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EDITOR’S NOTE

This article methodically studies (locally) the symmetry and isometry classes of all
3-dimensional Riemannian manifolds. For each of the possible orbit dimensions 1 and 2
(intransitive actions) and 3 (transitive actions) and for each possible symmetry class of
group actions, explicit canonical coordinate expressions are derived for the full Killing
vector Lie algebra and the metric by solving the Killing equations. A representative line
element is then given parametrizing the isometry classes of a given symmetry type modulo
constant conformal transformations, and specializations which admit higher symmetry are
studied. For the case of simply transitive 3-dimensional isometry groups, this classification
of metrics by symmetry class coincides with the classification into nine isomorphism classes
of the isometry groups themselves (Bianchi types I – IX), now known together as the Bianchi
classification.

This article followed soon after Lie’s classification over the complex numbers of all Lie
algebras up to dimension 6 and Killing’s discovery of his famous Killing equations at the
end of the nineteenth century. All of Bianchi’s work was well known by the mathematician
Luther P. Eisenhart (1876–1965), a professor, chair, dean and important educator in the
Princeton University Mathematics Department from 1900 to 1945 [1], who served as a
principal source of English language discussion of much of the early work in Riemannian
geometry and Lie group theory through his two books Riemannian Geometry (1925) [2]
and Continuous Groups of Transformations (1933) [3], which contain numerous references
to Bianchi’s work. As a differential geometer, Eisenhart occasionally helped Einstein and
certainly contributed to the enthusiasm for relativity at Princeton.

The results of this Bianchi article were extended and brought to the attention of the
relativity community in 1951 by Abraham Taub just after their first use in two special
applications by Gödel. Taub got his Ph.D. in Mathematics at Princeton University in 1935
under H.P. Robertson, during the time (1933–1939) in which the Institute for Advanced
Study was founded but initially housed in the Princeton University mathematics building
where Taub had learned his differential geometry from Eisenhart and worked with both
Oswald Veblen and John von Neumann, two of the three mathematicians stolen from the
university as the original members of the Institute with Einstein when it opened in 1933
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[4]. Later Gödel, Einstein’s best friend and a fellow member of the Institute, was led by
philosophical questions about time [5, 6] to consider studying rotating universe models in
the late 1940s, leading to the first application of Bianchi’s homogeneous spaces in general
relativity (types III, VIII [7]), shaking up the physics community with the strange new
properties of his stationary rotating solution (1949) [8], followed by a summary of results
he published in 1950 without proof about rotating and expanding cosmological solutions
(type IX) [9]. Taub was Veblen’s assistant in 1935–36 and a visiting member of the Institute
in 1947–48 [10] and soon after announced his own work at the same conference at which
results of Gödel’s second investigation were presented, shortly later in 1951 publishing
explicit formulas for the spatially homogeneous spacetime metrics corresponding to all of
Bianchi’s nine symmetry types and the vacuum Einstein equations for these cosmological
models in a discussion (like Gödel) motivated by the desire to find solutions violating
Mach’s principle [11].

These Bianchi models, as they later came to be called, were revived in the late 1950’s
by Heckmann and Schücking (later summarized in their chapter [12] in Gravitation, an In-
troduction to Current Research edited by Louis Witten, father of Edward). István Ozsváth
continued this work in the next decade [13, 14], during which time David Farnsworth and
Roy Kerr (1966) introduced the modern Lie group description of homogeneous spaces in
relativity [15], while C.G. Behr (1968) introduced the modern Lie algebra version of the
Bianchi (Lie) classification of 3-dimensional Lie algebras using the irreducible parts of the
structure constant tensor under linear transformations [16]. Meanwhile Ronald Kantowski
(1966) explored for the first time the spatially homogeneous (Kantowski-Sachs) models
with no simply transitive subgroup [17], a spatial geometry thoroughly studied by Bianchi
(§9) but for some reason omitted in his final summary, while Ellis (1964, 1967) pioneered
the application of modern tetrad methods to cosmological models in his study of locally ro-
tationally symmetric dust, involving the whole class of Bianchi symmetry types admitting
multiply transitive groups.

At the close of the 1960’s an ongoing investigation into the nature of the initial singu-
larity of the universe by the Russian school of Lifshitz and Khalatnikov, later joined by
Belinsky, independently led to the general Bianchi models in describing how the spacetime
metric behaves along timelike curves approaching a “generic” spacelike singularity in some
limiting approximation that was then controversial. At about the same time a study of the
chaotic behavior they discovered was begun by Misner, who used Hamiltonian methods
to explore the Bianchi type I and Bianchi type IX (Mixmaster) universe dynamics in the
USA. While Ellis and MacCallum [18] approached the Bianchi models from an orthonor-
mal frame point of view in England, Misner’s Hamiltonian studies were continued by his
student Michael P. Ryan for the general Bianchi model case, later summarized in 1975 in
the only book devoted specifically to Bianchi cosmology [19], in whose bibliography ref-
erences to the above-mentioned but uncited work may be found by year of publication.
Bogoyavlensky and Novikov pioneered the application of the qualitative theory of differen-
tial equations to the dynamics of general Bianchi models (1973); more recent work in this
direction is described in the book Dynamical Systems in Cosmology [20], where references
to their work may be found.
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The Bianchi models are spatially homogeneous spacetimes, the spatial sections of which
are homogeneous Riemannian 3-manifolds of a fixed Bianchi type, and usually they are in-
terpreted as cosmological models. While generally spatially anisotropic, they contain the
spatially homogeneous and isotropic Friedmann-Robertson-Walker models as special cases
for certain symmetry types, and enable Einstein’s equations or similar gravitational field
equations to be reduced from partial to ordinary differential equations, which are much
easier to study. Besides providing more generalized models of certain aspects of the early
universe, they have also been invaluable in helping to understand features of general rela-
tivity itself by providing an arena where certain questions can be more easily investigated.
The most recent and sophistocated new work on spatially homogeneous cosmologies and
their spatial geometries involves the Teichmüller space analysis of the dynamical degrees
of freedom and Hamiltonian structure for spatially compactifiable models[21].

In 1972 (during the “golden age of relativity” at Princeton) when John Wheeler was
bringing in proofs of his new book Gravitation with coauthors Charles Misner and Kip
Thorne [22] to my sophomore Modern Physics class at Princeton University, junior Jim
Isenberg was recruiting students to fill the quota for a student initiated seminar on Dif-
ferential Geometry for General Relativity to be offered by Wheeler’s collaborator Remo
Ruffini. Following Wheeler’s teaching style, Ruffini wanted to get the students more in-
volved by doing special projects, and one suggestion was for a student to help him translate
into English the original papers of Bianchi on homogeneous 3-spaces. Somehow I volun-
teered, but it immediately became clear that this was very inefficient so I boned up on
some elementary Italian based on 3 prior semesters of college Spanish and tackled the job
during the summer while working during the day as a carpenter with my dad.

This was followed by a junior paper on Bianchi cosmology and later a senior thesis begun
in 1973 when Ruffini (my advisor) was excited by his investigation of the orbits of particles
in rotating black hole spacetimes with another undergraduate from his seminar (Mark
Johnston, whose graphics led to the famous Marcel Grossmann Meeting logo). Curious
about rotating cosmologies, Ruffini wondered about talking to Gödel himself about the
problem. Looking him up in the phone book (still naive times for celebrities), Ruffini
found him, called him up and arranged for me to meet him at his office at the Institute,
where he informed me about recent work by Michael Ryan that I had not been aware of,
initiating my own work in the dynamics of Bianchi cosmology. Gödel, though his only
published work in relativity was over 20 years old at the time, had still been following
current developments related to it.

Ruffini later channeled me toward grad school at the University of California at Berkeley
to work with Abe Taub just before his retirement in 1978. However, the Bianchi translation,
although it had been typed up by a Jadwin Hall secretary in 1973, never found a wider
audience, and sat for 25 years until Andrzej Krasiński asked me if I might translate the long
article for this series, not knowing that it had essentially already been done (but which
needed conversion to a compuscript and a polishing of my translation with my Italian
improved by 20 years of regular visits to Rome). Unfortunately by this time (1999), Taub
was in failing health and then passed away and could no longer be consulted to unravel more
of the interesting history of the personalities at Princeton tied together by Bianchi’s work.
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However, this question led to my volunteer project to put The Princeton Mathematics
Community in the 1930s: An Oral History Project [23] on the Princeton University Library
web together with background materials that should be of interest to those curious about
the community that welcomed Einstein with the founding of the Institute for Advanced
Study in Princeton.

Finally this project could not have been completed (2001) without LATEX, which al-
lowed me to typeset a long formula-dense document, nor without the encouragement and
invaluable editorial assistance of Andrzej Krasiński, who went beyond the call of duty in
many rounds of proofreading comparing my document to the original Italian manuscript
to ensure as accurate a reproduction as possible in every detail.

Commentary on Bianchi’s Article in Translation

Terminology Bianchi uses the term “group” to mean “transformation group” or a group
action on a manifold, expressed in terms of local coordinates on the group manifold and
the manifold on which it acts, and he specifies such groups Gr (dimension r) by giving a
basis of the Lie algebra of generating vector fields (called “infinitesimal transformations”),
using the notation Gr ≡ (X1f, . . . ,Xrf), where Xf =

∑1..n
i ξi∂f/∂xi denotes the ac-

tion of a vector field on an arbitrary function f by differentiation and his square bracket
delimiters have been replaced by parentheses to lessen confusion with the modern com-
mutator notation. Coordinate (and index) labels are subscripted in his notation: xi. The
modern Christoffel symbols of the first and second kind [ij, k] and

{k
ij

}
have replaced the

original symbols
[ij
k

]
and

{ij
k

}
in use at the time (apparently introduced by Eisenhart to

conform with the Einstein index convention [2]). Bianchi’s commutator (Lie bracket) no-
tation (X1X2) = X1f which uses parentheses but no comma, with no arbitrary function
to the right of the commutator (although both comma and function appear in his later
work [24]), has been modernized to the square bracket convention [X1,X2]f = X1f . Two
equivalent group actions (in the coordinate representation: related by invertible joint co-
ordinate transformations on the group manifold and manifold on which it acts), are called
“similar” by Bianchi, while two metrics are called “similar” if they are locally isometric
modulo a constant conformal factor. (Bianchi uses the term “applicable”, which has been
updated to “isometric.”) The transformations of a group acting as isometries of a metric
are called “motions.” The version of this article published in his collected works has more
complete footnotes (consecutively numbered, first name initials added) which have been
used here, and a correction in proof (rewording of the beginning of the next to last sen-
tence of §21) was incorporated into the text as done there, together with a correction to
the sign of equation (62b) which allowed the deletion of several lines at the end of §19, and
a few other minor corrections. Multiple equations grouped together by an expanded left
brace delimiter in the original have been distinguished here by a letter following the equa-
tion number or the brace has simply been omitted when unnecessary, and some displayed
equations have been incorporated into the text. (As a consequence of this modification
of equation numbers, the references to those numbers in the text were also modified but
not marked by footnotes.) Finally a number of index typo’s from the original articles have
been corrected in translation.
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The group generated by the commutators of the generating vector fields is called the
derived group. The numerical scheme characterizing the Bianchi classification of simply
transitive 3-dimensional group actions is a simple one based on the sequence of successive
derived groups starting from the original one, as described in §198 (I sette tipi di compo-
sizioni dei G3 integrabili, The seven types of compositions of integrable G3’s) and §199 (I
due tipi dei G3 nonintegrabili, The two types of nonintegrable G3’s) of his book on con-
tinuous groups [24]. This is Bianchi’s version of Lie’s classification of equivalence classes
of 3-dimensional Lie algebras over the complex numbers, refined for equivalence over the
real numbers. (In a similar way Lie essentially classified all Lie algebras up to dimension
6, with the 4-dimensional case done explicitly in all detail.) Luther Eisenhart’s book [3] is
an excellent source of information for the terminology and Lie group details of this early
generation of geometers.

Preliminaries The article begins with the Killing equations for an n-dimensional Rie-
mannian manifold (§1) and briefly treats the one Killing vector case (§2). (Bianchi uses the
notation X for £X .) Then the classification of 2-dimensional Riemannian manifolds with
simply transitive isometry groups (G2) is reviewed (§3), with only two discrete transfor-
mation group types: Abelian and non-Abelian, leading to the negative and zero curvature
cases, both of which have 3-dimensional complete isometry groups. Since the derived
group of a G2 generated by the commutators of the generating vector fields must be 0 or
1-dimensional in two dimensions, choosing X1 to span its Lie algebra gives the canonical
form of the non-Abelian case commutation relations: [X1,X2] = εX1, with ε = 1. The
Killing vectors (X1,X2) = (e−εx2∂/∂x1,∂/∂x2) and the general forms of the metric and
the invariant 1-forms are derived but not explicitly stated:

ds2
(2) = α (dx1 + εx1dx2)2 + 2β (dx1 + εx1dx2) dx2 + γ dx2

2 ,

with ε = 1 describing the non-Abelian case and ε = 0 the Abelian case.
This is then used in the case of 3-dimensional Riemannian manifolds with 2-dimensional

intransitive isometry groups (G2 ≡ (X1f,X2f)) acting simply transitively on 2-dimensional
orbits (§4). The orbits are a family of geodetically parallel surfaces taken as x1 coordinate
surfaces in an adapted Gaussian normal coordinate system with orthogonal geodesics along
the coordinate lines of x1, while x2, x3 are adapted to the generators as above, leading to
the general form

ds2 = dx2
1 + α (dx2 − εx2dx3)2 + 2β (dx2 − εx2dx3)dx3 + γ dx2

3 ,

where the three independent components α, β, γ of the 2-metric in the invariant form basis
are functions only of x1.

Then the complete isometry groups possible for such intransitive actions (2-dimensional
orbits) are described (§§5–11), which can only be at most 3-dimensional, forcing the sur-
faces to have constant curvature. This is the case of intransitive groups acting multiply
transitively on 2-dimensional orbits. However, the additional isometries can lead to a tran-
sitive action, which is the case for the 4-dimensional isometry groups of the positive (§9)
and negative (§11) curvature Kantowski-Sachs geometry, or the 6-dimensional isometry
groups of constant positive (§8), zero (§8), or negative (§§8,10) curvature spaces.
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Homogeneous 3-Manifolds These preliminary considerations are then used in the case
of 3-dimensional simply transitive isometry groups. Such simply transitive actions are first
introduced for any dimension, with a discussion of the coordinate representation of the
Killing equations and their integrability conditions, the latter being satisfied identically by
virtue of the generating Lie algebra Lie bracket relations (§12). Then Lie’s classification
of equivalence classes of 3-dimensional Lie algebras over the complex numbers is refined to
the real case by adding several types, giving Bianchi’s canonical form for the generating Lie
algebra commutation relations for each type designated by consecutive Roman numerals I
through IX, now known as the Bianchi classification (§13).

Types I through VIII all have a 2-dimensional subgroup G2 ≡ (X1f,X2f) acting simply
transitively on 2-dimensional orbits, so the metric can be reduced to the standard form
given above for intransitive actions on surfaces, with types I through VII belonging to the
Abelian subgroup case and type VIII to the non-Abelian subgroup case.

Equations (E) of §14 are Killing’s equations for this metric in the Abelian subgroup
case, then applied in (F) to the third generating vector field X3 whose Lie brackets with X1,
X2 are given by equations (41). Specializing this pair of sets of equations to each symmetry
type then leads to the complete symmetry group, including the coordinate representation
of X3 and additional independent Killing vector fields, and to explicit values for the three
metric coefficient functions of x1, from which one may easily read off the invariant 1-forms
in terms of which the metric is expressed, though not done explicitly by Bianchi. The coor-
dinate expressions for the metric and Killing vector fields are then specialized (by rescaling
the surface coordinates x2, x3, by affine transformations of the surface parametrizing coor-
dinate x3, and by constant conformal transformations) to a simple canonical form with the
minimum number of free parameters, which then parametrize the conformal equivalence
classes of homogeneous 3-geometries (locally). The symmetry type I case of flat 3-space
in orthonormal Cartesian coordinates with its translation symmetries is trivially obtained
from these equations, with a 6-dimensional complete isometry group.

For the symmetry type II (§16), all metrics are conformally equivalent and have a 4-
dimensional complete isometry group whose finite equations are given, corresponding to
right multiplication of a unit upper triangular 3 × 3 matrix X(x1, x2, x3) = I3 + x3e

2
1 −

x2e
3
1 + x1e

3
2 by A(−a1,−a2,−a3)−1.

For the symmetry type III (§17), a 1-parameter family of conformal equivalence classes
is found, with the parameter n measuring the nonorthogonality of the surface coordinates
x2, x3, and a 4-parameter complete group of isometries whose derived group (X1f,X3f,X4f)
is of type VIII, which acts transitively when n �= 0 and intransitively when n = 0 (therefore
appearing in the discussion of intransitive actions). The additional linearly independent
Killing vector field X4f depends on n. The proof that n parametrizes the conformal 3-
geometry involves showing that two metrics with the same canonical form in two coordinate
systems but with different values n and m of the parameter cannot be related by a co-
ordinate transformation. The two 4-dimensional isometry groups must be equivalent by
a theorem of Lie, but the accompanying canonical generating vector fields need only be
transformed into each other by the coordinate transformation modulo a Lie algebra auto-
morphism. The 4-parameter group of Lie algebra automorphisms is easily found, and with
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some more work, a 3-parameter group of coordinate transformations which transform the
generators into each other, giving the equivalence transformation between the two isom-
etry groups (§18). The partial derivatives of one set of coordinates with respect to the
other can be read off from the transformation of the generating vector fields, and used to
evaluate the transformation of the one metric into the other. Requiring the two metrics to
be related by the same coordinate transformation modulo a constant conformal factor then
forces the two parameters n and m to be the same modulo an irrelevant sign (§19). As
noted above, the form (49) of the type III metric, changed in signature, slightly rescaled
and with a special value of n, was used by Gödel for the timelike homogeneous sections of
his stationary spacetime homogeneous solution.

For the symmetry type IV (§20), similarly a 1-parameter family of conformal equiva-
lence classes is found with no additional Killing vector fields. The 4-parameter group of
Lie algebra automorphisms is easily found, and then a 5-parameter family of coordinate
transformations which induce them, and the essential nature of the parameter is again
shown by transforming the metric (§21).

The symmetry type V immediately leads to an orthogonal coordinate representation of
the constant negative curvature geometry with a 6-dimensional complete isometry group
(§22) whose generators are derived as an example in §38.

The symmetry type VI (§§23,24) is entirely analogous to the type IV case. Bianchi
does not distinguish the modern class A and class B types VI0 and VIh �=0,−1, where the
subscript h is the Behr parameter described below, differing from Bianchi’s parameter
h �= 0, 1. Bianchi’s h = −1, h = 0 and h = 1 limits of type VI give types VI0, V and III
respectively.

The symmetry type VII is split into types VII1 and VII2, corresponding to VII0 and
VIIh �=0 in the modern Behr notation but with a different parameter h. The metric coeffi-
cients and X3 are found (§§25,26), again with a 1-parameter family of conformal equivalence
classes and with no additional Killing vector fields (except for the special case of type VII0
corresponding to flat 3-space), and then a 4-parameter Lie algebra automorphism group is
found and used to show the essential nature of the parameter (§27).

The symmetry type VIII then switches to the non-Abelian G2 ≡ (X2f,X3f) subgroup
case (§28), where two cases arise. The simpler case with an additional Killing vector field
is equivalent to the type III case n �= 0, but the more general case in which no additional
Killing vectors exist, the Gaussian normal coordinates lead to elliptic functions in the
integration of the Killing equations for the metric coefficients and the third generator X1

(§§29,30), where Bianchi’s original notation for the elliptical functions lacked parentheses
around their arguments. By choosing a more general coordinate x1 whose coordinate lines
are no longer orthogonal to the 2-surface orbits of the G2 and which does not measure
arclength along them, but for which X1 has a relatively simple form (A = 1, B = C = 0 in
equation (95) for X1), expressions are found for the metric coefficients which are at most
quadratic in the two nontrivial coordinates separately (§31).

Finally the symmetry type IX requires a similarly different approach. Canonical gen-
erating vector fields long known from Euler angle parametrizations of the rotation group
are chosen and the Killing equations integrated to yield a 6-parameter family of metric
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coefficients from which one could read off the invariant 1-forms (§32). No discussion of
conformal equivalence classes is given. Relying again on Lie, the case in which an ad-
ditional independent Killing vector field X4 exists is treated, leading to a 1-parameter
conformal equivalence class of metrics which includes the special case of constant posi-
tive curvature (and a 6-dimensional complete isometry group) for a particular value of the
parameter (§33), whose essential nature is shown in §35 after showing that no additional
Killing vectors exist other than X4 (§34).

That no other possibilities have been overlooked is shown in §36, relying on the the
fact that no 5-dimensional isometry groups can exist as shown in §37. The final section
summarizes the canonical form of the metric, Killing vector fields, and their Lie brackets
for most of these possibilities, although the 4-dimensional isometry group with no simply
transitive 3-dimensional subgroup case of §11 is curiously omitted, perhaps leading to the
nearly two decade delay in its application to spatially homogeneous cosmological models,
first done by Kantowski and Sachs [17].

Obtaining the Same Results Painlessly from a Modern Perspective At least
in the general relativity literature, Farnsworth and Kerr [15] first published the modern
description of a simply transitive symmetry group action as the natural left or right action
of any Lie group on itself, moving the jargon away from the old fashioned simply transi-
tive transformation group accompanied by an isomorphic reciprocal group to left and right
translation on the group manifold. Choosing a left action for the symmetry action, the left
invariant vector fields (Lie algebra of the Lie group) are the homogeneous (“invariant”)
vector fields, the left invariant (positive-definite) metric tensors on the group manifold are
the homogeneous Riemannian metrics, with the corresponding Killing Lie algebra for this
“homogeneity” action equal to the Lie algebra of right invariant vector fields. For spatially
homogeneous spacetimes (“Bianchi cosmologies”), the induced metrics of the spatial hy-
persurfaces of homogeneity are isometric to left invariant Riemannian metrics on a fixed
3-dimensional spacetime isometry group.

Behr [16] was the first to then publish a simpler scheme for classifying the equiv-
alence classes of 3-dimensional Lie algebras using the irreducible parts of the structure
constant tensor under linear transformations rather than the more complicated derived
group approach of Lie and Bianchi, exploiting the special properties of the duality oper-
ation in 3 dimensions: taking the natural dual of the covariant antisymmetric indices of
the structure constant tensor Ca

bc leads to a 2-covariant tensor density on the Lie algebra
Cab = 1

2Ca
cdε

bcd which can be decomposed into its symmetric nab = C(ab) and antisym-
metric parts C [ab] = εabcac, and the dual of its antisymmetric part leads to a covector
ac = 1

2εcabC
ab which the Jacobi identity shows must have zero contraction with the sym-

metric 2-tensor nabab = 0. When nonzero, this covector’s self tensor product must then be
proportional to the matrix of cofactors of the 2-covariant symmetric tensor with a scalar
constant of proportionality aaab = 1

2hεacdεbfgn
cfndg. This notation was introduced by Ellis

and MacCallum [18], who also coined the terms class A for the case ab = 0 and class B
for the case ab �= 0 (corresponding to unimodular and nonunimodular Lie algebras [25]).
Diagonalizing the symmetric tensor density nab aligns ab with one of the basis vectors in
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general, leading to a standard “diagonal form” for the 4 nonzero components of the struc-
ture constant tensor (of which at most 3 can be simultaneously nonzero), from which the
equivalence class representative structure constants are obtained by quotienting out by the
scale transformations of the Lie algebra basis vectors.

Jantzen [26] realized that explicit expressions for all the invariant vector fields and
1-forms, and hence for the homogeneity Killing vector fields and the general form of the
metric, could be easily obtained from the generic expressions for the linear adjoint matrix
group associated with a diagonal form basis of the Lie algebra, which generically has the
same Lie algebra structure as the original Lie algebra in 3 dimensions, with limiting cases
following by analytic continuation of the formulas valid in the general case. Similarly by
considering the orbits of the easily constructed automorphism matrix groups on the space
of inner products on the Lie algebra, one can algebraically determine the isometry classes of
individual Bianchi symmetry types. This almost eliminates the need for solving any partial
differential equations, the element responsible for the length of Bianchi’s classification
paper.
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[7] István Ozsváth, “Dust-Filled Universes of Class II and Class III,” J. Math. Phys. 11,
2871 (1970); Robert T. Jantzen, “Generalized Quaternions and Spacetime Symme-
tries,” J. Math. Phys. 23, 1741 (1982); Gödel’s Lorentzian 3-metric obtained setting
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[13] I. Ozsváth and E. Schucking, “Finite Rotating Universes,” Nature 193, 1168 (1962).
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Brief biography

Born in Parma, Italy on January 18, 1856, Luigi Bianchi began his mathematics studies
at the Scuola Normale Superiore of Pisa in 1873 and then became a student of Ulisse
Dini and Enrico Batti at the University of Pisa where he got his mathematics degree
with distinction in 1877, with a dissertation on applicable (isometric) surfaces. After
postgraduate studies in Pisa, Munich and then Göttingen where he studied with Felix
Klein, he returned to Pisa to become a professor at the Scuola Normale in 1881 and was
appointed as the chair in projective geometry in 1896. In the same year he became chair of
analytic geometry at the University of Pisa and was later appointed as the director of the
Scuola Normale Superiore of Pisa in 1918, holding both positions until his death in Pisa
in 1928 [1, 2]. He had also been an editor of Annali di Matematica pura ed applicata and
a member of the Accademia Nazionale dei Lincei.

His mathematical contributions, published in eleven volumes by the Italian Mathemat-
ical Union [3], cover a rather wide range of topics. In the field of Riemannian geometry, he
is most well known for his discovery of the “Bianchi identities” satisfied by the Riemann
curvature tensor [4] (1902). In 1898 Bianchi published his complete classification of the
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isometry classes of Riemannian 3-manifolds [5, 6], the more well known symmetry types
categorized by his famous nine types identified by the Roman numerals I–IX, building upon
the theory of continuous groups just developed by Sophus Lie [7, 8, 9] (1883–93) and the
Killing equations found by W. Killing (1892) [10] a few years earlier.

Bianchi played an important role in the generations of mathematicians of the late 1800’s
and early 1900’s who developed differential and Riemannian geometry and transformation
group theory and their applications after their introduction by Gauss and Riemann and Lie,
improved by the tensor analysis methods of Gregorio Ricci-Curbastro (developer of “Ricci
Calculus” and also a student of Dini at the same time as Bianchi) and Tullio Levi-Civita
(himself a former student of Ricci), which in turn influenced the development and birth
(1915) of the new field of Einstein’s general relativity. After Bianchi’s death, his former
student Guido Fubini characterized much of Bianchi’s work as being a careful investiga-
tion of the many cases which can occur in answering a given mathematical question [11],
certainly a fitting description of his long article categorizing 3-geometries with symmetry.
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[10] W. Killing, “Über die Grundlagen der Geometrie” (On the Foundations of Geometry),
Journ. für die r. und ang. Math. (Crelle), 109, pp. 121–186 (1892).

[11] Guido Fubini, “Luigi Bianchi e la sua opera scientifica,” in Annali di matematica pura
ed applicata 62, pp. 45–81 (1929).

by Robert Jantzen

13


