siny; — = —sinz; —

dxra am 0x1
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or equivalently by (128)

cos z2(c11 Siny; — €12 coS Y1 Sin Yo — €13 COS Y1 COS Y2)
n .. .
= — {sinz(co2 cOSY2 — Cozsinys)
am

+ cos xy sinxy(c12cosy2 — c138inys)} .

Multiplying this last equation by a?n?/m? siny; = siny;, noting (127) one obtains the
equation

€11 COS T {1 — (€11 cos k1 + ¢o1 sinxy sin xo + €31 8in 21 cos :132)2}
—c19 €08 To (€11 COS 1 + €91 8In xy sin xg + €31 8in &1 cos z2)
X (€12 cO8 1 + oo 8in 1 sin xg + €32 8in 1 cos 2)
—c13 €08 T2 (€11 cOS 1 + €91 8in xq sin xg + €31 8in &1 cos z2)
X (13 cos x1 + cogsin oy sin xg + €33 8in 1 cos z2)
n2
=3 {co2sin (€13 oS x1 + oz sinxq sin xg + ¢33 sin 1 cos x2)

+c19 cosxy sin xo(c13 cos w1 + o3 8in g sinxg + ¢33 sinxy cos z2)
—co3sinxy(c12 cos Ty + oo 8in xy sin g + €32 8in 1 cos z2)

— €13 €08 1 Sin T (€12 COS X1 + Cog sinx sinwg + c3gsinzq cosxa)}

which must prove to be an identity in x1, zo. Setting x5 = 0 in this equation we find

2
—2(611 Sln2 I1 — C318SIn.Xx1 COS :El) = C11 Sln2 I1 — C318S1INXx1 COST
m
so n? = m?2, unless one has c11 = 0, ¢31 = 0 so that also coo = 0, c23 = 0, o1 = +1.
Introducing these values of ¢ into the above identity leads to: (n?/m? — 1)ca; = 0 and

so again n? = m?, Q.E.D.

36 The impossibility of other spaces with continuous groups of motions.

In the previous sections we have exhausted the study of the 3-dimensional spaces which
admit intransitive groups of motion or transitive 3-parameter groups. And now we show
that with this we have also determined all the possible spaces which admit continuous
groups of motions.

Therefore, since the group of motions of a space cannot have more than 6 parameters,
it will clearly suffice to show that a (transitive) group of motions with 6, 5, or 4 parameters
necessarily contains some real 3-parameter subgroup.

If we treat a Gg this is clear since then the motions which leave a point of the space
fixed form precisely a real subgroup with 6 — 3 = 3 parameters.”>

If the complete group of motions is a G4 we easily find the same thing recalling that
the derived group of a (G4 possesses at most 3 parameters and therefore, in any case, there
exist real 3-parameter subgroups in G4. And indeed if the G4 is generated by the four
infinitesimal transformations X1 f, Xof, X3f, X4f, and the derived group is the identity,

728, Lie-F. Engel, Vol. I, p. 204.
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or (X1f) or (X1f, Xof) or even (X1f, Xof, X3f), then (X1f, Xof, X3f) will always be a
real 3-parameter subgroup.

It remains to show the same property for a G5. In this transitive group those motions
which leave an arbitrary point of the space fixed form a real G5 and we propose to establish
that such a G5 would necessarily be contained in a real subgroup Gs of the G5. Lie™ shows
that indeed every G2 in a group with » > 3 parameters is contained in at least one subgroup
(I3; however, it could easily happen that in the general case these subgroups G3 are only
complex. But if we apply the same derivation given by Lie (ibid.) we see that our assertion
will be proved when it is shown that if

of of
E\f = E aipTp— , Eaof = E birxy,
ik Oz ik Iz

are two linear homogeneous transformations in three variables x1, x9, z3 such that one has
[E1, Es)f = kE1f (k constant) and one interprets x1, x2, x3 as homogeneous coordinates of
a point in a plane, then there will be at least one real point that will remain fixed by both
transformations (fixed point). It is known that to find the fixed points with respect to the
FE1f one has the system of equations

a11x1 + a12T2 + a13x3 = pr1 ,
a21x1 + @22 + a23x3 = pT2 ,

a31x1 + a3zeT2 + as3xrs = pr3

and since the cubic equation with real coefficients

ail —p ai2 a13
ao1 ag2 — P (23 =0
asy —p as2 assz — p

has at least one real root, there will certainly be at least one real fixed point with respect
to E1f. If there exists for E1 an isolated real fixed point, then since by assumption
[E1, Bo)f = kEyf, it will be fixed with respect to Eof.™ So it will suffice to consider the
case in which F4f has no real isolated fixed points. This happens only when the above
cubic equation has a single root, which furthermore makes all the second order minors of
the same determinant zero.” Then all the fixed points are distributed over a (real) line
and if we assume this line as the side z3 = 0 of the fundamental triangle, we give to E f,

as is immediately seen, the form?®
o of . of . of ) of . of
Elf =P (:El 8::31 +$2a$2 +$3 8:133 —I—Oé:Eg 8::31 +ﬁ$3 8:132 ’

If one had”” oo = B = 0, E1 f would leave every point fixed and a real fixed point of Es f
would satisfy the required condition. If 8 # 0, changing x1 into z; + hxo, we can make

738, Lie-F. Engel, Vol. I, pp.592-593.

"See S. Lie-F. Engel, Vol. 1, p. 507, Theor. 104.

"5See the precise discussion in S. Lie-G. Scheffers, pp.510-511.

"The original paper had df/dzs in the second term, an obvious typo [Editor].
""The original paper had as = 83 = 0 here, an obvious typo [Editor].
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a = 0 and we will thus have

E\f = P(lﬂla—f-i-iﬂzaafz-i- 3aaf>+ﬁ 3662

0
If By f, By f were in the involution relation™ [Ey, Es] f = 0, the above considerations are
already sufficient to demonstrate the assertion, since in the most unfavorable case where
neither Fqf nor Fsf possess a real isolated fixed point, the meeting point of the two lines
of the respective invariant points would satisfy the desired condition.
Therefore we assume in

[Er, Eo)f = KELf (a)
that k # 0. One then has™

of

0
Esf = (a121 + asxs + aslb"s)—f + (byz1 + baxg + b3$3)8—:132

8::31

—|—(61:E1 + Ccoxo + Cg:Eg)— .

8:133

The condition (a) gives kp =0, ay = ¢ = ¢ =0, by = ¢c3+ k, so that p = 0 and we

can make
0
Eif =3 5 f2
0 0 0
Eyf = (a1z1 + aslﬂs)% + (b1 + bzlﬂz)% + 033336];

The real point of coordinates (0, 1,0) remains fixed by both transformations.

37 The impossibility of groups G5 of motions.

By what we have shown in the previous section, there does not exist any space which has
a G5 for the complete group of motions. From this it follows that if a space should admit
a subgroup G5 of motions, also admitting a Gg, it would be of constant curvature. But
we can easily go farther and show that the groups Gg of motions of the spaces of constant
curvature do not contain a real subgroups of 5 parameters, namely:

There does not exist any 3-dimensional space whose group of motions contains a real
S-parameter subgroup.

Assuming the existence of such a G5 of motions, its subgroup GGo which leaves any point
P whatsoever of the space fixed is contained, by the previous section, in a real GG3. This
(3 would necessarily be transitive since otherwise with motions of G'3 one could transport
P anywhere, but every point would remain fixed by a double infinity of motions of the G3
which is absurd. The group (G5 being transitive, we can apply the methods developed in
§65—11 and therefore give the line element of the space of constant curvature one of the
following 6 forms:

ds®* = dz? +dzd+dv3, K=0, (al)

"8In Italian: “relazione involutoria” [Translator].
"The original paper had df/dz1 instead of df /dx3 in the last term [Editor].
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ds® = dz? + *\(das + dad) , K = —1, (a2)
ds® = dz? + 23 (dx3 +sin? vy d23) , K =0, (61)
ds® = dz? + sin® 1 (da3 + sin® 2o da?) , K =1, (62)
ds® = dz? + sinh® z1 (da3 + sin® zo da?) | K = 1, (83)
ds® = dz? + cosh? 1 (da3 + sin® zo dad) | K = —1, (y)

which is adapted to the subgroup Gs of rotations about a point®® generated in the respective
cases («), (), (v) by the three infinitesimal transformations designated in §5 by (a*),
(6%), (v*). For each of these forms we have to determine, by integrating the fundamental
equations (A), the form of the complete group Gg of motions and see if there exists a
subgroup G5 of the Gg containing the G3. The answer being negative, the stated property
will be established.

Here I limit myself to carrying out the calculations for one case. We choose, for example,
the (parabolic) form

ds® = dz? + e*"1(dx3 + dx3)

of the line element of the pseudospherical spaces. Integrating the equations of §7 we
easily find that the complete group Gg of motions is generated by the 6 infinitesimal
transformations:

_ ﬁ _ o _ af 02
of e 221 2 2 a_f ﬁ
X4f—!132a +2( + a3 — )6:52 2T
a_f _ af 1 21 2 Of
Xsf =3 R TaT3 o s + 2( +x $3)a$3 ;

We now write the related composition equations:

(X1, Xo]f =0, [X1, Xs]f = —Xof , [X1, X4|f = Xef ,
(X1, X5|f = = Xsf , [ X1, X¢lf = —Xuf ,

[(Xo, Xslf = Xuf , [Xo, Xulf = Xsf , [Xo, Xs]f = Xef ,
(X2, Xo|f = —Xaof ,

(X3, Xulf = Xsf , [ X5, X5]f = —Xuf , [X3,Xe]f =0,

(X4, X5]f =0, [Xy, Xe|]f = Xuf ,

(X5, Xl f = Xs5f

the inspection of which would suffice to show us that there does not exist in the Gg any
real G5 containing the subgroup Gs = (X1 f, Xof, X3f).

80 As is seen, in the space of zero curvature (Euclidean), we have two different forms for the line element,
one (a) corresponding to the case of a center of rotation at infinity, the second () to the case of the center
of rotation at a finite distance. For the pseudospherical spaces (K = —1) we have three distinct forms (),
(8), (), according to whether the center of rotation is at infinity or a finite distance, or is ideal, and finally
for the space of Riemann (K = +1) only one form. These geometric circumstances are well known from
the theory of spaces of constant curvature.

65



In fact let Y f be an infinitesimal transformation of G5 that does not belong to G3; we
can set Y f = aXyf + bX5f 4+ cXgf with a, b, c constants. In G5 there will therefore also
exist the three infinitesimal transformations

[ley]f:aXﬁf_bX3f_Clev
[X27Y]f:aX3f+bX6f_CX2fv
[X37Y]f:aX5f_bX4f7

and so also aXgf, bXgf, and hence in any case Xgf since if a = b = 0, Y f reduces
to Xgf. Now the four transformations Xif, Xof, X3f, X¢f, of G5 actually generate a
G4 and if by Zf = aXuf + bX5f we indicate the last infinitesimal transformation, then
(X3, Z]f = aX5f —bX,f must be a combination of X1 f, Xof, X5f, Xsf, Zf and so differs
from Z f only by a constant factor p. Therefore one will have a = pb, b = —pa from which
p>+1=0and so Zf = X4f + iX5f, which gives only a complex G5. Demonstrations
completely analogous, as the reader can verify, are valid in all the other cases.

38 Summarized table of the line elements.

It will be useful to summarize the results obtained by gathering together in a table the
various types to which we have reduced, in the course of this study, the line elements of all
possible spaces which admit continous groups of motions.

We divide these spaces into six categories according to the type of their complete group
G of motions. We assign a space to the category A) when its group of motions is a Gy,
to B) when it is a Ga, to C) when it is an intransitive Gs. The other two categories D) ,
E) contain the spaces whose group of motions is transitive, D) those with a G3, E) those
with a G4. Finally the sixth category F) will include the spaces of constant curvature
which admit a group Gg of motions. In the same table we also give the infinitesimal
transformation generators and their composition.

Category A

Groups G;

ds?® = ¥ a; dridxy,

with coefficients a;; independent of x4

group: of
Xif = B
Category B
Groups G

ds* = dz} + adx3 + 28 dzodzs + v da?
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with «, 8, v functions only of x;

group:
of

0
X =gk xap =5l

8:133

composition:
[X1,X2] =0

ds® = dz? + adr3 + 2(8 — axg) drvadrs + (a3 — 2Bw2 + ) d2i

with a, 8, v functions of x;

group: of of
Xif=——, Xof =" —
lf a$3 ) 2f € aZEQ
composition:
[X1, Xo]f = Xof
Category C
Groups (3 intransitive
) ds® = dz? + ¢*(21)(dx3 + dx3)
with ¢(z1) an arbitrary function of x;
group: 5 of of of
f
composition:

[Xl,Xg]fZO, [X17X3]f: _X2f7 [X27X3]f:X1f

B3) ds? = dx? + ¢*(z1)(dz3 + sin? x5 dw3)?

group:
0 0 0
Xif = —f , Xof = SiIl:L'g—f + cot g cosxg—— ,
8:133 8:132 8:133
0 .
Xsf = COSZEg—f — cot x9 SlnlL'g—f
8:132 8:133
composition:

(X1, Xo]f = X3f , [Xo, Xa]f = X1f, [X3, Xa]f = Xof

~v)  ds? =dx? + *(x1) (d3 + e**2 dxg)?
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group:

of of of
Xif=2L xy =2 90
d 1 d
Xaf = agi Fple e :”g)a:i;

composition:

(X1, Xo]f = —Xuf , [X1, Xs|f = Xof , [Xo, X5]f = —X3f

Category D

Groups (3 transitive

Type IV
ds? = dz? + %1 [dx3 + 271 drodxs + (23 + n?) dxs)?]
group:
of of
X, f=221  x, =29
lf a 2f a$3 ’
af of of
Xyf = 22 )2
3f &El—l—(:nz—l— :13)62—1—:1338333
composition:
(X1, Xo] =0, [X1, X5|f = Xuf , [Xo, Xp]f = Xuf + Xof
Type VI
ds? = dz? + e**1 da3 + 2neP TP daydas + 2o dz3
group:
0 0
xf=2t xp= 90
:Eg 8:133
af of af
X3f = ——— —— + hx
3f = . +z 250 + 38:133
composition:
(X1, Xo] =0, [X1, X3|f = Xuf , [Xo, Xg]f = hXof
Type VII

ds? = dx? 4 e~ {(n+ cosvz) d:n% + (hcosvry + vsinxy + hn) dradxs

+ (2 2” cosvry + 12 5 sinvwry + n) d:ng}

group:
0
xif= 2L xp =9
:E 8 T3
of of of
Xaf = — _ pa—? i
3f 0 "0 +(:E2+h333)a$3
composition:

(X1, Xo] =0, [X1, X3]f = Xof , [Xo, X3]f = -X1f+hXof
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Type V{I{sl
4 T "x "(x
ds? = T4 422 1 Q(2y) dad + (Q(iﬂl)J?% - gy + T - %) da

+2 (—Qﬁl(;l) + h) dxidzg + 2 {Q//;(fl) - (Qﬂl(;l) + h) 1132} dridzs
+2 (% - Q(iﬂl)iﬂz) dxadzxs ,
with Q(z1) a fourth degree polynomial in 21 with its first

coefficient positive (or zero), and h a constant

group:
Xif = e—%g—i — :17%6_“68—52 — 2:1726_“88—:1‘2 ;
Xof = 56—1]; , X3f = 66—52
composition:
(X1, Xo)f = Xaf , [X1, Xs]f =2Xof , [Xo, X3|f = Xsf
Type IX%?

ds?® = ik ai dxidxy,

a1 = 2ecos 23 4+ 2f sin2z3 + (a* + d?)/2 ,

age = 2sinxy cosxy(bsinxs — ccoswy) — ayy sin® 21 + a® + dsin® 21 ,
ass = a’ , ay3 = bcosxs + csinzs |

ajg = cosxi(bcosxs + csinxs) + 2sinxy (esin2x3 — f cos2x3)

Qo3 = a? coszq + sin x1(bsinxs — ccosxs)

group:
0 0 0 i 0
Xif = —f , Xof = cos:ng—f — cot x1 Sinzng—f s%nzng_f ,
0o 0x1 Oxro sinxy Oxs
Xsf = —sin:nga—f —cot cos:nga—f C?S:Ez O_f
0x1 Oxry  sinxy Ors
composition®3:
(X1, Xolf = Xaf , [Xo, Xa|f = Xaf , [X3, Xu]f = Xof
Category E

Groups G4 3

8) [Type 11
ds? = dx? + da + 2z deedas + (23 + 1) da3

$1Bjanchi’s Q'Y was replaced by the more familiar Q) [Editor].

82The original paper had x3/2 instead of 23, which was incorrect. Also, the second term in ai2 had the
coefficient 1/2 instead of 2, corrected here after the Opere [Editor].

83The original paper had X f in the second commutator on the r.h.s., an obvious typo [Editor].

84Simply transitive subgroup Bianchi types added in brackets by translator for clarity.
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group:

_ ﬁ _9f _ af w2l
. of of af
X4f :E3a T + 3 (:El )a o -1 a$3

composition:

(X1, Xo] = [X1, X3] = [X1,X4] =0,
[(Xo, X3]f = X1 f, [Xo, Xu]f = —X3f , [X3, X4|f = Xof

b) [Types 111, VIII]
ds? = dx? + e**1 dx3 + 2ne® dzodzs + dr3

group:
_of _of _of of
le — aZEQ ; 2f — a$3 ; X3f — alﬂl $2a—$2 ;
o of 1 e 2 o\ Of  me ™ Of
Xaf = $28—+§<1 n? :Ez)a—lﬂz_l—nQa—lﬂg
composition:
(X1, Xo] =0, [ X1, X3)f =-Xuf , [ X1, X4]f = X3f,
[Xo, X3] =0, [Xo, X4] =0, [X3, Xu]f = —Xuf

c) [Type IX]

ds? = d:n% + (sim2 x1 + n? cos? x1) d:E% + 2n cos xy daxodrs + d:n%

group:
0 0 0 i 0
Xif = —f , Xof = cos:ng—f — cot 1 sin xg—— ! + n,SID$2—f ,
0 0x1 Oxo sinxy dxs
] of Of  ncosxzs af of
X = — t _
3f sm:nga:E1 cot 21 cO8 T 5~ s + Sinzy 23 Xyuf = 023
composition:
(X1, Xolf = Xaf , [Xo, Xa|f = Xaf , [X3, Xi]f = Xaof ,
(X1, X4] = [X2, X4] = [X3,X4] =0
Category F
Groups G¢ — spaces of constant curvature

39 Conclusion.

Having classified all possible types of spaces which admit a continuous group of motions,
it remains only that we say how, given the line element of a space, one can verify whether
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that same space admits a continuous group of motions, and if so, how the equations are
found which reduce the line element to one of the typical forms of our table.

For this purpose it is enough to recall the equations (A) §1 which are precisely according
to Lie, the equations of definition®® of the group. With only algebraic operations and
differentiation one evaluate the number r of parameters of the group and decides on its
transitivity or intransitivity,® so that one sees immediately to which of our categories the
given space belongs.

The integration of the fundamental equations (A) then gives us the actual form of the
infinitesimal transformations of the group and this makes the composition evident to us,
after which one will decide immediately to which type in the category the space belongs
since one will clearly find in the table one and only one group which offers the same or an
equivalent composition.

Then one tries to identify the two groups, namely to assign the values of the constants
which enter in the group of canonical form and to calculate the equations of transformation.
To this task one responds perfectly applying the general criteria for the similarity of groups
given in the work of Lie.

NOTE

After the editing of the present Memoria Professor Ricci brought my attention to a Nota
of Professor Levi-Civita, where by chance particular 3-dimensional spaces with 3 or 4-
parameter groups of motions are already given (see T. Levi-Civita, Sul moto di un corpo
rigido attorno ad un punto fisso [On the motion of a rigid body around a fixed point],

Rendiconti della Reale Accademia dei Lincei (5), 5 (2nd sem. 1896), 3-9; 122-123).
87

853, Lie-F. Engel, Vol 1, §50, p.186.

868, Lie-F. Engel, Vol 1, p.217.

87The original paper has a “correzione” here that corrects a sentence at the end of sec. 21. In the
translation, the appropriate correction was made where it belongs [Editor].
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